Why jobs of the future won't feel like work | David Lee

184,827 views ・ 2017-11-03

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: 易帆 余
00:12
So there's a lot of valid concern these days
0
12694
2152
近期有不少相當有根據的擔心,
00:14
that our technology is getting so smart
1
14870
2205
擔心我們的科技變得太聰明,
00:17
that we've put ourselves on the path to a jobless future.
2
17099
2748
會讓我們走向一個失業的未來。
00:21
And I think the example of a self-driving car
3
21502
2152
我想,自動駕駛的汽車
00:23
is actually the easiest one to see.
4
23678
1674
應該會是最早出現的例子。
00:25
So these are going to be fantastic for all kinds of different reasons.
5
25376
3328
基於各種理由,這些科技應該 對我們都很有幫助才對。
00:28
But did you know that "driver" is actually the most common job
6
28728
3438
但各位是否知道, 美國 50 州當中有 29 州
00:32
in 29 of the 50 US states?
7
32190
1789
「司機」這個工作 是最多人從事的工作?
00:34
What's going to happen to these jobs when we're no longer driving our cars
8
34862
3478
將來這些工作會變成怎樣? 如果我們不再開車了、
00:38
or cooking our food
9
38364
1165
不再做菜了、
00:39
or even diagnosing our own diseases?
10
39553
1959
甚至不用診斷自己的疾病了?
00:42
Well, a recent study from Forrester Research
11
42495
2377
近期,弗雷斯特研究公司
00:44
goes so far to predict that 25 million jobs
12
44896
3163
有項研究指出, 預計在接下來的十年間,
00:48
might disappear over the next 10 years.
13
48083
2162
有 2500 萬個工作會消失。
00:51
To put that in perspective,
14
51213
1489
更準確地說,
00:52
that's three times as many jobs lost in the aftermath of the financial crisis.
15
52726
4146
這個數字是金融危機失業數的三倍。
00:58
And it's not just blue-collar jobs that are at risk.
16
58426
2472
不只藍領的工作有危機。
01:01
On Wall Street and across Silicon Valley, we are seeing tremendous gains
17
61548
3427
在華爾街以及矽谷,
都能看到機器學習 在分析與決策的品質上
01:04
in the quality of analysis and decision-making
18
64999
2182
01:07
because of machine learning.
19
67205
1654
已經幫助投資者獲得相當大的收益。
01:08
So even the smartest, highest-paid people will be affected by this change.
20
68883
3524
即使是最聰明、高薪的人, 也會被這改變給影響到。
01:13
What's clear is that no matter what your job is,
21
73534
2670
可以知道的是, 不論你的工作是什麼,
01:16
at least some, if not all of your work,
22
76228
1972
在接下來幾年, 你的工作至少有一部份,
01:18
is going to be done by a robot or software in the next few years.
23
78224
3392
甚至全部,將會由 機器人或軟體來接手。
01:22
And that's exactly why people like Mark Zuckerberg and Bill Gates
24
82738
3071
這也是為什麼馬克祖克柏 和比爾蓋茲他們這些人,
01:25
are talking about the need for government-funded minimum income levels.
25
85833
3388
會談到需要有由政府發動資助 最低收入水平的政策。
01:29
But if our politicians can't agree on things like health care
26
89245
3342
但如果政客們都無法搞定 全民健保或甚至是營養午餐
01:32
or even school lunches,
27
92611
1279
這一類的小事,
01:33
I just don't see a path where they'll find consensus
28
93914
2430
那我實在看不出, 他們要如何在像是
01:36
on something as big and as expensive as universal basic life income.
29
96368
3326
全體基本生活收入這種 要花大錢的大事上取得共識。
01:40
Instead, I think the response needs to be led by us in industry.
30
100436
3645
我反而認為,應變方式 應該由產業界來帶頭領導才是。
01:44
We have to recognize the change that's ahead of us
31
104105
2524
我們得要認清將來要面對的改變,
01:46
and start to design the new kinds of jobs
32
106653
1975
並開始設計新類型的工作,
01:48
that will still be relevant in the age of robotics.
33
108652
2695
讓我們在機器人時代 仍有實質性的工作可做。
01:52
The good news is that we have faced down and recovered
34
112719
2753
好消息是,我們以前就面臨並克服過
01:55
two mass extinctions of jobs before.
35
115496
2186
兩次重大的工作滅絕災難。
01:58
From 1870 to 1970,
36
118343
2210
從 1870 年到 1970 年,
02:00
the percent of American workers based on farms fell by 90 percent,
37
120577
4408
美國以農田為基礎的 工人少了 90%,
02:05
and then again from 1950 to 2010,
38
125009
2545
然後,1950 年到 2010 年 又發生一次,
02:07
the percent of Americans working in factories
39
127578
2143
在工廠工作的美國人
02:09
fell by 75 percent.
40
129745
1676
少了 75%。
02:12
The challenge we face this time, however, is one of time.
41
132390
2954
然而,這次我們面對的挑戰, 是時間上的挑戰。
02:15
We had a hundred years to move from farms to factories,
42
135368
3014
我們從農業社會轉換到工業社會, 用了一百年的時間,
02:18
and then 60 years to fully build out a service economy.
43
138406
2575
然後用了六十年的時間, 才完整服務業經濟的轉型。
02:21
The rate of change today
44
141498
1325
但這次的改變速度,
02:22
suggests that we may only have 10 or 15 years to adjust,
45
142847
2974
我們可能只有十到 十五年的時間來調整,
02:25
and if we don't react fast enough,
46
145845
1703
如果我們的反應不夠快,
02:27
that means by the time today's elementary-school students
47
147572
2756
也就是說,在現在的小學生
02:30
are college-aged,
48
150352
1885
上大學的時候,
02:32
we could be living in a world that's robotic,
49
152261
2141
我們可能會居住在一個
02:34
largely unemployed and stuck in kind of un-great depression.
50
154426
3683
大量失業的機器人世界, 並卡在一種不怎麼大的蕭條經濟中。
02:39
But I don't think it has to be this way.
51
159617
1939
但我覺得並非得一定要走上這一步。
02:41
You see, I work in innovation,
52
161580
1700
我的工作是創新,
02:43
and part of my job is to shape how large companies apply new technologies.
53
163304
4154
有一部分是在幫大公司 規劃如何應用新技術。
02:48
Certainly some of these technologies
54
168085
1795
肯定有一些技術
02:49
are even specifically designed to replace human workers.
55
169904
2904
是特別設計來取代人類勞動者的。
02:53
But I believe that if we start taking steps right now
56
173435
2926
但我相信,如果我們現在就起步,
02:56
to change the nature of work,
57
176385
1821
來改變工作的本質,
02:58
we can not only create environments where people love coming to work
58
178230
3886
我們不但能創造出讓人們 樂意去的工作環境,
03:02
but also generate the innovation that we need
59
182140
2118
也能產生出我們需要的創新,
03:04
to replace the millions of jobs that will be lost to technology.
60
184282
3173
來取代數百萬個 因科技而消失的工作。
03:08
I believe that the key to preventing our jobless future
61
188352
3799
我相信,預防未來失業的關鍵在於
03:12
is to rediscover what makes us human,
62
192175
2346
要重新找到「人類」的價值,
03:14
and to create a new generation of human-centered jobs
63
194545
2958
並創造出以人類為 中心的新一代工作,
03:17
that allow us to unlock the hidden talents and passions
64
197527
2606
讓我們能夠將每天帶在身上的
03:20
that we carry with us every day.
65
200157
1653
潛藏天賦與熱情展現出來。
03:23
But first, I think it's important to recognize
66
203971
2143
但,首先,很重要的是要知道,
03:26
that we brought this problem on ourselves.
67
206138
2152
是我們自己造成這個問題的。
03:28
And it's not just because, you know, we are the one building the robots.
68
208314
3457
原因並不只是因為 我們建造了機器人。
03:32
But even though most jobs left the factory decades ago,
69
212327
3184
雖然數十年前大部份的工作 已經在工廠消失,
03:35
we still hold on to this factory mindset
70
215535
1937
我們仍然有著工廠心態:
03:37
of standardization and de-skilling.
71
217496
1959
標準化和降低技術難度。
03:40
We still define jobs around procedural tasks
72
220345
2351
我們仍然以程序性任務來定義工作,
03:42
and then pay people for the number of hours that they perform these tasks.
73
222720
3488
然後根據人們花在這些 任務上的時數來支付薪水。
03:46
We've created narrow job definitions
74
226232
1756
我們對工作的定義很狹隘,
03:48
like cashier, loan processor or taxi driver
75
228012
3240
如出納員、貸款程序員、 計程車司機,
03:51
and then asked people to form entire careers
76
231276
2483
然後要求人們用這些單一任務來
03:53
around these singular tasks.
77
233783
1630
規劃他們的人生職涯。
03:56
These choices have left us with actually two dangerous side effects.
78
236071
3533
這些選擇其實 會帶給我們兩個副作用。
03:59
The first is that these narrowly defined jobs
79
239628
2750
第一,這些定義狹隘的工作
04:02
will be the first to be displaced by robots,
80
242402
2423
會是最先被機器人取代的工作,
04:04
because single-task robots are just the easiest kinds to build.
81
244849
2985
因為處理單一任務的 機器人最容易做。
04:08
But second, we have accidentally made it
82
248601
2393
第二,我們已經不小心
04:11
so that millions of workers around the world
83
251018
2128
讓全世界數百萬勞工的
04:13
have unbelievably boring working lives.
84
253170
2310
工作生活變得無聊死了。
04:15
(Laughter)
85
255877
1871
(笑聲)
04:18
Let's take the example of a call center agent.
86
258247
2402
就以電話客服中心為例。
04:20
Over the last few decades, we brag about lower operating costs
87
260673
3003
在過去幾十年, 我們吹噓著要壓低營運成本,
04:23
because we've taken most of the need for brainpower
88
263700
2427
因為我們把大部份需要腦力的工作,
04:26
out of the person and put it into the system.
89
266151
2144
從人身上轉到了系統上。
04:28
For most of their day, they click on screens,
90
268319
2521
這些人大部份的工作時間 是在點選螢幕、
04:30
they read scripts.
91
270864
1201
閱讀操作指示。
04:33
They act more like machines than humans.
92
273307
2653
他們的行為比較像機器而非人類。
04:37
And unfortunately, over the next few years,
93
277098
2116
不幸的是,在接下來幾年,
04:39
as our technology gets more advanced,
94
279238
1859
隨著我們的科技更進步,
04:41
they, along with people like clerks and bookkeepers,
95
281121
2584
他們以及像是辦事員、記帳員等等,
04:43
will see the vast majority of their work disappear.
96
283729
2412
將要面臨工作機會大量消失的現象。
04:47
To counteract this, we have to start creating new jobs
97
287315
2704
要對抗這現象, 就得要開始創造新工作,
04:50
that are less centered on the tasks that a person does
98
290043
2539
不要著重在「工作」,
04:52
and more focused on the skills that a person brings to work.
99
292606
2866
要比較著重在人會的「技能」上。
04:56
For example, robots are great at repetitive and constrained work,
100
296209
3387
比如,機器人很擅長 重覆性和受限制的工作,
04:59
but human beings have an amazing ability
101
299620
1949
但人類有很了不起的能力,
05:01
to bring together capability with creativity
102
301593
2279
能夠在面對以前從未見過的問題時,
05:03
when faced with problems that we've never seen before.
103
303896
2700
將才能與創意結合在一起。
05:06
It's when every day brings a little bit of a surprise
104
306942
2980
當每天都能夠帶來一點點驚奇時,
05:09
that we have designed work for humans
105
309946
2004
就表示我們是在為「人」設計工作,
05:11
and not for robots.
106
311974
1269
而非為「機器人」設計工作。
05:13
Our entrepreneurs and engineers already live in this world,
107
313950
2898
我們的企業家和工程師 已經活在這種世界裡,
05:16
but so do our nurses and our plumbers
108
316872
2592
我們的護士、水電工、
05:19
and our therapists.
109
319488
1463
和治療師也是。
05:21
You know, it's the nature of too many companies and organizations
110
321569
3057
太多公司和組織的本質,
05:24
to just ask people to come to work and do your job.
111
324650
3690
就是要求人們來上班、做你的工作。
05:28
But if you work is better done by a robot,
112
328364
2186
但若機器人能把你的工作做更好,
05:30
or your decisions better made by an AI,
113
330574
2797
或是人工智慧能比你 更能做出好的決策,
05:33
what are you supposed to be doing?
114
333395
1712
那你該做什麼事?
05:35
Well, I think for the manager,
115
335833
2484
我想,對經理人而言,
05:38
we need to realistically think about the tasks that will be disappearing
116
338341
3397
我們需要很實際地去思考
在接下來幾年會消失的工作任務,
05:41
over the next few years
117
341762
1151
05:42
and start planning for more meaningful, more valuable work that should replace it.
118
342937
3872
並開始規劃比較有意義、 有價值的工作來取代。
05:46
We need to create environments
119
346833
1429
我們需要創造出能讓
05:48
where both human beings and robots thrive.
120
348286
2239
人類和機器人都雙贏的環境。
05:50
I say, let's give more work to the robots,
121
350549
2536
我說,就給機器人更多工作吧,
05:53
and let's start with the work that we absolutely hate doing.
122
353109
2903
先把我們最討厭 做的工作丟給它們做。
05:57
Here, robot,
123
357248
1164
機器人,給你,
05:58
process this painfully idiotic report.
124
358436
1851
你來處理這惱人又愚蠢的報告。
06:00
(Laughter)
125
360311
1423
(笑聲)
06:01
And move this box. Thank you.
126
361758
1425
順便移開這箱子,謝謝。
06:03
(Laughter)
127
363207
1699
(笑聲)
06:04
And for the human beings,
128
364930
1529
對人類而言,
06:06
we should follow the advice from Harry Davis at the University of Chicago.
129
366483
3554
我們應該要採納芝加哥大學 哈利戴維斯的建議。
06:10
He says we have to make it so that people don't leave too much of themselves
130
370061
3649
他說,我們得要做到
不要讓人們覺得 自己沒有完全發揮才能。
06:13
in the trunk of their car.
131
373734
1331
06:15
I mean, human beings are amazing on weekends.
132
375089
2889
人類在週末的時候是很令人驚奇的。
06:18
Think about the people that you know and what they do on Saturdays.
133
378002
3144
想想看你認識的人 在星期六會做什麼。
06:21
They're artists, carpenters, chefs and athletes.
134
381170
2976
他們會變成藝術家、 木工、主廚、運動員。
06:24
But on Monday, they're back to being Junior HR Specialist
135
384906
3896
但星期一,他們回去當 低階的人力資源專員、
06:28
and Systems Analyst 3.
136
388826
2099
三號系統分析員。
06:30
(Laughter)
137
390949
3781
(笑聲)
06:34
You know, these narrow job titles not only sound boring,
138
394754
3318
這些狹隘的工作職稱 不僅是聽起來很無聊,
06:38
but they're actually a subtle encouragement
139
398096
2096
實際上,它們在不知不覺間
06:40
for people to make narrow and boring job contributions.
140
400216
3040
鼓勵人們去做 狹隘且無聊的工作貢獻。
06:43
But I've seen firsthand that when you invite people to be more,
141
403280
3116
但我親眼見過,當你 邀請人們更上一層樓時,
06:46
they can amaze us with how much more they can be.
142
406420
2390
他們能做到的,會讓我們驚艷。
06:50
A few years ago, I was working at a large bank
143
410147
2233
幾年前,我在一間大型銀行工作,
06:52
that was trying to bring more innovation into its company culture.
144
412404
3096
該銀行試圖想要在 公司文化中加入更多創新。
06:55
So my team and I designed a prototyping contest
145
415524
2341
我和我的團隊設計了 一個原型製作競賽,
06:57
that invited anyone to build anything that they wanted.
146
417889
2970
邀請所有人建造他們想要的東西。
07:01
We were actually trying to figure out
147
421524
1833
我們其實是在試圖了解,
07:03
whether or not the primary limiter to innovation
148
423381
2268
限制了創新的主要因子是不是
07:05
was a lack of ideas or a lack of talent,
149
425673
2490
缺乏點子或是缺乏才華,
07:08
and it turns out it was neither one.
150
428187
1861
結果兩者都不是。
07:10
It was an empowerment problem.
151
430072
1755
問題是在於賦權使能。
07:12
And the results of the program were amazing.
152
432518
2242
那個專案計畫的結果很驚人。
07:16
We started by inviting people to reenvision
153
436198
2377
我們一開始是邀請人們來重新想像
07:18
what it is they could bring to a team.
154
438599
2115
他們能帶給團隊什麼。
07:20
This contest was not only a chance to build anything that you wanted
155
440738
3738
這個競賽並不只是個機會 讓他們建造任何想建造的東西,
07:24
but also be anything that you wanted.
156
444500
2336
也是個機會讓你 成為任何想成為的人。
07:26
And when people were no longer limited by their day-to-day job titles,
157
446860
3286
當人們不再受到平常職稱的限制時,
他們感到能自由地運用 所有不同的技能和才華,
07:30
they felt free to bring all kinds of different skills and talents
158
450170
3147
07:33
to the problems that they were trying to solve.
159
453341
2486
用在他們試圖解決的問題上。
07:35
We saw technology people being designers, marketing people being architects,
160
455851
3910
我們看過科技人員變成設計師、 行銷人員變成建築師,
07:39
and even finance people showing off their ability to write jokes.
161
459785
3365
甚至財務人員都會炫耀 他們寫笑話的能力。
07:43
(Laughter)
162
463427
1150
(笑聲)
07:44
We ran this program twice,
163
464601
1405
這個專案計畫做了兩次,
07:46
and each time more than 400 people brought their unexpected talents to work
164
466030
3796
每次都有超過四百人, 把他們未被預期的才華帶進工作中,
07:49
and solved problems that they had been wanting to solve for years.
165
469850
3139
解決他們多年來一直想解決的問題。
07:53
Collectively, they created millions of dollars of value,
166
473310
3019
他們一起創造出了數百萬元的價值,
07:56
building things like a better touch-tone system for call centers,
167
476353
4565
像是為客服中心建造 更好用的按鍵式系統、
08:00
easier desktop tools for branches
168
480942
1668
為分行建造更好用的桌面工具、
08:02
and even a thank you card system
169
482634
1525
甚至還有感謝卡系統,
08:04
that has become a cornerstone of the employee working experience.
170
484183
3314
成為員工工作情感上的基石。
08:07
Over the course of the eight weeks,
171
487521
1803
在八週的期間,
08:09
people flexed muscles that they never dreamed of using at work.
172
489348
3533
大家捲起袖子,拿出了從未夢想過 能夠在工作上使用到的能力。
08:14
People learned new skills,
173
494173
1577
人們學習新技能,
08:15
they met new people,
174
495774
2368
他們去認識新的人,
08:18
and at the end, somebody pulled me aside and said,
175
498166
2793
最後,有個人把我拉到一旁,說:
08:20
"I have to tell you,
176
500983
1569
「我得告訴你,
08:22
the last few weeks has been one of the most intense,
177
502576
2776
過去幾週是我一生中
08:25
hardest working experiences of my entire life,
178
505376
3279
最熱情最賣力的工作經驗,
08:28
but not one second of it felt like work."
179
508679
2041
沒有一秒鐘感覺像是在工作。」
08:31
And that's the key.
180
511900
1298
那就是關鍵。
08:33
For those few weeks, people got to be creators and innovators.
181
513222
3710
在那幾週,人們得以 成為創作者、創新者。
08:38
They had been dreaming of solutions
182
518631
1667
他們一直夢想著去解決
08:40
to problems that had been bugging them for years,
183
520322
2484
那些讓他們困擾多年的問題,
08:42
and this was a chance to turn those dreams into a reality.
184
522830
2854
這是個讓那些夢想成真的機會。
08:46
And that dreaming is an important part of what separates us from machines.
185
526489
4442
我們和機器之所以不同, 很重要的一點就是夢想。
08:50
For now, our machines do not get frustrated,
186
530955
3018
我們的機器不會感到挫折,
08:53
they do not get annoyed,
187
533997
1407
它們不會被惹惱,
08:55
and they certainly don't imagine.
188
535428
2260
它們肯定也不會想像。
08:57
But we, as human beings --
189
537712
1699
但我們,身為人類──
08:59
we feel pain,
190
539435
1207
我們能感受痛苦,
09:00
we get frustrated.
191
540666
1400
我們會受到挫折,
09:02
And it's when we're most annoyed and most curious
192
542090
3116
在我們最惱怒、最好奇的時候,
09:05
that we're motivated to dig into a problem and create change.
193
545230
3263
我們就會有動力去 探究問題並創造改變。
09:09
Our imaginations are the birthplace of new products, new services,
194
549366
3910
我們的想像力是新產品、新服務、
09:13
and even new industries.
195
553300
1233
甚至是新產業的孕育之地。
09:15
I believe that the jobs of the future
196
555296
1802
我相信,未來的工作
09:17
will come from the minds of people
197
557122
1713
會來自現今被我們稱為
09:18
who today we call analysts and specialists,
198
558859
2716
分析師和專員的那些人的想法,
09:21
but only if we give them the freedom and protection that they need to grow
199
561599
3478
但前提是我們要給予 他們成長為探索家
09:25
into becoming explorers and inventors.
200
565101
2469
和發明家所需要的自由和保護。
09:28
If we really want to robot-proof our jobs,
201
568534
2143
若想確保飯碗不被機器人搶走,
09:30
we, as leaders, need to get out of the mindset
202
570701
2235
身為領導者的我們,就應該要擺脫
09:32
of telling people what to do
203
572960
1830
告訴人們該做什麼的心態,
09:34
and instead start asking them what problems they're inspired to solve
204
574814
3821
反之,要開始問他們, 他們想要解決什麼問題、
09:38
and what talents they want to bring to work.
205
578659
2365
他們想要貢獻什麼才能到工作中。
09:41
Because when you can bring your Saturday self to work on Wednesdays,
206
581501
3443
因為當你能在星期三 把星期六的你帶進工作時,
09:44
you'll look forward to Mondays more,
207
584968
1994
你就會更期待星期一的到來,
09:46
and those feelings that we have about Mondays
208
586986
2682
讓我們對星期一的感受
09:49
are part of what makes us human.
209
589692
1758
成為身為人類的一部份。
09:52
And as we redesign work for an era of intelligent machines,
210
592287
3008
我們正在為智慧機器時代 重新設計工作,
09:55
I invite you all to work alongside me
211
595319
2216
我邀請各位與我同行,
09:57
to bring more humanity to our working lives.
212
597559
2642
把更多人性帶到 我們的工作生活當中。
10:00
Thank you.
213
600225
1151
謝謝。
10:01
(Applause)
214
601400
3401
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog