3 ways to make better decisions -- by thinking like a computer | Tom Griffiths

954,711 views ・ 2018-10-05

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:13
If there's one city in the world
0
13407
1581
如果世界上有一個城市
00:15
where it's hard to find a place to buy or rent,
1
15012
2333
很難找到出售或是出租的地方,
00:17
it's Sydney.
2
17369
1150
那就是雪梨。
00:19
And if you've tried to find a home here recently,
3
19043
2367
如果你最近試著在這裡找個家,
00:21
you're familiar with the problem.
4
21434
1840
你對這個問題就會很熟悉。
00:23
Every time you walk into an open house,
5
23298
2014
每當你走進開放看屋的地點,
00:25
you get some information about what's out there
6
25336
2191
你就可以得到些資訊, 知道那裡有什麼,
00:27
and what's on the market,
7
27551
1393
以及市場上有什麼;
00:28
but every time you walk out,
8
28968
1430
但每當你走出來時,
00:30
you're running the risk of the very best place passing you by.
9
30422
3214
你就冒著錯過最佳選擇的風險。
00:33
So how do you know when to switch from looking
10
33660
2820
所以,你怎麼知道 何時要從「看看」切換成
00:36
to being ready to make an offer?
11
36504
1562
準備好提出交易條件?
00:39
This is such a cruel and familiar problem
12
39663
2401
這是個殘酷又熟悉的問題,
00:42
that it might come as a surprise that it has a simple solution.
13
42088
3074
讓人意外的是, 它的解決方案很簡單。
00:45
37 percent.
14
45588
1203
37%。
00:46
(Laughter)
15
46815
1828
(笑聲)
00:48
If you want to maximize the probability that you find the very best place,
16
48667
3936
如果你想要把找到 最佳選擇的機率提升到最高,
00:52
you should look at 37 percent of what's on the market,
17
52627
2825
你得要看過市場上 37% 的所有選擇的,
00:55
and then make an offer on the next place you see,
18
55476
2310
接著到下一個地方時, 就提出交易條件,
00:57
which is better than anything that you've seen so far.
19
57810
2524
它會比你目前看過的 所有選擇都更好。
01:00
Or if you're looking for a month, take 37 percent of that time --
20
60358
3805
或者,如果你要花一個月來尋找, 就取那段時間的 37% ——
01:04
11 days, to set a standard --
21
64187
2915
即 11 天,來設定標準——
01:07
and then you're ready to act.
22
67126
1575
接著你就可以準備行動了。
01:09
We know this because trying to find a place to live
23
69829
2709
我們知道要這麼做, 是因為試圖找住房
01:12
is an example of an optimal stopping problem.
24
72562
2325
就是「最佳停止問題」的例子。
01:14
A class of problems that has been studied extensively
25
74911
2483
這類問題一直被數學家
01:17
by mathematicians and computer scientists.
26
77418
2105
和電腦科學家廣為研究。
01:21
I'm a computational cognitive scientist.
27
81502
2519
我是一位計算認知科學家。
01:24
I spend my time trying to understand
28
84045
1960
我把時間花在了解
01:26
how it is that human minds work,
29
86029
1798
人類大腦如何運作,
01:27
from our amazing successes to our dismal failures.
30
87851
3671
從達成了不起的成功 到遭遇令人沮喪的失敗。
01:32
To do that, I think about the computational structure
31
92552
2493
要做到這一點,我得要思考
日常問題的計算結構,
01:35
of the problems that arise in everyday life,
32
95069
2659
01:37
and compare the ideal solutions to those problems
33
97752
2375
並將那些問題的理想解決方案
與我們的真實行為做比較。
01:40
to the way that we actually behave.
34
100151
1747
01:42
As a side effect,
35
102725
1185
它有一個副作用,
01:43
I get to see how applying a little bit of computer science
36
103934
2715
我可以看到應用一點點電腦科學
01:46
can make human decision-making easier.
37
106673
1860
如何能讓人類決策變得更容易。
01:49
I have a personal motivation for this.
38
109828
1847
我這麼做,背後有個私人的動機。
01:52
Growing up in Perth as an overly cerebral kid ...
39
112153
3166
我在伯斯長大,以前 是個過度理智的小孩……
01:55
(Laughter)
40
115343
4731
(笑聲)
02:00
I would always try and act in the way that I thought was rational,
41
120098
3147
我總是試著用我認為 合理的方式來做事,
02:03
reasoning through every decision,
42
123269
1597
做每個決策都要依理推論,
02:04
trying to figure out the very best action to take.
43
124890
2403
試圖找出採取哪種做法最理想。
02:07
But this is an approach that doesn't scale up
44
127972
2190
但這種方法無法做更廣的應用,
02:10
when you start to run into the sorts of problems
45
130186
2242
當你開始遇到成人 生活中的那些問題時,
02:12
that arise in adult life.
46
132452
1500
就派不上用場了。
02:13
At one point, I even tried to break up with my girlfriend
47
133976
2728
我有一度甚至打算要和女友分手,
02:16
because trying to take into account her preferences as well as my own
48
136728
3350
原因是我試著考量 她的偏好和我的偏好,
02:20
and then find perfect solutions --
49
140102
1683
以找出最完美的解決方案——
02:21
(Laughter)
50
141809
2259
(笑聲)
02:24
was just leaving me exhausted.
51
144092
1752
我真的被搞得疲憊不堪。
02:25
(Laughter)
52
145868
2533
(笑聲)
02:28
She pointed out that I was taking the wrong approach
53
148425
2429
她指出我在解決這個問題時
02:30
to solving this problem --
54
150878
1609
用錯了方法——
02:32
and she later became my wife.
55
152511
1382
後來她成了我的太太。
02:33
(Laughter)
56
153917
2062
(笑聲)
02:36
(Applause)
57
156003
4971
(掌聲)
02:40
Whether it's as basic as trying to decide what restaurant to go to
58
160998
3461
不論是很基本的問題, 比如決定要去哪家餐廳吃飯,
02:44
or as important as trying to decide who to spend the rest of your life with,
59
164483
4055
或是很重要的問題, 比如決定要和誰共渡餘生,
02:48
human lives are filled with computational problems
60
168562
2375
人生其實都充滿了計算問題,
02:50
that are just too hard to solve by applying sheer effort.
61
170961
4196
光靠努力是很難解決的。
02:55
For those problems,
62
175650
1166
那些問題
02:56
it's worth consulting the experts:
63
176840
1961
值得去諮詢專家:
02:58
computer scientists.
64
178825
1151
電腦科學家。
03:00
(Laughter)
65
180000
1784
(笑聲)
03:01
When you're looking for life advice,
66
181808
1819
當你要尋求人生忠告時,
03:03
computer scientists probably aren't the first people you think to talk to.
67
183651
3640
你最先想要問的人大概 不會是電腦科學家。
03:07
Living life like a computer --
68
187315
1875
把人生過得像電腦一樣——
03:09
stereotypically deterministic, exhaustive and exact --
69
189214
2578
刻板的決定論、 詳盡無遺,且精確——
03:11
doesn't sound like a lot of fun.
70
191816
1552
聽起來實在不好玩。
03:14
But thinking about the computer science of human decisions
71
194153
2927
但思考一下人類決策的電腦科學,
03:17
reveals that in fact, we've got this backwards.
72
197104
2408
會發現,事實上, 我們把方向弄反了。
03:19
When applied to the sorts of difficult problems
73
199536
2198
當應用在人生中的
03:21
that arise in human lives,
74
201758
1239
那些困難問題上時,
03:23
the way that computers actually solve those problems
75
203021
2727
電腦實際上用來解決 那些問題的方式
03:25
looks a lot more like the way that people really act.
76
205772
2896
看起來很像是人們真正使用的方式。
03:29
Take the example of trying to decide what restaurant to go to.
77
209267
2922
就用決定要去哪間餐廳 吃飯當作例子吧。
03:33
This is a problem that has a particular computational structure.
78
213090
3088
這個問題有特定的計算結構。
03:36
You've got a set of options,
79
216202
1524
你有一組選項,
03:37
you're going to choose one of those options,
80
217750
2049
你得要從那些選項中擇一,
03:39
and you're going to face exactly the same decision tomorrow.
81
219823
2811
且你明天還會面對 完全一樣的決策。
03:42
In that situation,
82
222658
1151
在那樣的情況下,
03:43
you run up against what computer scientists call
83
223833
2295
你碰到的就是電腦科學家所謂的
03:46
the "explore-exploit trade-off."
84
226152
2372
「探索/利用的權衡」。
03:49
You have to make a decision
85
229115
1334
你得要做一個決策,
03:50
about whether you're going to try something new --
86
230473
2334
決定你是否要嘗試新選項——
03:52
exploring, gathering some information
87
232831
2183
去「探索」,收集一些未來
03:55
that you might be able to use in the future --
88
235038
2285
可能會用到的資訊——
03:57
or whether you're going to go to a place that you already know is pretty good --
89
237347
3793
或者你是否要選擇去 你已經知道不錯的地方——
04:01
exploiting the information that you've already gathered so far.
90
241164
3003
「利用」你目前已經 收集到的資訊。
04:05
The explore/exploit trade-off shows up any time you have to choose
91
245488
3096
探索/利用的權衡會出現在每次
04:08
between trying something new
92
248608
1350
你必須要從新選項和已經知道 不錯的選項中擇一的情況下,
04:09
and going with something that you already know is pretty good,
93
249982
2980
04:12
whether it's listening to music
94
252986
1550
也許是聽音樂,
04:14
or trying to decide who you're going to spend time with.
95
254560
2634
或者是試著決定 你要跟誰一起殺時間。
04:17
It's also the problem that technology companies face
96
257218
2494
這也是科技公司會面臨的問題,
04:19
when they're trying to do something like decide what ad to show on a web page.
97
259736
3667
比如決定要在網頁上放什麼 廣告時,遇到的就是這種問題。
它們應該要刊登新廣告, 從中得到一些資訊嗎?
04:23
Should they show a new ad and learn something about it,
98
263417
2572
或是它們應該要給你看
04:26
or should they show you an ad
99
266003
1383
04:27
that they already know there's a good chance you're going to click on?
100
267420
3306
一則它們已經知道你很有可能 會點選的廣告?
04:30
Over the last 60 years,
101
270750
1151
在過去六十年,
04:31
computer scientists have made a lot of progress understanding
102
271925
2892
電腦科學家在了解 探索/利用的權衡上,
04:34
the explore/exploit trade-off,
103
274841
1452
有相當多進展,
04:36
and their results offer some surprising insights.
104
276317
2398
他們的結果帶來了 一些讓人吃驚的洞見。
04:39
When you're trying to decide what restaurant to go to,
105
279291
2598
當你要試著決定該去哪一間餐廳時,
04:41
the first question you should ask yourself
106
281913
2000
你應該先問你自己一個問題:
04:43
is how much longer you're going to be in town.
107
283937
2179
你還會待在鎮上多久?
04:46
If you're just going to be there for a short time,
108
286505
2342
如果你只是短暫停留,
04:48
then you should exploit.
109
288871
1515
那麼你應該要「利用」。
04:50
There's no point gathering information.
110
290410
1905
收集資訊是沒有意義的。
04:52
Just go to a place you already know is good.
111
292339
2048
直接去一個你已經 知道不錯的地方吧。
04:54
But if you're going to be there for a longer time, explore.
112
294411
2929
但如果你會待久一點, 就「探索」吧。
04:57
Try something new, because the information you get
113
297364
2387
試試新選項,因為 你從中得到的資訊
04:59
is something that can improve your choices in the future.
114
299775
2974
可能協助你在未來做更好的選擇。
05:02
The value of information increases
115
302773
1979
你越有可能用到一項資訊,
05:04
the more opportunities you're going to have to use it.
116
304776
2600
該資訊的價值就會增加。
05:08
This principle can give us insight
117
308193
1754
這條原則也能協助我們
05:09
into the structure of a human life as well.
118
309971
2070
洞察人類的人生。
05:13
Babies don't have a reputation for being particularly rational.
119
313104
3053
寶寶通常不會特別理性。
05:17
They're always trying new things,
120
317098
1825
他們總是在嘗試新東西,
05:18
and you know, trying to stick them in their mouths.
121
318947
2836
你們知道的,總把 新東西放到嘴巴裡。
05:22
But in fact, this is exactly what they should be doing.
122
322621
2952
但,事實上,他們 的確應該要這麼做。
05:25
They're in the explore phase of their lives,
123
325597
2430
他們正處在人生的探索階段,
05:28
and some of those things could turn out to be delicious.
124
328051
2621
他們嘗試的東西當中, 有些可能真的會很美味。
05:32
At the other end of the spectrum,
125
332040
1572
在光譜的另一端,
05:33
the old guy who always goes to the same restaurant
126
333636
2506
是老人,他們總是去同樣的餐廳,
05:36
and always eats the same thing
127
336166
1635
總是點同樣的食物,
05:37
isn't boring --
128
337825
1328
並不是無趣,
05:39
he's optimal.
129
339177
1509
而是最佳化的選擇。
05:40
(Laughter)
130
340710
3830
(笑聲)
05:44
He's exploiting the knowledge that he's earned
131
344564
2228
他在利用他從一生的經驗中
05:46
through a lifetime's experience.
132
346816
1767
已經得到的知識。
05:50
More generally,
133
350406
1151
更普遍來說,知道有 「探索/利用的權衡」,
05:51
knowing about the explore/exploit trade-off
134
351581
2031
05:53
can make it a little easier for you to sort of relax and go easier on yourself
135
353636
3667
就能讓你在做決策時能更輕鬆些,
不要對自己太嚴厲。
05:57
when you're trying to make a decision.
136
357327
1810
你不需要每晚都去最好的餐廳。
05:59
You don't have to go to the best restaurant every night.
137
359161
2728
06:01
Take a chance, try something new, explore.
138
361913
2979
冒個險,嘗試新餐廳,去探索。
06:04
You might learn something.
139
364916
1627
你可能會學到些什麼。
06:06
And the information that you gain
140
366567
1589
而你所得到的資訊
06:08
is going to be worth more than one pretty good dinner.
141
368180
2543
價值絕對勝過一頓好吃的晚餐。
06:12
Computer science can also help to make it easier on us
142
372178
2699
在家中或在辦公室裡的其他地方,
06:14
in other places at home and in the office.
143
374901
2152
電腦科學也能夠讓我們更輕鬆些。
06:17
If you've ever had to tidy up your wardrobe,
144
377860
2453
如果你得要整理你的衣櫥,
06:20
you've run into a particularly agonizing decision:
145
380337
2671
你會碰到一個特別煩惱的決定:
06:23
you have to decide what things you're going to keep
146
383032
2382
你得要決定哪些東西該留下,
06:25
and what things you're going to give away.
147
385438
2009
哪些東西該送人。
06:27
Martha Stewart turns out to have thought very hard about this --
148
387974
3000
結果發現瑪莎史都華花了 很多功夫在想這件事——
06:30
(Laughter)
149
390998
1205
(笑聲)
06:32
and she has some good advice.
150
392227
1678
她有些不錯的忠告。
06:33
She says, "Ask yourself four questions:
151
393929
2295
她說:「問你自己四個問題:
06:36
How long have I had it?
152
396248
1526
我已經持有它多久了?
06:37
Does it still function?
153
397798
1450
它還有功能嗎?
06:39
Is it a duplicate of something that I already own?
154
399272
3199
它是不是跟某樣 我已經擁有的東西一樣?
06:42
And when was the last time I wore it or used it?"
155
402495
2411
我上次穿它或用它是什麼時候?」
06:46
But there's another group of experts
156
406648
1715
但還有另一群專家
06:48
who perhaps thought even harder about this problem,
157
408387
3130
花了更多功夫在想這個問題,
06:51
and they would say one of these questions is more important than the others.
158
411541
3660
他們會說,這些問題當中 有一個比其他的都還重要。
06:55
Those experts?
159
415819
1150
那些專家是誰?
06:57
The people who design the memory systems of computers.
160
417281
2848
設計出電腦記憶體系統的人。
07:00
Most computers have two kinds of memory systems:
161
420153
2254
大部分的電腦有兩種記憶體系統:
07:02
a fast memory system,
162
422431
1387
快速記憶體系統,
07:03
like a set of memory chips that has limited capacity,
163
423842
3169
就像是一組記憶體晶片,容量有限,
07:07
because those chips are expensive,
164
427035
2052
因為那些晶片很貴,
07:09
and a slow memory system, which is much larger.
165
429111
3260
還有慢速記憶體系統, 它的容量大很多。
07:13
In order for the computer to operate as efficiently as possible,
166
433239
3000
為了要讓電腦的 運作效能盡可能提高,
07:16
you want to make sure
167
436263
1151
你會希望能確保你要存取的資訊
07:17
that the pieces of information you want to access
168
437438
2352
07:19
are in the fast memory system,
169
439814
1477
位在快速記憶體系統中, 這樣你就能快速取得它。
07:21
so that you can get to them quickly.
170
441315
1754
每當你存取一項資訊時,
07:23
Each time you access a piece of information,
171
443093
2061
它就會被載入快速記憶體中,
07:25
it's loaded into the fast memory
172
445178
1525
07:26
and the computer has to decide which item it has to remove from that memory,
173
446727
3877
電腦得要決定要從 快速記憶體中移除哪個項目,
07:30
because it has limited capacity.
174
450628
1741
因為它的容量有限。
07:33
Over the years,
175
453794
1151
數年來,電腦科學家 試過幾種不同的策略
07:34
computer scientists have tried a few different strategies
176
454969
2739
來判定該從快速記憶體中移除什麼。
07:37
for deciding what to remove from the fast memory.
177
457732
2292
他們有試過隨機選擇的方法,
07:40
They've tried things like choosing something at random
178
460048
3176
07:43
or applying what's called the "first-in, first-out principle,"
179
463248
2906
也試過採用「先進先出」的原則,
07:46
which means removing the item
180
466178
1399
也就是說把在記憶體當中 最久的項目給移除。
07:47
which has been in the memory for the longest.
181
467601
2176
07:50
But the strategy that's most effective
182
470091
2713
不過,最有效的策略,
07:52
focuses on the items which have been least recently used.
183
472828
3229
是把目標放在近期最少使用的項目。
07:56
This says if you're going to decide to remove something from memory,
184
476972
3191
這種策略就是,如果你得 從記憶體中移除某樣東西,
08:00
you should take out the thing which was last accessed the furthest in the past.
185
480187
4968
你應該選擇最後一次使用時間 是最久遠的那樣東西。
08:05
And there's a certain kind of logic to this.
186
485179
2159
這背後是有某種邏輯的。
08:07
If it's been a long time since you last accessed that piece of information,
187
487362
3598
如果你上次存取那項資訊 已經是很久以前的事了,
08:10
it's probably going to be a long time
188
490984
1762
你下次需要存取它的時間
08:12
before you're going to need to access it again.
189
492770
2192
應該也會是很久以後。
08:15
Your wardrobe is just like the computer's memory.
190
495787
2774
你的衣櫥就像是電腦的記憶體。
08:18
You have limited capacity,
191
498585
2030
你的容量有限,
08:20
and you need to try and get in there the things that you're most likely to need
192
500639
5327
你得要把你最有可能 用到的東西放進去,
08:25
so that you can get to them as quickly as possible.
193
505990
2419
這樣你才能夠盡快取得它們。
認知到這一點後,
08:29
Recognizing that,
194
509016
1151
08:30
maybe it's worth applying the least recently used principle
195
510191
2813
也許也值得嘗試應用 「近期最少使用」原則
08:33
to organizing your wardrobe as well.
196
513028
1949
來整理你的衣櫥。
08:35
So if we go back to Martha's four questions,
197
515001
2082
如果我們回到瑪莎的四個問題,
08:37
the computer scientists would say that of these,
198
517107
2861
電腦科學家會說,在這些問題中,
08:39
the last one is the most important.
199
519992
1941
最後一個問題是最重要。
08:43
This idea of organizing things
200
523473
2055
在整理東西時,要讓你最可能
08:45
so that the things you are most likely to need are most accessible
201
525552
3129
需要的東西最容易存取的這個想法,
08:48
can also be applied in your office.
202
528705
1676
也可以應用到你的辦公室中。
08:51
The Japanese economist Yukio Noguchi
203
531091
1930
日本經濟學家野口悠紀雄
08:53
actually invented a filing system that has exactly this property.
204
533045
3055
真的發明了一個具有 這種特性的建檔系統。
08:57
He started with a cardboard box,
205
537161
1609
他從一個紙箱子開始,
08:58
and he put his documents into the box from the left-hand side.
206
538794
2940
他把他的文件 從左到右放進箱子中。
09:02
Each time he'd add a document,
207
542067
1434
每當他放入一份文件時, 他就得要移動箱中的文件,
09:03
he'd move what was in there along
208
543525
1621
才能把新放入的文件 放入箱子的左邊。
09:05
and he'd add that document to the left-hand side of the box.
209
545170
2810
每當他需要使用一份文件時, 他會把該文件取出,
09:08
And each time he accessed a document, he'd take it out,
210
548004
2667
09:10
consult it and put it back in on the left-hand side.
211
550695
2608
使用完之後放回到最左邊。
09:13
As a result, the documents would be ordered from left to right
212
553327
3281
這樣的結果是, 文件會從左到右排好,
09:16
by how recently they had been used.
213
556632
1761
最左邊的是最近期使用過的。
09:18
And he found he could quickly find what he was looking for
214
558417
2774
他發現這樣排之後, 他只要從箱子的左邊開始
09:21
by starting at the left-hand side of the box
215
561215
2054
一直向右找,就能快速 找到他想找的文件。
09:23
and working his way to the right.
216
563293
1572
09:25
Before you dash home and implement this filing system --
217
565215
2621
在你們衝回家導入 這個建檔系統之前——
09:27
(Laughter)
218
567860
1731
(笑聲)
09:29
it's worth recognizing that you probably already have.
219
569615
2638
值得先想想,你可能 已經有這個系統了。
09:32
(Laughter)
220
572891
3310
(笑聲)
09:36
That pile of papers on your desk ...
221
576225
2866
你書桌上的那疊紙……
09:39
typically maligned as messy and disorganized,
222
579115
2474
通常都被別人誹謗說是亂七八糟,
09:41
a pile of papers is, in fact, perfectly organized --
223
581613
2565
其實是有著完美 組織系統的一疊紙——
09:44
(Laughter)
224
584202
1000
(笑聲)
09:45
as long as you, when you take a paper out,
225
585226
2014
只要你每次把一張紙拿出來,
09:47
put it back on the top of the pile,
226
587264
2432
用完之後會放回那疊紙的最上方,
09:49
then those papers are going to be ordered from top to bottom
227
589720
2826
那麼那疊紙從上到下 就排好了順序,
09:52
by how recently they were used,
228
592570
1552
最上面的是最近期使用的,
09:54
and you can probably quickly find what you're looking for
229
594146
2701
你從那疊紙的最上面開始找,
09:56
by starting at the top of the pile.
230
596871
1700
可能就能快速找到你要的。
09:59
Organizing your wardrobe or your desk
231
599988
1848
整理你的衣櫥或你的書桌
10:01
are probably not the most pressing problems in your life.
232
601860
2681
可能不是你人生中最緊迫的問題。
10:05
Sometimes the problems we have to solve are simply very, very hard.
233
605588
3602
有時,我們需要解決的問題 就是非常非常難搞。
10:09
But even in those cases,
234
609716
1150
但即使在那些情況下,
10:10
computer science can offer some strategies
235
610890
2021
電腦科學也能夠提供一些策略,
10:12
and perhaps some solace.
236
612935
1669
也許還能提供一些安慰。
10:16
The best algorithms are about doing what makes the most sense
237
616048
3075
最好的演算法, 就是要在最短的時間內
10:19
in the least amount of time.
238
619147
1502
做出最合理的舉動。
10:22
When computers face hard problems,
239
622627
1958
當電腦面臨困難的問題時,
10:24
they deal with them by making them into simpler problems --
240
624609
2762
它們的處理方式是把那些問題 變成更簡單的問題——
10:27
by making use of randomness,
241
627395
1346
做法包括使用隨機性、
10:28
by removing constraints or by allowing approximations.
242
628765
3817
移除限制式,或是允許近似值。
10:32
Solving those simpler problems
243
632606
1494
解決那些較簡單的問題,
10:34
can give you insight into the harder problems,
244
634124
2920
就能提供你關於 原本困難問題的洞見,
10:37
and sometimes produces pretty good solutions in their own right.
245
637068
3031
有時,還能自己產生出 很好的解決方案。
10:41
Knowing all of this has helped me to relax when I have to make decisions.
246
641658
3569
知道這一切,讓我在 必須要做決策時能夠放輕鬆。
10:45
You could take the 37 percent rule for finding a home as an example.
247
645251
3255
可以用找房子時的 37% 規則來當例子。
10:49
There's no way that you can consider all of the options,
248
649015
2702
你不可能把所有的 選項都納入考量,
10:51
so you have to take a chance.
249
651741
1580
所以你得要冒險。
10:53
And even if you follow the optimal strategy,
250
653888
2860
即使你遵循最佳化策略,
10:56
you're not guaranteed a perfect outcome.
251
656772
1931
也不能保證你會得到最完美的結果。
10:59
If you follow the 37 percent rule,
252
659198
2154
如果你遵循 37% 規則,
11:01
the probability that you find the very best place is --
253
661376
3279
你能找到最棒的地方的機率是——
11:04
funnily enough ...
254
664679
1508
很有趣……
11:06
(Laughter)
255
666211
1014
(笑聲)
11:07
37 percent.
256
667249
1420
是 37%。
11:09
You fail most of the time.
257
669966
1689
大部分的時候,你會失敗。
11:12
But that's the best that you can do.
258
672522
1744
但你能做到最好的就是這樣了。
11:14
Ultimately, computer science can help to make us more forgiving
259
674846
3052
最終,電腦科學會協助讓我們
11:17
of our own limitations.
260
677922
1909
更能原諒自己的限制。
11:20
You can't control outcomes, just processes.
261
680333
2539
你不能控制結果,只能控制過程。
11:22
And as long as you've used the best process,
262
682896
2119
只要你已經用了最好的過程,
11:25
you've done the best that you can.
263
685039
1763
你就已經盡了全力。
11:26
Sometimes those best processes involve taking a chance --
264
686826
3688
有時,最好的過程會需要冒點險——
11:30
not considering all of your options,
265
690538
2115
比如不去考量所有的選項,
11:32
or being willing to settle for a pretty good solution.
266
692677
2729
或是願意妥協,接受 算是不錯的解決方案。
11:35
These aren't the concessions that we make when we can't be rational --
267
695430
3350
這些並不是我們在無法 理性時所做的讓步——
11:38
they're what being rational means.
268
698804
1629
它們就是理性的真締。
11:40
Thank you.
269
700833
1151
謝謝大家。
11:42
(Applause)
270
702008
4547
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog