3 ways to make better decisions -- by thinking like a computer | Tom Griffiths

941,526 views

2018-10-05 ใƒป TED


New videos

3 ways to make better decisions -- by thinking like a computer | Tom Griffiths

941,526 views ใƒป 2018-10-05

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Yoonyoung Chang ๊ฒ€ํ† : Jihyeon J. Kim
00:13
If there's one city in the world
0
13407
1581
์„ธ๊ณ„์—์„œ ํ•œ ๋„์‹œ๊ฐ€
00:15
where it's hard to find a place to buy or rent,
1
15012
2333
์ง‘์„ ์‚ฌ๊ฑฐ๋‚˜ ์ž„๋Œ€ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ณณ์ด ์žˆ๋‹ค๋ฉด
00:17
it's Sydney.
2
17369
1150
๊ทธ๊ฑด ์‹œ๋“œ๋‹ˆ์ž…๋‹ˆ๋‹ค.
00:19
And if you've tried to find a home here recently,
3
19043
2367
์ตœ๊ทผ ์—ฌ๊ธฐ์„œ ์ง‘์„ ๊ตฌํ•˜๋ ค ํ–ˆ๋‹ค๋ฉด
00:21
you're familiar with the problem.
4
21434
1840
์—ฌ๋Ÿฌ๋ถ„์€ ์ด ๋ฌธ์ œ์— ์ต์ˆ™ํ•  ๊ฒ๋‹ˆ๋‹ค.
00:23
Every time you walk into an open house,
5
23298
2014
๋งค๋ฌผ๋กœ ๋‚˜์˜จ ์ง‘์„ ๋ณด๋Ÿฌ ๊ฐˆ ๋•Œ๋งˆ๋‹ค
00:25
you get some information about what's out there
6
25336
2191
๋ฐ–์— ๋ฌด์—‡์ด ์žˆ๊ณ 
00:27
and what's on the market,
7
27551
1393
์‹œ์žฅ์— ๋ฌด์—‡์ด ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค.
00:28
but every time you walk out,
8
28968
1430
ํ•˜์ง€๋งŒ ๋งค๋ฒˆ ๋‚˜์˜ฌ ๋•Œ๋งˆ๋‹ค
00:30
you're running the risk of the very best place passing you by.
9
30422
3214
๋ฐ”๋กœ ์ตœ์ ์˜ ์žฅ์†Œ๋ฅผ ์ง€๋‚˜์น˜๋Š” ์œ„ํ—˜์— ์ฒ˜ํ•˜์ฃ .
00:33
So how do you know when to switch from looking
10
33660
2820
๋ณด๊ธฐ๋งŒ ํ•˜๋‹ค๊ฐ€ ์ œ์•ˆํ•ด์•ผ ํ•  ๋•Œ๋ฅผ ์–ด๋–ป๊ฒŒ ์•Œ ์ˆ˜ ์žˆ์„๊นŒ์š”?
00:36
to being ready to make an offer?
11
36504
1562
00:39
This is such a cruel and familiar problem
12
39663
2401
์ด๋Š” ์ฐธ ๊ณ ํ†ต์Šค๋Ÿฝ๊ณ  ์นœ์ˆ™ํ•œ ๋ฌธ์ œ์ธ๋ฐ
00:42
that it might come as a surprise that it has a simple solution.
13
42088
3074
๊ฐ„๋‹จํ•œ ํ•ด๊ฒฐ์ฑ…์ด ์žˆ๋‹ค๋Š” ๊ฑด ๋†€๋ผ์šด ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
00:45
37 percent.
14
45588
1203
37%์ž…๋‹ˆ๋‹ค.
00:46
(Laughter)
15
46815
1828
(์›ƒ์Œ)
00:48
If you want to maximize the probability that you find the very best place,
16
48667
3936
์ตœ์ƒ์˜ ์žฅ์†Œ๋ฅผ ์ฐพ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด
00:52
you should look at 37 percent of what's on the market,
17
52627
2825
์‹œ์žฅ์— ์žˆ๋Š” 37%๋ฅผ ๋ฐ˜๋“œ์‹œ ๋ณด๊ณ 
00:55
and then make an offer on the next place you see,
18
55476
2310
๊ทธ ๋‹ค์Œ์— ๋ณด๋Š” ๊ณณ์— ์ œ์•ˆ์„ ํ•˜๋ฉด ๋˜๋Š”๋ฐ
00:57
which is better than anything that you've seen so far.
19
57810
2524
๊ทธ๊ณณ์ด ์ง€๊ธˆ๊นŒ์ง€ ๋ณธ ์–ด๋Š ๊ณณ๋ณด๋‹ค ๋” ์ข‹์„ ๊ฒ๋‹ˆ๋‹ค.
01:00
Or if you're looking for a month, take 37 percent of that time --
20
60358
3805
ํ˜น์€ ํ•œ ๋‹ฌ ๋™์•ˆ ์ฐพ๋Š”๋‹ค๋ฉด 37%์˜ ์‹œ๊ฐ„์ธ
01:04
11 days, to set a standard --
21
64187
2915
11์ผ์„ ๋ณด๋Š” ๊ฑฐ์ฃ . ๊ธฐ์ค€์„ ์ •ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
01:07
and then you're ready to act.
22
67126
1575
๊ทธ๋ฆฌ๊ณ  ๋‚˜๋ฉด ์—ฌ๋Ÿฌ๋ถ„์€ ์‹คํ–‰ํ•œ ์ค€๋น„๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
01:09
We know this because trying to find a place to live
23
69829
2709
์‚ด ๊ณณ์„ ์ฐพ๋Š” ๊ฒƒ์€
01:12
is an example of an optimal stopping problem.
24
72562
2325
์ตœ๋Ÿ‰ ์ •์ง€ ๋ฌธ์ œ์˜ ์‹ค์ œ ์‚ฌ๋ก€์ด๊ธฐ ๋•Œ๋ฌธ์— ์šฐ๋ฆฌ๋Š” ์ด๋ฅผ ์••๋‹ˆ๋‹ค.
01:14
A class of problems that has been studied extensively
25
74911
2483
๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋œ ๋ฌธ์ œ ์ข…๋ฅ˜ ์ค‘ ํ•˜๋‚˜๋กœ
01:17
by mathematicians and computer scientists.
26
77418
2105
์ˆ˜ํ•™์ž์™€ ์ปดํ“จํ„ฐ ๊ณผํ•™์ž๊ฐ€ ์ฃผ๋กœ ๋‹ค๋ฃจ์ฃ .
01:21
I'm a computational cognitive scientist.
27
81502
2519
์ €๋Š” ์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ธ์ง€ ๊ณผํ•™์ž์ž…๋‹ˆ๋‹ค.
01:24
I spend my time trying to understand
28
84045
1960
์ €๋Š” ์ธ๊ฐ„์˜ ๋งˆ์Œ ์ž‘๋™๋ฐฉ์‹์— ๋Œ€ํ•ด
01:26
how it is that human minds work,
29
86029
1798
์ดํ•ดํ•˜๋ ค๊ณ  ์‹œ๊ฐ„์„ ๋ณด๋ƒ…๋‹ˆ๋‹ค.
01:27
from our amazing successes to our dismal failures.
30
87851
3671
์—„์ฒญ๋‚œ ์„ฑ๊ณต์—์„œ๋ถ€ํ„ฐ ํ˜•ํŽธ์—†๋Š” ์‹คํŒจ์— ๋Œ€ํ•œ ๊ฒƒ์„์š”.
01:32
To do that, I think about the computational structure
31
92552
2493
๊ทธ๋ ‡๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ์ €๋Š” ๋งค์ผ์˜ ์‚ถ์—์„œ ์ผ์–ด๋‚˜๋Š” ๋ฌธ์ œ๋ฅผ
01:35
of the problems that arise in everyday life,
32
95069
2659
์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•œ ๊ตฌ์กฐ๋กœ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
01:37
and compare the ideal solutions to those problems
33
97752
2375
๊ทธ๋Ÿฐ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•œ ์ด์ƒ์ ์ธ ํ•ด๊ฒฐ์ฑ…๊ณผ
01:40
to the way that we actually behave.
34
100151
1747
์šฐ๋ฆฌ๊ฐ€ ์‹ค์ œ๋กœ ํ•˜๋Š” ํ–‰๋™๋ฐฉ์‹์„ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค.
01:42
As a side effect,
35
102725
1185
๋ถ€์ž‘์šฉ์œผ๋กœ
01:43
I get to see how applying a little bit of computer science
36
103934
2715
์ปดํ“จํ„ฐ ๊ณผํ•™์˜ ์ผ๋ถ€๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ์–ผ๋งˆ๋‚˜
01:46
can make human decision-making easier.
37
106673
1860
์ธ๊ฐ„์˜ ์˜์‚ฌ๊ฒฐ์ •์„ ํŽธํ•˜๊ฒŒ ํ•˜๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:49
I have a personal motivation for this.
38
109828
1847
์ €๋Š” ์ด์— ๋Œ€ํ•ด ๊ฐœ์ธ์ ์ธ ๋™๊ธฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
01:52
Growing up in Perth as an overly cerebral kid ...
39
112153
3166
ํผ์Šค์—์„œ ์ง€๋‚˜์น˜๊ฒŒ ์ง€์ ์ธ ์•„์ด๋กœ ์„ฑ์žฅํ–ˆ์ฃ .
01:55
(Laughter)
40
115343
4731
(์›ƒ์Œ)
02:00
I would always try and act in the way that I thought was rational,
41
120098
3147
์ €๋Š” ํ•ญ์ƒ ์ด์„ฑ์ ์ด๋ผ๊ณ  ์ƒ๊ฐํ•œ ๋ฐฉ์‹๋Œ€๋กœ ํ–‰๋™ํ•˜๋ ค ํ–ˆ์–ด์š”.
02:03
reasoning through every decision,
42
123269
1597
๋ชจ๋“  ์˜์‚ฌ๊ฒฐ์ •์„ ํ†ตํ•ด ๋…ผ๋ฆฌ์  ๊ทผ๊ฑฐ๋ฅผ ํŒ๋‹จํ•˜๊ณ 
02:04
trying to figure out the very best action to take.
43
124890
2403
ํ•ด์•ผ ํ•  ์ตœ์ƒ์˜ ํ–‰๋™์„ ์ƒ๊ฐํ•ด๋‚ด๋ ค๊ณ  ํ–ˆ์ฃ .
02:07
But this is an approach that doesn't scale up
44
127972
2190
ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๋” ํฐ ๊ทœ๋ชจ๋กœ ํ‚ค์šธ ์ˆœ ์—†์–ด์š”.
02:10
when you start to run into the sorts of problems
45
130186
2242
์„ฑ์ธ์˜ ์‚ถ์— ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š”
02:12
that arise in adult life.
46
132452
1500
๋งŽ์€ ๋ฌธ์ œ์™€ ๋ถ€๋”ชํžˆ๊ธฐ ์‹œ์ž‘ํ•  ๋•Œ ๋ง์ž…๋‹ˆ๋‹ค.
02:13
At one point, I even tried to break up with my girlfriend
47
133976
2728
ํ•œ๋•Œ ์ €๋Š” ์ œ ์—ฌ์ž ์นœ๊ตฌ์™€ ํ—ค์–ด์ง€๋ ค๊ณ ๋„ ํ–ˆ๋Š”๋ฐ
02:16
because trying to take into account her preferences as well as my own
48
136728
3350
์ €์™€ ๊ทธ๋…€์˜ ์„ ํ˜ธ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ
02:20
and then find perfect solutions --
49
140102
1683
์™„๋ฒฝํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ฐพ๋‹ค ๋ณด๋‹ˆ ๊ทธ๋žฌ์ฃ .
02:21
(Laughter)
50
141809
2259
(์›ƒ์Œ)
02:24
was just leaving me exhausted.
51
144092
1752
๊ทธ๋Ÿฌ๋‹ˆ ์ œ๊ฐ€ ์™„์ „ ์ง€์ณค์Šต๋‹ˆ๋‹ค.
02:25
(Laughter)
52
145868
2533
(์›ƒ์Œ)
02:28
She pointed out that I was taking the wrong approach
53
148425
2429
๊ทธ๋…€๋Š” ์ œ๊ฐ€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์žˆ์–ด์„œ
02:30
to solving this problem --
54
150878
1609
์ž˜๋ชป๋œ ์ ‘๊ทผ์„ ํ–ˆ๋‹ค๊ณ  ์ง€์ ํ–ˆ์Šต๋‹ˆ๋‹ค.
02:32
and she later became my wife.
55
152511
1382
๊ทธ๋ฆฌ๊ณ ๋Š” ๋‚˜์ค‘์— ์ œ ์•„๋‚ด๊ฐ€ ๋˜์—ˆ์ฃ .
02:33
(Laughter)
56
153917
2062
(์›ƒ์Œ)
02:36
(Applause)
57
156003
4971
(๋ฐ•์ˆ˜)
02:40
Whether it's as basic as trying to decide what restaurant to go to
58
160998
3461
์–ด๋Š ์‹๋‹น์— ๊ฐˆ์ง€ ๊ฒฐ์ •ํ•˜๋ ค๊ณ  ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๊ธฐ์ดˆ์ ์ด๋“  ์•„๋‹ˆ๋“ 
02:44
or as important as trying to decide who to spend the rest of your life with,
59
164483
4055
ํ˜น์€ ๋ˆ„๊ตฌ์™€ ํ•จ๊ป˜ ๋‚˜๋จธ์ง€ ์ธ์ƒ์„ ๋ณด๋‚ผ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์ค‘์š”ํ•˜๋“  ์•„๋‹ˆ๋“ 
02:48
human lives are filled with computational problems
60
168562
2375
์ธ๊ฐ„์˜ ์‚ถ์€ ๊ณ„์‚ฐ์ ์ธ ๋ฌธ์ œ๋กœ ๊ฐ€๋“ํ•ฉ๋‹ˆ๋‹ค.
02:50
that are just too hard to solve by applying sheer effort.
61
170961
4196
์ˆœ์ˆ˜ํ•œ ๋…ธ๋ ฅ์œผ๋กœ๋Š” ํ’€๊ธฐ๊ฐ€ ๋„ˆ๋ฌด ์–ด๋ ค์šด ๊ฒƒ๋“ค์ด์ฃ .
02:55
For those problems,
62
175650
1166
๊ทธ๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์œ„ํ•ด์„œ๋Š”
02:56
it's worth consulting the experts:
63
176840
1961
์ „๋ฌธ๊ฐ€์™€์˜ ์ƒ๋‹ด์ด ์ข‹์Šต๋‹ˆ๋‹ค.
02:58
computer scientists.
64
178825
1151
๋ฐ”๋กœ ์ปดํ“จํ„ฐ ๊ณผํ•™์ž์ฃ .
03:00
(Laughter)
65
180000
1784
(์›ƒ์Œ)
03:01
When you're looking for life advice,
66
181808
1819
์—ฌ๋Ÿฌ๋ถ„์ด ์ธ์ƒ์˜ ์กฐ์–ธ์„ ๊ตฌํ•  ๋•Œ
03:03
computer scientists probably aren't the first people you think to talk to.
67
183651
3640
์•„๋งˆ๋„ ์—ฌ๋Ÿฌ๋ถ„์€ ์ปดํ“จํ„ฐ ๊ณผํ•™์ž๋ฅผ ๊ฐ€์žฅ ๋จผ์ € ๋– ์˜ฌ๋ฆฌ์ง€๋Š” ์•Š์„ ๊ฒ๋‹ˆ๋‹ค.
03:07
Living life like a computer --
68
187315
1875
์ปดํ“จํ„ฐ์™€ ๊ฐ™์€ ์‚ถ์„ ์‚ด๊ณ 
03:09
stereotypically deterministic, exhaustive and exact --
69
189214
2578
์ง„๋ถ€ํ•˜๊ฒŒ ๊ฒฐ์ •๋ก ์ ์ด๊ณ , ์ฒ ์ €ํ•˜๊ณ , ์ •ํ™•ํ•œ ๊ฒƒ์€
03:11
doesn't sound like a lot of fun.
70
191816
1552
์žฌ๋ฏธ์žˆ๊ฒŒ ๋“ค๋ฆฌ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
03:14
But thinking about the computer science of human decisions
71
194153
2927
ํ•˜์ง€๋งŒ ์ธ๊ฐ„ ์˜์‚ฌ๊ฒฐ์ •์— ๋Œ€ํ•ด ์ปดํ“จํ„ฐ ๊ณผํ•™์„ ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์€
03:17
reveals that in fact, we've got this backwards.
72
197104
2408
์‚ฌ์‹ค์€ ๋ฐ˜๋Œ€์˜ ํ˜„์ƒ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
03:19
When applied to the sorts of difficult problems
73
199536
2198
๋งŽ์€ ์–ด๋ ค์šด ๋ฌธ์ œ
์ธ๊ฐ„์˜ ์‚ถ์—์„œ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ๋ฅผ ์ ์šฉํ•  ๋•Œ
03:21
that arise in human lives,
74
201758
1239
03:23
the way that computers actually solve those problems
75
203021
2727
์ปดํ“จํ„ฐ๊ฐ€ ์‹ค์ œ๋กœ ๊ทธ๋Ÿฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์€
03:25
looks a lot more like the way that people really act.
76
205772
2896
์‚ฌ๋žŒ์ด ์‹ค์ œ๋กœ ํ–‰๋™ํ•˜๋Š” ๋ฐฉ์‹์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค.
03:29
Take the example of trying to decide what restaurant to go to.
77
209267
2922
์–ด๋Š ์‹๋‹น์— ๊ฐˆ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ์˜ˆ์‹œ๋ฅผ ๋“ค์–ด๋ณด์ฃ .
03:33
This is a problem that has a particular computational structure.
78
213090
3088
์ด๋Š” ํŠน์ •ํ•œ ๊ณ„์‚ฐ์  ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
03:36
You've got a set of options,
79
216202
1524
์—ฌ๋Ÿฌ๋ถ„์€ ์ผ๋ จ์˜ ์„ ํƒ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ 
03:37
you're going to choose one of those options,
80
217750
2049
๊ทธ๋Ÿฐ ์„ ํƒ ์ค‘ ํ•˜๋‚˜๋ฅผ ์„ ํƒํ•  ๊ฒƒ์ด๊ณ 
03:39
and you're going to face exactly the same decision tomorrow.
81
219823
2811
๋‚ด์ผ๋„ ๊ฐ™์€ ๊ฒฐ์ •์„ ํ•ด์•ผํ•˜๋Š” ์ƒํ™ฉ์„ ์ •ํ™•ํ•˜๊ฒŒ ๋งˆ์ฃผ์น˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:42
In that situation,
82
222658
1151
๊ทธ ์ƒํ™ฉ์—์„œ
03:43
you run up against what computer scientists call
83
223833
2295
์—ฌ๋Ÿฌ๋ถ„์€ ์ปดํ“จํ„ฐ ๊ณผํ•™์ž๊ฐ€ ๋งํ•˜๋Š”
03:46
the "explore-exploit trade-off."
84
226152
2372
"ํƒ์ƒ‰๊ณผ ํ™œ์šฉ ๊ตํ™˜"์— ๋งˆ์ฃผ์น˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
03:49
You have to make a decision
85
229115
1334
์—ฌ๋Ÿฌ๋ถ„์€ ๊ฒฐ์ •์„ ํ•ด์•ผ ํ•˜๋Š”๋ฐ
03:50
about whether you're going to try something new --
86
230473
2334
์ƒˆ๋กœ์šด ๊ณณ์„ ๊ฐ€๊ธฐ ์œ„ํ•ด
03:52
exploring, gathering some information
87
232831
2183
์ •๋ณด๋ฅผ ๋ชจ์œผ๋Š” ํƒ์ƒ‰์ฒ˜๋Ÿผ
03:55
that you might be able to use in the future --
88
235038
2285
๋‹ค์Œ์— ์‚ฌ์šฉํ•  ์ˆ˜๋„ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด๊ฑฐ๋‚˜
03:57
or whether you're going to go to a place that you already know is pretty good --
89
237347
3793
ํ˜น์€ ์ด๋ฏธ ์ž˜ ์•Œ๊ณ  ์žˆ๋Š” ๊ณณ์— ๊ฐ€๋Š”
04:01
exploiting the information that you've already gathered so far.
90
241164
3003
์ง€๊ธˆ๊นŒ์ง€ ์ด๋ฏธ ๋ชจ์•„ ์˜จ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ๋Š” ๊ฑฐ์ฃ .
04:05
The explore/exploit trade-off shows up any time you have to choose
91
245488
3096
ํƒ์ƒ‰ ํ™œ์šฉ ๊ตํ™˜์€ ์„ ํƒ์„ ํ•ด์•ผ ํ•˜๋Š” ์–ด๋Š ๋•Œ๋‚˜ ๋‚˜ํƒ€๋‚˜๋Š”๋ฐ
04:08
between trying something new
92
248608
1350
์ƒˆ๋กœ์šด ๊ฒƒ์„ ์‹œ๋„ํ•ด๋ณด๋Š” ๊ฒƒ๊ณผ
04:09
and going with something that you already know is pretty good,
93
249982
2980
์ด๋ฏธ ์ž˜ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ ์‚ฌ์ด์— ์žˆ๋Š” ๊ฑฐ์ฃ .
04:12
whether it's listening to music
94
252986
1550
์Œ์•…์„ ๋“ฃ๋Š” ๊ฒƒ์ด๋“ 
04:14
or trying to decide who you're going to spend time with.
95
254560
2634
๋ˆ„๊ตฌ์™€ ํ•จ๊ป˜ ์‹œ๊ฐ„์„ ๋ณด๋‚ผ ๊ฒƒ์ธ๊ฐ€ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์ด๋“ 
04:17
It's also the problem that technology companies face
96
257218
2494
๊ธฐ์ˆ  ํšŒ์‚ฌ๊ฐ€ ์ง๋ฉดํ•˜๋Š” ๋ฌธ์ œ์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
04:19
when they're trying to do something like decide what ad to show on a web page.
97
259736
3667
์›น ํŽ˜์ด์ง€์— ์–ด๋–ค ๊ด‘๊ณ ๋ฅผ ๋ณด์—ฌ์ค„์ง€ ๊ฒฐ์ •ํ•˜๋Š” ๋•Œ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
04:23
Should they show a new ad and learn something about it,
98
263417
2572
์ƒˆ๋กœ์šด ๊ด‘๊ณ ๋ฅผ ๋ณด์—ฌ์ฃผ์–ด ๊ทธ๊ฒƒ์— ๋Œ€ํ•ด ๋ญ”๊ฐ€๋ฅผ ์•Œ๊ฒŒ ํ•ด์•ผ ํ• ์ง€
04:26
or should they show you an ad
99
266003
1383
ํ˜น์€ ์ด๋ฏธ ์ž˜ ์•Œ๊ณ  ์žˆ๋Š” ๊ด‘๊ณ ๋ฅผ ๋ณด์—ฌ์ฃผ์–ด
04:27
that they already know there's a good chance you're going to click on?
100
267420
3306
ํด๋ฆญ์„ ์œ ๋„ํ•ด์•ผ ํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ฑฐ์ฃ .
04:30
Over the last 60 years,
101
270750
1151
์ง€๋‚œ 60๋…„ ๋™์•ˆ
04:31
computer scientists have made a lot of progress understanding
102
271925
2892
์ปดํ“จํ„ฐ ๊ณผํ•™์ž๋“ค์€ ๋งŽ์€ ์ง„์ „์„ ์ด๋ฃจ์—ˆ์Šต๋‹ˆ๋‹ค.
04:34
the explore/exploit trade-off,
103
274841
1452
ํƒ์ƒ‰ ํ™œ์šฉ ๊ตํ™˜์„ ์ดํ•ดํ•˜๊ฒŒ ๋˜์–ด
04:36
and their results offer some surprising insights.
104
276317
2398
์ด๋“ค์˜ ์ œ์•ˆ์€ ๋†€๋ผ์šด ํ†ต์ฐฐ์„ ์ค๋‹ˆ๋‹ค.
04:39
When you're trying to decide what restaurant to go to,
105
279291
2598
์–ด๋Š ์‹๋‹น์— ๊ฐ€์•ผ ํ• ์ง€ ๊ฒฐ์ •ํ•˜๋ ค ํ•  ๋•Œ
04:41
the first question you should ask yourself
106
281913
2000
์—ฌ๋Ÿฌ๋ถ„ ์Šค์Šค๋กœ ํ•ด์•ผ ํ•  ์ฒซ ์งˆ๋ฌธ์€
04:43
is how much longer you're going to be in town.
107
283937
2179
์‹œ๋‚ด์— ์–ผ๋งˆ๋‚˜ ์˜ค๋ž˜ ์žˆ์„ ๊ฒƒ์ธ๊ฐ€์ž…๋‹ˆ๋‹ค.
04:46
If you're just going to be there for a short time,
108
286505
2342
์ž ์‹œ ์žˆ์„ ๊ฑฐ๋ผ๋ฉด
04:48
then you should exploit.
109
288871
1515
ํ™œ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
04:50
There's no point gathering information.
110
290410
1905
์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•  ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
04:52
Just go to a place you already know is good.
111
292339
2048
๊ทธ๋ƒฅ ์ด๋ฏธ ์•„๋Š” ๊ณณ์— ๊ฐ€๋Š” ๊ฒŒ ์ข‹์Šต๋‹ˆ๋‹ค.
04:54
But if you're going to be there for a longer time, explore.
112
294411
2929
ํ•˜์ง€๋งŒ ์˜ค๋ž˜ ์žˆ์„ ๊ฑฐ๋ผ๋ฉด ํƒ์ƒ‰ํ•˜์„ธ์š”.
04:57
Try something new, because the information you get
113
297364
2387
์ƒˆ๋กœ์šด ๊ณณ์„ ์‹œ๋„ํ•˜์„ธ์š”. ์™œ๋ƒ๋ฉด ์—ฌ๋Ÿฌ๋ถ„์ด ๊ฐ€์ง€๋Š” ์ •๋ณด๋Š”
04:59
is something that can improve your choices in the future.
114
299775
2974
๋‹ค์Œ ์„ ํƒ์— ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.
05:02
The value of information increases
115
302773
1979
์ •๋ณด์˜ ๊ฐ€์น˜๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด
05:04
the more opportunities you're going to have to use it.
116
304776
2600
๊ทธ๊ฒƒ์„ ์‚ฌ์šฉํ•  ๊ธฐํšŒ๊ฐ€ ๋” ๋งŽ์•„์ง‘๋‹ˆ๋‹ค.
05:08
This principle can give us insight
117
308193
1754
์ด ์›์น™์€ ์šฐ๋ฆฌ ์ธ๊ฐ„์˜ ์‚ถ์˜ ๊ตฌ์กฐ์—๋„ ํ†ต์ฐฐ์„ ์ค๋‹ˆ๋‹ค.
05:09
into the structure of a human life as well.
118
309971
2070
05:13
Babies don't have a reputation for being particularly rational.
119
313104
3053
์•„๊ธฐ๋“ค์€ ํŠน๋ณ„ํžˆ ์ด์„ฑ์ ์ด์ง€ ์•Š๊ธฐ๋กœ ์œ ๋ช…ํ•ฉ๋‹ˆ๋‹ค.
05:17
They're always trying new things,
120
317098
1825
๊ทธ๋“ค์€ ํ•ญ์ƒ ์ƒˆ๋กœ์šด ๊ฒƒ์„ ์‹œ๋„ํ•˜๊ณ 
05:18
and you know, trying to stick them in their mouths.
121
318947
2836
๋ชจ๋‘ ์ž…์—๋‹ค ์ง‘์–ด ๋„ฃ์ฃ .
05:22
But in fact, this is exactly what they should be doing.
122
322621
2952
ํ•˜์ง€๋งŒ ์•„๊ธฐ๋“ค์€ ๊ทธ๋ ‡๊ฒŒ ํ•ด์•ผ๋งŒ ํ•˜์ฃ .
05:25
They're in the explore phase of their lives,
123
325597
2430
๊ทธ๋“ค์€ ์ž์‹ ์˜ ์‚ถ์˜ ํƒ์ƒ‰ ๋‹จ๊ณ„์— ์žˆ๊ณ 
05:28
and some of those things could turn out to be delicious.
124
328051
2621
๊ทธ๊ฒƒ๋“ค ์ค‘ ์ผ๋ถ€๊ฐ€ ๋ง›์žˆ๋Š” ๊ฒƒ์ด ๋  ์ˆ˜ ์žˆ์ฃ .
05:32
At the other end of the spectrum,
125
332040
1572
์ŠคํŽ™ํŠธ๋Ÿผ์˜ ๋‹ค๋ฅธ ์ชฝ ๋์— ์žˆ๋Š”
05:33
the old guy who always goes to the same restaurant
126
333636
2506
๋…ธ์ธ์€ ํ•ญ์ƒ ๊ฐ™์€ ์‹๋‹น์— ๊ฐ€๊ณ 
05:36
and always eats the same thing
127
336166
1635
ํ•ญ์ƒ ๊ฐ™์€ ๊ฒƒ์„ ๋จน๊ณ 
05:37
isn't boring --
128
337825
1328
์งˆ๋ฆฌ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
05:39
he's optimal.
129
339177
1509
๊ทธ๋Š” ์ตœ์ ์˜ ์ƒํƒœ์ž…๋‹ˆ๋‹ค.
05:40
(Laughter)
130
340710
3830
(์›ƒ์Œ)
05:44
He's exploiting the knowledge that he's earned
131
344564
2228
๊ทธ๋Š” ์ด๋ฏธ ๊ฐ€์ง„ ์ง€์‹์„ ํ™œ์šฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:46
through a lifetime's experience.
132
346816
1767
์ธ์ƒ์˜ ๊ฒฝํ—˜์„ ํ†ตํ•ด์„œ ๋ง์ด์ฃ .
05:50
More generally,
133
350406
1151
๋” ์ผ๋ฐ˜์ ์œผ๋กœ
05:51
knowing about the explore/exploit trade-off
134
351581
2031
ํƒ์ƒ‰ ํ™œ์šฉ ๊ตํ™˜์„ ์•„๋Š” ๊ฒƒ์€
05:53
can make it a little easier for you to sort of relax and go easier on yourself
135
353636
3667
์—ฌ๋Ÿฌ๋ถ„์ด ์Šค์Šค๋กœ ๊ธด์žฅ์„ ํ’€๊ณ  ์‰ฝ๊ฒŒ
05:57
when you're trying to make a decision.
136
357327
1810
๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
05:59
You don't have to go to the best restaurant every night.
137
359161
2728
๋งค์ผ ์ €๋… ์ตœ๊ณ ์˜ ์‹๋‹น์— ๊ฐˆ ํ•„์š”๋Š” ์—†์Šต๋‹ˆ๋‹ค.
06:01
Take a chance, try something new, explore.
138
361913
2979
๊ธฐํšŒ๋ฅผ ๊ฐ€์ง€๊ณ  ์ƒˆ๋กœ์šด ๊ณณ์„ ์‹œ๋„ํ•ด๋ณด๋Š” ํƒ์ƒ‰์„ ํ•˜์„ธ์š”.
06:04
You might learn something.
139
364916
1627
๋ญ”๊ฐ€ ๋ฐฐ์šฐ๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
06:06
And the information that you gain
140
366567
1589
์–ป๊ฒŒ ๋˜๋Š” ์ •๋ณด๋Š”
06:08
is going to be worth more than one pretty good dinner.
141
368180
2543
ํ•œ ๋ฒˆ์˜ ์ข‹์€ ์ €๋…๋ณด๋‹ค ๋” ๊ฐ€์น˜๊ฐ€ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
06:12
Computer science can also help to make it easier on us
142
372178
2699
์ปดํ“จํ„ฐ ๊ณผํ•™์€ ๋˜ํ•œ ์šฐ๋ฆฌ๊ฐ€ ์‰ฝ๊ฒŒ ํ•˜๋„๋ก ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:14
in other places at home and in the office.
143
374901
2152
์ง‘์—๋‚˜ ์‚ฌ๋ฌด์‹ค ๊ฐ™์€ ๋‹ค๋ฅธ ์žฅ์†Œ์—์„œ ๋ง์ด์ฃ .
06:17
If you've ever had to tidy up your wardrobe,
144
377860
2453
์—ฌ๋Ÿฌ๋ถ„์ด ์˜ท์žฅ์„ ๊น”๋”ํ•˜๊ฒŒ ์ •๋ฆฌํ•ด์•ผ ํ•œ๋‹ค๋ฉด
06:20
you've run into a particularly agonizing decision:
145
380337
2671
ํŠนํžˆ ๊ณ ํ†ต์Šค๋Ÿฌ์šด ๊ฒฐ์ •์— ๋ถ€๋”ชํž™๋‹ˆ๋‹ค.
06:23
you have to decide what things you're going to keep
146
383032
2382
์—ฌ๋Ÿฌ๋ถ„์€ ๋ฌด์—‡์„ ๋ณด๊ด€ํ•˜๊ณ 
06:25
and what things you're going to give away.
147
385438
2009
๋ฌด์—‡์„ ๋ฒ„๋ ค์•ผ ํ• ์ง€ ๊ฒฐ์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
06:27
Martha Stewart turns out to have thought very hard about this --
148
387974
3000
๋งˆ์‚ฌ ์ŠคํŠœ์–ดํŠธ๋Š” ์ด์— ๋Œ€ํ•ด ๋งŽ์ด ๊ณ ๋ฏผํ•œ ๊ฒƒ์œผ๋กœ ๋“œ๋Ÿฌ๋‚ฉ๋‹ˆ๋‹ค.
06:30
(Laughter)
149
390998
1205
(์›ƒ์Œ)
06:32
and she has some good advice.
150
392227
1678
๊ทธ๋…€๋Š” ๋ช‡ ๊ฐ€์ง€ ์ข‹์€ ์กฐ์–ธ์„ ํ•ฉ๋‹ˆ๋‹ค.
06:33
She says, "Ask yourself four questions:
151
393929
2295
์ด๋ ‡๊ฒŒ ๋งํ•˜์ฃ . "์Šค์Šค๋กœ์—๊ฒŒ ๋„ค ๊ฐ€์ง€ ์งˆ๋ฌธ์„ ํ•˜์„ธ์š”.
06:36
How long have I had it?
152
396248
1526
๋‚ด๊ฐ€ ์–ผ๋งˆ๋™์•ˆ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‚˜?
06:37
Does it still function?
153
397798
1450
์•„์ง๋„ ๊ดœ์ฐฎ์€๊ฐ€?
06:39
Is it a duplicate of something that I already own?
154
399272
3199
๋‚ด๊ฐ€ ์ด๋ฏธ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ฒƒ๊ณผ ์ค‘๋ณต๋˜์ง€๋Š” ์•Š๋Š”๊ฐ€?
06:42
And when was the last time I wore it or used it?"
155
402495
2411
๋‚ด๊ฐ€ ๋งˆ์ง€๋ง‰์œผ๋กœ ์ž…๊ฑฐ๋‚˜ ์‚ฌ์šฉํ•œ ๊ฒŒ ์–ธ์ œ์ธ๊ฐ€?"
06:46
But there's another group of experts
156
406648
1715
๊ทธ๋Ÿฌ๋‚˜ ๋‹ค๋ฅธ ์ „๋ฌธ๊ฐ€ ๊ทธ๋ฃน์€
06:48
who perhaps thought even harder about this problem,
157
408387
3130
์ด ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋” ๋งŽ์ด ๊ณ ๋ฏผํ–ˆ์„ ํ…๋ฐ
06:51
and they would say one of these questions is more important than the others.
158
411541
3660
์ด๋“ค ์งˆ๋ฌธ ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋‹ค๋ฅธ ๊ฒƒ๋ณด๋‹ค ๋” ์ค‘์š”ํ•˜๋‹ค๊ณ  ๋งํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:55
Those experts?
159
415819
1150
์ „๋ฌธ๊ฐ€๋“ค์š”?
06:57
The people who design the memory systems of computers.
160
417281
2848
์ปดํ“จํ„ฐ์˜ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์„ ๋””์ž์ธํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ž…๋‹ˆ๋‹ค.
07:00
Most computers have two kinds of memory systems:
161
420153
2254
๋Œ€๋ถ€๋ถ„์˜ ์ปดํ“จํ„ฐ๋Š” ๋‘ ์ข…๋ฅ˜์˜ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
07:02
a fast memory system,
162
422431
1387
๋น ๋ฅธ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์œผ๋กœ
07:03
like a set of memory chips that has limited capacity,
163
423842
3169
์นฉ์ด ๋น„์‹ธ๊ธฐ ๋•Œ๋ฌธ์— ์ œํ•œ๋œ ์šฉ๋Ÿ‰์„ ๊ฐ€์ง€๋Š”
07:07
because those chips are expensive,
164
427035
2052
์ผ๋ จ์˜ ๋ฉ”๋ชจ๋ฆฌ ์นฉ ๊ฐ™์€ ๊ฒƒ๊ณผ
07:09
and a slow memory system, which is much larger.
165
429111
3260
ํ›จ์”ฌ ๋” ํฌ๊ณ  ๋Š๋ฆฐ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
07:13
In order for the computer to operate as efficiently as possible,
166
433239
3000
์ปดํ“จํ„ฐ๋ฅผ ๊ฐ€๋Šฅํ•œ ํšจ์œจ์ ์œผ๋กœ ์šด์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ
07:16
you want to make sure
167
436263
1151
์—ฌ๋Ÿฌ๋ถ„์ด ๋ถ„๋ช…ํžˆ ํ•  ๊ฒŒ ์žˆ๋Š”๋ฐ
07:17
that the pieces of information you want to access
168
437438
2352
์ ‘๊ทผํ•˜๊ณ  ์‹ถ์€ ์ •๋ณด์˜ ์กฐ๊ฐ์€
07:19
are in the fast memory system,
169
439814
1477
๋น ๋ฅธ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์— ๋‘์–ด์•ผ ๋น ๋ฅด๊ฒŒ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:21
so that you can get to them quickly.
170
441315
1754
07:23
Each time you access a piece of information,
171
443093
2061
์ •๋ณด์˜ ์กฐ๊ฐ์— ์ ‘๊ทผํ•  ๋•Œ๋งˆ๋‹ค ๋น ๋ฅธ ๋ฉ”๋ชจ๋ฆฌ์— ๋กœ๋“œํ•˜๊ณ 
07:25
it's loaded into the fast memory
172
445178
1525
07:26
and the computer has to decide which item it has to remove from that memory,
173
446727
3877
์ปดํ“จํ„ฐ๋Š” ๋ฉ”๋ชจ๋ฆฌ์—์„œ ์–ด๋–ค ์•„์ดํ…œ์„ ์ œ๊ฑฐํ• ์ง€ ๊ฒฐ์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
07:30
because it has limited capacity.
174
450628
1741
์šฉ๋Ÿ‰์ด ์ œํ•œ๋˜์–ด์„œ ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค.
07:33
Over the years,
175
453794
1151
์ˆ˜๋…„ ๋™์•ˆ
07:34
computer scientists have tried a few different strategies
176
454969
2739
์ปดํ“จํ„ฐ ๊ณผํ•™์ž๋“ค์€ ๋ช‡ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ „๋žต์„ ์‹œ๋„ํ•ด ์™”๋Š”๋ฐ
07:37
for deciding what to remove from the fast memory.
177
457732
2292
๋น ๋ฅธ ๋ฉ”๋ชจ๋ฆฌ์—์„œ ์ œ๊ฑฐํ•  ๊ฒƒ์„ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
07:40
They've tried things like choosing something at random
178
460048
3176
๊ทธ๋“ค์€ ๋ฌด์ž‘์œ„๋กœ ์„ ํƒํ•˜๊ฑฐ๋‚˜
07:43
or applying what's called the "first-in, first-out principle,"
179
463248
2906
ํ˜น์€ "์„ ์ž… ์„ ์ถœ ์›์น™"์ด๋ผ๋Š” ๊ฒƒ์„ ์ ์šฉํ•˜๋Š”๋ฐ
07:46
which means removing the item
180
466178
1399
์ด๋Š” ์•„์ดํ…œ ์ œ๊ฑฐ๋ฅผ
07:47
which has been in the memory for the longest.
181
467601
2176
๊ฐ€์žฅ ๋ฉ”๋ชจ๋ฆฌ์— ์˜ค๋ž˜ ์žˆ์—ˆ๋˜ ๊ฒƒ์„ ์ œ๊ฑฐํ•œ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.
07:50
But the strategy that's most effective
182
470091
2713
ํ•˜์ง€๋งŒ ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ „๋žต์€
07:52
focuses on the items which have been least recently used.
183
472828
3229
์ตœ๊ทผ์— ๊ฐ€์žฅ ๋œ ์‚ฌ์šฉ๋œ ์•„์ดํ…œ์— ์ง‘์ค‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:56
This says if you're going to decide to remove something from memory,
184
476972
3191
์ด๋Š” ์—ฌ๋Ÿฌ๋ถ„์ด ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๋ญ”๊ฐ€๋ฅผ ์ œ๊ฑฐํ•  ๊ฒฐ์ •์„ ํ•œ๋‹ค๋ฉด
08:00
you should take out the thing which was last accessed the furthest in the past.
185
480187
4968
๊ฐ€์žฅ ์˜ค๋ž˜์ „์— ์ ‘๊ทผํ–ˆ๊ณ  ๊ณผ๊ฑฐ์—์„œ ๊ฐ€์žฅ ๋จผ ๊ฒƒ์„ ๊ณจ๋ผ์•ผ ํ•œ๋‹ค๋Š” ์˜๋ฏธ์ฃ .
08:05
And there's a certain kind of logic to this.
186
485179
2159
์—ฌ๊ธฐ์— ํŠน์ • ๋…ผ๋ฆฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
08:07
If it's been a long time since you last accessed that piece of information,
187
487362
3598
์ตœ์ข… ์ ‘๊ทผํ•œ ์ •๋ณด ์กฐ๊ฐ์ด ์˜ค๋ž˜๋˜์—ˆ๋‹ค๋ฉด
08:10
it's probably going to be a long time
188
490984
1762
์•„๋งˆ๋„ ์˜ค๋žซ๋™์•ˆ
08:12
before you're going to need to access it again.
189
492770
2192
๋‹ค์‹œ ์ ‘๊ทผํ•  ํ•„์š”๊ฐ€ ์—†์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:15
Your wardrobe is just like the computer's memory.
190
495787
2774
์—ฌ๋Ÿฌ๋ถ„์˜ ์˜ท์žฅ์€ ๋ฐ”๋กœ ์ปดํ“จํ„ฐ์˜ ๋ฉ”๋ชจ๋ฆฌ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
08:18
You have limited capacity,
191
498585
2030
๊ณต๊ฐ„์ด ์ œํ•œ๋˜์–ด ์žˆ๊ณ 
08:20
and you need to try and get in there the things that you're most likely to need
192
500639
5327
๊ฐ€์žฅ ํ•„์š”ํ•œ ๊ฒƒ๋“ค์„ ์ž…์–ด๋ณด๊ณ  ๋„ฃ์„ ํ•„์š”๊ฐ€ ์žˆ์–ด์„œ
08:25
so that you can get to them as quickly as possible.
193
505990
2419
๊ฐ€๋Šฅํ•œ ํ•œ ๋นจ๋ฆฌ ๊บผ๋‚ผ ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
08:29
Recognizing that,
194
509016
1151
๊ทธ๊ฒƒ์„ ์•ˆ๋‹ค๋ฉด
08:30
maybe it's worth applying the least recently used principle
195
510191
2813
๊ฐ€์žฅ ์ตœ๊ทผ์— ๋œ ์‚ฌ์šฉ๋œ ์›์น™์„ ์ ์šฉํ•  ๊ฐ€์น˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
08:33
to organizing your wardrobe as well.
196
513028
1949
์˜ท์žฅ ์ •๋ฆฌ๋ฅผ ํ•˜๋Š” ๋ฐ๋„ ๋ง์ด์ฃ .
08:35
So if we go back to Martha's four questions,
197
515001
2082
๋งˆ์‚ฌ์˜ ๋„ค ๊ฐ€์ง€ ์งˆ๋ฌธ์œผ๋กœ ๋Œ์•„๊ฐ€ ๋ณด๋ฉด
08:37
the computer scientists would say that of these,
198
517107
2861
์ปดํ“จํ„ฐ ๊ณผํ•™์ž๋Š” ์ด๊ฒƒ๋“ค ์ค‘์—
08:39
the last one is the most important.
199
519992
1941
๋งˆ์ง€๋ง‰ ์งˆ๋ฌธ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋‹ค ๋งํ•˜๊ฒ ์ฃ .
08:43
This idea of organizing things
200
523473
2055
์‚ฌ๋ฌผ์„ ์ •๋ฆฌํ•˜๋Š” ์ด ์•„์ด๋””์–ด
08:45
so that the things you are most likely to need are most accessible
201
525552
3129
๊ฐ€์žฅ ํ•„์š”ํ•  ๊ฒƒ ๊ฐ™์€ ๊ฒƒ์„ ๊ฐ€์žฅ ์‰ฝ๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์€
08:48
can also be applied in your office.
202
528705
1676
์‚ฌ๋ฌด์‹ค์—๋„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:51
The Japanese economist Yukio Noguchi
203
531091
1930
์ผ๋ณธ ๊ฒฝ์ œํ•™์ž์ธ ์œ ํ‚ค์˜ค ๋…ธ๊ตฌ์น˜๋Š”
08:53
actually invented a filing system that has exactly this property.
204
533045
3055
์ •ํ™•ํ•˜๊ฒŒ ์ด ํŠน์„ฑ์„ ๊ฐ€์ง„ ํŒŒ์ผ๋ง ์‹œ์Šคํ…œ์„ ์‹ค์ œ๋กœ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
08:57
He started with a cardboard box,
205
537161
1609
๊ทธ๋Š” ํŒ์ง€ ์ƒ์ž๋กœ ์‹œ์ž‘ํ•˜์˜€๊ณ 
08:58
and he put his documents into the box from the left-hand side.
206
538794
2940
์ƒ์ž์˜ ์™ผ์ชฝ์—์„œ๋ถ€ํ„ฐ ๋ฌธ์„œ๋ฅผ ๋„ฃ์—ˆ์Šต๋‹ˆ๋‹ค.
09:02
Each time he'd add a document,
207
542067
1434
๋งค๋ฒˆ ๋ฌธ์„œ๋ฅผ ์ถ”๊ฐ€ํ•  ๋•Œ
09:03
he'd move what was in there along
208
543525
1621
๊ทธ ์•ˆ์— ์žˆ๋Š” ๊ฒƒ์„ ์ด๋™์‹œํ‚ค๊ณ 
09:05
and he'd add that document to the left-hand side of the box.
209
545170
2810
์ƒˆ ๋ฌธ์„œ๋Š” ์ƒ์ž์˜ ์™ผ์ชฝ์— ๋„ฃ์—ˆ์Šต๋‹ˆ๋‹ค.
09:08
And each time he accessed a document, he'd take it out,
210
548004
2667
๋ฌธ์„œ๋ฅผ ๋ด์•ผ ํ•  ๋•Œ ๊บผ๋‚ด์–ด ๋ณด๊ณ  ๋‚˜์„œ ๋‹ค์‹œ ์™ผ์ชฝ์— ๋„ฃ์—ˆ์Šต๋‹ˆ๋‹ค.
09:10
consult it and put it back in on the left-hand side.
211
550695
2608
09:13
As a result, the documents would be ordered from left to right
212
553327
3281
๊ทธ ๊ฒฐ๊ณผ ๋ฌธ์„œ๋Š” ์™ผ์ชฝ์—์„œ ์˜ค๋ฅธ์ชฝ ์ˆœ์œผ๋กœ ์ •๋ฆฌ๋ฉ๋‹ˆ๋‹ค.
09:16
by how recently they had been used.
213
556632
1761
๊ฐ€์žฅ ์ตœ์‹ ์— ์‚ฌ์šฉํ•œ ์ˆœ์ด์ฃ .
09:18
And he found he could quickly find what he was looking for
214
558417
2774
๊ทธ๋ž˜์„œ ๊ทธ๋Š” ์ฐพ๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์„ ๋งค์šฐ ๋นจ๋ฆฌ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค.
09:21
by starting at the left-hand side of the box
215
561215
2054
์ƒ์ž์˜ ์™ผ์ชฝ์—๋ถ€ํ„ฐ ์ฐพ๊ธฐ ์‹œ์ž‘ํ•ด์„œ
09:23
and working his way to the right.
216
563293
1572
์˜ค๋ฅธ์ชฝ์œผ๋กœ ์ฐพ์œผ๋ฉด ๋˜๋‹ˆ๊นŒ์š”.
09:25
Before you dash home and implement this filing system --
217
565215
2621
์ง‘์œผ๋กœ ๋‹ฌ๋ ค๊ฐ€์„œ ์ด ํŒŒ์ผ๋ง ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜๊ธฐ ์ „์—
09:27
(Laughter)
218
567860
1731
(์›ƒ์Œ)
09:29
it's worth recognizing that you probably already have.
219
569615
2638
์—ฌ๋Ÿฌ๋ถ„์€ ์ด๋ฏธ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์„ ์•Œ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
09:32
(Laughter)
220
572891
3310
(์›ƒ์Œ)
09:36
That pile of papers on your desk ...
221
576225
2866
์—ฌ๋Ÿฌ๋ถ„ ์ฑ…์ƒ ์œ„์— ์žˆ๋Š” ์ข…์ด ๋”๋ฏธ์ฃ .
09:39
typically maligned as messy and disorganized,
222
579115
2474
์ฃผ๋กœ ์—‰๋ง์ด๊ณ , ์ž˜ ์ •๋ฆฌ๋˜์ง€ ์•Š์•˜๋‹ค๊ณ  ๋น„๋‚œ๋ฐ›๋Š”
09:41
a pile of papers is, in fact, perfectly organized --
223
581613
2565
์ข…์ด ๋”๋ฏธ๋Š” ์‹ค์ œ๋กœ ์™„๋ฒฝํ•˜๊ฒŒ ์ •๋ฆฌ๋œ ๊ฑฐ์ฃ .
09:44
(Laughter)
224
584202
1000
(์›ƒ์Œ)
09:45
as long as you, when you take a paper out,
225
585226
2014
์ข…์ด๋ฅผ ๊บผ๋‚ด์–ด
09:47
put it back on the top of the pile,
226
587264
2432
๋”๋ฏธ์˜ ์ œ์ผ ์œ„์— ๋‘๊ธฐ๋งŒ ํ•œ๋‹ค๋ฉด
09:49
then those papers are going to be ordered from top to bottom
227
589720
2826
์ข…์ด๋Š” ์œ„์—์„œ ์•„๋ž˜๋กœ ์ •๋ฆฌ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
09:52
by how recently they were used,
228
592570
1552
์–ผ๋งˆ๋‚˜ ์ž์ฃผ ์‚ฌ์šฉ๋˜์—ˆ๋Š”๊ฐ€์— ๋”ฐ๋ผ ์ •๋ฆฌ๋˜์–ด
09:54
and you can probably quickly find what you're looking for
229
594146
2701
์›ํ•˜๋Š” ๊ฒƒ์€ ๋นจ๋ฆฌ ์ฐพ์„ ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
09:56
by starting at the top of the pile.
230
596871
1700
๋”๋ฏธ์˜ ์œ„์—์„œ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋ฉด ๋ง์ž…๋‹ˆ๋‹ค.
09:59
Organizing your wardrobe or your desk
231
599988
1848
์˜ท์žฅ์ด๋‚˜ ์ฑ…์ƒ์„ ์ •๋ฆฌํ•˜๋Š” ๊ฒƒ์€
10:01
are probably not the most pressing problems in your life.
232
601860
2681
์ธ์ƒ์—์„œ ์žˆ์–ด์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋Š” ์•„๋‹ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:05
Sometimes the problems we have to solve are simply very, very hard.
233
605588
3602
๋•Œ๋•Œ๋กœ ์šฐ๋ฆฌ๊ฐ€ ํ’€์–ด์•ผ ํ•  ๋ฌธ์ œ๋Š” ๊ทธ์ € ๋งค์šฐ ๋งค์šฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
10:09
But even in those cases,
234
609716
1150
ํ•˜์ง€๋งŒ ๊ทธ๋Ÿฐ ๊ฒฝ์šฐ์—๋ผ๋„
10:10
computer science can offer some strategies
235
610890
2021
์ปดํ“จํ„ฐ ๊ณผํ•™์€ ์•ฝ๊ฐ„์˜ ์ „๋žต์„ ์ œ์•ˆํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:12
and perhaps some solace.
236
612935
1669
์–ด์ฉŒ๋ฉด ์•ฝ๊ฐ„์˜ ์œ„์•ˆ๋„ ์ค„ ์ˆ˜ ์žˆ์ฃ .
10:16
The best algorithms are about doing what makes the most sense
237
616048
3075
์ตœ๊ณ ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ตœ์ ์˜ ๊ฒƒ์„ ์ตœ์†Œ์˜ ์‹œ๊ฐ„์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค.
10:19
in the least amount of time.
238
619147
1502
10:22
When computers face hard problems,
239
622627
1958
์ปดํ“จํ„ฐ๊ฐ€ ์–ด๋ ค์šด ๋ฌธ์ œ๋ฅผ ์ ‘ํ•˜๋ฉด
10:24
they deal with them by making them into simpler problems --
240
624609
2762
๊ทธ๊ฒƒ์„ ๋ณด๋‹ค ๋‹จ์ˆœํ•œ ๋ฌธ์ œ๋กœ ๋งŒ๋“ค์–ด์„œ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
10:27
by making use of randomness,
241
627395
1346
๋ฌด์ž‘์œ„๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜
10:28
by removing constraints or by allowing approximations.
242
628765
3817
์ œ์•ฝ์„ ์—†์• ๊ฑฐ๋‚˜ ๊ทผ์‚ฌ์น˜๋ฅผ ํ—ˆ์šฉํ•ด์„œ ๋ง์ด์ฃ .
10:32
Solving those simpler problems
243
632606
1494
๊ทธ๋Ÿฌํ•œ ๋‹จ์ˆœํ•ด์ง„ ๋ฌธ์ œ ํ•ด๊ฒฐ์€
10:34
can give you insight into the harder problems,
244
634124
2920
์–ด๋ ค์šด ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๊ณ 
10:37
and sometimes produces pretty good solutions in their own right.
245
637068
3031
๋•Œ๋กœ๋Š” ์ž์ฒด ๊ถŒํ•œ์œผ๋กœ ๋งค์šฐ ์ข‹์€ ํ•ด๊ฒฐ์ฑ…์„ ๋งŒ๋“ค๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
10:41
Knowing all of this has helped me to relax when I have to make decisions.
246
641658
3569
์ด ๋ชจ๋“  ๊ฒƒ์„ ์•Œ์•„์„œ ์ €๋Š” ์˜์‚ฌ๊ฒฐ์ •์„ ํ•  ๋•Œ ํŽธํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
10:45
You could take the 37 percent rule for finding a home as an example.
247
645251
3255
์˜ˆ๋ฅผ ๋“ค์–ด, ์ง‘์„ ๊ตฌํ•  ๋•Œ ์—ฌ๋Ÿฌ๋ถ„์€ 37%์˜ ๋ฒ•์น™์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:49
There's no way that you can consider all of the options,
248
649015
2702
์—ฌ๋Ÿฌ๋ถ„์ด ๋ชจ๋“  ์„ ํƒ์„ ๋‹ค ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ์—†์œผ๋ฏ€๋กœ
10:51
so you have to take a chance.
249
651741
1580
์‹œ๋„๋ฅผ ํ•ด๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
10:53
And even if you follow the optimal strategy,
250
653888
2860
์ตœ์ ์˜ ์ „๋žต์„ ๋”ฐ๋ฅธ๋‹ค ํ•ด๋„
10:56
you're not guaranteed a perfect outcome.
251
656772
1931
์™„๋ฒฝํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์žฅํ•  ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.
10:59
If you follow the 37 percent rule,
252
659198
2154
37%์˜ ๋ฒ•์น™์„ ๋”ฐ๋ฅธ๋‹ค๋ฉด
11:01
the probability that you find the very best place is --
253
661376
3279
์ตœ์ƒ์˜ ์žฅ์†Œ๋ฅผ ์ฐพ์„ ํ™•๋ฅ ์€
11:04
funnily enough ...
254
664679
1508
์•„์ฃผ ์šฐ์Šต๊ฒŒ๋„
11:06
(Laughter)
255
666211
1014
(์›ƒ์Œ)
11:07
37 percent.
256
667249
1420
37%์ž…๋‹ˆ๋‹ค.
11:09
You fail most of the time.
257
669966
1689
์—ฌ๋Ÿฌ๋ถ„์€ ๋Œ€๋ถ€๋ถ„ ์‹คํŒจํ•ฉ๋‹ˆ๋‹ค.
11:12
But that's the best that you can do.
258
672522
1744
๊ทธ๋Ÿฌ๋‚˜ ๊ทธ๊ฒŒ ์—ฌ๋Ÿฌ๋ถ„์ด ํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ์„ ์ž…๋‹ˆ๋‹ค.
11:14
Ultimately, computer science can help to make us more forgiving
259
674846
3052
๊ถ๊ทน์ ์œผ๋กœ ์ปดํ“จํ„ฐ ๊ณผํ•™์€ ์šฐ๋ฆฌ ์Šค์Šค๋กœ์˜ ํ•œ๊ณ„์— ๋Œ€ํ•ด
11:17
of our own limitations.
260
677922
1909
์šฐ๋ฆฌ๊ฐ€ ๋” ๋„ˆ๊ทธ๋Ÿฌ์›Œ์ง€๋Š”๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:20
You can't control outcomes, just processes.
261
680333
2539
์—ฌ๋Ÿฌ๋ถ„์€ ๊ฒฐ๊ณผ๊ฐ€ ์•„๋‹Œ ๊ณผ์ •๋งŒ ํ†ต์ œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:22
And as long as you've used the best process,
262
682896
2119
์ตœ์ƒ์˜ ํ”„๋กœ์„ธ์Šค๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด
11:25
you've done the best that you can.
263
685039
1763
์—ฌ๋Ÿฌ๋ถ„์ด ํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ์„ ์„ ๋‹คํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:26
Sometimes those best processes involve taking a chance --
264
686826
3688
๋•Œ๋กœ ๊ทธ๋Ÿฐ ์ตœ์ƒ์˜ ํ”„๋กœ์„ธ์Šค๊ฐ€ ๊ธฐํšŒ๋ฅผ ์žก๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จ๋˜์–ด
11:30
not considering all of your options,
265
690538
2115
์—ฌ๋Ÿฌ๋ถ„์ด ๋ชจ๋“  ์„ ํƒ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ฑฐ๋‚˜
11:32
or being willing to settle for a pretty good solution.
266
692677
2729
์ œ๋ฒ• ์ข‹์€ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ์ ˆ์ถฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:35
These aren't the concessions that we make when we can't be rational --
267
695430
3350
์ด๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ด์„ฑ์ ์ผ ์ˆ˜ ์—†์–ด์„œ ํ•˜๋Š” ์–‘๋ณด๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
11:38
they're what being rational means.
268
698804
1629
๊ทธ๊ฒŒ ๋ฐ”๋กœ ์ด์„ฑ์ ์ธ ๊ฒƒ์— ๋Œ€ํ•œ ์ •์˜์ž…๋‹ˆ๋‹ค.
11:40
Thank you.
269
700833
1151
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
11:42
(Applause)
270
702008
4547
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7