請雙擊下方英文字幕播放視頻。
譯者: Lilian Chiu
審譯者: 易帆 余
00:12
So there's a lot of valid
concern these days
0
12694
2152
近期有不少相當有根據的擔心,
00:14
that our technology is getting so smart
1
14870
2205
擔心我們的科技變得太聰明,
00:17
that we've put ourselves
on the path to a jobless future.
2
17099
2748
會讓我們走向一個失業的未來。
00:21
And I think the example
of a self-driving car
3
21502
2152
我想,自動駕駛的汽車
00:23
is actually the easiest one to see.
4
23678
1674
應該會是最早出現的例子。
00:25
So these are going to be fantastic
for all kinds of different reasons.
5
25376
3328
基於各種理由,這些科技應該
對我們都很有幫助才對。
00:28
But did you know that "driver"
is actually the most common job
6
28728
3438
但各位是否知道,
美國 50 州當中有 29 州
00:32
in 29 of the 50 US states?
7
32190
1789
「司機」這個工作
是最多人從事的工作?
00:34
What's going to happen to these jobs
when we're no longer driving our cars
8
34862
3478
將來這些工作會變成怎樣?
如果我們不再開車了、
00:38
or cooking our food
9
38364
1165
不再做菜了、
00:39
or even diagnosing our own diseases?
10
39553
1959
甚至不用診斷自己的疾病了?
00:42
Well, a recent study
from Forrester Research
11
42495
2377
近期,弗雷斯特研究公司
00:44
goes so far to predict
that 25 million jobs
12
44896
3163
有項研究指出,
預計在接下來的十年間,
00:48
might disappear over the next 10 years.
13
48083
2162
有 2500 萬個工作會消失。
00:51
To put that in perspective,
14
51213
1489
更準確地說,
00:52
that's three times as many jobs lost
in the aftermath of the financial crisis.
15
52726
4146
這個數字是金融危機失業數的三倍。
00:58
And it's not just blue-collar jobs
that are at risk.
16
58426
2472
不只藍領的工作有危機。
01:01
On Wall Street and across Silicon Valley,
we are seeing tremendous gains
17
61548
3427
在華爾街以及矽谷,
都能看到機器學習
在分析與決策的品質上
01:04
in the quality of analysis
and decision-making
18
64999
2182
01:07
because of machine learning.
19
67205
1654
已經幫助投資者獲得相當大的收益。
01:08
So even the smartest, highest-paid people
will be affected by this change.
20
68883
3524
即使是最聰明、高薪的人,
也會被這改變給影響到。
01:13
What's clear is that no matter
what your job is,
21
73534
2670
可以知道的是,
不論你的工作是什麼,
01:16
at least some, if not all of your work,
22
76228
1972
在接下來幾年,
你的工作至少有一部份,
01:18
is going to be done by a robot
or software in the next few years.
23
78224
3392
甚至全部,將會由
機器人或軟體來接手。
01:22
And that's exactly why people
like Mark Zuckerberg and Bill Gates
24
82738
3071
這也是為什麼馬克祖克柏
和比爾蓋茲他們這些人,
01:25
are talking about the need for
government-funded minimum income levels.
25
85833
3388
會談到需要有由政府發動資助
最低收入水平的政策。
01:29
But if our politicians can't agree
on things like health care
26
89245
3342
但如果政客們都無法搞定
全民健保或甚至是營養午餐
01:32
or even school lunches,
27
92611
1279
這一類的小事,
01:33
I just don't see a path
where they'll find consensus
28
93914
2430
那我實在看不出,
他們要如何在像是
01:36
on something as big and as expensive
as universal basic life income.
29
96368
3326
全體基本生活收入這種
要花大錢的大事上取得共識。
01:40
Instead, I think the response
needs to be led by us in industry.
30
100436
3645
我反而認為,應變方式
應該由產業界來帶頭領導才是。
01:44
We have to recognize
the change that's ahead of us
31
104105
2524
我們得要認清將來要面對的改變,
01:46
and start to design the new kinds of jobs
32
106653
1975
並開始設計新類型的工作,
01:48
that will still be relevant
in the age of robotics.
33
108652
2695
讓我們在機器人時代
仍有實質性的工作可做。
01:52
The good news is that we have
faced down and recovered
34
112719
2753
好消息是,我們以前就面臨並克服過
01:55
two mass extinctions of jobs before.
35
115496
2186
兩次重大的工作滅絕災難。
01:58
From 1870 to 1970,
36
118343
2210
從 1870 年到 1970 年,
02:00
the percent of American workers
based on farms fell by 90 percent,
37
120577
4408
美國以農田為基礎的
工人少了 90%,
02:05
and then again from 1950 to 2010,
38
125009
2545
然後,1950 年到 2010 年
又發生一次,
02:07
the percent of Americans
working in factories
39
127578
2143
在工廠工作的美國人
02:09
fell by 75 percent.
40
129745
1676
少了 75%。
02:12
The challenge we face this time,
however, is one of time.
41
132390
2954
然而,這次我們面對的挑戰,
是時間上的挑戰。
02:15
We had a hundred years
to move from farms to factories,
42
135368
3014
我們從農業社會轉換到工業社會,
用了一百年的時間,
02:18
and then 60 years to fully build out
a service economy.
43
138406
2575
然後用了六十年的時間,
才完整服務業經濟的轉型。
02:21
The rate of change today
44
141498
1325
但這次的改變速度,
02:22
suggests that we may only have
10 or 15 years to adjust,
45
142847
2974
我們可能只有十到
十五年的時間來調整,
02:25
and if we don't react fast enough,
46
145845
1703
如果我們的反應不夠快,
02:27
that means by the time
today's elementary-school students
47
147572
2756
也就是說,在現在的小學生
02:30
are college-aged,
48
150352
1885
上大學的時候,
02:32
we could be living
in a world that's robotic,
49
152261
2141
我們可能會居住在一個
02:34
largely unemployed and stuck
in kind of un-great depression.
50
154426
3683
大量失業的機器人世界,
並卡在一種不怎麼大的蕭條經濟中。
02:39
But I don't think it has to be this way.
51
159617
1939
但我覺得並非得一定要走上這一步。
02:41
You see, I work in innovation,
52
161580
1700
我的工作是創新,
02:43
and part of my job is to shape how
large companies apply new technologies.
53
163304
4154
有一部分是在幫大公司
規劃如何應用新技術。
02:48
Certainly some of these technologies
54
168085
1795
肯定有一些技術
02:49
are even specifically designed
to replace human workers.
55
169904
2904
是特別設計來取代人類勞動者的。
02:53
But I believe that if we start
taking steps right now
56
173435
2926
但我相信,如果我們現在就起步,
02:56
to change the nature of work,
57
176385
1821
來改變工作的本質,
02:58
we can not only create environments
where people love coming to work
58
178230
3886
我們不但能創造出讓人們
樂意去的工作環境,
03:02
but also generate
the innovation that we need
59
182140
2118
也能產生出我們需要的創新,
03:04
to replace the millions of jobs
that will be lost to technology.
60
184282
3173
來取代數百萬個
因科技而消失的工作。
03:08
I believe that the key
to preventing our jobless future
61
188352
3799
我相信,預防未來失業的關鍵在於
03:12
is to rediscover what makes us human,
62
192175
2346
要重新找到「人類」的價值,
03:14
and to create a new generation
of human-centered jobs
63
194545
2958
並創造出以人類為
中心的新一代工作,
03:17
that allow us to unlock
the hidden talents and passions
64
197527
2606
讓我們能夠將每天帶在身上的
03:20
that we carry with us every day.
65
200157
1653
潛藏天賦與熱情展現出來。
03:23
But first, I think
it's important to recognize
66
203971
2143
但,首先,很重要的是要知道,
03:26
that we brought this problem on ourselves.
67
206138
2152
是我們自己造成這個問題的。
03:28
And it's not just because, you know,
we are the one building the robots.
68
208314
3457
原因並不只是因為
我們建造了機器人。
03:32
But even though most jobs
left the factory decades ago,
69
212327
3184
雖然數十年前大部份的工作
已經在工廠消失,
03:35
we still hold on to this factory mindset
70
215535
1937
我們仍然有著工廠心態:
03:37
of standardization and de-skilling.
71
217496
1959
標準化和降低技術難度。
03:40
We still define jobs
around procedural tasks
72
220345
2351
我們仍然以程序性任務來定義工作,
03:42
and then pay people for the number
of hours that they perform these tasks.
73
222720
3488
然後根據人們花在這些
任務上的時數來支付薪水。
03:46
We've created narrow job definitions
74
226232
1756
我們對工作的定義很狹隘,
03:48
like cashier, loan processor
or taxi driver
75
228012
3240
如出納員、貸款程序員、
計程車司機,
03:51
and then asked people
to form entire careers
76
231276
2483
然後要求人們用這些單一任務來
03:53
around these singular tasks.
77
233783
1630
規劃他們的人生職涯。
03:56
These choices have left us with
actually two dangerous side effects.
78
236071
3533
這些選擇其實
會帶給我們兩個副作用。
03:59
The first is that these
narrowly defined jobs
79
239628
2750
第一,這些定義狹隘的工作
04:02
will be the first
to be displaced by robots,
80
242402
2423
會是最先被機器人取代的工作,
04:04
because single-task robots
are just the easiest kinds to build.
81
244849
2985
因為處理單一任務的
機器人最容易做。
04:08
But second, we have accidentally made it
82
248601
2393
第二,我們已經不小心
04:11
so that millions of workers
around the world
83
251018
2128
讓全世界數百萬勞工的
04:13
have unbelievably boring working lives.
84
253170
2310
工作生活變得無聊死了。
04:15
(Laughter)
85
255877
1871
(笑聲)
04:18
Let's take the example
of a call center agent.
86
258247
2402
就以電話客服中心為例。
04:20
Over the last few decades,
we brag about lower operating costs
87
260673
3003
在過去幾十年,
我們吹噓著要壓低營運成本,
04:23
because we've taken most
of the need for brainpower
88
263700
2427
因為我們把大部份需要腦力的工作,
04:26
out of the person
and put it into the system.
89
266151
2144
從人身上轉到了系統上。
04:28
For most of their day,
they click on screens,
90
268319
2521
這些人大部份的工作時間
是在點選螢幕、
04:30
they read scripts.
91
270864
1201
閱讀操作指示。
04:33
They act more like machines than humans.
92
273307
2653
他們的行為比較像機器而非人類。
04:37
And unfortunately,
over the next few years,
93
277098
2116
不幸的是,在接下來幾年,
04:39
as our technology gets more advanced,
94
279238
1859
隨著我們的科技更進步,
04:41
they, along with people
like clerks and bookkeepers,
95
281121
2584
他們以及像是辦事員、記帳員等等,
04:43
will see the vast majority
of their work disappear.
96
283729
2412
將要面臨工作機會大量消失的現象。
04:47
To counteract this,
we have to start creating new jobs
97
287315
2704
要對抗這現象,
就得要開始創造新工作,
04:50
that are less centered
on the tasks that a person does
98
290043
2539
不要著重在「工作」,
04:52
and more focused on the skills
that a person brings to work.
99
292606
2866
要比較著重在人會的「技能」上。
04:56
For example, robots are great
at repetitive and constrained work,
100
296209
3387
比如,機器人很擅長
重覆性和受限制的工作,
04:59
but human beings have an amazing ability
101
299620
1949
但人類有很了不起的能力,
05:01
to bring together
capability with creativity
102
301593
2279
能夠在面對以前從未見過的問題時,
05:03
when faced with problems
that we've never seen before.
103
303896
2700
將才能與創意結合在一起。
05:06
It's when every day
brings a little bit of a surprise
104
306942
2980
當每天都能夠帶來一點點驚奇時,
05:09
that we have designed work for humans
105
309946
2004
就表示我們是在為「人」設計工作,
05:11
and not for robots.
106
311974
1269
而非為「機器人」設計工作。
05:13
Our entrepreneurs and engineers
already live in this world,
107
313950
2898
我們的企業家和工程師
已經活在這種世界裡,
05:16
but so do our nurses and our plumbers
108
316872
2592
我們的護士、水電工、
05:19
and our therapists.
109
319488
1463
和治療師也是。
05:21
You know, it's the nature
of too many companies and organizations
110
321569
3057
太多公司和組織的本質,
05:24
to just ask people to come to work
and do your job.
111
324650
3690
就是要求人們來上班、做你的工作。
05:28
But if you work is better done by a robot,
112
328364
2186
但若機器人能把你的工作做更好,
05:30
or your decisions better made by an AI,
113
330574
2797
或是人工智慧能比你
更能做出好的決策,
05:33
what are you supposed to be doing?
114
333395
1712
那你該做什麼事?
05:35
Well, I think for the manager,
115
335833
2484
我想,對經理人而言,
05:38
we need to realistically think about
the tasks that will be disappearing
116
338341
3397
我們需要很實際地去思考
在接下來幾年會消失的工作任務,
05:41
over the next few years
117
341762
1151
05:42
and start planning for more meaningful,
more valuable work that should replace it.
118
342937
3872
並開始規劃比較有意義、
有價值的工作來取代。
05:46
We need to create environments
119
346833
1429
我們需要創造出能讓
05:48
where both human beings and robots thrive.
120
348286
2239
人類和機器人都雙贏的環境。
05:50
I say, let's give more work to the robots,
121
350549
2536
我說,就給機器人更多工作吧,
05:53
and let's start with the work
that we absolutely hate doing.
122
353109
2903
先把我們最討厭
做的工作丟給它們做。
05:57
Here, robot,
123
357248
1164
機器人,給你,
05:58
process this painfully idiotic report.
124
358436
1851
你來處理這惱人又愚蠢的報告。
06:00
(Laughter)
125
360311
1423
(笑聲)
06:01
And move this box. Thank you.
126
361758
1425
順便移開這箱子,謝謝。
06:03
(Laughter)
127
363207
1699
(笑聲)
06:04
And for the human beings,
128
364930
1529
對人類而言,
06:06
we should follow the advice from Harry
Davis at the University of Chicago.
129
366483
3554
我們應該要採納芝加哥大學
哈利戴維斯的建議。
06:10
He says we have to make it so that people
don't leave too much of themselves
130
370061
3649
他說,我們得要做到
不要讓人們覺得
自己沒有完全發揮才能。
06:13
in the trunk of their car.
131
373734
1331
06:15
I mean, human beings
are amazing on weekends.
132
375089
2889
人類在週末的時候是很令人驚奇的。
06:18
Think about the people that you know
and what they do on Saturdays.
133
378002
3144
想想看你認識的人
在星期六會做什麼。
06:21
They're artists, carpenters,
chefs and athletes.
134
381170
2976
他們會變成藝術家、
木工、主廚、運動員。
06:24
But on Monday, they're back
to being Junior HR Specialist
135
384906
3896
但星期一,他們回去當
低階的人力資源專員、
06:28
and Systems Analyst 3.
136
388826
2099
三號系統分析員。
06:30
(Laughter)
137
390949
3781
(笑聲)
06:34
You know, these narrow job titles
not only sound boring,
138
394754
3318
這些狹隘的工作職稱
不僅是聽起來很無聊,
06:38
but they're actually
a subtle encouragement
139
398096
2096
實際上,它們在不知不覺間
06:40
for people to make narrow
and boring job contributions.
140
400216
3040
鼓勵人們去做
狹隘且無聊的工作貢獻。
06:43
But I've seen firsthand
that when you invite people to be more,
141
403280
3116
但我親眼見過,當你
邀請人們更上一層樓時,
06:46
they can amaze us
with how much more they can be.
142
406420
2390
他們能做到的,會讓我們驚艷。
06:50
A few years ago,
I was working at a large bank
143
410147
2233
幾年前,我在一間大型銀行工作,
06:52
that was trying to bring more innovation
into its company culture.
144
412404
3096
該銀行試圖想要在
公司文化中加入更多創新。
06:55
So my team and I designed
a prototyping contest
145
415524
2341
我和我的團隊設計了
一個原型製作競賽,
06:57
that invited anyone to build
anything that they wanted.
146
417889
2970
邀請所有人建造他們想要的東西。
07:01
We were actually trying to figure out
147
421524
1833
我們其實是在試圖了解,
07:03
whether or not
the primary limiter to innovation
148
423381
2268
限制了創新的主要因子是不是
07:05
was a lack of ideas or a lack of talent,
149
425673
2490
缺乏點子或是缺乏才華,
07:08
and it turns out it was neither one.
150
428187
1861
結果兩者都不是。
07:10
It was an empowerment problem.
151
430072
1755
問題是在於賦權使能。
07:12
And the results
of the program were amazing.
152
432518
2242
那個專案計畫的結果很驚人。
07:16
We started by inviting
people to reenvision
153
436198
2377
我們一開始是邀請人們來重新想像
07:18
what it is they could bring to a team.
154
438599
2115
他們能帶給團隊什麼。
07:20
This contest was not only a chance
to build anything that you wanted
155
440738
3738
這個競賽並不只是個機會
讓他們建造任何想建造的東西,
07:24
but also be anything that you wanted.
156
444500
2336
也是個機會讓你
成為任何想成為的人。
07:26
And when people were no longer
limited by their day-to-day job titles,
157
446860
3286
當人們不再受到平常職稱的限制時,
他們感到能自由地運用
所有不同的技能和才華,
07:30
they felt free to bring all kinds
of different skills and talents
158
450170
3147
07:33
to the problems
that they were trying to solve.
159
453341
2486
用在他們試圖解決的問題上。
07:35
We saw technology people being designers,
marketing people being architects,
160
455851
3910
我們看過科技人員變成設計師、
行銷人員變成建築師,
07:39
and even finance people showing off
their ability to write jokes.
161
459785
3365
甚至財務人員都會炫耀
他們寫笑話的能力。
07:43
(Laughter)
162
463427
1150
(笑聲)
07:44
We ran this program twice,
163
464601
1405
這個專案計畫做了兩次,
07:46
and each time more than 400 people
brought their unexpected talents to work
164
466030
3796
每次都有超過四百人,
把他們未被預期的才華帶進工作中,
07:49
and solved problems that they had been
wanting to solve for years.
165
469850
3139
解決他們多年來一直想解決的問題。
07:53
Collectively, they created
millions of dollars of value,
166
473310
3019
他們一起創造出了數百萬元的價值,
07:56
building things like a better
touch-tone system for call centers,
167
476353
4565
像是為客服中心建造
更好用的按鍵式系統、
08:00
easier desktop tools for branches
168
480942
1668
為分行建造更好用的桌面工具、
08:02
and even a thank you card system
169
482634
1525
甚至還有感謝卡系統,
08:04
that has become a cornerstone
of the employee working experience.
170
484183
3314
成為員工工作情感上的基石。
08:07
Over the course of the eight weeks,
171
487521
1803
在八週的期間,
08:09
people flexed muscles that they never
dreamed of using at work.
172
489348
3533
大家捲起袖子,拿出了從未夢想過
能夠在工作上使用到的能力。
08:14
People learned new skills,
173
494173
1577
人們學習新技能,
08:15
they met new people,
174
495774
2368
他們去認識新的人,
08:18
and at the end, somebody
pulled me aside and said,
175
498166
2793
最後,有個人把我拉到一旁,說:
08:20
"I have to tell you,
176
500983
1569
「我得告訴你,
08:22
the last few weeks has been
one of the most intense,
177
502576
2776
過去幾週是我一生中
08:25
hardest working experiences
of my entire life,
178
505376
3279
最熱情最賣力的工作經驗,
08:28
but not one second of it felt like work."
179
508679
2041
沒有一秒鐘感覺像是在工作。」
08:31
And that's the key.
180
511900
1298
那就是關鍵。
08:33
For those few weeks, people
got to be creators and innovators.
181
513222
3710
在那幾週,人們得以
成為創作者、創新者。
08:38
They had been dreaming of solutions
182
518631
1667
他們一直夢想著去解決
08:40
to problems that had been
bugging them for years,
183
520322
2484
那些讓他們困擾多年的問題,
08:42
and this was a chance to turn
those dreams into a reality.
184
522830
2854
這是個讓那些夢想成真的機會。
08:46
And that dreaming is an important part
of what separates us from machines.
185
526489
4442
我們和機器之所以不同,
很重要的一點就是夢想。
08:50
For now, our machines
do not get frustrated,
186
530955
3018
我們的機器不會感到挫折,
08:53
they do not get annoyed,
187
533997
1407
它們不會被惹惱,
08:55
and they certainly don't imagine.
188
535428
2260
它們肯定也不會想像。
08:57
But we, as human beings --
189
537712
1699
但我們,身為人類──
08:59
we feel pain,
190
539435
1207
我們能感受痛苦,
09:00
we get frustrated.
191
540666
1400
我們會受到挫折,
09:02
And it's when we're most annoyed
and most curious
192
542090
3116
在我們最惱怒、最好奇的時候,
09:05
that we're motivated to dig
into a problem and create change.
193
545230
3263
我們就會有動力去
探究問題並創造改變。
09:09
Our imaginations are the birthplace
of new products, new services,
194
549366
3910
我們的想像力是新產品、新服務、
09:13
and even new industries.
195
553300
1233
甚至是新產業的孕育之地。
09:15
I believe that the jobs of the future
196
555296
1802
我相信,未來的工作
09:17
will come from the minds of people
197
557122
1713
會來自現今被我們稱為
09:18
who today we call
analysts and specialists,
198
558859
2716
分析師和專員的那些人的想法,
09:21
but only if we give them the freedom
and protection that they need to grow
199
561599
3478
但前提是我們要給予
他們成長為探索家
09:25
into becoming explorers and inventors.
200
565101
2469
和發明家所需要的自由和保護。
09:28
If we really want to robot-proof our jobs,
201
568534
2143
若想確保飯碗不被機器人搶走,
09:30
we, as leaders, need
to get out of the mindset
202
570701
2235
身為領導者的我們,就應該要擺脫
09:32
of telling people what to do
203
572960
1830
告訴人們該做什麼的心態,
09:34
and instead start asking them
what problems they're inspired to solve
204
574814
3821
反之,要開始問他們,
他們想要解決什麼問題、
09:38
and what talents
they want to bring to work.
205
578659
2365
他們想要貢獻什麼才能到工作中。
09:41
Because when you can bring
your Saturday self to work on Wednesdays,
206
581501
3443
因為當你能在星期三
把星期六的你帶進工作時,
09:44
you'll look forward to Mondays more,
207
584968
1994
你就會更期待星期一的到來,
09:46
and those feelings
that we have about Mondays
208
586986
2682
讓我們對星期一的感受
09:49
are part of what makes us human.
209
589692
1758
成為身為人類的一部份。
09:52
And as we redesign work
for an era of intelligent machines,
210
592287
3008
我們正在為智慧機器時代
重新設計工作,
09:55
I invite you all to work alongside me
211
595319
2216
我邀請各位與我同行,
09:57
to bring more humanity
to our working lives.
212
597559
2642
把更多人性帶到
我們的工作生活當中。
10:00
Thank you.
213
600225
1151
謝謝。
10:01
(Applause)
214
601400
3401
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。