Origami robots that reshape and transform themselves | Jamie Paik

229,933 views ใƒป 2019-08-16

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Chanhong Park ๊ฒ€ํ† : Yunjung Nam
00:13
As a roboticist, I get asked a lot of questions.
0
13944
3721
๋กœ๋ด‡ ์—ฐ๊ตฌ์ž๋กœ์„œ ์ €๋Š” ๋งŽ์€ ์งˆ๋ฌธ์„ ๋ฐ›์Šต๋‹ˆ๋‹ค.
00:17
"When we will they start serving me breakfast?"
1
17689
2304
"์–ธ์ œ์ฏค ๋กœ๋ด‡์ด ์•„์นจ์„ ์ฐจ๋ ค์ค„ ๋•Œ๊ฐ€ ์˜ฌ๊นŒ์š”?"
00:21
So I thought the future of robotics would be looking more like us.
2
21049
4676
๋ฏธ๋ž˜์˜ ๋กœ๋ด‡์€ ๋”์šฑ ์ธ๊ฐ„์„ ๋‹ฎ์•„๊ฐˆ ๊ฒƒ์ด๋ผ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค.
00:28
I thought they would look like me,
3
28114
1674
์ €๋ฅผ ๋‹ฎ์„ ์ˆ˜๋„ ์žˆ๊ฒ ์ฃ .
00:29
so I built eyes that would simulate my eyes.
4
29812
3747
๊ทธ๋ž˜์„œ ์ œ ๋ˆˆ์„ ๋ณธ๋œฌ ๋ˆˆ์„ ๋งŒ๋“ค์–ด ๋ดค๊ณ ์š”.
00:34
I built fingers that are dextrous enough to serve me ...
5
34813
5056
์ œ ์‹œ์ค‘์„ ๋“ค ๋งŒํผ ์ •๊ตํ•œ ์†๊ฐ€๋ฝ์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
00:39
baseballs.
6
39893
1190
์•ผ๊ตฌ๊ณต์„ ์žก๊ณ ์š”.
00:43
Classical robots like this
7
43837
2017
์ด๋Ÿฐ ์ „ํ†ต์ ์ธ ๋กœ๋ด‡๋“ค์€
00:45
are built and become functional
8
45878
3176
์ผ์ •ํ•œ ์ˆ˜์˜ ๊ด€์ ˆ๊ณผ ์ž‘๋™ ์žฅ์น˜๋กœ
00:49
based on the fixed number of joints and actuators.
9
49078
3198
๋งŒ๋“ค์–ด์ง€๊ณ  ๊ธฐ๋Šฅ์„ ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
00:52
And this means their functionality and shape are already fixed
10
52780
4335
์ด๊ฒƒ์€ ๋กœ๋ด‡์˜ ๊ธฐ๋Šฅ๊ณผ ํ˜•ํƒœ๊ฐ€ ๊ตฌ์ƒ ๋‹จ๊ณ„์—์„œ๋ถ€ํ„ฐ
00:57
at the moment of their conception.
11
57139
1831
์ด๋ฏธ ์ •ํ•ด์กŒ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
00:59
So even though this arm has a really nice throw --
12
59490
2867
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ด ๋กœ๋ด‡ ํŒ”์ด ๋ฉ‹์ง€๊ฒŒ ์†ก๊ตฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค ํ•ด๋„
01:02
it even hit the tripod at the end--
13
62381
2431
์‹ฌ์ง€์–ด ์‚ผ๊ฐ๋Œ€๋ฅผ ๋งžํžˆ๊ธฐ๊นŒ์ง€ ํ–ˆ์ง€๋งŒ
01:06
it's not meant for cooking you breakfast per se.
14
66015
3163
๊ทธ๋ ‡๋‹ค๊ณ  ์•„์นจ ์‹์‚ฌ๊นŒ์ง€ ์ฐจ๋ ค์ค„ ์ˆ˜ ์žˆ๋Š” ๊ฑด ์•„๋‹ˆ์ฃ .
01:09
It's not really suited for scrambled eggs.
15
69202
3637
์Šคํฌ๋žจ๋ธ”๋“œ ์—๊ทธ๋ฅผ ๋งŒ๋“ค๊ธฐ์—๋Š” ์ ํ•ฉํ•˜์ง€ ์•Š๊ฑฐ๋“ ์š”.
01:12
So this was when I was hit by a new vision of future robotics:
16
72863
4325
์ œ๊ฒŒ ๋ฏธ๋ž˜์˜ ๋กœ๋ด‡๊ณตํ•™์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์‹œ๊ฐ์„ ๊ฐ–๊ฒŒ ํ•ด์ค€ ๊ฒƒ์€
01:18
the transformers.
17
78101
1760
๋ฐ”๋กœ ํŠธ๋žœ์Šคํฌ๋จธ์ž…๋‹ˆ๋‹ค.
01:20
They drive, they run, they fly,
18
80989
2547
์šด์ „์„ ํ•˜๊ณ , ๋‹ฌ๋ฆฌ๊ณ , ๋‚ ์ฃ ,
01:23
all depending on the ever-changing, new environment and task at hand.
19
83560
4869
ํ˜„์žฌ ํ•˜๋Š” ์ผ์ด๋‚˜ ๋Š˜ ๋ณ€ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์— ๋”ฐ๋ผ์„œ์š”.
01:29
To make this a reality,
20
89267
1781
์ด๊ฒƒ์„ ํ˜„์‹คํ™”ํ•˜๋ ค๋ฉด
01:31
you really have to rethink how robots are designed.
21
91072
3291
๋กœ๋ด‡์ด ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค์–ด์ง€๋Š”์ง€์— ๋Œ€ํ•ด ๋‹ค์‹œ ์ƒ๊ฐํ•ด๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
01:35
So, imagine a robotic module in a polygon shape
22
95448
4014
๋‹ค๊ฐํ˜•์˜ ๋กœ๋ด‡ ๋ถ€ํ’ˆ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
01:39
and using that simple polygon shape
23
99486
2079
๊ทธ ๋‹จ์ˆœํ•œ ๋‹ค๊ฐํ˜•์œผ๋กœ
01:41
to reconstruct multiple different forms
24
101589
3038
๋ณต์žกํ•œ ๋‹ค๋ฅธ ํ˜•ํƒœ๋ฅผ ๋งŒ๋“ค๊ณ 
01:44
to create a new form of robot for different tasks.
25
104651
4290
๋‹ค์–‘ํ•œ ์ž‘์—…์„ ํ•˜๋Š” ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋กœ๋ด‡์„ ๋งŒ๋“ ๋‹ค ์ƒ์ƒํ•ด๋ณด์„ธ์š”.
01:49
In CG, computer graphics, it's not any news --
26
109528
3703
์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์ด๋ผ๋ฉด ์ƒˆ์‚ผ์Šค๋Ÿฌ์šด ๊ฒƒ๋„ ์—†์ฃ .
01:53
it's been done for a while, and that's how most of the movies are made.
27
113255
3431
์—ฌํƒœ๊ป ๊ทธ๋ž˜์™”๊ณ , ์ง€๊ธˆ๋„ ์˜ํ™” ์ œ์ž‘์— ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
01:56
But if you're trying to make a robot that's physically moving,
28
116710
3870
ํ•˜์ง€๋งŒ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š” ๋กœ๋ด‡์„ ๋งŒ๋“ ๋‹ค๋Š” ๊ฒƒ์€
02:00
it's a completely new story.
29
120604
1576
์™„์ „ํžˆ ๋‹ค๋ฅธ ์ด์•ผ๊ธฐ์ฃ .
02:02
It's a completely new paradigm.
30
122691
2029
์™„์ „ํžˆ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ž…๋‹ˆ๋‹ค.
02:06
But you've all done this.
31
126307
1793
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ ๋ชจ๋‘ ํ•ด๋ณธ ์  ์žˆ์–ด์š”.
02:09
Who hasn't made a paper airplane, paper boat, paper crane?
32
129434
5308
๋‹ค๋“ค ์ข…์ด๋น„ํ–‰๊ธฐ๋‚˜ ์ข…์ด๋ฐฐ, ์ข…์ดํ•™ ๋งŒ๋“ค์–ด ๋ณด์…จ์ฃ ?
02:15
Origami is a versatile platform for designers.
33
135893
3844
์ข…์ด์ ‘๊ธฐ๋Š” ๋””์ž์ด๋„ˆ๋“ค์—๊ฒŒ ์—ฌ๋Ÿฌ๋ชจ๋กœ ์œ ์šฉํ•œ ํ”Œ๋žซํผ์ž…๋‹ˆ๋‹ค.
02:19
From a single sheet of paper, you can make multiple shapes,
34
139761
4076
์ข…์ด ํ•œ ์žฅ์œผ๋กœ ๋‹ค์–‘ํ•œ ๋ชจ์–‘์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์ฃ .
02:23
and if you don't like it, you unfold and fold back again.
35
143861
3394
๊ทธ๋ฆฌ๊ณ  ๋งˆ์Œ์— ์•ˆ ๋“ค๋ฉด ํŽผ์ณค๋‹ค ๋‹ค์‹œ ์ ‘์œผ๋ฉด ๋ผ์š”.
02:27
Any 3D form can be made from 2D surfaces by folding,
36
147947
6016
์ข…์ด์ ‘๊ธฐ๋กœ 2์ฐจ์›์˜ ํ‰๋ฉด์—์„œ ์–ด๋–ค 3์ฐจ์› ํ˜•ํƒœ๋“ ์ง€ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด์š”.
02:33
and this is proven mathematically.
37
153987
2529
์ˆ˜ํ•™์ ์œผ๋กœ ์ฆ๋ช…๋œ ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
02:38
And imagine if you were to have an intelligent sheet
38
158555
4408
์ง€๋Šฅ์ ์ธ ์ข…์ด๊ฐ€ ์žˆ๋‹ค๊ณ  ์ƒ์ƒํ•ด๋ณด์„ธ์š”.
02:42
that can self-fold into any form it wants,
39
162987
3559
์–ธ์ œ๋“ ์ง€ ์›ํ•˜๋Š” ๋ชจ์–‘์œผ๋กœ ์Šค์Šค๋กœ ์ ‘๋Š” ์ข…์ด๋ง์ด์—์š”.
02:46
anytime.
40
166570
1223
02:48
And that's what I've been working on.
41
168322
2254
์ œ๊ฐ€ ์—ฐ๊ตฌ ์ค‘์ธ ๊ฒŒ ๋ฐ”๋กœ ์ด๊ฒ๋‹ˆ๋‹ค.
02:50
I call this robotic origami,
42
170600
3182
์ €๋Š” ์ด๋ ‡๊ฒŒ ์ ‘ํžˆ๋Š” ๋กœ๋ด‡์„
02:53
"robogami."
43
173806
1498
"๋กœ๋ณด๊ฐ€๋ฏธ"๋ผ๊ณ  ๋ถˆ๋Ÿฌ์š”.
02:57
This is our first robogami transformation
44
177387
3520
์ €ํฌ์˜ ์ฒซ ๋กœ๋ณด๊ฐ€๋ฏธ์ž…๋‹ˆ๋‹ค.
03:00
that was made by me about 10 years ago.
45
180931
3309
์ œ๊ฐ€ ์•ฝ 10๋…„ ์ „์— ๋งŒ๋“ค์—ˆ์ฃ .
03:04
From a flat-sheeted robot,
46
184264
1767
ํ‰ํ‰ํ•œ ์ข…์ด ํ˜•ํƒœ์˜ ๋กœ๋ด‡์ด
03:06
it turns into a pyramid and back into a flat sheet
47
186055
2947
ํ”ผ๋ผ๋ฏธ๋“œ๊ฐ€ ๋˜๊ณ  ๋‹ค์‹œ ํ‰ํ‰ํ•ด์กŒ๋‹ค๊ฐ€
03:09
and into a space shuttle.
48
189026
2773
์šฐ์ฃผ ์™•๋ณต์„ ์œผ๋กœ ๋ณ€ํ•ฉ๋‹ˆ๋‹ค.
03:12
Quite cute.
49
192822
1241
๊ฝค ๊ท€์—ฝ์ฃ .
03:14
Ten years later, with my group of ninja origami robotic researchers --
50
194789
6870
10๋…„ ํ›„, ํ˜„์žฌ๋Š” ํŒ€์›์ด ์Šค๋ฌผ ๋‘ ๋ช…์ธ,
03:21
about 22 of them right now --
51
201683
1898
๋‹Œ์ž ์ข…์ด์ ‘๊ธฐ ๋กœ๋ด‡ ์—ฐ๊ตฌ์›๋“ค๊ณผ ํ•จ๊ป˜
03:24
we have a new generation of robogamis,
52
204332
3408
์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ๋กœ๋ณด๊ฐ€๋ฏธ๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
03:27
and they're a little more effective and they do more than that.
53
207764
3311
์ข€ ๋” ํšจ์œจ์ ์ด๊ณ  ๊ทธ ์ด์ƒ์˜ ๊ฒƒ๋“ค์„ ํ•ฉ๋‹ˆ๋‹ค.
03:32
So the new generation of robogamis actually serve a purpose.
54
212105
3283
์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ๋กœ๋ณด๊ฐ€๋ฏธ๋Š” ์‹ค์ œ๋กœ ๋„์›€์ด ๋˜๊ธฐ๋„ ํ•ด์š”.
03:35
For example, this one actually navigates through different terrains autonomously.
55
215412
5199
์˜ˆ๋ฅผ ๋“ค๋ฉด, ์ด ๋กœ๋ด‡์€ ๋‹ค์–‘ํ•œ ์ง€ํ˜•์—์„œ ์Šค์Šค๋กœ ๊ธธ์„ ์ฐพ์•„๊ฐ‘๋‹ˆ๋‹ค.
03:40
So when it's a dry and flat land, it crawls.
56
220635
3335
๋”ฑ๋”ฑํ•˜๊ณ  ํ‰ํ‰ํ•œ ๋•… ์œ„์—์„œ๋Š” ๊ธฐ์–ด๊ฐ‘๋‹ˆ๋‹ค.
03:46
And if it meets sudden rough terrain,
57
226256
2479
๊ทธ๋ฆฌ๊ณ  ํ—˜๋‚œํ•œ ์ง€ํ˜•์„ ๋งŒ๋‚˜๋ฉด
03:48
it starts rolling.
58
228759
1237
๊ตฌ๋ฅด๊ธฐ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
03:50
It does this -- it's the same robot --
59
230020
2452
์›€์ง์ž„์ด ๋‹ค๋ฅด์ง€๋งŒ ๊ฐ™์€ ๋กœ๋ด‡์ด์—์š”.
03:52
but depending on which terrain it meets,
60
232496
3023
ํ•˜์ง€๋งŒ ์ง€ํ˜•์— ๋”ฐ๋ผ,
03:55
it activates a different sequence of actuators that's on board.
61
235543
4765
ํƒ‘์žฌ๋œ ์ž‘๋™ ์žฅ์น˜๋ฅผ ๋‹ค๋ฅด๊ฒŒ ํ™œ์„ฑํ™”ํ•ฉ๋‹ˆ๋‹ค.
04:02
And once it meets an obstacle, it jumps over it.
62
242459
3280
๊ทธ๋ฆฌ๊ณ  ์žฅ์• ๋ฌผ์„ ๋งŒ๋‚˜๋ฉด, ๋›ฐ์–ด๋„˜์Šต๋‹ˆ๋‹ค.
04:07
It does this by storing energy in each of its legs
63
247485
3376
๋‹ค๋ฆฌ์— ์ €์žฅ๋œ ์—๋„ˆ์ง€๋ฅผ ๋ฐฉ์ถœํ•ด
04:10
and releasing it and catapulting like a slingshot.
64
250885
3876
์ƒˆ์ด์„ ์˜๋“ฏ ํŠ€์–ด ๋‚˜๊ฐ€๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
04:14
And it even does gymnastics.
65
254785
1887
์ฒด์กฐ๋„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:17
Yay.
66
257688
1171
์•ผํ˜ธ.
04:18
(Laughter)
67
258883
1437
(์›ƒ์Œ)
04:20
So I just showed you what a single robogami can do.
68
260828
4177
์ „ ํ•œ ๋Œ€์˜ ๋กœ๋ณด๊ฐ€๋ฏธ๊ฐ€ ํ˜ผ์ž ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๋“ค์„ ๋ณด์—ฌ๋“œ๋ ธ์Šต๋‹ˆ๋‹ค.
04:25
Imagine what they can do as a group.
69
265029
2785
๊ทธ๋ฃน์œผ๋กœ๋Š” ๋ญ˜ ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”.
04:27
They can join forces to tackle more complex tasks.
70
267838
4022
๋” ๋ณต์žกํ•œ ์ผ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํž˜์„ ํ•ฉ์นฉ๋‹ˆ๋‹ค.
04:31
Each module, either active or passive,
71
271884
3162
์ ๊ทน์ ์ด๋“  ์†Œ๊ทน์ ์ด๋“  ๊ฐ๊ฐ์˜ ๋ถ€ํ’ˆ์„
04:35
we can assemble them to create different shapes.
72
275070
3567
์กฐ๋ฆฝํ•ด์„œ ์ƒˆ๋กœ์šด ํ˜•ํƒœ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:38
Not only that, by controlling the folding joints,
73
278661
2749
๊ทธ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ ‘ํžˆ๋Š” ๊ด€์ ˆ์„ ์ œ์–ดํ•จ์œผ๋กœ์จ,
04:41
we're able to create and attack different tasks.
74
281434
4548
๋‹ค์–‘ํ•œ ์ž„๋ฌด๋ฅผ ๋งŒ๋“ค๊ณ  ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:46
The form is making new task space.
75
286006
3175
ํ˜•ํƒœ๊ฐ€ ์ƒˆ๋กœ์šด ์ž‘์—… ๊ณต๊ฐ„์„ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค.
04:49
And this time, what's most important is the assembly.
76
289736
3839
์ด๋ฒˆ์— ๋ง์”€๋“œ๋ฆด ๊ฒƒ์€, ์กฐ๋ฆฝ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
04:54
They need to autonomously find each other in a different space,
77
294192
4184
๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ณณ์— ์žˆ๋Š” ๋กœ๋ณด๊ฐ€๋ฏธ๋“ค์ด ์•Œ์•„์„œ ์„œ๋กœ๋ฅผ ์ฐพ์•„๊ฐ€,
04:58
attach and detach, depending on the environment and task.
78
298400
4290
์ฃผ๋ณ€ ํ™˜๊ฒฝ์ด๋‚˜ ์ž‘์—…๋‚ด์šฉ์— ๋”ฐ๋ผ ์กฐ๋ฆฝ๋˜๊ฑฐ๋‚˜ ๋ถ„๋ฆฌ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:03
And we can do this now.
79
303616
2059
ํ˜„์žฌ ๊ฐ€๋Šฅํ•œ ์ผ์ž…๋‹ˆ๋‹ค.
05:06
So what's next?
80
306412
1427
๊ทธ๋Ÿผ ๊ทธ ๋‹ค์Œ์€์š”?
05:07
Our imagination.
81
307863
1310
์ƒ์ƒํ•ด๋ณผ๊นŒ์š”.
05:09
This is a simulation of what you can achieve
82
309704
2401
์ด ๋ถ€ํ’ˆ์œผ๋กœ ์šฐ๋ฆฌ๊ฐ€ ์–ป์„ ์ˆ˜ ์žˆ๋Š”
05:12
with this type of module.
83
312129
1657
์‹œ๋ฎฌ๋ ˆ์ด์…˜์ž…๋‹ˆ๋‹ค.
05:13
We decided that we were going to have a four-legged crawler
84
313810
3172
์ €ํฌ๋Š” ์ด๋ ‡๊ฒŒ ๋„ค ๋‹ค๋ฆฌ๋กœ ๊ธฐ์–ด ๋‹ค๋‹ˆ๋Š” ๊ฒƒ์„ ๋งŒ๋“ค๊ธฐ๋กœ ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:18
turn into a little dog and make small gaits.
85
318870
3179
์ž‘์€ ๊ฐ•์•„์ง€๋กœ ๋ณ€ํ•˜๊ณ  ์•„์žฅ์•„์žฅ ๊ฑธ์–ด๊ฐ€์ฃ .
05:22
With the same module, we can actually make it do something else:
86
322073
3834
๊ฐ™์€ ๋ถ€ํ’ˆ์œผ๋กœ ๋‹ค๋ฅธ ๊ฑธ ํ•  ์ˆ˜๋„ ์žˆ์–ด์š”.
05:25
a manipulator, a typical, classical robotic task.
87
325931
3418
๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ์ „ํ˜•์ ์ธ ๋กœ๋ด‡ ์ž‘์—…์ด์ฃ .
05:29
So with a manipulator, it can pick up an object.
88
329373
2699
๋ฌผ์ฒด๋ฅผ ๋“ค์–ด ์˜ฌ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:32
Of course, you can add more modules to make the manipulator legs longer
89
332096
4044
๋ฌผ๋ก  ๋ถ€ํ’ˆ์„ ์ถ”๊ฐ€ํ•ด ๋‹ค๋ฆฌ๋ฅผ ๋” ๊ธธ๊ฒŒ ๋งŒ๋“ค์–ด
05:36
to attack or pick up objects that are bigger or smaller,
90
336164
3723
๊ณต๊ฒฉ์„ ํ•˜๊ธฐ๋„ ํ•˜๊ณ  ๋” ํฌ๊ฑฐ๋‚˜ ์ž‘์€ ๋ฌผ์ฒด๋ฅผ ๋“ค ์ˆ˜ ์žˆ์–ด์š”.
05:39
or even have a third arm.
91
339911
1766
์•„๋‹ˆ๋ฉด ํŒ”์„ ๋” ๋‹ฌ ์ˆ˜๋„ ์žˆ์ฃ .
05:43
For robogamis, there's no one fixed shape nor task.
92
343545
4361
ํ•˜์ง€๋งŒ ๋กœ๋ณด๊ฐ€๋ฏธ์—๊ฒŒ๋Š” ์ •ํ•ด์ง„ ๋ชจ์–‘๋„, ์ž„๋ฌด๋„ ์—†์Šต๋‹ˆ๋‹ค.
05:48
They can transform into anything, anywhere, anytime.
93
348628
4300
์–ธ์ œ ์–ด๋””์„œ๋‚˜ ์–ด๋–ค ํ˜•ํƒœ๋กœ๋“  ๋ณ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:54
So how do you make them?
94
354408
2676
๊ทธ๋Ÿผ, ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค๊นŒ์š”?
05:57
The biggest technical challenge of robogami is keeping them super thin,
95
357108
5317
๊ฐ€์žฅ ์–ด๋ ค์šด ๊ธฐ์ˆ ์„ ์š”๊ตฌํ–ˆ๋˜ ๊ฒƒ์€ ๋กœ๋ณด๊ฐ€๋ฏธ๋ฅผ ์•„์ฃผ ์–‡๊ณ ,
06:02
flexible,
96
362449
1151
์œ ์—ฐํ•˜๋ฉด์„œ๋„,
06:03
but still remaining functional.
97
363624
2214
๊ธฐ๋Šฅ์„ ์ž˜ํ•˜๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด์—ˆ์ฃ .
06:06
They're composed of multiple layers of circuits, motors,
98
366562
3812
๋กœ๋ณด๊ฐ€๋ฏธ๋Š” ์—ฌ๋Ÿฌ ๋‹จ๊ณ„๋กœ ๋˜์–ด ์žˆ๋Š”๋ฐ
ํšŒ๋กœ, ๋ชจํ„ฐ, ์ •๋ฐ€ ์ œ์–ด ์žฅ์น˜, ๊ทธ๋ฆฌ๊ณ  ์„ผ์„œ๊ฐ€
06:10
microcontrollers and sensors,
99
370398
2418
06:12
all in the single body,
100
372840
1854
ํ•˜๋‚˜์˜ ๋ชธ์ฒด ์•ˆ์— ๋‹ค ๋“ค์–ด์žˆ์ฃ .
06:14
and when you control individual folding joints,
101
374718
3321
๊ฐ๊ฐ์˜ ๊ด€์ ˆ์„ ์ œ์–ดํ•˜๋ฉด,
06:18
you'll be able to achieve soft motions like that
102
378063
3526
๋ช…๋ น์— ๋”ฐ๋ผ ์ด๋ ‡๊ฒŒ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ
06:21
upon your command.
103
381613
1480
์›€์ง์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:26
Instead of being a single robot that is specifically made for a single task,
104
386013
4859
๋กœ๋ณด๊ฐ€๋ฏธ๋Š” ๋‹จ์ˆœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋กœ๋ด‡์ด ์•„๋‹ˆ๋ผ,
06:30
robogamis are optimized to do multi-tasks.
105
390896
3895
๋‹ค์ค‘ ์ž‘์—…์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
06:35
And this is quite important
106
395366
1757
์šฐ์ฃผ์—์„œ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
06:37
for the difficult and unique environments on the Earth
107
397147
3831
์ง€๊ตฌ๋งŒ์˜ ํ˜น๋…ํ•œ ํ™˜๊ฒฝ์— ์žˆ์–ด
06:41
as well as in space.
108
401002
2965
์ด ์ ์€ ์•„์ฃผ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
06:45
Space is a perfect environment for robogamis.
109
405782
3174
์šฐ์ฃผ๋Š” ๋กœ๋ณด๊ฐ€๋ฏธ์—๊ฒŒ ์ตœ์ ์˜ ํ™˜๊ฒฝ์ž…๋‹ˆ๋‹ค.
06:49
You cannot afford to have one robot for one task.
110
409673
4133
๋งค ์ž‘์—…์— ๊ฐ๊ฐ ๋กœ๋ด‡์„ ์‚ฌ์šฉํ•  ์ˆœ ์—†์–ด์š”.
06:54
Who knows how many tasks you will encounter in space?
111
414966
3336
์šฐ์ฃผ์—์„œ ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์ž‘์—…์„ ํ•˜๊ฒŒ ๋ ์ง€ ์–ด๋–ป๊ฒŒ ์•Œ๊ฒ ์–ด์š”?
06:58
What you want is a single robotic platform that can transform to do multi-tasks.
112
418846
6959
๋‹ค์ค‘ ์ž‘์—…์„ ์œ„ํ•ด ๋ณ€ํ˜•ํ•  ์ˆ˜ ์žˆ๋Š” ํ•˜๋‚˜์˜ ๋กœ๋ด‡ ํ”Œ๋žซํผ์ด ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
07:07
What we want is a deck of thin robogami modules
113
427188
5112
์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ผ์„ ํ•  ์ˆ˜ ์žˆ๋Š”
07:12
that can transform to do multiples of performing tasks.
114
432324
4371
์–‡์€ ๋กœ๋ณด๊ฐ€๋ฏธ ๋ถ€ํ’ˆ ํ•œ ์„ธํŠธ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
07:18
And don't take my word for it,
115
438322
3210
์ œ ๋ง์„ ๊ทธ๋Œ€๋กœ ๋ฐ›์•„๋“ค์ด์ง„ ๋ง์•„ ์ฃผ์„ธ์š”.
07:21
because the European Space Agency and Swiss Space Center
116
441556
3036
์™œ๋ƒํ•˜๋ฉด ์œ ๋Ÿฝ ์šฐ์ฃผ๊ตญ๊ณผ ์Šค์œ„์Šค ์šฐ์ฃผ ์„ผํ„ฐ๊ฐ€
07:24
are sponsoring this exact concept.
117
444616
2260
์ด ๊ฐ™์€ ๊ฐœ๋…์„ ํ›„์›ํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
07:27
So here you see a couple of images of reconfiguration of robogamis,
118
447562
5045
์—ฌ๊ธฐ ์—ฌ๋Ÿฌ ๋ชจ์Šต์œผ๋กœ ๋ณ€ํ˜•๋œ ๋กœ๋ณด๊ฐ€๋ฏธ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
07:32
exploring the foreign land aboveground, on the surface,
119
452631
3778
์ง€์ƒ์—์„œ ๋ฏธ์ง€์˜ ๋•…์„ ํƒ์‚ฌํ•˜๊ณ ,
07:36
as well as digging into the surface.
120
456433
1922
ํ‘œ์ธต์„ ๋šซ๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
07:39
It's not just exploration.
121
459117
2079
๋‹จ์ˆœํžˆ ํƒ์‚ฌ๋งŒ ํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค.
07:41
For astronauts, they need additional help,
122
461220
2588
์šฐ์ฃผ ๋น„ํ–‰์‚ฌ๋Š” ์ถ”๊ฐ€์ ์ธ ๋„์›€์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
07:43
because you cannot afford to bring interns up there, either.
123
463832
2834
์™œ๋ƒํ•˜๋ฉด ์ธํ„ด๋“ค๊นŒ์ง€ ์œ„๋กœ ๋ณด๋‚ผ ์—ฌ์œ ๋Š” ์—†๊ฑฐ๋“ ์š”.
07:46
(Laughter)
124
466690
1182
(์›ƒ์Œ)
07:48
They have to do every tedious task.
125
468357
2881
๊ทธ๋“ค์€ ์˜จ๊ฐ– ์ง€๋ฃจํ•œ ์ž‘์—…์„ ํ•ฉ๋‹ˆ๋‹ค.
07:51
They may be simple,
126
471262
1218
๋‹จ์ˆœํ• ์ง€ ๋ชจ๋ฅด์ง€๋งŒ,
07:52
but super interactive.
127
472504
1611
๋งค์šฐ ๊ธด๋ฐ€ํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•ฉ๋‹ˆ๋‹ค.
07:54
So you need robots to facilitate their experiments,
128
474762
3412
๋”ฐ๋ผ์„œ ์‹คํ—˜์„ ๋„์™€์ค„ ๋กœ๋ด‡์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
07:58
assisting them with the communications
129
478198
2311
์˜์‚ฌ์†Œํ†ต์„ ๋ณด์กฐํ•˜๊ณ 
08:00
and just docking onto surfaces to be their third arm holding different tools.
130
480533
5252
์ง€์ƒ์—์„œ ๊ทธ๋“ค์˜ ๋˜ ๋‹ค๋ฅธ ํŒ”์ด ๋˜์–ด ์—ฌ๋Ÿฌ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์ฃ .
08:07
But how will they be able to control robogamis, for example,
131
487245
3133
๊ทธ๋Ÿฐ๋ฐ ์šฐ์ฃผ ๋น„ํ–‰์‚ฌ๋“ค์ด ์–ด๋–ป๊ฒŒ ๋กœ๋ณด๊ฐ€๋ฏธ๋ฅผ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
08:10
outside the space station?
132
490402
1553
๋งŒ์•ฝ ์šฐ์ฃผ ์ •๊ฑฐ์žฅ ๋ฐ”๊นฅ์ด๋ผ๋ฉด์š”?
08:11
In this case, I show a robogami that is holding space debris.
133
491979
4037
์ด ๊ฒฝ์šฐ, ๋กœ๋ณด๊ฐ€๋ฏธ๊ฐ€ ์šฐ์ฃผ ํ๊ธฐ๋ฌผ์„ ์žก๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:16
You can work with your vision so that you can control them,
134
496040
3604
๋ˆˆ์œผ๋กœ ๋ณด๋ฉฐ ๋กœ๋ณด๊ฐ€๋ฏธ๋ฅผ ์กฐ์ข…ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ,
08:19
but what would be better is having the sensation of touch
135
499668
4462
์šฐ์ฃผ ๋น„ํ–‰์‚ฌ์˜ ์†์œผ๋กœ ์ง์ ‘ ์ „๋‹ฌ๋˜๋Š”
08:24
directly transported onto the hands of the astronauts.
136
504154
3603
์ด‰๊ฐ์ด ์žˆ๋‹ค๋ฉด ๋” ์ข‹์„ ๊ฒ๋‹ˆ๋‹ค.
08:28
And what you need is a haptic device,
137
508248
2423
ํ•„์š”ํ•œ ๊ฑด ์žฌํ˜„๋œ ์ด‰๊ฐ์„
08:30
a haptic interface that recreates the sensation of touch.
138
510695
3708
์ƒํ˜ธ ์—ฐ๊ฒฐํ•ด์ฃผ๋Š” ์ด‰๊ฐ ์žฅ์น˜์ž…๋‹ˆ๋‹ค.
08:35
And using robogamis, we can do this.
139
515051
2524
๋กœ๋ณด๊ฐ€๋ฏธ๋ฅผ ์ด์šฉํ•˜๋ฉด, ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:39
This is the world's smallest haptic interface
140
519276
4148
์ด๊ฑด ์„ธ์ƒ์—์„œ ์ œ์ผ ์ž‘์€ ์ด‰๊ฐ ์ „๋‹ฌ ์žฅ์น˜๋กœ
08:44
that can recreate a sensation of touch just underneath your fingertip.
141
524316
5189
์ด‰๊ฐ์„ ์žฌํ˜„ํ•ด ์†๊ฐ€๋ฝ ๋์œผ๋กœ ๋Š๋‚„ ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
08:50
We do this by moving the robogami
142
530104
2577
๋กœ๋ณด๊ฐ€๋ฏธ๋ฅผ ๋ฏธ์„ธํ•˜๊ฒŒ ์›€์ง์ด๊ฑฐ๋‚˜
08:52
by microscopic and macroscopic movements at the stage.
143
532705
4511
๋งจ๋ˆˆ์œผ๋กœ ๋ณด์ผ ์ •๋„ ๋‹จ๊ณ„๊นŒ์ง€ ์›€์ง์—ฌ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:57
And by having this, not only will you be able to feel
144
537812
3630
์ด๋ ‡๊ฒŒ ํ•จ์œผ๋กœ์จ ์•Œ ์ˆ˜ ์žˆ๋Š” ๊ฑด
09:01
how big the object is,
145
541466
1739
๋ฌผ์ฒด์˜ ํฌ๊ธฐ๋‚˜,
09:03
the roundness and the lines,
146
543229
2886
๊ณก๋ฉด, ์œค๊ณฝ๋ฟ ์•„๋‹ˆ๋ผ,
09:06
but also the stiffness and the texture.
147
546139
3563
๊ฒฝ๋„์™€ ์งˆ๊ฐ๋„ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:11
Alex has this interface just underneath his thumb,
148
551019
3989
์•Œ๋ ‰์Šค์˜ ์—„์ง€์†๊ฐ€๋ฝ ์•„๋ž˜์— ์ „๋‹ฌ ์žฅ์น˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
09:15
and if he were to use this with VR goggles and hand controllers,
149
555032
4812
VR ๊ณ ๊ธ€๊ณผ ์กฐ์ข…๊ธฐ๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋ฉด,
09:19
now the virtual reality is no longer virtual.
150
559868
3629
๊ฐ€์ƒํ˜„์‹ค์€ ๋” ์ด์ƒ ๊ฐ€์ƒ์ด ์•„๋‹ˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
09:23
It becomes a tangible reality.
151
563521
2268
์‹ค์žฌํ•˜๋Š” ํ˜„์‹ค์ด ๋ฉ๋‹ˆ๋‹ค.
09:28
The blue ball, red ball and black ball that he's looking at
152
568529
3687
๊ทธ๊ฐ€ ๋ณด๊ณ  ์žˆ๋Š” ํŒŒ๋ž€ ๊ณต, ๋นจ๊ฐ„ ๊ณต, ๊ฒ€์€ ๊ณต์€
09:32
is no longer differentiated by colors.
153
572240
2466
๋” ์ด์ƒ ์ƒ‰์œผ๋กœ ๊ตฌ๋ณ„๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
09:34
Now it is a rubber blue ball, sponge red ball and billiard black ball.
154
574730
5311
์ด์ œ ํŒŒ๋ž€ ๊ณ ๋ฌด๊ณต, ๋นจ๊ฐ„ ์ŠคํŽ€์ง€๊ณต, ๊ฒ€์€ ๋‹น๊ตฌ๊ณต์ด ๋ฉ๋‹ˆ๋‹ค.
09:40
This is now possible.
155
580642
1710
ํ˜„์žฌ ๊ฐ€๋Šฅํ•œ ์ผ์ž…๋‹ˆ๋‹ค.
09:43
Let me show you.
156
583263
1202
๋ณด์—ฌ๋“œ๋ฆด ๊ฒŒ ์žˆ์Šต๋‹ˆ๋‹ค.
09:46
This is really the first time this is shown live
157
586150
4169
์ด๋ ‡๊ฒŒ ๋งŽ์€ ๋Œ€์ค‘ ์•ž์—์„œ
09:50
in front of a public grand audience,
158
590343
2846
์ง์ ‘ ์„ ๋ณด์ด๋Š” ๊ฒƒ์€ ์ฒ˜์Œ์ž…๋‹ˆ๋‹ค.
09:53
so hopefully this works.
159
593213
1828
๊ทธ๋ž˜์„œ ์ž˜ ์ž‘๋™ํ–ˆ์œผ๋ฉด ํ•˜๋„ค์š”.
09:55
So what you see here is an atlas of anatomy
160
595668
4301
์ง€๊ธˆ ๋ณด์‹œ๋Š” ๊ฑด ์ธ์ฒดํ•ด๋ถ€๋„์™€
09:59
and the robogami haptic interface.
161
599993
2793
๋กœ๋ณด๊ฐ€๋ฏธ์˜ ์ด‰๊ฐ ์ „๋‹ฌ ์žฅ์น˜์ž…๋‹ˆ๋‹ค.
10:02
So, like all the other reconfigurable robots,
162
602810
2545
์žฌ๊ตฌ์„ฑ์ด ๊ฐ€๋Šฅํ•œ ๋‹ค๋ฅธ ๋กœ๋ด‡๋“ค๊ณผ ๊ฐ™์ด,
์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ž‘์—…์„ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
10:05
it multitasks.
163
605379
1175
10:06
Not only is it going to serve as a mouse,
164
606578
2023
๋งˆ์šฐ์Šค ๊ธฐ๋Šฅ๋งŒ ์ œ๊ณตํ•˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ,
10:08
but also a haptic interface.
165
608625
2365
์ด‰๊ฐ์„ ์ „๋‹ฌํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
10:11
So for example, we have a white background where there is no object.
166
611381
3774
์˜ˆ๋ฅผ ๋“ค์–ด, ์•„๋ฌด๊ฒƒ๋„ ์—†๋Š” ํ•˜์–€ ๋ฐฐ๊ฒฝ์ด ์žˆ๋‹ค๊ณ  ํ•˜์ฃ .
10:15
That means there is nothing to feel,
167
615179
2052
๋Š๋‚„ ์ˆ˜ ์žˆ๋Š” ๋ฌผ์ฒด๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์—,
10:17
so we can have a very, very flexible interface.
168
617255
3712
์ „๋‹ฌ ์žฅ์น˜๋Š” ์•„์ฃผ ์œ ์—ฐํ•ฉ๋‹ˆ๋‹ค.
10:21
Now, I use this as a mouse to approach skin,
169
621352
3152
์žฅ์น˜๋ฅผ ๋งˆ์šฐ์Šค์ฒ˜๋Ÿผ ์ด์šฉํ•ด ํ”ผ๋ถ€์™€ ํŒ”๊ทผ์œก ์ชฝ์œผ๋กœ,
10:24
a muscular arm,
170
624528
1263
์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
10:25
so now let's feel his biceps,
171
625815
2016
์ด์ œ ์ด๋‘๊ทผ๊ณผ ์–ด๊นจ๋ฅผ
10:27
or shoulders.
172
627855
1488
๋Š๊ปด๋ณด์‹œ์ฃ .
10:29
So now you see how much stiffer it becomes.
173
629367
3010
์žฅ์น˜๊ฐ€ ์–ผ๋งˆ๋‚˜ ๋ปฃ๋ปฃํ•ด์ง€๋Š”์ง€ ๋ณด์ด์‹ค ๊ฒ๋‹ˆ๋‹ค.
10:32
Let's explore even more.
174
632401
1371
์ข€ ๋” ์‚ดํŽด๋ณผ๊นŒ์š”.
10:33
Let's approach the ribcage.
175
633796
2910
ํ‰๊ณฝ์œผ๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
10:36
And as soon as I move on top of the ribcage
176
636730
2562
ํ‰๊ณฝ๊ณผ ๋Š‘๊ฐ„ ๊ทผ์œก์œผ๋กœ
10:39
and between the intercostal muscles,
177
639316
2285
์œ„์น˜ํ•˜์ž๋งˆ์ž,
10:41
which is softer and harder,
178
641625
1549
๋ถ€๋“œ๋Ÿฝ๊ฑฐ๋‚˜ ๋”ฑ๋”ฑํ•ด์ง‘๋‹ˆ๋‹ค.
10:43
I can feel the difference of the stiffness.
179
643198
2236
๊ฒฝ๋„์˜ ์ฐจ์ด๋ฅผ ๋Š๋‚„ ์ˆ˜ ์žˆ์–ด์š”.
10:45
Take my word for it.
180
645458
1326
๋ฏฟ์œผ์…”๋„ ๋ผ์š”.
10:46
So now you see, it's much stiffer in terms of the force
181
646808
4203
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ œ ์†๊ฐ€๋ฝ ๋์œผ๋กœ ์ „๋‹ฌ๋˜๋Š” ์ผ์ข…์˜ ํž˜์ด
10:51
it's giving back to my fingertip.
182
651035
1845
๋” ๊ฐ•ํ•ด์ง€๋Š” ๊ฑฐ์ฃ .
10:53
So I showed you the surfaces that aren't moving.
183
653822
3978
์ง€๊ธˆ๊นŒ์ง€ ์›€์ง์ด์ง€ ์•Š๋Š” ๊ฒƒ๋“ค์˜ ํ‘œ๋ฉด๋งŒ ๋Š๊ปด๋ดค์Šต๋‹ˆ๋‹ค.
10:57
How about if I were to approach something that moves,
184
657824
3553
๋งŒ์•ฝ ์›€์ง์ด๋Š” ๋ฌผ์ฒด๋ผ๋ฉด ์–ด๋–จ๊นŒ์š”?
11:01
for example, like a beating heart?
185
661401
2067
๊ณ ๋™์น˜๋Š” ์‹ฌ์žฅ์ฒ˜๋Ÿผ์š”.
11:03
What would I feel?
186
663492
1395
์–ด๋–ป๊ฒŒ ๋Š๊ปด์งˆ๊นŒ์š”?
11:11
(Applause)
187
671573
6146
(๋ฐ•์ˆ˜)
11:19
This can be your beating heart.
188
679158
2293
์ด๊ฑด ์—ฌ๋Ÿฌ๋ถ„์˜ ์‹ฌ์žฅ์ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
11:22
This can actually be inside your pocket
189
682010
3610
์˜จ๋ผ์ธ ์‡ผํ•‘์„ ํ•  ๋•Œ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ฃผ๋จธ๋‹ˆ์—
11:25
while you're shopping online.
190
685644
1765
์žˆ์„ ์ˆ˜๋„ ์žˆ๊ณ ์š”.
11:28
Now you'll be able to feel the difference of the sweater that you're buying,
191
688361
3789
์ด์ œ ์‚ฌ๋ ค๋Š” ์Šค์›จํ„ฐ๊ฐ€ ์–ผ๋งˆ๋‚˜ ๋ถ€๋“œ๋Ÿฌ์šด์ง€,
11:32
how soft it is,
192
692174
1222
์ •๋ง ์บ์‹œ๋ฏธ์–ด๊ฐ€ ๋งž๋Š”์ง€,
11:33
if it's actually cashmere or not,
193
693420
2836
๊ทธ ์ฐจ์ด๋ฅผ ๋Š๊ปด๋ณผ ์ˆ˜ ์žˆ๊ณ ,
11:36
or the bagel that you're trying to buy,
194
696280
2056
์‚ฌ๊ณ  ์‹ถ์€ ๋ฒ ์ด๊ธ€์ด ์–ผ๋งˆ๋‚˜ ๋”ฑ๋”ฑํ•œ์ง€,
11:38
how hard it is or how crispy it is.
195
698360
3068
๋ฐ”์‚ญํ•œ์ง€๋„ ์•Œ ์ˆ˜ ์žˆ์ฃ .
11:42
This is now possible.
196
702229
1736
ํ˜„์žฌ ๊ฐ€๋Šฅํ•œ ์ด์•ผ๊ธฐ์ž…๋‹ˆ๋‹ค.
11:46
The robotics technology is advancing to be more personalized and adaptive,
197
706774
5812
๋กœ๋ด‡ ๊ณตํ•™์€ ์ผ์ƒ์˜ ํ•„์š”์— ๋ถ€์‘ํ•˜๋„๋ก ๋”์šฑ ๋งž์ถคํ˜•, ์ ์‘ํ˜•์œผ๋กœ
11:52
to adapt to our everyday needs.
198
712610
3104
๋ฐœ์ „ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:56
This unique specie of reconfigurable robotics
199
716457
3625
์ด ํŠน๋ณ„ํ•œ ์žฌ๊ตฌ์„ฑ ๋กœ๋ด‡์€
12:00
is actually the platform to provide this invisible, intuitive interface
200
720106
5978
์šฐ๋ฆฌ์˜ ํ•„์š”๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ฌดํ˜•์˜ ์ง๊ด€์  ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š”
12:06
to meet our exact needs.
201
726108
2492
ํ”Œ๋žซํผ์ž…๋‹ˆ๋‹ค.
12:10
These robots will no longer look like the characters from the movies.
202
730169
4006
์ด ๋กœ๋ด‡๋“ค์€ ๋” ์ด์ƒ ์˜ํ™” ์†์˜ ์บ๋ฆญํ„ฐ ๊ฐ™์€ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ,
12:14
Instead, they will be whatever you want them to be.
203
734843
3848
์—ฌ๋Ÿฌ๋ถ„์ด ์›ํ•˜๋Š” ๋Œ€๋กœ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:19
Thank you.
204
739223
1206
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
12:20
(Applause)
205
740453
3598
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7