Why jobs of the future won't feel like work | David Lee

181,970 views ใƒป 2017-11-03

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Roni Weisman ืขืจื™ื›ื”: Ido Dekkers
00:12
So there's a lot of valid concern these days
0
12694
2152
ื™ืฉื ื” ื“ืื’ื” ืจื‘ื” ื•ืžื•ืฆื“ืงืช ื‘ื™ืžื™ื ืืœื”
00:14
that our technology is getting so smart
1
14870
2205
ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœื ื• ื”ื•ืคื›ืช ื›ื” ื—ื›ืžื”
00:17
that we've put ourselves on the path to a jobless future.
2
17099
2748
ืฉืื ื• ืกื•ืœืœื™ื ืืช ื”ื“ืจืš ื‘ืขืฆืžื ื• ืœืขืชื™ื“ ื—ืกืจ ืขื‘ื•ื“ื”.
00:21
And I think the example of a self-driving car
3
21502
2152
ื•ืื ื™ ืกื‘ื•ืจ ืฉื”ื“ื•ื’ืžื” ืฉืœ ืžื›ื•ื ื™ืช ืœืœื-ื ื”ื’
00:23
is actually the easiest one to see.
4
23678
1674
ื”ื™ื ื”ื‘ืจื•ืจื” ื‘ื™ื•ืชืจ.
00:25
So these are going to be fantastic for all kinds of different reasons.
5
25376
3328
ื”ืŸ ื”ื•ืœื›ื•ืช ืœื”ื™ื•ืช ื ื”ื“ืจื•ืช ืžืกื™ื‘ื•ืช ืจื‘ื•ืช ื•ืฉื•ื ื•ืช.
00:28
But did you know that "driver" is actually the most common job
6
28728
3438
ืืš ื”ืื ื™ื“ืขืชื ืฉ"ื ื”ื’" ื”ื™ื ื”ืžืฉืจื” ื”ื ืคื•ืฆื” ื‘ื™ื•ืชืจ
00:32
in 29 of the 50 US states?
7
32190
1789
ื‘-29 ืžืชื•ืš 50 ืžื“ื™ื ื•ืช ืืจื”"ื‘?
00:34
What's going to happen to these jobs when we're no longer driving our cars
8
34862
3478
ืžื” ืขื•ืžื“ ืœืงืจื•ืช ืœืžืฉืจื•ืช ืืœื” ื›ืืฉืจ ืœื ืขื•ื“ ื ื ื”ื’ ืืช ืžื›ื•ื ื™ื•ืชื™ื ื•
00:38
or cooking our food
9
38364
1165
ืื• ื ื‘ืฉืœ ืืช ืžื–ื•ื ื ื•
00:39
or even diagnosing our own diseases?
10
39553
1959
ืื• ืืคื™ืœื• ื ืื‘ื—ืŸ ืืช ืžื—ืœื•ืชื™ื ื• ืฉืœื ื•?
00:42
Well, a recent study from Forrester Research
11
42495
2377
ื•ื‘ื›ืŸ, ืžื—ืงืจ ืฉื ืขืจืš ืœืื—ืจื•ื ื” ื‘ื—ื‘ืจืช ื”ืžื—ืงืจ ืคื•ืจืกื˜ืจ
00:44
goes so far to predict that 25 million jobs
12
44896
3163
ืžืคืœื™ื’ ืจื—ื•ืง ื‘ืชื—ื–ื™ืช ืฉืœื• ื•ืžืขืจื™ืš ืฉ-25 ืžื™ืœื™ื•ืŸ ืžืฉืจื•ืช
00:48
might disappear over the next 10 years.
13
48083
2162
ืขืœื•ืœื•ืช ืœื”ื™ืขืœื ื‘ืชื•ืš 10 ื”ืฉื ื™ื ื”ื‘ืื•ืช.
00:51
To put that in perspective,
14
51213
1489
ื›ื“ื™ ืœืฉื™ื ื–ืืช ื‘ืืžืช ืžื™ื“ื”,
00:52
that's three times as many jobs lost in the aftermath of the financial crisis.
15
52726
4146
ื–ื” ืคื™ ืฉืœื•ืฉ ื™ื•ืชืจ ืžืžืกืคืจ ื”ืžืฉืจื•ืช ืฉืื‘ื“ื• ื›ืชื•ืฆืื” ืžื”ืžืฉื‘ืจ ื”ืคื™ื ื ืกื™.
00:58
And it's not just blue-collar jobs that are at risk.
16
58426
2472
ื•ืœื ืžื“ื•ื‘ืจ ืจืง ื‘ืžืฉืจื•ืช ืฆื•ืืจื•ืŸ ื›ื—ื•ืœ ืฉื ืžืฆืื•ืช ื‘ืกื›ื ื”.
01:01
On Wall Street and across Silicon Valley, we are seeing tremendous gains
17
61548
3427
ื‘ื•ื•ืœ-ืกื˜ืจื™ื˜ ื•ื‘ืจื—ื‘ื™ ืขืžืง ื”ืกื™ืœื™ืงื•ืŸ, ืื ื• ืจื•ืื™ื ื”ืชืงื“ืžื•ืช ืžื“ื”ื™ืžื”
01:04
in the quality of analysis and decision-making
18
64999
2182
ื‘ืื™ื›ื•ืช ื”ื ื™ืชื•ื— ื•ืงื‘ืœืช ื”ื”ื—ืœื˜ื•ืช
01:07
because of machine learning.
19
67205
1654
ื”ื•ื“ื•ืช ืœืœืžื™ื“ืช ืžื›ื•ื ื”.
01:08
So even the smartest, highest-paid people will be affected by this change.
20
68883
3524
ื›ืš ืฉืืคื™ืœื• ื”ืื ืฉื™ื ื”ื—ื›ืžื™ื ื‘ื™ื•ืชืจ, ืฉืžืฉืชื›ืจื™ื ื”ื›ื™ ื”ืจื‘ื”, ื™ื•ืฉืคืขื• ืขืœ-ื™ื“ื™ ืฉื™ื ื•ื™ ื–ื”.
01:13
What's clear is that no matter what your job is,
21
73534
2670
ืžื” ืฉื‘ืจื•ืจ ื”ื•ื ืฉืœื ืžืฉื ื” ืžื”ื™ ื”ืžืฉืจื” ืฉืœื›ื,
01:16
at least some, if not all of your work,
22
76228
1972
ืœืคื—ื•ืช ื—ืœืง ืžื”ืขื‘ื•ื“ื” ืฉืœื›ื ืื ืœื ื›ื•ืœื”,
01:18
is going to be done by a robot or software in the next few years.
23
78224
3392
ืขื•ืžื“ืช ืœื”ืชื‘ืฆืข ืขืœ-ื™ื“ื™ ืจื•ื‘ื•ื˜ ืื• ืชื•ื›ื ื” ื‘ืฉื ื™ื ื”ืงืจื•ื‘ื•ืช.
01:22
And that's exactly why people like Mark Zuckerberg and Bill Gates
24
82738
3071
ื•ื–ื• ื‘ื“ื™ื•ืง ื”ืกื™ื‘ื” ื‘ื’ืœืœื” ืื ืฉื™ื ื›ืžื• ืžืจืง ืฆื•ืงืจื‘ืจื’ ื•ื‘ื™ืœ ื’ื™ื™ื˜ืก
01:25
are talking about the need for government-funded minimum income levels.
25
85833
3388
ืžื“ื‘ืจื™ื ืขืœ ื”ืฆื•ืจืš ื‘ืจืžื•ืช ื”ื›ื ืกื” ืžื™ื ื™ืžืœื™ื•ืช ืžืžื•ืžื ื•ืช-ืžืžืฉืœื”.
01:29
But if our politicians can't agree on things like health care
26
89245
3342
ืื‘ืœ ืื ื”ืžื ื”ื™ื’ื™ื ืฉืœื ื• ืœื ื™ื›ื•ืœื™ื ืœื”ืกื›ื™ื ืขืœ ื ื•ืฉืื™ื ื›ืžื• ืฉื™ืจื•ืชื™ ื‘ืจื™ืื•ืช
01:32
or even school lunches,
27
92611
1279
ืื• ืืคื™ืœื• ืืจื•ื—ื•ืช ื‘ื‘ืชื™ ืกืคืจ,
01:33
I just don't see a path where they'll find consensus
28
93914
2430
ืื– ืงืฉื” ืœื™ ืœืจืื•ืช ื›ื™ืฆื“ ื™ื’ื™ืขื• ืœืื—ื“ื•ืช-ื“ืขื™ื
01:36
on something as big and as expensive as universal basic life income.
29
96368
3326
ืœื’ื‘ื™ ืžืฉื”ื• ื›ื” ื’ื“ื•ืœ ื•ื™ืงืจ ื›ืžื• ื”ื›ื ืกื” ื‘ืกื™ืกื™ืช ืœื›ืœ.
01:40
Instead, I think the response needs to be led by us in industry.
30
100436
3645
ื‘ืžืงื•ื ื–ืืช, ืื ื™ ื—ื•ืฉื‘ ืฉื”ืชื’ื•ื‘ื” ืฆืจื™ื›ื” ืœื‘ื•ื ืžืื™ืชื ื• ื‘ืชืขืฉื™ื”.
01:44
We have to recognize the change that's ahead of us
31
104105
2524
ืขืœื™ื ื• ืœื”ื›ื™ืจ ื‘ืฉื™ื ื•ื™ ืฉืœืคื ื™ื ื•
01:46
and start to design the new kinds of jobs
32
106653
1975
ื•ืœื”ืชื—ื™ืœ ืœืชื›ื ืŸ ืืช ื”ืกื•ื’ื™ื ื”ื—ื“ืฉื™ื ืฉืœ ืžืฉืจื•ืช
01:48
that will still be relevant in the age of robotics.
33
108652
2695
ืฉืชื”ื™ื™ื ื” ื‘ืจื•ืช-ืงื™ื™ืžื ื’ื ื‘ืขื™ื“ืŸ ื”ืจื•ื‘ื•ื˜ื™ื.
01:52
The good news is that we have faced down and recovered
34
112719
2753
ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ื”ืŸ ืฉื›ื‘ืจ ื—ื•ื•ื™ื ื• ื‘ืขื‘ืจ ื•ื’ื ืฉืจื“ื ื•
01:55
two mass extinctions of jobs before.
35
115496
2186
ืฉืชื™ ื”ื›ื—ื“ื•ืช ืฉืœ ืžืฉืจื•ืช.
01:58
From 1870 to 1970,
36
118343
2210
ื‘ื™ืŸ 1870 ืœ-1970,
02:00
the percent of American workers based on farms fell by 90 percent,
37
120577
4408
ืื—ื•ื– ื”ื’ื‘ืจื™ื ื•ื”ื ืฉื™ื ื‘ืืžืจื™ืงื” ืฉืžืฉืจื•ืชื™ื”ื ื”ืชื‘ืกืกื• ืขืœ ืขื‘ื•ื“ืช-ื—ื•ื•ื” ื ืคืœื• ื‘-90 ืื—ื•ื–ื™ื,
02:05
and then again from 1950 to 2010,
38
125009
2545
ื•ืื– ืฉื•ื‘ ื‘ื™ืŸ 1950 ืœ-2010,
02:07
the percent of Americans working in factories
39
127578
2143
ืื—ื•ื– ื”ืืžืจื™ืงืื™ื, ื’ื‘ืจื™ื ื•ื ืฉื™ื, ื”ืขื•ื‘ื“ื™ื ื‘ื‘ืชื™-ื—ืจื•ืฉืช
02:09
fell by 75 percent.
40
129745
1676
ื ืคืœ ื‘-75 ืื—ื•ื–ื™ื.
02:12
The challenge we face this time, however, is one of time.
41
132390
2954
ื”ืืชื’ืจื™ื ื‘ืคื ื™ื”ื ืื ื• ื ื™ืฆื‘ื™ื ื”ืคืขื, ืœืขื•ืžืช ื–ืืช, ื”ื ืฉืœ ื–ืžืŸ.
02:15
We had a hundred years to move from farms to factories,
42
135368
3014
ื”ื™ื• ืœื ื• ืžืื” ืฉื ื” ืœืขื‘ื•ืจ ืžื”ื—ื•ื•ืช ืœื‘ืชื™-ื”ื—ืจื•ืฉืช,
02:18
and then 60 years to fully build out a service economy.
43
138406
2575
ื•-60 ืฉื ื” ืœื‘ื ื•ืช ืžื”ื™ืกื•ื“ ื›ืœื›ืœื” ืžื‘ื•ืกืกืช-ืฉื™ืจื•ืช.
02:21
The rate of change today
44
141498
1325
ืงืฆื‘ ื”ืฉื™ื ื•ื™ ื›ื™ื•ื
02:22
suggests that we may only have 10 or 15 years to adjust,
45
142847
2974
ืžืจืื” ืฉืขืฉื•ื™ื•ืช ืœื”ื™ื•ืช ืœื ื• ืจืง 10 ืขื“ 15 ืฉื ื™ื ืœื”ืชืื™ื ืขืฆืžื ื•,
02:25
and if we don't react fast enough,
46
145845
1703
ื•ืื ืœื ื ื’ื™ื‘ ืžืกืคื™ืง ืžื”ืจ,
02:27
that means by the time today's elementary-school students
47
147572
2756
ื”ืžืฉืžืขื•ืช ืชื”ื™ื” ืฉื‘ื–ืžืŸ ืฉืชืœืžื™ื“ื™ ื‘ืชื™-ื”ืกืคืจ ื”ื™ืกื•ื“ื™ื™ื ืฉืœ ื”ื™ื•ื
02:30
are college-aged,
48
150352
1885
ื™ื’ื™ืขื• ืœืื•ื ื™ื‘ืจืกื™ื˜ื”,
02:32
we could be living in a world that's robotic,
49
152261
2141
ืื ื• ืขืฉื•ื™ื™ื ืœื—ื™ื•ืช ื‘ืขื•ืœื ืจื•ื‘ื•ื˜ื™,
02:34
largely unemployed and stuck in kind of un-great depression.
50
154426
3683
ื ื˜ื•ืœ ืชืขืกื•ืงื” ื‘ืขื™ืงืจื•, ื‘ืกื•ื’ ืฉืœ ืฉืคืœ ื›ืœื›ืœื™ ื‘ืœืชื™-ื ื—ืžื“.
02:39
But I don't think it has to be this way.
51
159617
1939
ืื‘ืœ ืื ื™ ืœื ื—ื•ืฉื‘ ืฉื–ื” ื—ื™ื™ื‘ ืœืงืจื•ืช.
02:41
You see, I work in innovation,
52
161580
1700
ืืชื ืžื‘ื™ื ื™ื, ืื ื™ ืขื•ืกืง ื‘ื—ื“ืฉื ื•ืช,
02:43
and part of my job is to shape how large companies apply new technologies.
53
163304
4154
ื•ื—ืœืง ืžืขื‘ื•ื“ืชื™ ื”ื•ื ืœืขืฆื‘ ืืช ื”ื“ืจืš ื‘ื” ื—ื‘ืจื•ืช ื’ื“ื•ืœื•ืช ืžืฉืชืžืฉื•ืช ื‘ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื“ืฉื•ืช.
02:48
Certainly some of these technologies
54
168085
1795
ื‘ืจื•ืจ ืฉื—ืœืง ืžื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืืœื”
02:49
are even specifically designed to replace human workers.
55
169904
2904
ืžืชื•ื›ื ื ื•ืช ื‘ืžื™ื•ื—ื“ ื›ืš ืฉืชื—ืœืคื ื” ืขื•ื‘ื“ื™ื ืื ื•ืฉื™ื™ื.
02:53
But I believe that if we start taking steps right now
56
173435
2926
ืื‘ืœ ืื ื™ ืžืืžื™ืŸ ืฉืื ื ืชื—ื™ืœ ืœื ืงื•ื˜ ืฆืขื“ื™ื ื›ื‘ืจ ืขืชื”
02:56
to change the nature of work,
57
176385
1821
ืœืฉื™ื ื•ื™ ืื•ืคื™ ื”ืขื‘ื•ื“ื”,
02:58
we can not only create environments where people love coming to work
58
178230
3886
ื ื•ื›ืœ ืœื™ืฆื•ืจ ืกื‘ื™ื‘ื•ืช ื›ืืœื” ืฉืœื ืจืง ืฉื‘ื ื™-ืื“ื ื™ืื”ื‘ื• ืœื”ื’ื™ืข ืืœื™ื”ืŸ ื›ื“ื™ ืœืขื‘ื•ื“
03:02
but also generate the innovation that we need
59
182140
2118
ืืœื ื’ื ื™ืคื™ืงื• ืืช ื”ื—ื“ืฉื ื•ืช ืœื” ืื ื• ื–ืงื•ืงื™ื
03:04
to replace the millions of jobs that will be lost to technology.
60
184282
3173
ื›ื“ื™ ืœื”ื—ืœื™ืฃ ืืช ืžื™ืœื™ื•ื ื™ ื”ืžืฉืจื•ืช ืฉืชืื‘ื“ื ื” ืขืงื‘ ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
03:08
I believe that the key to preventing our jobless future
61
188352
3799
ืื ื™ ืžืืžื™ืŸ ืฉื”ืžืคืชื— ืœืžื ื™ืขืช ืขืชื™ื“ ื ื˜ื•ืœ-ืžืฉืจื•ืช
03:12
is to rediscover what makes us human,
62
192175
2346
ื”ื•ื ืœื’ืœื•ืช ืžื—ื“ืฉ ืžื” ื”ื•ืคืš ืื•ืชื ื• ืื ื•ืฉื™ื™ื,
03:14
and to create a new generation of human-centered jobs
63
194545
2958
ื•ืœื™ืฆื•ืจ ื“ื•ืจ ื—ื“ืฉ ืฉืœ ืžืฉืจื•ืช ืกื•ื‘ื‘ื•ืช-ืื ื•ืฉ
03:17
that allow us to unlock the hidden talents and passions
64
197527
2606
ืฉื™ืืคืฉืจื• ืœื ื• ืœืฉื—ืจืจ ืืช ื”ื›ืฉืจื•ื ื•ืช ื”ื—ื‘ื•ื™ื™ื ื•ื”ืชืฉื•ืงื•ืช
03:20
that we carry with us every day.
65
200157
1653
ืฉืื ื• ื ื•ืฉืื™ื ืื™ืชื ื• ื›ืœ ื™ื•ื.
03:23
But first, I think it's important to recognize
66
203971
2143
ืืš ืงื•ื“ื, ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื—ืฉื•ื‘ ืœื”ื›ื™ืจ ื‘ื›ืš
03:26
that we brought this problem on ourselves.
67
206138
2152
ืฉืื ื• ื”ื‘ืื ื• ืืช ื”ื‘ืขื™ื” ื”ื–ืืช ืขืœ ืขืฆืžื ื•.
03:28
And it's not just because, you know, we are the one building the robots.
68
208314
3457
ื•ื–ื” ืœื ืจืง ืžืฉื•ื ืฉืื ื• ืืœื” ืฉื‘ื•ื ื™ื ืืช ื”ืจื•ื‘ื•ื˜ื™ื.
03:32
But even though most jobs left the factory decades ago,
69
212327
3184
ืœืžืจื•ืช ืฉืจื•ื‘ ื”ืžืฉืจื•ืช ื™ืฆืื• ืžืชื—ื•ื ื‘ื™ืช-ื”ื—ืจื•ืฉืช ื›ื‘ืจ ืœืคื ื™ ืขืฉืจื•ืช ืฉื ื™ื,
03:35
we still hold on to this factory mindset
70
215535
1937
ืื ื• ืขื“ื™ื™ืŸ ืฉื‘ื•ื™ื™ื ื‘ืื•ืชื” ืชืคื™ืฉื” ืฉืžืงื•ืจื” ื‘ื‘ืชื™-ื”ื—ืจื•ืฉืช
03:37
of standardization and de-skilling.
71
217496
1959
ืฉืœ ืฉื‘ืœื•ื ื™ื•ืช ื•ื—ื•ืกืจ ืฆื•ืจืš ื‘ื›ื™ืฉื•ืจื™ื.
03:40
We still define jobs around procedural tasks
72
220345
2351
ืื ื—ื ื• ืขื“ื™ื™ืŸ ืžื’ื“ื™ืจื™ื ืžืฉืจื•ืช ืขืœ ื‘ืกื™ืก ืžืฉื™ืžื•ืช ืฉืœ ื ื•ื”ืœ ืกื“ื•ืจ
03:42
and then pay people for the number of hours that they perform these tasks.
73
222720
3488
ื•ืื– ืžืฉืœืžื™ื ืœื‘ื ื™-ืื“ื ืขื‘ื•ืจ ืžืกืคืจ ื”ืฉืขื•ืช ื‘ื”ืŸ ื‘ื™ืฆืขื• ืžืฉื™ืžื•ืช ืืœื”.
03:46
We've created narrow job definitions
74
226232
1756
ื”ื’ื“ืจื ื• ืžืฉืจื•ืช ื‘ื”ื™ืงืฃ ืฆืจ
03:48
like cashier, loan processor or taxi driver
75
228012
3240
ื›ื’ื•ืŸ ืงื•ืคืื™ ืคืงื™ื“ ื”ืœื•ื•ืื•ืช, ืื• ื ื”ื’ ืžื•ื ื™ืช
03:51
and then asked people to form entire careers
76
231276
2483
ื•ืื– ื‘ื™ืงืฉื ื• ืžืื ืฉื™ื ืœืคืชื— ืงืจื™ื™ืจื•ืช ืฉืœืžื•ืช
03:53
around these singular tasks.
77
233783
1630
ืกื‘ื™ื‘ ืžืฉื™ืžื•ืช ื™ื—ื™ื“ื•ืช ืืœื”.
03:56
These choices have left us with actually two dangerous side effects.
78
236071
3533
ื”ื—ืœื˜ื•ืช ืืœื” ื”ืฉืื™ืจื• ืื•ืชื ื• ืขื ืฉืชื™ ืชื•ืคืขื•ืช-ืœื•ื•ืื™ ืžืกื•ื›ื ื•ืช.
03:59
The first is that these narrowly defined jobs
79
239628
2750
ื”ืจืืฉื•ื ื” ื”ื™ื ืฉืžืฉืจื•ืช ืืœื• ื‘ืขืœื•ืช ื”ื”ื’ื“ืจื” ื”ืฆืจื”
04:02
will be the first to be displaced by robots,
80
242402
2423
ืชื”ื™ื™ื ื” ื”ืจืืฉื•ื ื•ืช ืœื”ื™ื•ืช ืžื•ื—ืœืคื•ืช ืขืœ ื™ื“ื™ ืจื•ื‘ื•ื˜ื™ื,
04:04
because single-task robots are just the easiest kinds to build.
81
244849
2985
ื›ื™ื•ื•ืŸ ืฉืจื•ื‘ื•ื˜ื™ื ืฉืžื‘ืฆืขื™ื ืžืฉื™ืžื” ื™ื—ื™ื“ื” ื”ื ื‘ื“ื™ื•ืง ืืœื” ืฉื”ื›ื™ ืงืœ ืœื‘ื ื•ืช.
04:08
But second, we have accidentally made it
82
248601
2393
ืื‘ืœ ื”ืฉื ื™ื” ื”ื™ื, ืฉื‘ื˜ืขื•ืช ื’ืจืžื ื• ืœื›ืš
04:11
so that millions of workers around the world
83
251018
2128
ืฉืœืžื™ืœื™ื•ื ื™ ืขื•ื‘ื“ื™ื ืžืกื‘ื™ื‘ ืœืขื•ืœื
04:13
have unbelievably boring working lives.
84
253170
2310
ื™ืฉ ื—ื™ื™ ืขื‘ื•ื“ื” ืžืฉืขืžืžื™ื ื‘ืื•ืคืŸ ื‘ืœืชื™ ื™ืื•ืžืŸ.
04:15
(Laughter)
85
255877
1871
(ืฆื—ื•ืง)
04:18
Let's take the example of a call center agent.
86
258247
2402
ื‘ื•ืื• ื ื™ืงื— ื›ื“ื•ื’ืžื” ืืช ืžืฉืจืช ื ืฆื™ื’ ืžืจื›ื– ืฉื™ืจื•ืช.
04:20
Over the last few decades, we brag about lower operating costs
87
260673
3003
ื‘ืžืฉืš ืขืฉืจื•ืช ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช, ื”ืชืคืืจื ื• ื‘ืขืœื•ื™ื•ืช ืชืคืขื•ืœ ื ืžื•ื›ื•ืช ื™ื•ืชืจ
04:23
because we've taken most of the need for brainpower
88
263700
2427
ืฉื”ื•ืฉื’ื• ื”ื•ื“ื•ืช ืœื”ืขื‘ืจืช ืจื•ื‘ื• ืฉืœ ื”ืฆื•ืจืš ื‘ื—ืฉื™ื‘ื”
04:26
out of the person and put it into the system.
89
266151
2144
ืžืŸ ื”ืื“ื ืืœ ื”ืžืขืจื›ืช.
04:28
For most of their day, they click on screens,
90
268319
2521
ื‘ืžืฉืš ืจื•ื‘ ื”ื™ื•ื ืฉืœื”ื, ื”ื ืžืงืœื™ืงื™ื ืขืœ ืžืกื›ื™ื,
04:30
they read scripts.
91
270864
1201
ื”ื ืžืงืจื™ืื™ื ืฉื’ืจื•ืช ืคืขื•ืœื”.
04:33
They act more like machines than humans.
92
273307
2653
ื”ื ืคื•ืขืœื™ื ื™ื•ืชืจ ื›ืžื• ืžื›ื•ื ื•ืช ืžืืฉืจ ื›ืžื• ื‘ื ื™-ืื“ื.
04:37
And unfortunately, over the next few years,
93
277098
2116
ื•ืœืจื•ืข ื”ืžื–ืœ, ื‘ืžืฉืš ืžืกืคืจ ื”ืฉื ื™ื ื”ื‘ืื•ืช,
04:39
as our technology gets more advanced,
94
279238
1859
ื›ื›ืœ ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœื ื• ืชืชืงื“ื,
04:41
they, along with people like clerks and bookkeepers,
95
281121
2584
ื”ื, ื›ืžื• ืคืงื™ื“ื™ื ื•ืžื ื”ืœื™ ื—ืฉื‘ื•ื ื•ืช,
04:43
will see the vast majority of their work disappear.
96
283729
2412
ื™ืจืื• ืื™ืš ืžืจื‘ื™ืช ื”ืฆื•ืจืš ื‘ืขื‘ื•ื“ืชื ื™ื™ืขืœื.
04:47
To counteract this, we have to start creating new jobs
97
287315
2704
ื›ื“ื™ ืœืงื–ื– ืžื’ืžื” ื–ืืช, ืขืœื™ื ื• ืœื”ืชื—ื™ืœ ืœื™ืฆื•ืจ ืžืฉืจื•ืช ื—ื“ืฉื•ืช
04:50
that are less centered on the tasks that a person does
98
290043
2539
ืฉืชื”ื™ื™ื ื” ืคื—ื•ืช ืžื‘ื•ืกืกื•ืช ืขืœ ืžืฉื™ืžื•ืช ืฉืขืœ ืื“ื ืœื‘ืฆืข
04:52
and more focused on the skills that a person brings to work.
99
292606
2866
ื•ื™ื•ืชืจ ืžืžื•ืงื“ื•ืช ื‘ื›ื™ืฉื•ืจื™ื ืฉืื“ื ืžื‘ื™ื ืื™ืชื• ืœืขื‘ื•ื“ื”.
04:56
For example, robots are great at repetitive and constrained work,
100
296209
3387
ืœืžืฉืœ, ืจื•ื‘ื•ื˜ื™ื ื”ื ืžืฆื•ื™ื™ื ื™ื ื‘ืขื‘ื•ื“ื” ืžื•ื’ื“ืจืช ืฉื—ื•ื–ืจืช ืขืœ ืขืฆืžื”,
04:59
but human beings have an amazing ability
101
299620
1949
ืœืขื•ืžืช ื–ืืช ืœื‘ื ื™ ืื ื•ืฉ ื™ืฉ ื™ื›ื•ืœืช ืžื“ื”ื™ืžื”
05:01
to bring together capability with creativity
102
301593
2279
ืœืžื–ื’ ื›ืฉืจื•ืŸ ืขื ื™ืฆื™ืจืชื™ื•ืช
05:03
when faced with problems that we've never seen before.
103
303896
2700
ื›ืฉื”ื ื ื™ืฆื‘ื™ื ื‘ืคื ื™ ื‘ืขื™ื•ืช ืฉื˜ืจื ื ืชืงืœื• ื‘ื”ืŸ.
05:06
It's when every day brings a little bit of a surprise
104
306942
2980
ื›ืืฉืจ ื›ืœ ื™ื•ื ืžื‘ื™ื ืื™ืชื• ืžืขื˜ ื”ืคืชืขื•ืช
05:09
that we have designed work for humans
105
309946
2004
ื ื“ืจืฉืช ืขื‘ื•ื“ื” ืฉืœ ื‘ื ื™-ืื“ื
05:11
and not for robots.
106
311974
1269
ื•ืœื ืฉืœ ืจื•ื‘ื•ื˜ื™ื.
05:13
Our entrepreneurs and engineers already live in this world,
107
313950
2898
ื”ื™ื–ืžื™ื ื•ื”ืžื”ื ื“ืกื™ื ืฉืœื ื• ื›ื‘ืจ ื—ื™ื™ื ื‘ืขื•ืœื ื›ื–ื”,
05:16
but so do our nurses and our plumbers
108
316872
2592
ืื‘ืœ ื›ืš ื’ื ืื—ื™ื•ืช/ืื—ื™ื ื•ืฉืจื‘ืจื‘ื™ื
05:19
and our therapists.
109
319488
1463
ื•ื ืฉื™ื ื•ื’ื‘ืจื™ื ืฉืขื•ืกืงื™ื ื‘ืคืกื™ื›ื™ืื˜ืจื™ื”.
05:21
You know, it's the nature of too many companies and organizations
110
321569
3057
ืืชื ื™ื•ื“ืขื™ื, ื–ื” ื‘ืื•ืคื™ื™ื ืฉืœ ื™ื•ืชืจ ืžื“ื™ ื—ื‘ืจื•ืช ื•ืืจื’ื•ื ื™ื
05:24
to just ask people to come to work and do your job.
111
324650
3690
ืœื‘ืงืฉ ืžืื ืฉื™ื ืจืง ืœื”ื’ื™ืข ืœืขื‘ื•ื“ื” ื•ืœื‘ืฆืข ืืช ื”ืžืฉื™ืžื” ืฉืœื”ื.
05:28
But if you work is better done by a robot,
112
328364
2186
ืื‘ืœ ืื ื”ืขื‘ื•ื“ื” ืฉืœื›ื ื ืขืฉื™ืช ื˜ื•ื‘ ื™ื•ืชืจ ืขืœ-ื™ื“ื™ ืจื•ื‘ื•ื˜,
05:30
or your decisions better made by an AI,
113
330574
2797
ืื• ืฉืงื‘ืœืช ื”ื—ืœื˜ื•ืช ื ืขืฉื™ืช ื˜ื•ื‘ ื™ื•ืชืจ ืขืœ ื™ื“ื™ ืื™ื ื˜ื™ืœื™ื’ื ืฆื™ื” ืžืœืื›ื•ืชื™ืช
05:33
what are you supposed to be doing?
114
333395
1712
ืžื” ืืชื ืืžื•ืจื™ื ืœืขืฉื•ืช?
05:35
Well, I think for the manager,
115
335833
2484
ื•ื‘ื›ืŸ, ืื ื™ ื—ื•ืฉื‘ ืฉืขื‘ื•ืจ ื”ืžื ื”ืœื™ื,
05:38
we need to realistically think about the tasks that will be disappearing
116
338341
3397
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ื‘ืื•ืคืŸ ืžืฆื™ืื•ืชื™ ืขืœ ื”ืžืฉื™ืžื•ืช ืฉืชื™ืขืœืžื ื”
05:41
over the next few years
117
341762
1151
ื‘ืฉื ื™ื ื”ืงืจื•ื‘ื•ืช
05:42
and start planning for more meaningful, more valuable work that should replace it.
118
342937
3872
ื•ืœื”ืชื—ื™ืœ ืœืชื›ื ืŸ ืขื‘ื•ื“ื” ื™ื•ืชืจ ืžืฉืžืขื•ืชื™ืช ื•ื‘ืขืœืช ืขืจืš ืจื‘ ื™ื•ืชืจ ืฉืชื—ืœื™ืฃ ืื•ืชืŸ.
05:46
We need to create environments
119
346833
1429
ืขืœื™ื ื• ืœื™ืฆื•ืจ ืกื‘ื™ื‘ื•ืช ืขื‘ื•ื“ื”
05:48
where both human beings and robots thrive.
120
348286
2239
ื‘ื”ืŸ ื’ื ื‘ื ื™-ืื ื•ืฉ ื•ื’ื ืจื•ื‘ื•ื˜ื™ื ื™ื’ื™ืขื• ืœืžื™ื˜ื‘ื.
05:50
I say, let's give more work to the robots,
121
350549
2536
ื˜ืขื ืชื™ ื”ื™ื, ื”ื‘ื” ื ื™ืชืŸ ื™ื•ืชืจ ืขื‘ื•ื“ื” ืœืจื•ื‘ื•ื˜ื™ื,
05:53
and let's start with the work that we absolutely hate doing.
122
353109
2903
ื•ื”ื‘ื” ื ืชื—ื™ืœ ืžื”ืขื‘ื•ื“ื” ืฉืื ื—ื ื• ืฉื•ื ืื™ื ื‘ืžื™ื•ื—ื“ ืœืขืฉื•ืช.
05:57
Here, robot,
123
357248
1164
ืœื›ืืŸ, ืจื•ื‘ื•ื˜,
05:58
process this painfully idiotic report.
124
358436
1851
ื‘ืฆืข ืขื™ื‘ื•ื“ ืฉืœ ื“ื•"ื— ืื™ื“ื™ื•ื˜ื™-ื‘ืžื™ื•ื—ื“ ื–ื”.
06:00
(Laughter)
125
360311
1423
(ืฆื—ื•ืง)
06:01
And move this box. Thank you.
126
361758
1425
ื•ื”ื–ื– ืงื•ืคืกื” ื–ืืช. ืชื•ื“ื” ืจื‘ื”.
06:03
(Laughter)
127
363207
1699
(ืฆื—ื•ืง)
06:04
And for the human beings,
128
364930
1529
ื•ืขื‘ื•ืจ ื‘ื ื™-ื”ืื“ื,
06:06
we should follow the advice from Harry Davis at the University of Chicago.
129
366483
3554
ืขืœื™ื ื• ืœืžืœื ืื—ืจ ื”ืขืฆื” ืฉืœ ื”ืืจื™ ื“ื™ื™ื•ื•ื™ืก ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืฉื™ืงื’ื•.
06:10
He says we have to make it so that people don't leave too much of themselves
130
370061
3649
ื”ื•ื ืื•ืžืจ ืฉืขืœื™ื ื• ืœืชื›ื ืŸ ื–ืืช ื›ืš ืฉืื ืฉื™ื ืœื ื™ืฉืื™ืจื• ื“ื‘ืจื™ื ืจื‘ื™ื ืžื“ื™ ืฉืœื”ื
06:13
in the trunk of their car.
131
373734
1331
ื‘ืชื ื”ืžื˜ืขืŸ ืฉืœ ืžื›ื•ื ื™ืชื.
06:15
I mean, human beings are amazing on weekends.
132
375089
2889
ืื ื™ ืžืชื›ื•ื•ืŸ, ืื ืฉื™ื ื”ื ืžื“ื”ื™ืžื™ื ื‘ืกื•ืคื™ ื”ืฉื‘ื•ืข.
06:18
Think about the people that you know and what they do on Saturdays.
133
378002
3144
ื”ื–ื›ืจื• ื‘ืื ืฉื™ื ืฉืืชื ืžื›ื™ืจื™ื ื•ื‘ืžื” ืฉื”ื ืขื•ืฉื™ื ื‘ื™ืžื™ ืฉืฉื™ ื•ืฉื‘ืช.
06:21
They're artists, carpenters, chefs and athletes.
134
381170
2976
ื”ื ืขื•ืกืงื™ื ื‘ืืžื ื•ืช, ื ื’ืจื•ืช, ื‘ื™ืฉื•ืœ ื•ืืชืœื˜ื™ืงื”.
06:24
But on Monday, they're back to being Junior HR Specialist
135
384906
3896
ืื‘ืœ ื‘ื™ื•ื ืจืืฉื•ืŸ, ื”ื ื—ื•ื–ืจื™ื ืœื”ื™ื•ืช ืžื•ืžื—ื” ืžืฉืื‘ื™-ืื ื•ืฉ ืžืชื—ื™ืœ
06:28
and Systems Analyst 3.
136
388826
2099
ื•ืžื ืชื—ืช ืžืขืจื›ื•ืช ืกื•ื’ 3.
06:30
(Laughter)
137
390949
3781
(ืฆื—ื•ืง)
06:34
You know, these narrow job titles not only sound boring,
138
394754
3318
ืืชื ื™ื•ื“ืขื™ื, ื”ื’ื“ืจื•ืช ืžืฉืจื” ืฆืจื•ืช ืืœื” ืœื ืจืง ื ืฉืžืขื•ืช ืžืฉืขืžืžื•ืช,
06:38
but they're actually a subtle encouragement
139
398096
2096
ืืœื ื’ื ื‘ืื•ืคืŸ ืžืขืฉื™ ื•ืกืžื•ื™ ืžืขื•ื“ื“ื•ืช
06:40
for people to make narrow and boring job contributions.
140
400216
3040
ืื ืฉื™ื ืœืชืจื•ื ืœืขื‘ื•ื“ื” ื‘ืื•ืคืŸ ืฆืจ ื•ืžืฉืขืžื.
06:43
But I've seen firsthand that when you invite people to be more,
141
403280
3116
ืื ื™ ืจืื™ืชื™ ืžืžืงื•ืจ ืจืืฉื•ืŸ ืฉื›ืืฉืจ ืืชื ืงื•ืจืื™ื ืœืื ืฉื™ื ืœื”ื™ื•ืช ื™ื•ืชืจ ืžืžื” ืฉื”ื,
06:46
they can amaze us with how much more they can be.
142
406420
2390
ื”ื ื™ื›ื•ืœื™ื ืœื”ื“ื”ื™ื ืื•ืชื ื• ืขื“ ื›ืžื” ื”ื ื™ื›ื•ืœื™ื ืœื”ืชืขืœื•ืช ืขืœ ืขืฆืžื.
06:50
A few years ago, I was working at a large bank
143
410147
2233
ืœืคื ื™ ื›ืžื” ืฉื ื™ื, ืขื‘ื“ืชื™ ื‘ื‘ื ืง ื’ื“ื•ืœ
06:52
that was trying to bring more innovation into its company culture.
144
412404
3096
ืฉื ื™ืกื” ืœื”ื›ื ื™ืก ื™ื•ืชืจ ื—ื“ืฉื ื•ืช ืœืชืจื‘ื•ืช ื”ืขื‘ื•ื“ื” ืฉืœื•.
06:55
So my team and I designed a prototyping contest
145
415524
2341
ื”ืฆื•ื•ืช ืฉืœื™ ื•ืื ื™ ืชื™ื›ื ื ื• ืชื—ืจื•ืช ืฉืœ ืื‘ื•ืช-ื˜ื™ืคื•ืก
06:57
that invited anyone to build anything that they wanted.
146
417889
2970
ืฉืงืจืื” ืœื›ืœ ืื—ื“ ื•ืื—ืช ืœื‘ื ื•ืช ื›ืœ ื“ื‘ืจ ืฉืขื•ืœื” ืขืœ ืจื•ื—ื.
07:01
We were actually trying to figure out
147
421524
1833
ื ื™ืกื™ื ื• ืœืžืขืฉื” ืœื’ืœื•ืช
07:03
whether or not the primary limiter to innovation
148
423381
2268
ื‘ืื ื”ื—ืกื ื”ืขื™ืงืจื™ ื‘ืคื ื™ ื—ื“ืฉื ื•ืช ื”ื•ื
07:05
was a lack of ideas or a lack of talent,
149
425673
2490
ื—ื•ืกืจ ืจืขื™ื•ื ื•ืช ืื• ื—ื•ืกืจ ื›ืฉืจื•ืŸ,
07:08
and it turns out it was neither one.
150
428187
1861
ื•ื”ืชื‘ืจืจ ืฉื–ื” ืืฃ ืœื ืื—ื“ ืžืืœื”.
07:10
It was an empowerment problem.
151
430072
1755
ื–ื• ื”ื™ืชื” ื‘ืขื™ื™ืช ื”ืขืฆืžื”.
07:12
And the results of the program were amazing.
152
432518
2242
ื•ื”ืชื•ืฆืื•ืช ืฉืœ ื”ืชื›ื ื™ืช ื”ื™ื• ืžื“ื”ื™ืžื•ืช.
07:16
We started by inviting people to reenvision
153
436198
2377
ื”ืชื—ืœื ื• ื‘ืงืจื™ืื” ืœืื ืฉื™ื ืœื—ื–ื•ืช ื‘ื“ืžื™ื•ื ื
07:18
what it is they could bring to a team.
154
438599
2115
ืžื”ื• ื”ื“ื‘ืจ ืฉื”ื ื™ื›ื•ืœื™ื ืœื”ื‘ื™ื ืœืฆื•ื•ืช.
07:20
This contest was not only a chance to build anything that you wanted
155
440738
3738
ืชื—ืจื•ืช ื–ื• ื ืชื ื” ืœื ืจืง ื”ื–ื“ืžื ื•ืช ืœื‘ื ื•ืช ื›ืœ ื“ื‘ืจ ื”ืขื•ืœื” ืขืœ ืจื•ื—ื›ื
07:24
but also be anything that you wanted.
156
444500
2336
ืืœื ื’ื ืœื”ื™ื•ืช ื›ืœ ื“ื‘ืจ ืฉืชืจืฆื•.
07:26
And when people were no longer limited by their day-to-day job titles,
157
446860
3286
ื•ื›ืืฉืจ ื”ืื ืฉื™ื ืœื ื”ื™ื• ืขื•ื“ ืžื•ื’ื‘ืœื™ื ืขืœ ื™ื“ื™ ื”ื’ื“ืจื•ืช ื”ืžืฉืจื” ื”ื™ื•ืžื™ื•ืžื™ื•ืช ืฉืœื”ื
07:30
they felt free to bring all kinds of different skills and talents
158
450170
3147
ื”ื ื”ืจื’ื™ืฉื• ื—ื•ืคืฉื™ื™ื ืœื’ื™ื™ืก ื›ืœ ืกื•ื’ ืฉืœ ื›ื™ืฉื•ืจื™ื ื•ื›ืฉืจื•ื ื•ืช
07:33
to the problems that they were trying to solve.
159
453341
2486
ืœืฆื•ืจืš ืคืชืจื•ืŸ ื”ื‘ืขื™ื•ืช ืฉืขืžื“ื• ืœืคื ื™ื”ื.
07:35
We saw technology people being designers, marketing people being architects,
160
455851
3910
ืจืื™ื ื• ืื ืฉื™ ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื•ืคื›ื™ื ืžืขืฆื‘ื™ื, ืื ืฉื™ ืฉื™ื•ื•ืง ื”ื•ืคื›ื™ื ืœืื“ืจื™ื›ืœื™ื,
07:39
and even finance people showing off their ability to write jokes.
161
459785
3365
ื•ืืคื™ืœื• ืื ืฉื™ ื›ืกืคื™ื ืฉื—ืฉืคื• ืืช ื›ืฉืจื•ื ื ื‘ื›ืชื™ื‘ืช ื‘ื“ื™ื—ื•ืช.
07:43
(Laughter)
162
463427
1150
(ืฆื—ื•ืง)
07:44
We ran this program twice,
163
464601
1405
ื”ืจืฆื ื• ืืช ื”ืชื›ื ื™ืช ื”ื–ืืช ืคืขืžื™ื™ื,
07:46
and each time more than 400 people brought their unexpected talents to work
164
466030
3796
ื•ื‘ื›ืœ ืคืขื ื™ื•ืชืจ ืž-400 ืื ืฉื™ื ื”ื‘ื™ืื• ืื™ืชื ืœืขื‘ื•ื“ื” ืืช ื›ืฉืจื•ื ื•ืชื™ื”ื ื”ื‘ืœืชื™-ืฆืคื•ื™ื™ื
07:49
and solved problems that they had been wanting to solve for years.
165
469850
3139
ื•ืคืชืจื• ื‘ืขื™ื•ืช ืฉื”ื ืจืฆื• ืœืคืชื•ืจ ื›ื‘ืจ ื‘ืžืฉืš ืฉื ื™ื.
07:53
Collectively, they created millions of dollars of value,
166
473310
3019
ื‘ื™ื—ื“, ื”ื ื™ืฆืจื• ืขืจืš ื‘ืฉื•ื•ื™ ืžื™ืœื™ื•ื ื™ ื“ื•ืœืจื™ื,
07:56
building things like a better touch-tone system for call centers,
167
476353
4565
ื›ืฉื‘ื ื• ื“ื‘ืจื™ื ื›ื’ื•ืŸ ืžืขืจื›ืช ืžื’ืข-ืฆืœื™ืœ ื˜ื•ื‘ื” ื™ื•ืชืจ ืขื‘ื•ืจ ืžืจื›ื–ื™ ืฉื™ืจื•ืช,
08:00
easier desktop tools for branches
168
480942
1668
ืชื•ื›ื ื•ืช ืžื—ืฉื‘ ืงืœื•ืช ื™ื•ืชืจ ืขื‘ื•ืจ ื”ืกื ื™ืคื™ื
08:02
and even a thank you card system
169
482634
1525
ื•ืืคื™ืœื• ืžืขืจื›ืช ื›ืจื˜ื™ืกื™ ืชื•ื“ื”
08:04
that has become a cornerstone of the employee working experience.
170
484183
3314
ืฉื”ืคื›ื” ืœื”ื™ื•ืช ืื‘ืŸ-ื”ืคื™ื ื” ื‘ื—ื•ื•ื™ื™ืช ื”ืขื‘ื•ื“ื” ืฉืœ ื”ืžื•ืขืกืงื™ื.
08:07
Over the course of the eight weeks,
171
487521
1803
ื‘ืžืฉืš ืฉืžื•ื ื” ืฉื‘ื•ืขื•ืช,
08:09
people flexed muscles that they never dreamed of using at work.
172
489348
3533
ืื ืฉื™ื ื”ื’ืžื™ืฉื• ืฉืจื™ืจื™ื ืฉืœื ื—ืœืžื• ืœื”ืฉืชืžืฉ ื‘ื”ื ื‘ืขื‘ื•ื“ื”.
08:14
People learned new skills,
173
494173
1577
ืื ืฉื™ื ืคื™ืชื—ื• ื›ื™ืฉื•ืจื™ื ื—ื“ืฉื™ื,
08:15
they met new people,
174
495774
2368
ืคื’ืฉื• ืื ืฉื™ื ื—ื“ืฉื™ื,
08:18
and at the end, somebody pulled me aside and said,
175
498166
2793
ื•ื‘ืกื•ืฃ, ืžื™ืฉื”ื• ืžืฉืš ืื•ืชื™ ื”ืฆื™ื“ื” ื•ืืžืจ,
08:20
"I have to tell you,
176
500983
1569
"ืื ื™ ื—ื™ื™ื‘ ืœื”ื’ื™ื“ ืœืš,
08:22
the last few weeks has been one of the most intense,
177
502576
2776
ืฉื”ืฉื‘ื•ืขื•ืช ื”ืื—ืจื•ื ื™ื ื”ื™ื•ื• ืืช ื”ืชืงื•ืคื” ื‘ื” ื—ื•ื•ื™ืชื™
08:25
hardest working experiences of my entire life,
178
505376
3279
ืืช ื”ืขื‘ื•ื“ื” ื”ืงืฉื” ื‘ื™ื•ืชืจ ื•ื”ืžืื•ืžืฆืช ื‘ื™ื•ืชืจ ื‘ื—ื™ื™,
08:28
but not one second of it felt like work."
179
508679
2041
ืื‘ืœ ืœื ื—ืฉืชื™ ืฉื–ืืช ืขื‘ื•ื“ื” ืืคื™ืœื• ืœืฉื ื™ื” ืื—ืช."
08:31
And that's the key.
180
511900
1298
ื•ื–ื”ื• ื”ืžืคืชื—.
08:33
For those few weeks, people got to be creators and innovators.
181
513222
3710
ื‘ืžืฉืš ืื•ืชื ืžืกืคืจ ืฉื‘ื•ืขื•ืช, ืื ืฉื™ื ื”ื™ื• ืฆืจื™ื›ื™ื ืœื”ืคื•ืš ื™ืฆื™ืจืชื™ื™ื ื•ื—ื“ืฉื ื™ื.
08:38
They had been dreaming of solutions
182
518631
1667
ื”ื ื—ืœืžื• ืขืœ ืคืชืจื•ื ื•ืช
08:40
to problems that had been bugging them for years,
183
520322
2484
ืœื‘ืขื™ื•ืช ืฉื”ืฆื™ืงื• ืœื”ื ื‘ืžืฉืš ืฉื ื™ื,
08:42
and this was a chance to turn those dreams into a reality.
184
522830
2854
ื•ื–ื• ื”ื™ืชื” ื”ื–ื“ืžื ื•ืช ืœื”ืคื•ืš ื—ืœื•ืžื•ืช ืืœื” ืœืžืฆื™ืื•ืช.
08:46
And that dreaming is an important part of what separates us from machines.
185
526489
4442
ื•ื”ื™ื›ื•ืœืช ื”ื–ืืช ืœื—ืœื•ื ื”ื™ื ื—ืœืง ื—ืฉื•ื‘ ืžืžื” ืฉืžื‘ื“ื™ืœ ืื•ืชื ื• ืžืžื›ื•ื ื•ืช.
08:50
For now, our machines do not get frustrated,
186
530955
3018
ื ื›ื•ืŸ ืœื”ื™ื•ื, ื”ืžื›ื•ื ื•ืช ืฉืœื ื• ืœื ื—ื•ื•ืช ืชืกื›ื•ืœื™ื,
08:53
they do not get annoyed,
187
533997
1407
ืœื ื ื™ืชืŸ ืœื”ืจื’ื™ื– ืื•ืชืŸ,
08:55
and they certainly don't imagine.
188
535428
2260
ื•ื“ืื™ ืฉื”ืŸ ืื™ื ืŸ ืžื“ืžื™ื™ื ื•ืช.
08:57
But we, as human beings --
189
537712
1699
ืื‘ืœ ืื ื—ื ื•, ื›ื‘ื ื™ ืื“ื --
08:59
we feel pain,
190
539435
1207
ืื ื• ื—ืฉื™ื ื›ืื‘,
09:00
we get frustrated.
191
540666
1400
ืื ื• ื—ื•ื•ื™ื ืชื™ืกื›ื•ืœื™ื.
09:02
And it's when we're most annoyed and most curious
192
542090
3116
ื•ื”ืจื’ืขื™ื ื”ืืœื” ื‘ื”ื ืื ื• ื ืจื’ื–ื™ื ื‘ื™ื•ืชืจ ื•ืกืงืจื ื™ื ื‘ื™ื•ืชืจ
09:05
that we're motivated to dig into a problem and create change.
193
545230
3263
ื”ื ืืœื” ื‘ื”ื ืื ื• ืžื•ื ืขื™ื ืœื—ืคื•ืจ ืœืชื•ืš ื‘ืขื™ื” ื•ืœื™ืฆื•ืจ ืฉื™ื ื•ื™.
09:09
Our imaginations are the birthplace of new products, new services,
194
549366
3910
ื”ื“ืžื™ื•ืŸ ืฉืœื ื• ื”ื•ื ืขืจืฉ-ื”ืœื™ื“ื” ืฉืœ ืžื•ืฆืจื™ื ื•ืฉื™ืจื•ืชื™ื ื—ื“ืฉื™ื,
09:13
and even new industries.
195
553300
1233
ื•ืืคื™ืœื• ืชืขืฉื™ื•ืช ื—ื“ืฉื•ืช.
09:15
I believe that the jobs of the future
196
555296
1802
ืื ื™ ืžืืžื™ืŸ ืฉืžืฉืจื•ืช ื”ืขืชื™ื“
09:17
will come from the minds of people
197
557122
1713
ืชื ื‘ืขื ื” ืžื”ืžื•ื—ื•ืช ืฉืœ ืื ืฉื™ื
09:18
who today we call analysts and specialists,
198
558859
2716
ืฉื”ื™ื•ื ืื ื• ืงื•ืจืื™ื ืœื”ื ืื ืœื™ืกื˜ื™ื ื•ืžื•ืžื—ื™ื,
09:21
but only if we give them the freedom and protection that they need to grow
199
561599
3478
ืื‘ืœ ืจืง ืื ื ื™ืชืŸ ืœื”ื ืืช ื”ื—ื™ืจื•ืช ื•ื”ื”ื’ื ื” ืฉื”ื ืฆืจื™ื›ื™ื ื›ื“ื™ ืœืฆืžื•ื—
09:25
into becoming explorers and inventors.
200
565101
2469
ื•ืœื”ื™ื•ืช ื—ื•ืงืจื™ื ื•ืžืžืฆื™ืื™ื.
09:28
If we really want to robot-proof our jobs,
201
568534
2143
ืื ืื ื—ื ื• ื‘ืืžืช ืจื•ืฆื™ื ืฉืžืฉืจื•ืชื™ื ื• ืชื”ื™ื™ื ื” ืžื•ื’ื ื•ืช ืžืคื ื™ ืจื•ื‘ื•ื˜ื™ื,
09:30
we, as leaders, need to get out of the mindset
202
570701
2235
ืื ื•, ื›ืžื•ื‘ื™ืœื™ื, ืฆืจื™ื›ื™ื ืœื—ืจื•ื’ ืžืฆื•ืจืช ื”ื—ืฉื™ื‘ื”
09:32
of telling people what to do
203
572960
1830
ืœืคื™ื” ื™ืฉ ืœืืžืจ ืœืื ืฉื™ื ืžื” ืœืขืฉื•ืช
09:34
and instead start asking them what problems they're inspired to solve
204
574814
3821
ื•ื‘ืžืงื•ื ื–ืืช ืœื”ืชื—ื™ืœ ืœืฉืื•ืœ ืื•ืชื ืื™ืœื• ื‘ืขื™ื•ืช ืžืขื•ืจืจื•ืช ืื•ืชื ืœืคืขื•ืœื”
09:38
and what talents they want to bring to work.
205
578659
2365
ื•ืื™ืœื• ื›ืฉืจื•ื ื•ืช ื”ื ืจื•ืฆื™ื ืœื”ื‘ื™ื ืœืขื‘ื•ื“ื”.
09:41
Because when you can bring your Saturday self to work on Wednesdays,
206
581501
3443
ื›ื™ื•ื•ืŸ ืฉื›ืืฉืจ ืชื•ื›ืœื• ืœื”ื‘ื™ื ืืช ื”ืขืฆืžื™ ืฉืœื›ื ืžื™ื•ื ืฉื‘ืช ืœืขื‘ื•ื“ื” ื‘ื™ืžื™ ืจื‘ื™ืขื™,
09:44
you'll look forward to Mondays more,
207
584968
1994
ืชืฆืคื• ื™ื•ืชืจ ืœื™ืžื™ ืจืืฉื•ืŸ,
09:46
and those feelings that we have about Mondays
208
586986
2682
ื•ืื•ืชืŸ ืชื—ื•ืฉื•ืช ืฉื™ืฉ ืœื ื• ื‘ื™ืžื™ ืจืืฉื•ืŸ
09:49
are part of what makes us human.
209
589692
1758
ื”ืŸ ื—ืœืง ืžืžื” ืฉื”ื•ืคืš ืื•ืชื ื• ืื ื•ืฉื™ื™ื.
09:52
And as we redesign work for an era of intelligent machines,
210
592287
3008
ื•ื‘ืขื•ื“ ืื ื• ืžืชื›ื ื ื™ื ืžื—ื“ืฉ ืืช ืขื•ืœื ื”ืขื‘ื•ื“ื” ืœืงืจืืช ืขื™ื“ืŸ ื”ืžื›ื•ื ื•ืช ื”ื—ื›ืžื•ืช,
09:55
I invite you all to work alongside me
211
595319
2216
ืื ื™ ืžื–ืžื™ืŸ ืืช ื›ื•ืœื›ื ืœืขื‘ื•ื“ ื‘ืžืงื‘ื™ืœ ืืœื™
09:57
to bring more humanity to our working lives.
212
597559
2642
ื›ื“ื™ ืœื”ื‘ื™ื ืื ื•ืฉื™ื•ืช ืจื‘ื” ื™ื•ืชืจ ืœื—ื™ื™ ื”ืขื‘ื•ื“ื” ืฉืœื ื•.
10:00
Thank you.
213
600225
1151
ืชื•ื“ื” ืจื‘ื”.
10:01
(Applause)
214
601400
3401
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7