3 ways to make better decisions -- by thinking like a computer | Tom Griffiths

940,921 views ・ 2018-10-05

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:13
If there's one city in the world
0
13407
1581
如果世界上有一個城市
00:15
where it's hard to find a place to buy or rent,
1
15012
2333
很難找到出售或是出租的地方,
00:17
it's Sydney.
2
17369
1150
那就是雪梨。
00:19
And if you've tried to find a home here recently,
3
19043
2367
如果你最近試著在這裡找個家,
00:21
you're familiar with the problem.
4
21434
1840
你對這個問題就會很熟悉。
00:23
Every time you walk into an open house,
5
23298
2014
每當你走進開放看屋的地點,
00:25
you get some information about what's out there
6
25336
2191
你就可以得到些資訊, 知道那裡有什麼,
00:27
and what's on the market,
7
27551
1393
以及市場上有什麼;
00:28
but every time you walk out,
8
28968
1430
但每當你走出來時,
00:30
you're running the risk of the very best place passing you by.
9
30422
3214
你就冒著錯過最佳選擇的風險。
00:33
So how do you know when to switch from looking
10
33660
2820
所以,你怎麼知道 何時要從「看看」切換成
00:36
to being ready to make an offer?
11
36504
1562
準備好提出交易條件?
00:39
This is such a cruel and familiar problem
12
39663
2401
這是個殘酷又熟悉的問題,
00:42
that it might come as a surprise that it has a simple solution.
13
42088
3074
讓人意外的是, 它的解決方案很簡單。
00:45
37 percent.
14
45588
1203
37%。
00:46
(Laughter)
15
46815
1828
(笑聲)
00:48
If you want to maximize the probability that you find the very best place,
16
48667
3936
如果你想要把找到 最佳選擇的機率提升到最高,
00:52
you should look at 37 percent of what's on the market,
17
52627
2825
你得要看過市場上 37% 的所有選擇的,
00:55
and then make an offer on the next place you see,
18
55476
2310
接著到下一個地方時, 就提出交易條件,
00:57
which is better than anything that you've seen so far.
19
57810
2524
它會比你目前看過的 所有選擇都更好。
01:00
Or if you're looking for a month, take 37 percent of that time --
20
60358
3805
或者,如果你要花一個月來尋找, 就取那段時間的 37% ——
01:04
11 days, to set a standard --
21
64187
2915
即 11 天,來設定標準——
01:07
and then you're ready to act.
22
67126
1575
接著你就可以準備行動了。
01:09
We know this because trying to find a place to live
23
69829
2709
我們知道要這麼做, 是因為試圖找住房
01:12
is an example of an optimal stopping problem.
24
72562
2325
就是「最佳停止問題」的例子。
01:14
A class of problems that has been studied extensively
25
74911
2483
這類問題一直被數學家
01:17
by mathematicians and computer scientists.
26
77418
2105
和電腦科學家廣為研究。
01:21
I'm a computational cognitive scientist.
27
81502
2519
我是一位計算認知科學家。
01:24
I spend my time trying to understand
28
84045
1960
我把時間花在了解
01:26
how it is that human minds work,
29
86029
1798
人類大腦如何運作,
01:27
from our amazing successes to our dismal failures.
30
87851
3671
從達成了不起的成功 到遭遇令人沮喪的失敗。
01:32
To do that, I think about the computational structure
31
92552
2493
要做到這一點,我得要思考
日常問題的計算結構,
01:35
of the problems that arise in everyday life,
32
95069
2659
01:37
and compare the ideal solutions to those problems
33
97752
2375
並將那些問題的理想解決方案
與我們的真實行為做比較。
01:40
to the way that we actually behave.
34
100151
1747
01:42
As a side effect,
35
102725
1185
它有一個副作用,
01:43
I get to see how applying a little bit of computer science
36
103934
2715
我可以看到應用一點點電腦科學
01:46
can make human decision-making easier.
37
106673
1860
如何能讓人類決策變得更容易。
01:49
I have a personal motivation for this.
38
109828
1847
我這麼做,背後有個私人的動機。
01:52
Growing up in Perth as an overly cerebral kid ...
39
112153
3166
我在伯斯長大,以前 是個過度理智的小孩……
01:55
(Laughter)
40
115343
4731
(笑聲)
02:00
I would always try and act in the way that I thought was rational,
41
120098
3147
我總是試著用我認為 合理的方式來做事,
02:03
reasoning through every decision,
42
123269
1597
做每個決策都要依理推論,
02:04
trying to figure out the very best action to take.
43
124890
2403
試圖找出採取哪種做法最理想。
02:07
But this is an approach that doesn't scale up
44
127972
2190
但這種方法無法做更廣的應用,
02:10
when you start to run into the sorts of problems
45
130186
2242
當你開始遇到成人 生活中的那些問題時,
02:12
that arise in adult life.
46
132452
1500
就派不上用場了。
02:13
At one point, I even tried to break up with my girlfriend
47
133976
2728
我有一度甚至打算要和女友分手,
02:16
because trying to take into account her preferences as well as my own
48
136728
3350
原因是我試著考量 她的偏好和我的偏好,
02:20
and then find perfect solutions --
49
140102
1683
以找出最完美的解決方案——
02:21
(Laughter)
50
141809
2259
(笑聲)
02:24
was just leaving me exhausted.
51
144092
1752
我真的被搞得疲憊不堪。
02:25
(Laughter)
52
145868
2533
(笑聲)
02:28
She pointed out that I was taking the wrong approach
53
148425
2429
她指出我在解決這個問題時
02:30
to solving this problem --
54
150878
1609
用錯了方法——
02:32
and she later became my wife.
55
152511
1382
後來她成了我的太太。
02:33
(Laughter)
56
153917
2062
(笑聲)
02:36
(Applause)
57
156003
4971
(掌聲)
02:40
Whether it's as basic as trying to decide what restaurant to go to
58
160998
3461
不論是很基本的問題, 比如決定要去哪家餐廳吃飯,
02:44
or as important as trying to decide who to spend the rest of your life with,
59
164483
4055
或是很重要的問題, 比如決定要和誰共渡餘生,
02:48
human lives are filled with computational problems
60
168562
2375
人生其實都充滿了計算問題,
02:50
that are just too hard to solve by applying sheer effort.
61
170961
4196
光靠努力是很難解決的。
02:55
For those problems,
62
175650
1166
那些問題
02:56
it's worth consulting the experts:
63
176840
1961
值得去諮詢專家:
02:58
computer scientists.
64
178825
1151
電腦科學家。
03:00
(Laughter)
65
180000
1784
(笑聲)
03:01
When you're looking for life advice,
66
181808
1819
當你要尋求人生忠告時,
03:03
computer scientists probably aren't the first people you think to talk to.
67
183651
3640
你最先想要問的人大概 不會是電腦科學家。
03:07
Living life like a computer --
68
187315
1875
把人生過得像電腦一樣——
03:09
stereotypically deterministic, exhaustive and exact --
69
189214
2578
刻板的決定論、 詳盡無遺,且精確——
03:11
doesn't sound like a lot of fun.
70
191816
1552
聽起來實在不好玩。
03:14
But thinking about the computer science of human decisions
71
194153
2927
但思考一下人類決策的電腦科學,
03:17
reveals that in fact, we've got this backwards.
72
197104
2408
會發現,事實上, 我們把方向弄反了。
03:19
When applied to the sorts of difficult problems
73
199536
2198
當應用在人生中的
03:21
that arise in human lives,
74
201758
1239
那些困難問題上時,
03:23
the way that computers actually solve those problems
75
203021
2727
電腦實際上用來解決 那些問題的方式
03:25
looks a lot more like the way that people really act.
76
205772
2896
看起來很像是人們真正使用的方式。
03:29
Take the example of trying to decide what restaurant to go to.
77
209267
2922
就用決定要去哪間餐廳 吃飯當作例子吧。
03:33
This is a problem that has a particular computational structure.
78
213090
3088
這個問題有特定的計算結構。
03:36
You've got a set of options,
79
216202
1524
你有一組選項,
03:37
you're going to choose one of those options,
80
217750
2049
你得要從那些選項中擇一,
03:39
and you're going to face exactly the same decision tomorrow.
81
219823
2811
且你明天還會面對 完全一樣的決策。
03:42
In that situation,
82
222658
1151
在那樣的情況下,
03:43
you run up against what computer scientists call
83
223833
2295
你碰到的就是電腦科學家所謂的
03:46
the "explore-exploit trade-off."
84
226152
2372
「探索/利用的權衡」。
03:49
You have to make a decision
85
229115
1334
你得要做一個決策,
03:50
about whether you're going to try something new --
86
230473
2334
決定你是否要嘗試新選項——
03:52
exploring, gathering some information
87
232831
2183
去「探索」,收集一些未來
03:55
that you might be able to use in the future --
88
235038
2285
可能會用到的資訊——
03:57
or whether you're going to go to a place that you already know is pretty good --
89
237347
3793
或者你是否要選擇去 你已經知道不錯的地方——
04:01
exploiting the information that you've already gathered so far.
90
241164
3003
「利用」你目前已經 收集到的資訊。
04:05
The explore/exploit trade-off shows up any time you have to choose
91
245488
3096
探索/利用的權衡會出現在每次
04:08
between trying something new
92
248608
1350
你必須要從新選項和已經知道 不錯的選項中擇一的情況下,
04:09
and going with something that you already know is pretty good,
93
249982
2980
04:12
whether it's listening to music
94
252986
1550
也許是聽音樂,
04:14
or trying to decide who you're going to spend time with.
95
254560
2634
或者是試著決定 你要跟誰一起殺時間。
04:17
It's also the problem that technology companies face
96
257218
2494
這也是科技公司會面臨的問題,
04:19
when they're trying to do something like decide what ad to show on a web page.
97
259736
3667
比如決定要在網頁上放什麼 廣告時,遇到的就是這種問題。
它們應該要刊登新廣告, 從中得到一些資訊嗎?
04:23
Should they show a new ad and learn something about it,
98
263417
2572
或是它們應該要給你看
04:26
or should they show you an ad
99
266003
1383
04:27
that they already know there's a good chance you're going to click on?
100
267420
3306
一則它們已經知道你很有可能 會點選的廣告?
04:30
Over the last 60 years,
101
270750
1151
在過去六十年,
04:31
computer scientists have made a lot of progress understanding
102
271925
2892
電腦科學家在了解 探索/利用的權衡上,
04:34
the explore/exploit trade-off,
103
274841
1452
有相當多進展,
04:36
and their results offer some surprising insights.
104
276317
2398
他們的結果帶來了 一些讓人吃驚的洞見。
04:39
When you're trying to decide what restaurant to go to,
105
279291
2598
當你要試著決定該去哪一間餐廳時,
04:41
the first question you should ask yourself
106
281913
2000
你應該先問你自己一個問題:
04:43
is how much longer you're going to be in town.
107
283937
2179
你還會待在鎮上多久?
04:46
If you're just going to be there for a short time,
108
286505
2342
如果你只是短暫停留,
04:48
then you should exploit.
109
288871
1515
那麼你應該要「利用」。
04:50
There's no point gathering information.
110
290410
1905
收集資訊是沒有意義的。
04:52
Just go to a place you already know is good.
111
292339
2048
直接去一個你已經 知道不錯的地方吧。
04:54
But if you're going to be there for a longer time, explore.
112
294411
2929
但如果你會待久一點, 就「探索」吧。
04:57
Try something new, because the information you get
113
297364
2387
試試新選項,因為 你從中得到的資訊
04:59
is something that can improve your choices in the future.
114
299775
2974
可能協助你在未來做更好的選擇。
05:02
The value of information increases
115
302773
1979
你越有可能用到一項資訊,
05:04
the more opportunities you're going to have to use it.
116
304776
2600
該資訊的價值就會增加。
05:08
This principle can give us insight
117
308193
1754
這條原則也能協助我們
05:09
into the structure of a human life as well.
118
309971
2070
洞察人類的人生。
05:13
Babies don't have a reputation for being particularly rational.
119
313104
3053
寶寶通常不會特別理性。
05:17
They're always trying new things,
120
317098
1825
他們總是在嘗試新東西,
05:18
and you know, trying to stick them in their mouths.
121
318947
2836
你們知道的,總把 新東西放到嘴巴裡。
05:22
But in fact, this is exactly what they should be doing.
122
322621
2952
但,事實上,他們 的確應該要這麼做。
05:25
They're in the explore phase of their lives,
123
325597
2430
他們正處在人生的探索階段,
05:28
and some of those things could turn out to be delicious.
124
328051
2621
他們嘗試的東西當中, 有些可能真的會很美味。
05:32
At the other end of the spectrum,
125
332040
1572
在光譜的另一端,
05:33
the old guy who always goes to the same restaurant
126
333636
2506
是老人,他們總是去同樣的餐廳,
05:36
and always eats the same thing
127
336166
1635
總是點同樣的食物,
05:37
isn't boring --
128
337825
1328
並不是無趣,
05:39
he's optimal.
129
339177
1509
而是最佳化的選擇。
05:40
(Laughter)
130
340710
3830
(笑聲)
05:44
He's exploiting the knowledge that he's earned
131
344564
2228
他在利用他從一生的經驗中
05:46
through a lifetime's experience.
132
346816
1767
已經得到的知識。
05:50
More generally,
133
350406
1151
更普遍來說,知道有 「探索/利用的權衡」,
05:51
knowing about the explore/exploit trade-off
134
351581
2031
05:53
can make it a little easier for you to sort of relax and go easier on yourself
135
353636
3667
就能讓你在做決策時能更輕鬆些,
不要對自己太嚴厲。
05:57
when you're trying to make a decision.
136
357327
1810
你不需要每晚都去最好的餐廳。
05:59
You don't have to go to the best restaurant every night.
137
359161
2728
06:01
Take a chance, try something new, explore.
138
361913
2979
冒個險,嘗試新餐廳,去探索。
06:04
You might learn something.
139
364916
1627
你可能會學到些什麼。
06:06
And the information that you gain
140
366567
1589
而你所得到的資訊
06:08
is going to be worth more than one pretty good dinner.
141
368180
2543
價值絕對勝過一頓好吃的晚餐。
06:12
Computer science can also help to make it easier on us
142
372178
2699
在家中或在辦公室裡的其他地方,
06:14
in other places at home and in the office.
143
374901
2152
電腦科學也能夠讓我們更輕鬆些。
06:17
If you've ever had to tidy up your wardrobe,
144
377860
2453
如果你得要整理你的衣櫥,
06:20
you've run into a particularly agonizing decision:
145
380337
2671
你會碰到一個特別煩惱的決定:
06:23
you have to decide what things you're going to keep
146
383032
2382
你得要決定哪些東西該留下,
06:25
and what things you're going to give away.
147
385438
2009
哪些東西該送人。
06:27
Martha Stewart turns out to have thought very hard about this --
148
387974
3000
結果發現瑪莎史都華花了 很多功夫在想這件事——
06:30
(Laughter)
149
390998
1205
(笑聲)
06:32
and she has some good advice.
150
392227
1678
她有些不錯的忠告。
06:33
She says, "Ask yourself four questions:
151
393929
2295
她說:「問你自己四個問題:
06:36
How long have I had it?
152
396248
1526
我已經持有它多久了?
06:37
Does it still function?
153
397798
1450
它還有功能嗎?
06:39
Is it a duplicate of something that I already own?
154
399272
3199
它是不是跟某樣 我已經擁有的東西一樣?
06:42
And when was the last time I wore it or used it?"
155
402495
2411
我上次穿它或用它是什麼時候?」
06:46
But there's another group of experts
156
406648
1715
但還有另一群專家
06:48
who perhaps thought even harder about this problem,
157
408387
3130
花了更多功夫在想這個問題,
06:51
and they would say one of these questions is more important than the others.
158
411541
3660
他們會說,這些問題當中 有一個比其他的都還重要。
06:55
Those experts?
159
415819
1150
那些專家是誰?
06:57
The people who design the memory systems of computers.
160
417281
2848
設計出電腦記憶體系統的人。
07:00
Most computers have two kinds of memory systems:
161
420153
2254
大部分的電腦有兩種記憶體系統:
07:02
a fast memory system,
162
422431
1387
快速記憶體系統,
07:03
like a set of memory chips that has limited capacity,
163
423842
3169
就像是一組記憶體晶片,容量有限,
07:07
because those chips are expensive,
164
427035
2052
因為那些晶片很貴,
07:09
and a slow memory system, which is much larger.
165
429111
3260
還有慢速記憶體系統, 它的容量大很多。
07:13
In order for the computer to operate as efficiently as possible,
166
433239
3000
為了要讓電腦的 運作效能盡可能提高,
07:16
you want to make sure
167
436263
1151
你會希望能確保你要存取的資訊
07:17
that the pieces of information you want to access
168
437438
2352
07:19
are in the fast memory system,
169
439814
1477
位在快速記憶體系統中, 這樣你就能快速取得它。
07:21
so that you can get to them quickly.
170
441315
1754
每當你存取一項資訊時,
07:23
Each time you access a piece of information,
171
443093
2061
它就會被載入快速記憶體中,
07:25
it's loaded into the fast memory
172
445178
1525
07:26
and the computer has to decide which item it has to remove from that memory,
173
446727
3877
電腦得要決定要從 快速記憶體中移除哪個項目,
07:30
because it has limited capacity.
174
450628
1741
因為它的容量有限。
07:33
Over the years,
175
453794
1151
數年來,電腦科學家 試過幾種不同的策略
07:34
computer scientists have tried a few different strategies
176
454969
2739
來判定該從快速記憶體中移除什麼。
07:37
for deciding what to remove from the fast memory.
177
457732
2292
他們有試過隨機選擇的方法,
07:40
They've tried things like choosing something at random
178
460048
3176
07:43
or applying what's called the "first-in, first-out principle,"
179
463248
2906
也試過採用「先進先出」的原則,
07:46
which means removing the item
180
466178
1399
也就是說把在記憶體當中 最久的項目給移除。
07:47
which has been in the memory for the longest.
181
467601
2176
07:50
But the strategy that's most effective
182
470091
2713
不過,最有效的策略,
07:52
focuses on the items which have been least recently used.
183
472828
3229
是把目標放在近期最少使用的項目。
07:56
This says if you're going to decide to remove something from memory,
184
476972
3191
這種策略就是,如果你得 從記憶體中移除某樣東西,
08:00
you should take out the thing which was last accessed the furthest in the past.
185
480187
4968
你應該選擇最後一次使用時間 是最久遠的那樣東西。
08:05
And there's a certain kind of logic to this.
186
485179
2159
這背後是有某種邏輯的。
08:07
If it's been a long time since you last accessed that piece of information,
187
487362
3598
如果你上次存取那項資訊 已經是很久以前的事了,
08:10
it's probably going to be a long time
188
490984
1762
你下次需要存取它的時間
08:12
before you're going to need to access it again.
189
492770
2192
應該也會是很久以後。
08:15
Your wardrobe is just like the computer's memory.
190
495787
2774
你的衣櫥就像是電腦的記憶體。
08:18
You have limited capacity,
191
498585
2030
你的容量有限,
08:20
and you need to try and get in there the things that you're most likely to need
192
500639
5327
你得要把你最有可能 用到的東西放進去,
08:25
so that you can get to them as quickly as possible.
193
505990
2419
這樣你才能夠盡快取得它們。
認知到這一點後,
08:29
Recognizing that,
194
509016
1151
08:30
maybe it's worth applying the least recently used principle
195
510191
2813
也許也值得嘗試應用 「近期最少使用」原則
08:33
to organizing your wardrobe as well.
196
513028
1949
來整理你的衣櫥。
08:35
So if we go back to Martha's four questions,
197
515001
2082
如果我們回到瑪莎的四個問題,
08:37
the computer scientists would say that of these,
198
517107
2861
電腦科學家會說,在這些問題中,
08:39
the last one is the most important.
199
519992
1941
最後一個問題是最重要。
08:43
This idea of organizing things
200
523473
2055
在整理東西時,要讓你最可能
08:45
so that the things you are most likely to need are most accessible
201
525552
3129
需要的東西最容易存取的這個想法,
08:48
can also be applied in your office.
202
528705
1676
也可以應用到你的辦公室中。
08:51
The Japanese economist Yukio Noguchi
203
531091
1930
日本經濟學家野口悠紀雄
08:53
actually invented a filing system that has exactly this property.
204
533045
3055
真的發明了一個具有 這種特性的建檔系統。
08:57
He started with a cardboard box,
205
537161
1609
他從一個紙箱子開始,
08:58
and he put his documents into the box from the left-hand side.
206
538794
2940
他把他的文件 從左到右放進箱子中。
09:02
Each time he'd add a document,
207
542067
1434
每當他放入一份文件時, 他就得要移動箱中的文件,
09:03
he'd move what was in there along
208
543525
1621
才能把新放入的文件 放入箱子的左邊。
09:05
and he'd add that document to the left-hand side of the box.
209
545170
2810
每當他需要使用一份文件時, 他會把該文件取出,
09:08
And each time he accessed a document, he'd take it out,
210
548004
2667
09:10
consult it and put it back in on the left-hand side.
211
550695
2608
使用完之後放回到最左邊。
09:13
As a result, the documents would be ordered from left to right
212
553327
3281
這樣的結果是, 文件會從左到右排好,
09:16
by how recently they had been used.
213
556632
1761
最左邊的是最近期使用過的。
09:18
And he found he could quickly find what he was looking for
214
558417
2774
他發現這樣排之後, 他只要從箱子的左邊開始
09:21
by starting at the left-hand side of the box
215
561215
2054
一直向右找,就能快速 找到他想找的文件。
09:23
and working his way to the right.
216
563293
1572
09:25
Before you dash home and implement this filing system --
217
565215
2621
在你們衝回家導入 這個建檔系統之前——
09:27
(Laughter)
218
567860
1731
(笑聲)
09:29
it's worth recognizing that you probably already have.
219
569615
2638
值得先想想,你可能 已經有這個系統了。
09:32
(Laughter)
220
572891
3310
(笑聲)
09:36
That pile of papers on your desk ...
221
576225
2866
你書桌上的那疊紙……
09:39
typically maligned as messy and disorganized,
222
579115
2474
通常都被別人誹謗說是亂七八糟,
09:41
a pile of papers is, in fact, perfectly organized --
223
581613
2565
其實是有著完美 組織系統的一疊紙——
09:44
(Laughter)
224
584202
1000
(笑聲)
09:45
as long as you, when you take a paper out,
225
585226
2014
只要你每次把一張紙拿出來,
09:47
put it back on the top of the pile,
226
587264
2432
用完之後會放回那疊紙的最上方,
09:49
then those papers are going to be ordered from top to bottom
227
589720
2826
那麼那疊紙從上到下 就排好了順序,
09:52
by how recently they were used,
228
592570
1552
最上面的是最近期使用的,
09:54
and you can probably quickly find what you're looking for
229
594146
2701
你從那疊紙的最上面開始找,
09:56
by starting at the top of the pile.
230
596871
1700
可能就能快速找到你要的。
09:59
Organizing your wardrobe or your desk
231
599988
1848
整理你的衣櫥或你的書桌
10:01
are probably not the most pressing problems in your life.
232
601860
2681
可能不是你人生中最緊迫的問題。
10:05
Sometimes the problems we have to solve are simply very, very hard.
233
605588
3602
有時,我們需要解決的問題 就是非常非常難搞。
10:09
But even in those cases,
234
609716
1150
但即使在那些情況下,
10:10
computer science can offer some strategies
235
610890
2021
電腦科學也能夠提供一些策略,
10:12
and perhaps some solace.
236
612935
1669
也許還能提供一些安慰。
10:16
The best algorithms are about doing what makes the most sense
237
616048
3075
最好的演算法, 就是要在最短的時間內
10:19
in the least amount of time.
238
619147
1502
做出最合理的舉動。
10:22
When computers face hard problems,
239
622627
1958
當電腦面臨困難的問題時,
10:24
they deal with them by making them into simpler problems --
240
624609
2762
它們的處理方式是把那些問題 變成更簡單的問題——
10:27
by making use of randomness,
241
627395
1346
做法包括使用隨機性、
10:28
by removing constraints or by allowing approximations.
242
628765
3817
移除限制式,或是允許近似值。
10:32
Solving those simpler problems
243
632606
1494
解決那些較簡單的問題,
10:34
can give you insight into the harder problems,
244
634124
2920
就能提供你關於 原本困難問題的洞見,
10:37
and sometimes produces pretty good solutions in their own right.
245
637068
3031
有時,還能自己產生出 很好的解決方案。
10:41
Knowing all of this has helped me to relax when I have to make decisions.
246
641658
3569
知道這一切,讓我在 必須要做決策時能夠放輕鬆。
10:45
You could take the 37 percent rule for finding a home as an example.
247
645251
3255
可以用找房子時的 37% 規則來當例子。
10:49
There's no way that you can consider all of the options,
248
649015
2702
你不可能把所有的 選項都納入考量,
10:51
so you have to take a chance.
249
651741
1580
所以你得要冒險。
10:53
And even if you follow the optimal strategy,
250
653888
2860
即使你遵循最佳化策略,
10:56
you're not guaranteed a perfect outcome.
251
656772
1931
也不能保證你會得到最完美的結果。
10:59
If you follow the 37 percent rule,
252
659198
2154
如果你遵循 37% 規則,
11:01
the probability that you find the very best place is --
253
661376
3279
你能找到最棒的地方的機率是——
11:04
funnily enough ...
254
664679
1508
很有趣……
11:06
(Laughter)
255
666211
1014
(笑聲)
11:07
37 percent.
256
667249
1420
是 37%。
11:09
You fail most of the time.
257
669966
1689
大部分的時候,你會失敗。
11:12
But that's the best that you can do.
258
672522
1744
但你能做到最好的就是這樣了。
11:14
Ultimately, computer science can help to make us more forgiving
259
674846
3052
最終,電腦科學會協助讓我們
11:17
of our own limitations.
260
677922
1909
更能原諒自己的限制。
11:20
You can't control outcomes, just processes.
261
680333
2539
你不能控制結果,只能控制過程。
11:22
And as long as you've used the best process,
262
682896
2119
只要你已經用了最好的過程,
11:25
you've done the best that you can.
263
685039
1763
你就已經盡了全力。
11:26
Sometimes those best processes involve taking a chance --
264
686826
3688
有時,最好的過程會需要冒點險——
11:30
not considering all of your options,
265
690538
2115
比如不去考量所有的選項,
11:32
or being willing to settle for a pretty good solution.
266
692677
2729
或是願意妥協,接受 算是不錯的解決方案。
11:35
These aren't the concessions that we make when we can't be rational --
267
695430
3350
這些並不是我們在無法 理性時所做的讓步——
11:38
they're what being rational means.
268
698804
1629
它們就是理性的真締。
11:40
Thank you.
269
700833
1151
謝謝大家。
11:42
(Applause)
270
702008
4547
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7