3 ways to make better decisions -- by thinking like a computer | Tom Griffiths

941,526 views ใƒป 2018-10-05

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Shlomo Adam ืขืจื™ื›ื”: Ido Dekkers
00:13
If there's one city in the world
0
13407
1581
ืื ื™ืฉ ืขื™ืจ ืื—ืช ื‘ืขื•ืœื
ืฉื‘ื” ืงืฉื” ืœืžืฆื•ื ืžืงื•ื ืฉืืคืฉืจ ืœืงื ื•ืช ืื• ืœืฉื›ื•ืจ,
00:15
where it's hard to find a place to buy or rent,
1
15012
2333
00:17
it's Sydney.
2
17369
1150
ื–ืืช ืกื™ื“ื ื™.
ื•ืื ื ื™ืกื™ืชื ืœืื—ืจื•ื ื” ืœืžืฆื•ื ื›ืืŸ ื‘ื™ืช,
00:19
And if you've tried to find a home here recently,
3
19043
2367
00:21
you're familiar with the problem.
4
21434
1840
ืืชื ืžื›ื™ืจื™ื ืืช ื”ื‘ืขื™ื”.
ื‘ื›ืœ ืคืขื ืฉืืชื ื ื›ื ืกื™ื ืœื“ื™ืจื” ืœื“ื•ื’ืžื”
00:23
Every time you walk into an open house,
5
23298
2014
00:25
you get some information about what's out there
6
25336
2191
ืืชื ืžืงื‘ืœื™ื ืžื™ื“ืข ืžืกื•ื™ื ืขืœ ื”ืžืฆื‘
00:27
and what's on the market,
7
27551
1393
ื•ืขืœ ืžื” ืฉื™ืฉ ื‘ืฉื•ืง.
00:28
but every time you walk out,
8
28968
1430
ืื‘ืœ ื‘ื›ืœ ืคืขื ืฉืืชื ื™ื•ืฆืื™ื ื”ื—ื•ืฆื”,
00:30
you're running the risk of the very best place passing you by.
9
30422
3214
ืืชื ืžืกืชื›ื ื™ื ื‘ื›ืš ืฉืชื—ืžื™ืฆื• ืืช ื”ื‘ื™ืช ื”ื›ื™ ื˜ื•ื‘.
00:33
So how do you know when to switch from looking
10
33660
2820
ืื– ืื™ืš ืืชื ื™ื•ื“ืขื™ื ืžืชื™ ืœื”ืคืกื™ืง ืœื‘ื—ื•ืŸ ื“ื™ืจื•ืช
00:36
to being ready to make an offer?
11
36504
1562
ื•ืœื”ื™ื•ืช ืžื•ื›ื ื™ื ืœื”ืฆื™ืข ืžื—ื™ืจ?
00:39
This is such a cruel and familiar problem
12
39663
2401
ื–ืืช ื‘ืขื™ื” ืื›ื–ืจื™ืช ื•ืžื•ื›ืจืช ื›ืœ-ื›ืš
ืฉืื•ืœื™ ืชื•ืคืชืขื• ืœืฉืžื•ืข ืฉื™ืฉ ืœื” ืคืชืจื•ืŸ ืคืฉื•ื˜.
00:42
that it might come as a surprise that it has a simple solution.
13
42088
3074
00:45
37 percent.
14
45588
1203
37 ืื—ื•ื–ื™ื.
00:46
(Laughter)
15
46815
1828
(ืฆื—ื•ืง)
00:48
If you want to maximize the probability that you find the very best place,
16
48667
3936
ืื ื‘ืจืฆื•ื ื›ื ืœืžืจื‘ ืืช ื”ืกื‘ื™ืจื•ืช ืœื›ืš ืฉืชืžืฆืื• ืืช ื”ืžืงื•ื ื”ื›ื™ ื˜ื•ื‘,
00:52
you should look at 37 percent of what's on the market,
17
52627
2825
ืขืœื™ื›ื ืœื‘ื“ื•ืง 37% ืžืžื” ืฉื™ืฉ ื‘ืฉื•ืง,
00:55
and then make an offer on the next place you see,
18
55476
2310
ื•ืœื”ืฆื™ืข ืžื—ื™ืจ ืœืžืงื•ื ื”ื‘ื ืฉืชื‘ื“ืงื•,
00:57
which is better than anything that you've seen so far.
19
57810
2524
ืฉืžื•ืฆื ื—ืŸ ื‘ืขื™ื ื™ื›ื ื™ื•ืชืจ ืžื›ืœ ืžื” ืฉืจืื™ืชื ืœืคื ื™ื•.
01:00
Or if you're looking for a month, take 37 percent of that time --
20
60358
3805
ื•ืื ืืชื ืžื—ืคืฉื™ื ื›ื‘ืจ ื—ื•ื“ืฉ, ืงื—ื• ืขื•ื“ 37% ืžื”ื–ืžืŸ ื”ื–ื” -
11 ื™ื•ื, ื‘ืชื•ืจ ืชืงืŸ -
01:04
11 days, to set a standard --
21
64187
2915
ื•ืื– ืืชื ืžื•ื›ื ื™ื ืœืคืขื•ืœ.
01:07
and then you're ready to act.
22
67126
1575
01:09
We know this because trying to find a place to live
23
69829
2709
ืื ื• ื™ื•ื“ืขื™ื ื–ืืช ื›ื™ ื”ื ืกื™ื•ืŸ ืœืžืฆื•ื ืžืงื•ื ืžื’ื•ืจื™ื
01:12
is an example of an optimal stopping problem.
24
72562
2325
ื”ื•ื ื“ื•ื’ืžื” ืœ"ื‘ืขื™ื™ืช ืขืฆื™ืจื” ืžื™ื˜ื‘ื™ืช",
01:14
A class of problems that has been studied extensively
25
74911
2483
ืกื•ื’ ื‘ืขื™ื•ืช ืฉื ื—ืงืจื• ื”ื™ื˜ื‘
01:17
by mathematicians and computer scientists.
26
77418
2105
ื‘ื™ื“ื™ ืžืชืžื˜ื™ืงืื™ื ื•ืžื“ืขื ื™ ืžื—ืฉื‘ื™ื.
01:21
I'm a computational cognitive scientist.
27
81502
2519
ืื ื™ ืื™ืฉ ืžื—ืฉื‘ื™ื ื‘ืžื“ืขื™ ื”ืงื•ื’ื ื™ืฆื™ื”.
ืื ื™ ืžืงื“ื™ืฉ ืืช ื–ืžื ื™ ืœื ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ
01:24
I spend my time trying to understand
28
84045
1960
ืื™ืš ืคื•ืขืœ ืžื•ื— ื”ืื“ื,
01:26
how it is that human minds work,
29
86029
1798
01:27
from our amazing successes to our dismal failures.
30
87851
3671
ืžืชื•ืš ื”ืฆืœื—ื•ืชื™ื ื• ื”ืžื“ื”ื™ืžื•ืช ื•ื’ื ืžื›ืฉืœื•ื ื•ืชื™ื ื• ื”ืžื‘ื™ืฉื™ื.
01:32
To do that, I think about the computational structure
31
92552
2493
ืœืฆื•ืจืš ื›ืš ืื ื™ ื—ื•ืฉื‘ ืขืœ ื”ืžื‘ื ื” ื”ื—ื™ืฉื•ื‘ื™
ืฉืœ ื‘ืขื™ื•ืช ื”ื™ื•ืžื™ื•ื,
01:35
of the problems that arise in everyday life,
32
95069
2659
01:37
and compare the ideal solutions to those problems
33
97752
2375
ื•ืžืฉื•ื•ื” ืืช ื”ืคืชืจื•ื ื•ืช ื”ืื™ื“ืืœื™ื™ื ืœื‘ืขื™ื•ืช ืืœื”
ืขื ื”ืชื ื”ื’ื•ืชื ื• ื‘ืคื•ืขืœ.
01:40
to the way that we actually behave.
34
100151
1747
01:42
As a side effect,
35
102725
1185
ืื’ื‘ ื›ืš,
01:43
I get to see how applying a little bit of computer science
36
103934
2715
ืื ื™ ืžื’ืœื” ืื™ืš ื™ื™ืฉื•ื ืงืฆืช ืžื“ืข ืžื—ืฉื‘ื™ื
01:46
can make human decision-making easier.
37
106673
1860
ื™ื›ื•ืœ ืœื”ืงืœ ืขืœ ืงื‘ืœืช ื”ื”ื—ืœื˜ื•ืช ื”ืื ื•ืฉื™ืช.
01:49
I have a personal motivation for this.
38
109828
1847
ื™ืฉ ืœื™ ืžื ื™ืข ืื™ืฉื™ ืœื›ืš.
ื’ื“ืœืชื™ ื‘ืคืจืช' ื›ื™ืœื“ ืขื ืจืืฉ ื’ื“ื•ืœ ืžื“ื™...
01:52
Growing up in Perth as an overly cerebral kid ...
39
112153
3166
(ืฆื—ื•ืง)
01:55
(Laughter)
40
115343
4731
ื”ืฉืชื“ืœืชื™ ืชืžื™ื“ ืœืคืขื•ืœ ื‘ืื•ืคืŸ ืฉื ืจืื” ืœื™ ื”ื’ื™ื•ื ื™,
02:00
I would always try and act in the way that I thought was rational,
41
120098
3147
ืฉืงืœืชื™ ื›ืœ ื”ื—ืœื˜ื”,
02:03
reasoning through every decision,
42
123269
1597
02:04
trying to figure out the very best action to take.
43
124890
2403
ื ื™ืกื™ืชื™ ืœืžืฆื•ื ืžื”ื™ ื”ืคืขื•ืœื” ืฉื‘ื” ื”ื›ื™ ื›ื“ืื™ ืœื ืงื•ื˜.
02:07
But this is an approach that doesn't scale up
44
127972
2190
ืื‘ืœ ื–ืืช ื’ื™ืฉื” ืฉืœื ืขื•ืžื“ืช ื‘ืžื‘ื—ืŸ ื”ื‘ืขื™ื•ืช ืฉืฆืฆื•ืช ื‘ื—ื™ื™ื ื”ื‘ื•ื’ืจื™ื.
02:10
when you start to run into the sorts of problems
45
130186
2242
02:12
that arise in adult life.
46
132452
1500
02:13
At one point, I even tried to break up with my girlfriend
47
133976
2728
ืคืขื ืืคื™ืœื• ื ื™ืกื™ืชื™ ืœื”ื™ืคืจื“ ืžื—ื‘ืจื” ืฉืœื™
02:16
because trying to take into account her preferences as well as my own
48
136728
3350
ื‘ืขืงื‘ื•ืช ื”ื ืกื™ื•ืŸ ืœื”ืชื—ืฉื‘ ื‘ื”ืขื“ืคื•ืชื™ื” ื•ื‘ื”ืขื“ืคื•ืชื™
ื•ืœืžืฆื•ื ืคืชืจื•ื ื•ืช ืžื•ืฉืœืžื™ื -
02:20
and then find perfect solutions --
49
140102
1683
02:21
(Laughter)
50
141809
2259
(ืฆื—ื•ืง)
ื–ื” ืจืง ื”ืชื™ืฉ ืื•ืชื™.
02:24
was just leaving me exhausted.
51
144092
1752
02:25
(Laughter)
52
145868
2533
(ืฆื—ื•ืง)
02:28
She pointed out that I was taking the wrong approach
53
148425
2429
ื”ื™ื ืฆื™ื™ื ื” ื‘ืคื ื™ ืฉืื ื™ ื ื•ืงื˜ ื‘ื’ื™ืฉื” ืžื•ื˜ืขื™ืช
02:30
to solving this problem --
54
150878
1609
ืœืคืชืจื•ืŸ ื”ื‘ืขื™ื” ื”ื–ืืช -
02:32
and she later became my wife.
55
152511
1382
ื•ืœื™ืžื™ื ื”ืคื›ื” ืœื”ื™ื•ืช ืืฉืชื™.
02:33
(Laughter)
56
153917
2062
(ืฆื—ื•ืง)
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
02:36
(Applause)
57
156003
4971
02:40
Whether it's as basic as trying to decide what restaurant to go to
58
160998
3461
ื‘ื™ืŸ ืื ื–ื” ืžืฉื”ื• ื‘ืกื™ืกื™ ื›ืžื• ืœื”ื—ืœื™ื˜ ืœืื™ื–ื• ืžืกืขื“ื” ืœืœื›ืช,
02:44
or as important as trying to decide who to spend the rest of your life with,
59
164483
4055
ืื• ืžืฉื”ื• ื—ืฉื•ื‘ ื›ืžื• ืœื”ื—ืœื™ื˜ ืขื ืžื™ ืœื‘ืœื•ืช ืืช ืฉืืจื™ืช ื—ื™ื™ืš,
02:48
human lives are filled with computational problems
60
168562
2375
ื”ื—ื™ื™ื ื”ืื ื•ืฉื™ื™ื ืžืœืื™ื ื‘ื‘ืขื™ื•ืช ื—ื™ืฉื•ื‘ื™ื•ืช
02:50
that are just too hard to solve by applying sheer effort.
61
170961
4196
ืฉืคืฉื•ื˜ ืงืฉื” ืžื“ื™ ืœืคืชืจืŸ ื‘ื›ื•ื— ื‘ืœื‘ื“.
02:55
For those problems,
62
175650
1166
ื‘ื‘ืขื™ื•ืช ื›ืืœื” ื›ื“ืื™ ืœื”ืชื™ื™ืขืฅ ืขื ืžื•ืžื—ื™ื:
02:56
it's worth consulting the experts:
63
176840
1961
02:58
computer scientists.
64
178825
1151
ืžื“ืขื ื™ ื”ืžื—ืฉื‘ื™ื.
(ืฆื—ื•ืง)
03:00
(Laughter)
65
180000
1784
03:01
When you're looking for life advice,
66
181808
1819
ื›ืฉืืชื ืžื—ืคืฉื™ื ืขืฆื” ืœื—ื™ื™ื,
03:03
computer scientists probably aren't the first people you think to talk to.
67
183651
3640
ืื•ืœื™ ืื™ื ื›ื ื—ื•ืฉื‘ื™ื ืœืคื ื•ืช ืืœ ืžื“ืขื ื™ ื”ืžื—ืฉื‘ื™ื.
03:07
Living life like a computer --
68
187315
1875
ืœื—ื™ื•ืช ืืช ื”ื—ื™ื™ื ื›ืžื• ืžื—ืฉื‘ -
ืกื˜ืจื™ืื•ื˜ื™ืค ื“ื˜ืจืžื™ื ื™ืกื˜ื™, ืžืงื™ืฃ ื•ืžื“ื•ื™ืง -
03:09
stereotypically deterministic, exhaustive and exact --
69
189214
2578
03:11
doesn't sound like a lot of fun.
70
191816
1552
ืœื ื ืฉืžืข ื›ื™ืฃ ื’ื“ื•ืœ.
ืื‘ืœ ื”ื—ืฉื™ื‘ื” ืขืœ ืžื“ืขื™ ื”ืžื—ืฉื‘ ืฉืœ ื”ื”ื—ืœื˜ื•ืช ื”ืื ื•ืฉื™ื•ืช
03:14
But thinking about the computer science of human decisions
71
194153
2927
ื—ื•ืฉืคืช ืฉืื ื• ืžื‘ื™ื ื™ื ืืช ื–ื” ื”ืคื•ืš.
03:17
reveals that in fact, we've got this backwards.
72
197104
2408
03:19
When applied to the sorts of difficult problems
73
199536
2198
ื›ืฉืžื™ื™ืฉืžื™ื ื–ืืช ืœื‘ืขื™ื•ืช ื”ืงืฉื•ืช ืฉืžืชืขื•ืจืจื•ืช ื‘ื—ื™ื™ื ื”ืื ื•ืฉื™ื™ื,
03:21
that arise in human lives,
74
201758
1239
ื”ื“ืจืš ื‘ื” ื”ืžื—ืฉื‘ื™ื ืคื•ืชืจื™ื ื‘ืขื™ื•ืช ืืœื”
03:23
the way that computers actually solve those problems
75
203021
2727
03:25
looks a lot more like the way that people really act.
76
205772
2896
ื ืจืื™ืช ื”ืจื‘ื” ื™ื•ืชืจ ื›ืžื• ื”ื“ืจืš ื‘ื” ืžืชื ื”ื’ื™ื ื‘ืคื•ืขืœ ื‘ื ื™-ืื“ื.
ืœื“ื•ื’ืžื”, ื”ื”ื—ืœื˜ื” ืœืื™ื–ื• ืžืกืขื“ื” ืœืœื›ืช.
03:29
Take the example of trying to decide what restaurant to go to.
77
209267
2922
ื–ืืช ื‘ืขื™ื” ืขื ืžื‘ื ื” ื—ื™ืฉื•ื‘ื™ ื™ื™ื—ื•ื“ื™.
03:33
This is a problem that has a particular computational structure.
78
213090
3088
ื™ืฉ ืœื›ื ืžืขืจืš ืฉืœ ืืคืฉืจื•ื™ื•ืช,
03:36
You've got a set of options,
79
216202
1524
03:37
you're going to choose one of those options,
80
217750
2049
ืืชื ื‘ื•ื—ืจื™ื ืื—ืช ืžืืคืฉืจื•ื™ื•ืช ืืœื”,
03:39
and you're going to face exactly the same decision tomorrow.
81
219823
2811
ื•ืžื—ืจ ืชื™ืืœืฆื• ืœืงื‘ืœ ืื•ืชื” ื”ื—ืœื˜ื” ื‘ื“ื™ื•ืง.
03:42
In that situation,
82
222658
1151
ื‘ืžืฆื‘ ื–ื”,
03:43
you run up against what computer scientists call
83
223833
2295
ืืชื ื‘ืžืฆื‘ ืฉืžื“ืขื ื™ ื”ืžื—ืฉื‘ ืžื›ื ื™ื
"ื ื™ืกื•ื™ ืื• ืžื™ืฆื•ื™".
03:46
the "explore-exploit trade-off."
84
226152
2372
ืขืœื™ื›ื ืœืงื‘ืœ ื”ื—ืœื˜ื” ืื ืœื ืกื•ืช ืžืฉื”ื• ื—ื“ืฉ -
03:49
You have to make a decision
85
229115
1334
03:50
about whether you're going to try something new --
86
230473
2334
03:52
exploring, gathering some information
87
232831
2183
ื ื™ืกื•ื™, ืื™ืกื•ืฃ ืžื™ื“ืข ื ื•ืกืฃ ืฉืื•ืœื™ ืชื•ื›ืœื• ืœื ืฆืœ ื‘ืขืชื™ื“ -
03:55
that you might be able to use in the future --
88
235038
2285
ืื• ืฉืžื ืœืœื›ืช ืœืžืงื•ื ืฉื™ื“ื•ืข ืœื›ื ืฉื”ื•ื ื˜ื•ื‘ ืœืžื“ื™ -
03:57
or whether you're going to go to a place that you already know is pretty good --
89
237347
3793
ืžื™ืฆื•ื™ ื”ืžื™ื“ืข ืฉืขื“ ื›ื” ืืกืคืชื.
04:01
exploiting the information that you've already gathered so far.
90
241164
3003
04:05
The explore/exploit trade-off shows up any time you have to choose
91
245488
3096
ื‘ืขื™ื™ืช "ื ื™ืกื•ื™ ืื• ืžื™ืฆื•ื™" ืขื•ืœื” ืชืžื™ื“ ื›ืฉืขืœื™ื›ื ืœื‘ื—ื•ืจ
04:08
between trying something new
92
248608
1350
ื‘ื™ืŸ ื‘ื“ื™ืงื” ืฉืœ ืžืฉื”ื• ื—ื“ืฉ
04:09
and going with something that you already know is pretty good,
93
249982
2980
ืœื‘ื™ืŸ ื”ื™ืฆืžื“ื•ืช ืœืžืฉื”ื• ืฉื™ื“ื•ืข ืœื›ื ืฉื”ื•ื ื˜ื•ื‘ ืœืžื“ื™,
ื‘ื™ืŸ ืื ืžื“ื•ื‘ืจ ื‘ื”ืื–ื ื” ืœืžื•ืกื™ืงื”
04:12
whether it's listening to music
94
252986
1550
04:14
or trying to decide who you're going to spend time with.
95
254560
2634
ืื• ื‘ื”ื—ืœื˜ื” ืขื ืžื™ ืœื‘ืœื•ืช.
ื–ื•ื”ื™ ื’ื ื”ื‘ืขื™ื” ืฉืœ ื—ื‘ืจื•ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”
04:17
It's also the problem that technology companies face
96
257218
2494
04:19
when they're trying to do something like decide what ad to show on a web page.
97
259736
3667
ื›ืฉื”ืŸ ืžื ืกื•ืช ืœืžืฉืœ ืœื”ื—ืœื™ื˜ ืื™ื–ื• ืคืจืกื•ืžืช ืœื”ืฆื™ื’ ื‘ืื™ื ื˜ืจื ื˜.
ื”ืื ื›ื“ืื™ ืฉื™ื ืกื• ืคืจืกื•ืžืช ื—ื“ืฉื” ื•ื™ืœืžื“ื• ืžื–ื” ืžืฉื”ื•,
04:23
Should they show a new ad and learn something about it,
98
263417
2572
ืื• ืœื”ืฆื™ื’ ืœื›ื ืคืจืกื•ืžืช ืฉื›ื‘ืจ ื™ื“ื•ืข ืœื”ื
04:26
or should they show you an ad
99
266003
1383
04:27
that they already know there's a good chance you're going to click on?
100
267420
3306
ืฉื™ืฉ ืกื™ื›ื•ื™ ื˜ื•ื‘ ืฉืชืงืœื™ืงื• ืขืœื™ื”?
04:30
Over the last 60 years,
101
270750
1151
ื‘-60 ื”ืฉื ื” ื”ืื—ืจื•ื ื•ืช
04:31
computer scientists have made a lot of progress understanding
102
271925
2892
ืžื“ืขื ื™ ื”ืžื—ืฉื‘ื™ื ื”ืชืงื“ืžื• ืžืื“ ื‘ืชื—ื•ื ื‘ืขื™ื™ืช ื”"ื ื™ืกื•ื™ ืื• ืžื™ืฆื•ื™",
04:34
the explore/exploit trade-off,
103
274841
1452
ื•ื”ืžื—ืงืจ ืฉืœื”ื ื”ื ื™ื‘ ื›ืžื” ืชื•ื‘ื ื•ืช ืžืคืชื™ืขื•ืช.
04:36
and their results offer some surprising insights.
104
276317
2398
ื›ืฉืืชื ืžื ืกื™ื ืœื”ื—ืœื™ื˜ ืœืื™ื–ื• ืžืกืขื“ื” ืœืœื›ืช,
04:39
When you're trying to decide what restaurant to go to,
105
279291
2598
04:41
the first question you should ask yourself
106
281913
2000
ื”ืฉืืœื” ื”ืจืืฉื•ื ื” ืฉืขืœื™ื›ื ืœืฉืื•ืœ ืืช ืขืฆืžื›ื ื”ื™ื,
04:43
is how much longer you're going to be in town.
107
283937
2179
ื›ืžื” ื–ืžืŸ ืขื•ื“ ืชื”ื™ื• ื‘ืขื™ืจ.
04:46
If you're just going to be there for a short time,
108
286505
2342
ืื ืชื”ื™ื• ื‘ืขื™ืจ ื–ืžืŸ ืงืฆืจ ื‘ืœื‘ื“,
04:48
then you should exploit.
109
288871
1515
ื›ื“ืื™ ืœื›ื ืœืžืฆื•ืช.
04:50
There's no point gathering information.
110
290410
1905
ืื™ืŸ ื˜ืขื ืœืืกื•ืฃ ืžื™ื“ืข.
04:52
Just go to a place you already know is good.
111
292339
2048
ืœื›ื• ืคืฉื•ื˜ ืœืžืงื•ื ืฉื›ื‘ืจ ื™ื“ื•ืข ืœื›ื ืฉื”ื•ื ื˜ื•ื‘.
04:54
But if you're going to be there for a longer time, explore.
112
294411
2929
ืื‘ืœ ืื ืชื™ืฉืืจื• ื‘ืขื™ืจ ื–ืžืŸ ืจื‘ ื™ื•ืชืจ, ื ืกื•.
04:57
Try something new, because the information you get
113
297364
2387
ื ืกื• ืžืฉื”ื• ื—ื“ืฉ, ื›ื™ ื”ืžื™ื“ืข ืฉืชืฉื™ื’ื•
04:59
is something that can improve your choices in the future.
114
299775
2974
ืขืฉื•ื™ ืœืฉืคืจ ืืช ื‘ื—ื™ืจื•ืชื™ื›ื ื”ืขืชื™ื“ื™ื•ืช.
05:02
The value of information increases
115
302773
1979
ืขืจืš ื”ืžื™ื“ืข ืขื•ืœื”
05:04
the more opportunities you're going to have to use it.
116
304776
2600
ื›ื›ืœ ืฉืžืชืจื‘ื•ืช ื”ืืคืฉืจื•ื™ื•ืช ืฉืœื›ื ืœื ืฆืœ ืื•ืชื•.
ืขืงืจื•ืŸ ื–ื” ื™ื›ื•ืœ ืœืชืช ืœื ื• ื”ื‘ื ื” ื’ื ืœื’ื‘ื™ ืžื‘ื ื” ื”ื—ื™ื™ื ื”ืื ื•ืฉื™ื™ื.
05:08
This principle can give us insight
117
308193
1754
05:09
into the structure of a human life as well.
118
309971
2070
ืœืชื™ื ื•ืงื•ืช ืื™ืŸ ืžื•ื ื™ื˜ื™ืŸ ืฉืœ ื™ืฆื•ืจื™ื ืจืฆื™ื•ื ืœื™ื™ื ื‘ืžื™ื•ื—ื“.
05:13
Babies don't have a reputation for being particularly rational.
119
313104
3053
ื”ื ืชืžื™ื“ ืžื ืกื™ื ื“ื‘ืจื™ื ื—ื“ืฉื™ื,
05:17
They're always trying new things,
120
317098
1825
05:18
and you know, trying to stick them in their mouths.
121
318947
2836
ืžื ืกื™ื ืœื”ื›ื ื™ืก ื“ื‘ืจื™ื ืœืคื”.
05:22
But in fact, this is exactly what they should be doing.
122
322621
2952
ืืš ืœืžืขืฉื”, ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉื”ื ืืžื•ืจื™ื ืœืขืฉื•ืช.
05:25
They're in the explore phase of their lives,
123
325597
2430
ื”ื ืžืฆื•ื™ื™ื ื‘ืฉืœื‘ ื”"ื ื™ืกื•ื™" ืฉืœ ื—ื™ื™ื”ื,
ื•ื›ืžื” ืžื”ื“ื‘ืจื™ื ื”ืืœื” ืื•ืœื™ ื™ืชื’ืœื• ื›ื˜ืขื™ืžื™ื.
05:28
and some of those things could turn out to be delicious.
124
328051
2621
ื‘ืงืฆื” ื”ืื—ืจ ืฉืœ ื”ืงืฉืช,
05:32
At the other end of the spectrum,
125
332040
1572
05:33
the old guy who always goes to the same restaurant
126
333636
2506
ื”ื–ืงืŸ ืฉื”ื•ืœืš ืชืžื™ื“ ืœืื•ืชื” ืžืกืขื“ื”
ื•ืื•ื›ืœ ืชืžื™ื“ ืื•ืชื• ืื•ื›ืœ
05:36
and always eats the same thing
127
336166
1635
05:37
isn't boring --
128
337825
1328
ืื™ื ื ื• ืžืฉืขืžื:
ื”ื•ื ืžื™ื˜ื‘ื™.
05:39
he's optimal.
129
339177
1509
05:40
(Laughter)
130
340710
3830
(ืฆื—ื•ืง)
05:44
He's exploiting the knowledge that he's earned
131
344564
2228
ื”ื•ื ืžืžืฆื” ืืช ื”ื™ื“ืข ืฉืจื›ืฉ
05:46
through a lifetime's experience.
132
346816
1767
ื‘ืžื”ืœืš ื›ืœ ื ืกื™ื•ืŸ ื—ื™ื™ื•.
05:50
More generally,
133
350406
1151
ื‘ืื•ืคืŸ ื›ืœืœื™ ื™ื•ืชืจ, ื›ื›ืœ ืฉืชื‘ื™ื ื• ื‘ื‘ืขื™ื™ืช "ื ื™ืกื•ื™ ืื• ืžื™ืฆื•ื™",
05:51
knowing about the explore/exploit trade-off
134
351581
2031
ื™ื”ื™ื” ืœื›ื ืงืฆืช ื™ื•ืชืจ ืงืœ ืœื”ื™ืจื’ืข ื•ืœืกืœื•ื— ืœืขืฆืžื›ื
05:53
can make it a little easier for you to sort of relax and go easier on yourself
135
353636
3667
ื›ืฉืืชื ืžื ืกื™ื ืœืงื‘ืœ ื”ื—ืœื˜ื”.
05:57
when you're trying to make a decision.
136
357327
1810
ืื™ื ื›ื ืžื•ื›ืจื—ื™ื ืœืœื›ืช ื‘ื›ืœ ืขืจื‘ ืœืžืกืขื“ื” ื”ื›ื™ ื˜ื•ื‘ื”.
05:59
You don't have to go to the best restaurant every night.
137
359161
2728
06:01
Take a chance, try something new, explore.
138
361913
2979
ืงื—ื• ืกื™ื›ื•ืŸ, ื ืกื• ืžืฉื”ื• ื—ื“ืฉ, ื”ืชื ืกื•.
06:04
You might learn something.
139
364916
1627
ืื•ืœื™ ืชืœืžื“ื• ืžืฉื”ื• ื—ื“ืฉ.
06:06
And the information that you gain
140
366567
1589
ื•ืœืžื™ื“ืข ืฉืชืจื›ืฉื•
ื™ื”ื™ื” ื™ื•ืชืจ ืขืจืš ืžืืฉืจ ืกืขื•ื“ื” ื˜ื•ื‘ื” ืœืžื“ื™.
06:08
is going to be worth more than one pretty good dinner.
141
368180
2543
ืžื“ืขื™ ื”ืžื—ืฉื‘ ื™ื›ื•ืœื™ื ื’ื ืœื”ืงืœ ืขืœื™ื ื•
06:12
Computer science can also help to make it easier on us
142
372178
2699
06:14
in other places at home and in the office.
143
374901
2152
ื‘ืžืงื•ืžื•ืช ืื—ืจื™ื ื‘ื‘ื™ืช ื•ื‘ืžืฉืจื“.
06:17
If you've ever had to tidy up your wardrobe,
144
377860
2453
ืื ื ืืœืฆืชื ืื™-ืคืขื ืœืกื“ืจ ืืช ื”ืžืœืชื—ื”,
06:20
you've run into a particularly agonizing decision:
145
380337
2671
ื ืงืœืขืชื ืœื“ื™ืœืžื” ืžื™ื™ืกืจืช ื‘ืžื™ื•ื—ื“:
ืœื”ื—ืœื™ื˜ ืื™ืœื• ื“ื‘ืจื™ื ืชืฉืื™ืจื•
06:23
you have to decide what things you're going to keep
146
383032
2382
06:25
and what things you're going to give away.
147
385438
2009
ื•ืื™ืœื• ื“ื‘ืจื™ื ืชืžืกืจื•.
06:27
Martha Stewart turns out to have thought very hard about this --
148
387974
3000
ืžืกืชื‘ืจ ืฉืžืจืชื” ืกื˜ื™ื•ืืจื˜ ื”ืฉืงื™ืขื” ื‘ื›ืš ืžื—ืฉื‘ื” ืžืจื•ื‘ื” -
06:30
(Laughter)
149
390998
1205
(ืฆื—ื•ืง)
ื•ื™ืฉ ืœื” ื›ืžื” ืขืฆื•ืช ื˜ื•ื‘ื•ืช.
06:32
and she has some good advice.
150
392227
1678
06:33
She says, "Ask yourself four questions:
151
393929
2295
ื”ื™ื ืื•ืžืจืช, "ืฉืืœื• ืืช ืขืฆืžื›ื ืืจื‘ืข ืฉืืœื•ืช:
1. ืžืžืชื™ ื”ืคืจื™ื˜ ื”ื–ื” ืืฆืœื™?
06:36
How long have I had it?
152
396248
1526
06:37
Does it still function?
153
397798
1450
2. ื”ืื ื”ื•ื ืขื“ื™ื™ืŸ ืชืงื™ืŸ?
3. ื™ืฉ ืœื™ ืฉื ื™ื™ื ื›ืืœื” ืื• ื™ื•ืชืจ?
06:39
Is it a duplicate of something that I already own?
154
399272
3199
06:42
And when was the last time I wore it or used it?"
155
402495
2411
4. ืžืชื™ ืœืื—ืจื•ื ื” ืœื‘ืฉืชื™ ืื• ื”ืฉืชืžืฉืชื™ ื‘ื–ื”?
06:46
But there's another group of experts
156
406648
1715
ืื‘ืœ ื™ืฉ ืงื‘ื•ืฆื” ื ื•ืกืคืช ืฉืœ ืžื•ืžื—ื™ื
ืฉื—ืฉื‘ื• ืื•ืœื™ ืขื•ื“ ื™ื•ืชืจ ืœืขื•ืžืง ืขืœ ื”ื‘ืขื™ื” ื”ื–ืืช,
06:48
who perhaps thought even harder about this problem,
157
408387
3130
06:51
and they would say one of these questions is more important than the others.
158
411541
3660
ื•ื”ื ืื•ืžืจื™ื ืฉืื—ืช ื”ืฉืืœื•ืช ื”ืืœื” ื™ื•ืชืจ ื—ืฉื•ื‘ื” ืžื”ืื—ืจื•ืช.
06:55
Those experts?
159
415819
1150
ืžื™ื”ื ื”ืžื•ืžื—ื™ื ื”ืืœื”?
ื”ืื ืฉื™ื ืฉืžืชื›ื ื ื™ื ืืช ืžืขืจื›ื•ืช ื”ื–ื›ืจื•ืŸ ืฉืœ ืžื—ืฉื‘ื™ื.
06:57
The people who design the memory systems of computers.
160
417281
2848
ืœืจื•ื‘ ื”ืžื—ืฉื‘ื™ื ื™ืฉ ืฉื ื™ ืกื•ื’ื™ ืžืขืจื›ื•ืช ื–ื›ืจื•ืŸ:
07:00
Most computers have two kinds of memory systems:
161
420153
2254
07:02
a fast memory system,
162
422431
1387
ืžืขืจื›ืช ื–ื›ืจื•ืŸ ืžื”ื™ืจ,
07:03
like a set of memory chips that has limited capacity,
163
423842
3169
ืžืขืจืš ืฉื‘ื‘ื™ ืžื—ืฉื‘ ื‘ืขืœ ืงื™ื‘ื•ืœืช ืžื•ื’ื‘ืœืช
ืžืฉื•ื ืฉื”ื ื™ืงืจื™ื,
07:07
because those chips are expensive,
164
427035
2052
ื•ืžืขืจื›ืช ื–ื›ืจื•ืŸ ืื™ื˜ื™, ื’ื“ื•ืœื” ื‘ื”ืจื‘ื”.
07:09
and a slow memory system, which is much larger.
165
429111
3260
ื›ื“ื™ ืฉื”ืžื—ืฉื‘ ื™ืชืคืงื“ ื‘ืฉื™ื ื”ื™ืขื™ืœื•ืช,
07:13
In order for the computer to operate as efficiently as possible,
166
433239
3000
ื™ืฉ ืœื•ื•ื“ื ืฉื”ืžื™ื“ืข ืฉืืœื™ื• ืจื•ืฆื™ื ืœื’ืฉืช
07:16
you want to make sure
167
436263
1151
07:17
that the pieces of information you want to access
168
437438
2352
ื™ื™ืžืฆื ื‘ืžืขืจื›ืช ื”ื–ื›ืจื•ืŸ ื”ืžื”ื™ืจ,
07:19
are in the fast memory system,
169
439814
1477
ื›ื“ื™ ืฉืืคืฉืจ ื™ื”ื™ื” ืœื”ื’ื™ืข ืืœื™ื• ื‘ืžื”ื™ืจื•ืช.
07:21
so that you can get to them quickly.
170
441315
1754
ื‘ื›ืœ ืคืขื ืฉื ื™ื’ืฉื™ื ืœืคื™ืกืช ืžื™ื“ืข ื”ื™ื ื ื˜ืขื ืช ืœื–ื›ืจื•ืŸ ื”ืžื”ื™ืจ
07:23
Each time you access a piece of information,
171
443093
2061
07:25
it's loaded into the fast memory
172
445178
1525
ื•ื”ืžื—ืฉื‘ ืฆืจื™ืš ืœื”ื—ืœื™ื˜ ืžื” ืœืžื—ื•ืง ืžืื•ืชื• ื–ื›ืจื•ืŸ
07:26
and the computer has to decide which item it has to remove from that memory,
173
446727
3877
07:30
because it has limited capacity.
174
450628
1741
ื‘ื’ืœืœ ืงื™ื‘ื•ืœืชื• ื”ืžื•ื’ื‘ืœืช.
07:33
Over the years,
175
453794
1151
ื‘ืžืฉืš ื”ืฉื ื™ื ืžื“ืขื ื™ ื”ืžื—ืฉื‘ ื ื™ืกื• ืฉื™ื˜ื•ืช ืฉื•ื ื•ืช
07:34
computer scientists have tried a few different strategies
176
454969
2739
ื›ื“ื™ ืœื”ื—ืœื™ื˜ ืžื” ืœืžื—ื•ืง ืžื”ื–ื›ืจื•ืŸ ื”ืžื”ื™ืจ.
07:37
for deciding what to remove from the fast memory.
177
457732
2292
ื”ื ื ื™ืกื• ื“ื‘ืจื™ื ื›ืžื• ื‘ื—ื™ืจื” ืืงืจืื™ืช,
07:40
They've tried things like choosing something at random
178
460048
3176
ืื• ืขืงืจื•ืŸ "ื ื›ื ืก ืจืืฉื•ืŸ - ื™ื•ืฆื ืจืืฉื•ืŸ",
07:43
or applying what's called the "first-in, first-out principle,"
179
463248
2906
ื›ืœื•ืžืจ, ืžื—ื™ืงืช ื”ืคืจื™ื˜ ืฉื”ื™ื” ื”ื›ื™ ื”ืจื‘ื” ื–ืžืŸ ื‘ื–ื›ืจื•ืŸ.
07:46
which means removing the item
180
466178
1399
07:47
which has been in the memory for the longest.
181
467601
2176
ืื‘ืœ ื”ืฉื™ื˜ื” ื”ื›ื™ ื™ืขื™ืœื”
07:50
But the strategy that's most effective
182
470091
2713
07:52
focuses on the items which have been least recently used.
183
472828
3229
ืžืชืžืงื“ืช ื‘ืคืจื™ื˜ื™ื ืฉื”ื™ื• ื”ื›ื™ ืžืขื˜ ื‘ืฉื™ืžื•ืฉ ืœืื—ืจื•ื ื”.
07:56
This says if you're going to decide to remove something from memory,
184
476972
3191
ื›ืœื•ืžืจ, ืื ืจื•ืฆื™ื ืœื”ื—ืœื™ื˜ ืžื” ืœืžื—ื•ืง ืžื”ื–ื›ืจื•ืŸ,
ื™ืฉ ืœืžื—ื•ืง ืืช ื”ืคืจื™ื˜ ืฉื ื™ื’ืฉื• ืืœื™ื• ื”ื›ื™ ืžื–ืžืŸ.
08:00
you should take out the thing which was last accessed the furthest in the past.
185
480187
4968
ื•ื™ืฉ ื‘ื›ืš ื”ื’ื™ื•ืŸ ืžืกื•ื™ื.
08:05
And there's a certain kind of logic to this.
186
485179
2159
08:07
If it's been a long time since you last accessed that piece of information,
187
487362
3598
ืื ื”ื’ื™ืฉื” ืœืคืจื™ื˜ ืžืกื•ื™ื ื ืขืฉืชื” ืœืคื ื™ ื”ื›ื™ ื”ืจื‘ื” ื–ืžืŸ,
08:10
it's probably going to be a long time
188
490984
1762
ื™ืฉ ืœื”ื ื™ื— ืฉื™ืขื‘ื•ืจ ื”ืจื‘ื” ื–ืžืŸ ืขื“ ืฉื™ื™ื’ืฉื• ืืœื™ื• ืฉื•ื‘.
08:12
before you're going to need to access it again.
189
492770
2192
08:15
Your wardrobe is just like the computer's memory.
190
495787
2774
ื”ืžืœืชื—ื” ืฉืœื›ื ื“ื•ืžื” ืœื–ื›ืจื•ืŸ ื”ืžื—ืฉื‘.
08:18
You have limited capacity,
191
498585
2030
ื”ืงื™ื‘ื•ืœืช ื”ื™ื ืžื•ื’ื‘ืœืช,
08:20
and you need to try and get in there the things that you're most likely to need
192
500639
5327
ื•ืขืœื™ื›ื ืœื”ื›ื ื™ืก ืœืฉื ืืช ื”ื“ื‘ืจื™ื ื”ื›ื™ ื ื—ื•ืฆื™ื ืœื›ื
08:25
so that you can get to them as quickly as possible.
193
505990
2419
ื›ื“ื™ ืฉืชื’ื™ืขื• ืืœื™ื”ื ืžื”ืจ ื›ื›ืœ ื”ืืคืฉืจ.
ืื ืžืงื‘ืœื™ื ื–ืืช,
08:29
Recognizing that,
194
509016
1151
ืื•ืœื™ ื›ื“ืื™ ืœื™ื™ืฉื ืืช ืขืงืจื•ืŸ ื”ื ื™ืฆื•ืœ ื”ืžื•ืขื˜ ื‘ื™ื•ืชืจ ื’ื ืœืืจื’ื•ืŸ ื”ืžืœืชื—ื”.
08:30
maybe it's worth applying the least recently used principle
195
510191
2813
08:33
to organizing your wardrobe as well.
196
513028
1949
ืื– ืื ื ื—ื–ื•ืจ ืœืืจื‘ืข ื”ืฉืืœื•ืช ืฉืœ ืžืจืชื”,
08:35
So if we go back to Martha's four questions,
197
515001
2082
ืžื“ืขื ื™ ื”ืžื—ืฉื‘ ื™ืืžืจื• ืฉืžืชื•ื›ืŸ,
08:37
the computer scientists would say that of these,
198
517107
2861
08:39
the last one is the most important.
199
519992
1941
ื”ืฉืืœื” ื”ืื—ืจื•ื ื” ื”ื™ื ื”ื›ื™ ื—ืฉื•ื‘ื”.
08:43
This idea of organizing things
200
523473
2055
ื”ืจืขื™ื•ืŸ ืฉืœ ืืจื’ื•ืŸ ื“ื‘ืจื™ื
08:45
so that the things you are most likely to need are most accessible
201
525552
3129
ื›ืš ืฉืžื” ืฉืกื‘ื™ืจ ืฉืชืฆื˜ืจื›ื• ื™ื•ืชืจ ื™ื”ื™ื” ื”ื›ื™ ื ื’ื™ืฉ
08:48
can also be applied in your office.
202
528705
1676
ื™ืคื” ื’ื ืœืžืฉืจื“.
ื”ื›ืœื›ืœืŸ ื”ื™ืคื ื™ ื™ื•ืงื™ื• ื ื•ื’ื•ืฆ'ื™
08:51
The Japanese economist Yukio Noguchi
203
531091
1930
ื”ืžืฆื™ื ืืคื™ืœื• ืฉื™ื˜ืช ืชื™ื•ืง ืฉื–ื”ื• ื‘ื“ื™ื•ืง ื”ืžืืคื™ื™ืŸ ืฉืœื”.
08:53
actually invented a filing system that has exactly this property.
204
533045
3055
ื”ื•ื ื”ืชื—ื™ืœ ืขื ืชื™ื‘ืช ืงืจื˜ื•ืŸ,
08:57
He started with a cardboard box,
205
537161
1609
08:58
and he put his documents into the box from the left-hand side.
206
538794
2940
ื•ื”ื›ื ื™ืก ืืช ืžืกืžื›ื™ื• ืœืชื™ื‘ื” ื‘ืฆื“ ืฉืžืืœ.
ื‘ื›ืœ ืคืขื ืฉื”ื•ืกื™ืฃ ืžืกืžืš,
09:02
Each time he'd add a document,
207
542067
1434
09:03
he'd move what was in there along
208
543525
1621
ื”ื–ื™ื– ื”ืœืื” ืืช ื”ืชื›ื•ืœื”
ืข"ื™ ื”ื•ืกืคืช ื”ืžืกืžืš ื”ื—ื“ืฉ ื‘ืฆื“ ืฉืžืืœ.
09:05
and he'd add that document to the left-hand side of the box.
209
545170
2810
ื•ื‘ื›ืœ ืคืขื ืฉื ื™ื’ืฉ ืœืžืกืžืš, ื”ื•ืฆื™ื ืื•ืชื•,
09:08
And each time he accessed a document, he'd take it out,
210
548004
2667
09:10
consult it and put it back in on the left-hand side.
211
550695
2608
ืขื™ื™ืŸ ื‘ื• ื•ื”ื—ื–ื™ืจื• ื‘ืฆื“ ืฉืžืืœ.
09:13
As a result, the documents would be ordered from left to right
212
553327
3281
ื›ืชื•ืฆืื” ืžื›ืš, ื”ืžืกืžื›ื™ื ื”ื™ื• ืžืกื•ื“ืจื™ื ืžืฉืžืืœ ืœื™ืžื™ืŸ
09:16
by how recently they had been used.
213
556632
1761
ืœืคื™ ื”ืžื•ืขื“ ื”ืื—ืจื•ืŸ ื‘ื”ื ื”ื™ื• ื‘ืฉื™ืžื•ืฉ.
09:18
And he found he could quickly find what he was looking for
214
558417
2774
ื•ื”ื•ื ื’ื™ืœื” ืฉื”ื•ื ืžื•ืฆื ืžื”ืจ ืืช ืžื” ืฉื”ื•ื ืžื—ืคืฉ
ื›ืฉื”ื•ื ืžืชื—ื™ืœ ืœื—ืคืฉ ื‘ืฆื“ ืฉืžืืœ ืฉืœ ื”ืชื™ื‘ื”
09:21
by starting at the left-hand side of the box
215
561215
2054
ื•ืžืชืงื“ื ื™ืžื™ื ื”.
09:23
and working his way to the right.
216
563293
1572
ืœืคื ื™ ืฉืืชื ืืฆื™ื ื”ื‘ื™ืชื” ื•ืžื™ื™ืฉืžื™ื ืืช ืขืงืจื•ืŸ ื”ืชื™ื•ืง ื”ื–ื” --
09:25
Before you dash home and implement this filing system --
217
565215
2621
09:27
(Laughter)
218
567860
1731
(ืฆื—ื•ืง)
09:29
it's worth recognizing that you probably already have.
219
569615
2638
ื›ื“ืื™ ืฉืชื›ื™ืจื• ื‘ื›ืš ืฉืืชื ื›ื‘ืจ ืžื™ื™ืฉืžื™ื ืื•ืชื•.
09:32
(Laughter)
220
572891
3310
(ืฆื—ื•ืง)
ืขืจื™ืžืช ื”ื ื™ื™ืจื•ืช ืฉืขืœ ืฉื•ืœื—ื ื›ื...
09:36
That pile of papers on your desk ...
221
576225
2866
ืฉื‘ื“"ื› ืžื•ืฉืžืฆืช ื›ื‘ืœื’ืŸ,
09:39
typically maligned as messy and disorganized,
222
579115
2474
09:41
a pile of papers is, in fact, perfectly organized --
223
581613
2565
ืขืจื™ืžืช ื”ื ื™ื™ืจื•ืช ื”ื–ืืช ื‘ืขืฆื ืžืื•ืจื’ื ืช ืœื”ืคืœื™ื -
(ืฆื—ื•ืง)
09:44
(Laughter)
224
584202
1000
ืื ืชืžื™ื“, ืฉืืชื ืฉื•ืœืคื™ื ื ื™ื™ืจ ื›ืœืฉื”ื•,
09:45
as long as you, when you take a paper out,
225
585226
2014
ืชืงืคื™ื“ื• ืœื”ื—ื–ื™ืจื• ืœืจืืฉ ื”ืขืจื™ืžื”,
09:47
put it back on the top of the pile,
226
587264
2432
09:49
then those papers are going to be ordered from top to bottom
227
589720
2826
ื”ืžืกืžื›ื™ื ื™ื”ื™ื• ืžืกื•ื“ืจื™ื ืžืœืžืขืœื” ืœืžื˜ื” ืœืคื™ ืžื•ืขื“ ื”ืฉื™ืžื•ืฉ ื”ืื—ืจื•ืŸ,
09:52
by how recently they were used,
228
592570
1552
ื•ืกื‘ื™ืจ ืฉืชืžืฆืื• ืžื”ืจ ืืช ืžื” ืฉืืชื ืžื—ืคืฉื™ื
09:54
and you can probably quickly find what you're looking for
229
594146
2701
ืื ืชืชื—ื™ืœื• ืžืœืžืขืœื”.
09:56
by starting at the top of the pile.
230
596871
1700
09:59
Organizing your wardrobe or your desk
231
599988
1848
ืืจื’ื•ืŸ ื”ืžืœืชื—ื” ืื• ื”ืฉื•ืœื—ืŸ
10:01
are probably not the most pressing problems in your life.
232
601860
2681
ืื•ืœื™ ืื™ื ืŸ ื”ื‘ืขื™ื•ืช ื”ื›ื™ ื“ื•ื—ืงื•ืช ื‘ื—ื™ื™ื›ื.
10:05
Sometimes the problems we have to solve are simply very, very hard.
233
605588
3602
ืœืคืขืžื™ื ื”ื‘ืขื™ื•ืช ืฉืขืœื™ื ื• ืœืคืชื•ืจ ื”ืŸ ืคืฉื•ื˜ ืงืฉื•ืช ืขื“ ืžืื“.
10:09
But even in those cases,
234
609716
1150
ืื‘ืœ ืืคื™ืœื• ื‘ืžืงืจื™ื ืืœื”, ืžื“ืขื™ ื”ืžื—ืฉื‘ ื™ื›ื•ืœื™ื ืœื”ืฆื™ืข ืฉื™ื˜ื•ืช
10:10
computer science can offer some strategies
235
610890
2021
10:12
and perhaps some solace.
236
612935
1669
ื•ืื•ืœื™ ื ื—ืžื” ื›ืœืฉื”ื™.
ื˜ื•ื‘ื™ ื”ืืœื’ื•ืจื™ืชืžื™ื ืžื ืกื™ื ืœืžืฆื•ื ืžื” ื”ื›ื™ ื”ื’ื™ื•ื ื™ ืœืขืฉื•ืช
10:16
The best algorithms are about doing what makes the most sense
237
616048
3075
ื‘ื–ืžืŸ ื”ืงืฆืจ ื‘ื™ื•ืชืจ.
10:19
in the least amount of time.
238
619147
1502
10:22
When computers face hard problems,
239
622627
1958
ื›ืฉืžื—ืฉื‘ื™ื ื ืชืงืœื™ื ื‘ื‘ืขื™ื•ืช ืงืฉื•ืช,
10:24
they deal with them by making them into simpler problems --
240
624609
2762
ื”ื ืžืชืžื•ื“ื“ื™ื ืขื™ืžืŸ ื‘ื”ืคื™ื›ืชืŸ ืœื‘ืขื™ื•ืช ืคืฉื•ื˜ื•ืช ื™ื•ืชืจ -
10:27
by making use of randomness,
241
627395
1346
ื‘ืืžืฆืขื•ืช ืืงืจืื™ื•ืช,
10:28
by removing constraints or by allowing approximations.
242
628765
3817
ื‘ืกื™ืœื•ืง ืžื’ื‘ืœื•ืช ืื• ื‘ืื™ืคืฉื•ืจ ืงืœื™ืขื” ืžืงื•ืจื‘ืช.
10:32
Solving those simpler problems
243
632606
1494
ืคืชืจื•ืŸ ื‘ืขื™ื•ืช ืคืฉื•ื˜ื•ืช ื™ื•ืชืจ ืืœื”
ื™ื›ื•ืœ ืœืชืช ืชื•ื‘ื ื” ืœื’ื‘ื™ ื”ื‘ืขื™ื•ืช ื”ืงืฉื•ืช ื™ื•ืชืจ,
10:34
can give you insight into the harder problems,
244
634124
2920
ื•ืœืขืชื™ื, ืœืกืคืง ืคืชืจื•ื ื•ืช ื˜ื•ื‘ื™ื ืœืžื“ื™ ื‘ื–ื›ื•ืช ืขืฆืžื.
10:37
and sometimes produces pretty good solutions in their own right.
245
637068
3031
10:41
Knowing all of this has helped me to relax when I have to make decisions.
246
641658
3569
ื›ืœ ื”ื™ื“ืข ื”ื–ื” ืื™ืคืฉืจ ืœื™ ืœื”ื™ืจื’ืข ื›ืฉืขืœื™ ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช.
ืงื—ื• ืœื“ื•ื’ืžื” ืืช ื›ืœืœ 37 ื”ืื—ื•ื–ื™ื ืœืžืฆื™ืืช ื‘ื™ืช.
10:45
You could take the 37 percent rule for finding a home as an example.
247
645251
3255
ืื™ืŸ ืกื™ื›ื•ื™ ืฉืชื•ื›ืœื• ืœืฉืงื•ืœ ืืช ื›ืœ ื”ืืคืฉืจื•ื™ื•ืช,
10:49
There's no way that you can consider all of the options,
248
649015
2702
10:51
so you have to take a chance.
249
651741
1580
ื•ืœื›ืŸ ืขืœื™ื›ื ืœื”ืกืชื›ืŸ.
10:53
And even if you follow the optimal strategy,
250
653888
2860
ื•ืืคื™ืœื• ืื ืชื ื”ื’ื• ืขืœ ืคื™ ื”ืฉื™ื˜ื” ื”ืžื™ื˜ื‘ื™ืช,
10:56
you're not guaranteed a perfect outcome.
251
656772
1931
ืœื ืžื•ื‘ื˜ื—ืช ืœื›ื ืชื•ืฆืื” ืžื•ืฉืœืžืช.
ืื ืชืืžืฆื• ืืช ื›ืœืœ 37 ื”ืื—ื•ื–ื™ื,
10:59
If you follow the 37 percent rule,
252
659198
2154
11:01
the probability that you find the very best place is --
253
661376
3279
ื”ืกื‘ื™ืจื•ืช ืœื›ืš ืฉืชืžืฆืื• ืืช ื”ื‘ื™ืช ื”ื›ื™ ื˜ื•ื‘ ื”ื™ื -
11:04
funnily enough ...
254
664679
1508
ื›ืžื” ืžื•ื–ืจ -
(ืฆื—ื•ืง)
11:06
(Laughter)
255
666211
1014
37 ืื—ื•ื–ื™ื.
11:07
37 percent.
256
667249
1420
11:09
You fail most of the time.
257
669966
1689
ืจื•ื‘ ื”ื–ืžืŸ ืœื ืชืฆืœื™ื—ื•,
11:12
But that's the best that you can do.
258
672522
1744
ืื‘ืœ ื–ื” ื”ื›ื™ ื˜ื•ื‘ ืฉืชื•ื›ืœื• ืœืขืฉื•ืช.
11:14
Ultimately, computer science can help to make us more forgiving
259
674846
3052
ื‘ืฉื•ืจื” ื”ืชื—ืชื•ื ื”, ืžื“ืขื™ ื”ืžื—ืฉื‘ ื™ื›ื•ืœื™ื ืœื”ืคื•ืš ืื•ืชื ื• ืœืกืœื—ื ื™ื™ื ื™ื•ืชืจ
11:17
of our own limitations.
260
677922
1909
ื‘ื™ื—ืก ืœืžื’ื‘ืœื•ืชื™ื ื•.
11:20
You can't control outcomes, just processes.
261
680333
2539
ืื™ื ื›ื ื™ื›ื•ืœื™ื ืœืฉืœื•ื˜ ื‘ืชื•ืฆืื•ืช ืืœื ืจืง ื‘ืชื”ืœื™ื›ื™ื.
11:22
And as long as you've used the best process,
262
682896
2119
ื•ื›ืœ ืขื•ื“ ื”ืฉืชืžืฉืชื ื‘ืชื”ืœื™ืš ื”ื›ื™ ื˜ื•ื‘,
ื”ืจื™ ืฉืขืฉื™ืชื ื›ืžื™ื˜ื‘ ื™ื›ื•ืœืชื›ื.
11:25
you've done the best that you can.
263
685039
1763
11:26
Sometimes those best processes involve taking a chance --
264
686826
3688
ืœืคืขืžื™ื ื”ืชื”ืœื™ื›ื™ื ื”ื›ื™ ื˜ื•ื‘ื™ื ื”ืืœื” ื›ืจื•ื›ื™ื ื‘ื ื˜ื™ืœืช ืกื™ื›ื•ืŸ -
11:30
not considering all of your options,
265
690538
2115
ืœื ืœืฉืงื•ืœ ืืช ื›ืœ ื”ืืคืฉืจื•ื•ื™ืช,
11:32
or being willing to settle for a pretty good solution.
266
692677
2729
ืื• ืœื”ื™ื•ืช ืžื•ื›ื ื™ื ืœื”ืกืชืคืง ื‘ืคืชืจื•ืŸ ื“ื™ ื˜ื•ื‘,
11:35
These aren't the concessions that we make when we can't be rational --
267
695430
3350
ืืœื” ืื™ื ื ื•ื•ื™ืชื•ืจื™ื ืฉืื ื• ืขื•ืฉื™ื ื›ืฉืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื ื”ื•ื’ ื‘ื”ื’ื™ื•ืŸ;
11:38
they're what being rational means.
268
698804
1629
ื–ื•ื”ื™ ื‘ื“ื™ื•ืง ื”ืชื ื”ื’ื•ืช ื”ื’ื™ื•ื ื™ืช.
11:40
Thank you.
269
700833
1151
ืชื•ื“ื” ืœื›ื.
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:42
(Applause)
270
702008
4547
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7