Nicolas Perony: Puppies! Now that I've got your attention, complexity theory

129,526 views ใƒป 2014-01-30

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Tal Dekkers
00:15
Science,
0
15393
1228
ืžื“ืข,
00:16
science has allowed us to know so much
1
16621
3337
ืžื“ืข ืืคืฉืจ ืœื ื• ืœื“ืขืช ื›ืœ ื›ืš ื”ืจื‘ื”
00:19
about the far reaches of the universe,
2
19958
3026
ืขืœ ื”ื‘ืœืชื™ ืžื•ืฉื’ ืžืื™ืชื ื• ื‘ื™ืงื•ื,
00:22
which is at the same time tremendously important
3
22984
3195
ืฉื‘ื• ื‘ื–ืžืŸ ื”ื•ื ืžืื•ื“ ื—ืฉื•ื‘
00:26
and extremely remote,
4
26179
2066
ื•ืžืื•ื“ ืžืจื•ื—ืง,
00:28
and yet much, much closer,
5
28245
2459
ื•ืขื“ื™ื™ืŸ ืžืื•ื“, ืžืื•ื“ ืงืจื•ื‘,
00:30
much more directly related to us,
6
30704
2091
ื”ืจื‘ื” ื™ื•ืชืจ ืงืฉื•ืจ ื™ืฉื™ืจื•ืช ืืœื™ื ื•,
00:32
there are many things we don't really understand.
7
32795
2468
ื™ืฉ ื”ืจื‘ื” ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืœื ืžืžืฉ ืžื‘ื™ื ื™ื.
00:35
And one of them is the extraordinary
8
35263
2129
ื•ืื—ื“ ืžื”ื ื”ื™ื
00:37
social complexity of the animals around us,
9
37392
3326
ื”ืžื•ืจื›ื‘ื•ืช ื”ื—ื‘ืจืชื™ืช ื”ื™ื•ืฆืืช ืžืŸ ื”ื›ืœืœ ืฉืœ ื‘ืขืœื™ ื”ื—ื™ื™ื ืกื‘ื™ื‘ื ื•,
00:40
and today I want to tell you a few stories
10
40718
2016
ื•ื”ื™ื•ื ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ื›ืžื” ืกื™ืคื•ืจื™ื
00:42
of animal complexity.
11
42734
2008
ืขืœ ืžื•ืจื›ื‘ื•ืช ื‘ืขืœื™ ื”ื—ื™ื™ื.
00:44
But first, what do we call complexity?
12
44742
3350
ืื‘ืœ ืชื—ื™ืœื”, ืœืžื” ืื ื—ื ื• ืงื•ืจืื™ื ืžื•ืจื›ื‘ื•ืช?
00:48
What is complex?
13
48092
1487
ืžื”ื™ ืžื•ืจื›ื‘ื•ืช?
00:49
Well, complex is not complicated.
14
49579
3427
ื•ื‘ื›ืŸ, ืžื•ืจื›ื‘ื•ืช ืื™ื ื ื” ืกื™ื‘ื•ืš.
00:53
Something complicated comprises many small parts,
15
53006
3448
ืžืฉื”ื• ืžื•ืจื›ื‘ ืžื›ื™ืœ ื”ืจื‘ื” ื—ืœืงื™ื ืงื˜ื ื™ื,
00:56
all different, and each of them
16
56454
2430
ื›ื•ืœื ืฉื•ื ื™ื, ื•ืœื›ืœ ืื—ื“ ืžื”ื
00:58
has its own precise role in the machinery.
17
58899
3104
ื™ืฉ ืืช ื”ืชืคืงื™ื“ ื”ืžื“ื•ื™ื™ืง ืฉืœื• ื‘ืžื›ื•ื ื”.
01:02
On the opposite, a complex system
18
62003
2811
ืžื ื’ื“, ืžืขืจื›ืช ืžื•ืจื›ื‘ืช
01:04
is made of many, many similar parts,
19
64814
2641
ืขืฉื•ื™ื” ืžื—ืœืงื™ื ืจื‘ื™ื ื“ื•ืžื™ื ืจื‘ื™ื,
01:07
and it is their interaction
20
67455
2008
ื•ื–ื• ื”ืื™ื ื˜ืจืืงืฆื™ื” ืฉืœื”ื
01:09
that produces a globally coherent behavior.
21
69463
3320
ืฉืžื™ื™ืฆืจืช ื”ืชื ื”ื’ื•ืชื’ืœื•ื‘ืœื™ืช ืงื•ื”ืจื ื˜ื™ืช.
01:12
Complex systems have many interacting parts
22
72783
3836
ืœืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช ื™ืฉ ื”ืจื‘ื” ื—ืœืงื™ื ื‘ืื™ื ื˜ืจืืงืฆื™ื”
01:16
which behave according to simple, individual rules,
23
76619
3426
ืฉืžืชื ื”ื’ื™ื ืœืคื™ ื›ืœืœื™ื ืคืฉื•ื˜ื™ื, ืื™ื ื“ื‘ื™ื“ื•ืืœื™ื,
01:20
and this results in emergent properties.
24
80045
3349
ื•ื”ืชื•ืฆืื” ืฉืœ ื–ื” ื”ืŸ ืชื›ื•ื ื•ืช ื ื•ื‘ืขื•ืช.
01:23
The behavior of the system as a whole
25
83394
1888
ืืช ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ื”ืžืขืจื›ืช ื›ืฉืœื
01:25
cannot be predicted
26
85282
1668
ืœื ื ื™ืชืŸ ืœื—ื–ื•ืช
01:26
from the individual rules only.
27
86950
2152
ืžื”ื—ื•ืงื™ื ื”ืื™ื ื“ื‘ื™ื“ื•ืืœื™ื ื‘ืœื‘ื“.
01:29
As Aristotle wrote,
28
89102
1810
ื›ืคื™ ืฉื›ืชื‘ ืืจื™ืกื˜ื•.
01:30
the whole is greater than the sum of its parts.
29
90912
3060
ื”ืฉืœื ื”ื•ื ื’ื“ื•ืœ ืžืกืš ื—ืœืงื™ื•.
01:33
But from Aristotle, let's move onto
30
93972
2462
ืื‘ืœ ืžืืจื™ืกื˜ื•, ื‘ื•ืื• ื ืขื‘ื•ืจ
01:36
a more concrete example of complex systems.
31
96434
3690
ืœื“ื•ื’ืžื ืžื•ื—ืฉื™ืช ื™ื•ืชืจ ืฉืœ ืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช.
01:40
These are Scottish terriers.
32
100124
1956
ืืœื• ื”ื ื›ืœื‘ื™ ื˜ืจื™ื™ืจ ืกืงื•ื˜ื™ื™ื.
01:42
In the beginning, the system is disorganized.
33
102080
3751
ื‘ื”ืชื—ืœื”, ื”ืžืขืจื›ืช ืœื ืžืื•ืจื’ื ืช.
01:45
Then comes a perturbation: milk.
34
105831
3801
ืื– ืžื’ื™ืขื” ื”ื”ืกื˜ื”: ื—ืœื‘.
01:49
Every individual starts pushing in one direction
35
109632
3850
ื›ืœ ืคืจื˜ ืžืชื—ื™ืœ ื‘ื“ื—ื™ืคื” ืœื›ื™ื•ื•ืŸ ืื—ื“
01:53
and this is what happens.
36
113482
3309
ื•ื–ื” ืžื” ืฉืงื•ืจื”.
01:56
The pinwheel is an emergent property
37
116791
2826
ื”ืฉื‘ืฉื‘ืช ื”ื™ื ืชื›ื•ื ื” ื ื•ื‘ืขืช
01:59
of the interactions between puppies
38
119617
1903
ืฉืœ ื”ืื™ื ื˜ืจืืงืฆื™ื” ื‘ื™ืŸ ื’ื•ืจื™ื
02:01
whose only rule is to try to keep access to the milk
39
121520
3910
ืฉื”ื—ื•ืง ื”ื™ื—ื™ื“ื™ ื”ื•ื ืœื ืกื•ืช ืœืฉืžื•ืจ ืขืœ ื’ื™ืฉื” ืœื—ืœื‘
02:05
and therefore to push in a random direction.
40
125430
3607
ื•ืœื›ืŸ ืœื“ื—ื•ืฃ ื‘ื›ื™ื•ื•ื ื™ื ืืงืจืื™ื™ื.
02:09
So it's all about finding the simple rules
41
129037
3975
ืื– ื–ื” ื”ื›ืœ ื ื•ื’ืข ืœืžืฆื™ืืช ื—ื•ืงื™ื ืคืฉื•ื˜ื™ื
02:13
from which complexity emerges.
42
133012
2758
ืžื”ื ื”ืžื•ืจื›ื‘ื•ืช ืขื•ืœื”.
02:15
I call this simplifying complexity,
43
135770
2940
ืื ื™ ืงื•ืจื” ืœื–ื” ืคื™ืฉื•ื˜ ืฉืœ ืžื•ืจื›ื‘ื•ืช,
02:18
and it's what we do at the chair of systems design
44
138710
2135
ื•ื–ื” ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื‘ืžื—ืœืงืช ืชื›ื ื•ืŸ ื”ืžืขืจื›ื•ืช
02:20
at ETH Zurich.
45
140845
1977
ื‘ ETH ืฆื™ืจื™ืš.
02:22
We collect data on animal populations,
46
142822
3705
ืื ื—ื ื• ืื•ืกืคื™ื ืžื™ื“ืข ืขืœ ืื•ื›ืœื•ืกื™ื•ืช ืฉืœ ื—ื™ื•ืช,
02:26
analyze complex patterns, try to explain them.
47
146527
3811
ืžื ืชื—ื™ื ืชื‘ื ื™ื•ืช ืžื•ืจื›ื‘ื•ืช, ืžื ืกื™ื ืœื”ืกื‘ื™ืจ ืื•ืชืŸ.
02:30
It requires physicists who work with biologists,
48
150338
2619
ื–ื” ื“ื•ืจืฉ ืคื™ืกื™ืงืื™ื ืฉืขื•ื‘ื“ื™ื ืขื ื‘ื™ื•ืœื•ื’ื™ื,
02:32
with mathematicians and computer scientists,
49
152957
2723
ืขื ืžืชืžื˜ื™ืงืื™ื ื•ืžื“ืขื ื™ ืžื—ืฉื‘.
02:35
and it is their interaction that produces
50
155680
2820
ื•ื–ื” ื”ื—ื™ื‘ื•ืจ ื‘ื™ื ื”ื ืฉื™ื•ืฆืจ
02:38
cross-boundary competence
51
158500
1714
ื™ื›ื•ืœืช ื—ื•ืฆืช ื’ื‘ื•ืœื•ืช
02:40
to solve these problems.
52
160214
1578
ื›ื“ื™ ืœืคืชื•ืจ ื‘ืขื™ื•ืช.
02:41
So again, the whole is greater
53
161792
2272
ืื– ืฉื•ื‘, ื”ืฉืœื ื’ื“ื•ืœ
02:44
than the sum of the parts.
54
164064
1400
ืžืกื›ื•ื ื—ืœืงื™ื•.
02:45
In a way, collaboration
55
165464
2150
ื‘ื“ืจืš ืžืกื•ื™ื™ืžืช, ืฉื™ืชื•ืฃ ืคืขื•ืœื”
02:47
is another example of a complex system.
56
167614
3491
ื”ื™ื ื“ื•ื’ืžื” ื ื•ืกืคืช ืœืžืขืจื›ืช ืžื•ืจื›ื‘ืช.
02:51
And you may be asking yourself
57
171105
1876
ื•ืืชื ืื•ืœื™ ืชืฉืืœื• ืืช ืขืฆืžื›ื
02:52
which side I'm on, biology or physics?
58
172981
2817
ื‘ืื™ื–ื” ืฆื“ ืื ื™, ื‘ื™ื•ืœื•ื’ื™ื” ืื• ืคื™ืกื™ืงื”?
02:55
In fact, it's a little different,
59
175798
2111
ืœืžืขืฉื”, ื–ื” ืžืขื˜ ืฉื•ื ื”,
02:57
and to explain, I need to tell you
60
177909
1589
ื•ื›ื“ื™ ืœื”ืกื‘ื™ืจ, ืื ื™ ืฆืจื™ืš ืœืกืคืจ ืœื›ื
02:59
a short story about myself.
61
179498
2342
ืกื™ืคื•ืจ ืงืฆืจ ืขืœ ืขืฆืžื™.
03:01
When I was a child,
62
181840
1727
ื›ืฉื”ื™ื™ืชื™ ื™ืœื“,
03:03
I loved to build stuff, to create complicated machines.
63
183567
4109
ืื”ื‘ืชื™ ืœื‘ื ื•ืช ื“ื‘ืจื™ื, ืœื™ืฆื•ืจ ืžื›ื•ื ื•ืช ืžื•ืจื›ื‘ื•ืช.
03:07
So I set out to study electrical engineering
64
187676
2737
ืื– ื™ืฆืืชื™ ืœืœืžื•ื“ ื”ื ื“ืกืช ื—ืฉืžืœ
03:10
and robotics,
65
190413
1552
ื•ืจื•ื‘ื•ื˜ื™ืงื”,
03:11
and my end-of-studies project
66
191965
2093
ื•ืคืจื•ื™ื™ืงื˜ ืกื™ื•ื ื”ืœื™ืžื•ื“ื™ื ืฉืœื™
03:14
was about building a robot called ER-1 --
67
194058
2926
ื”ื™ื” ืœื‘ื ื•ืช ืจื•ื‘ื•ื˜ ืฉื ืงืจื ER-1 --
03:16
it looked like thisโ€”
68
196984
1930
ื”ื•ื ื ืจืื” ื›ืš --
03:18
that would collect information from its environment
69
198914
2371
ืฉื™ืืกื•ืฃ ืžื™ื“ืข ืžื”ืกื‘ื™ื‘ื” ืฉืœื•
03:21
and proceed to follow a white line on the ground.
70
201285
3498
ื•ื™ืžืฉื™ืš ืœืขืงื•ื‘ ืื—ืจื™ ืงื• ืœื‘ืŸ ืขืœ ื”ืงืจืงืข.
03:24
It was very, very complicated,
71
204783
2379
ื–ื” ื”ื™ื” ืžืื•ื“, ืžืื•ื“ ืžืกื•ื‘ืš,
03:27
but it worked beautifully in our test room,
72
207162
2984
ืื‘ืœ ื–ื” ืขื‘ื“ ื ืคืœื ื‘ื—ื“ืจ ื”ื‘ื“ื™ืงื” ืฉืœื ื•,
03:30
and on demo day, professors had assembled to grade the project.
73
210146
3453
ื•ื‘ื™ื•ื ื”ื“ืžื•, ืคืจื•ืคืกื•ืจื™ื ื”ืชืงื‘ืฆื• ืœืชืช ืฆื™ื•ืŸ ืœืคืจื•ื™ื™ืงื˜.
03:33
So we took ER-1 to the evaluation room.
74
213607
2902
ืื– ืœืงื—ื ื• ืืช ER-1 ืœื—ื“ืจ ื”ื”ืขืจื›ื”.
03:36
It turned out, the light in that room
75
216509
2310
ืžืกืชื‘ืจ, ืฉื”ืื•ืจ ื‘ื—ื“ืจ
03:38
was slightly different.
76
218819
1819
ื”ื™ื” ืžืขื˜ ืฉื•ื ื”.
03:40
The robot's vision system got confused.
77
220638
2331
ื”ืจืื™ื” ืฉืœ ื”ืจื•ื‘ื•ื˜ ื”ืชื‘ืœื‘ืœื”.
03:42
At the first bend in the line,
78
222969
1761
ื‘ืขื™ืงื•ืœ ื”ืจืืฉื•ืŸ ืฉืœ ื”ืงื•,
03:44
it left its course, and crashed into a wall.
79
224730
3739
ื”ื•ื ืขื–ื‘ ืืช ื”ืžืกืœื•ืœ, ื•ื”ืชืจืกืง ื‘ืงื™ืจ.
03:48
We had spent weeks building it,
80
228469
2087
ื‘ื™ืœื™ื ื• ืฉื‘ื•ืขื•ืช ื‘ืœื‘ื ื•ืช ืื•ืชื•,
03:50
and all it took to destroy it
81
230556
1673
ื•ื›ืœ ืžื” ืฉื”ื™ื” ืฆืจื™ืš ื›ื“ื™ ืœื”ืฉืžื™ื“ ืื•ืชื•
03:52
was a subtle change in the color of the light
82
232229
2656
ื”ื™ื” ืฉื™ื ื•ื™ ืขื“ื™ืŸ ื‘ืฆื‘ืข ื”ืื•ืจ
03:54
in the room.
83
234885
1596
ืฉื‘ื—ื“ืจ.
03:56
That's when I realized that
84
236481
1515
ืื– ื”ื‘ื ืชื™
03:57
the more complicated you make a machine,
85
237996
2327
ืฉื›ื›ืœ ืฉืชืขืฉื• ืืช ื”ืžื›ื•ื ื” ืžื•ืจื›ื‘ืช ื™ื•ืชืจ,
04:00
the more likely that it will fail
86
240323
2039
ื™ืฉ ืกื™ื›ื•ื™ ื’ื“ื•ืœ ื™ื•ืชืจ ืฉื”ื™ื ืชื™ื›ืฉืœ
04:02
due to something absolutely unexpected.
87
242362
2563
ื‘ืฉืœ ืžืฉื”ื• ืœื—ืœื•ื˜ื™ืŸ ืœื ืฆืคื•ื™.
04:04
And I decided that, in fact,
88
244925
1830
ื•ื”ื—ืœื˜ืชื™ ืื–, ืœืžืขืฉื”,
04:06
I didn't really want to create complicated stuff.
89
246755
3013
ืฉืื ื™ ืœื ืจื•ืฆื” ืœื™ืฆื•ืจ ื“ื‘ืจื™ื ืžืกื•ื‘ื›ื™ื.
04:09
I wanted to understand complexity,
90
249768
2942
ืจืฆื™ืชื™ ืœื”ื‘ื™ืŸ ืžื•ืจื›ื‘ื•ืช.
04:12
the complexity of the world around us
91
252710
1988
ื”ืžื•ืจื›ื‘ื•ืช ืฉืœ ื”ืขื•ืœื ืกื‘ื™ื‘ื ื•
04:14
and especially in the animal kingdom.
92
254698
2405
ื•ื‘ืขื™ืงืจ ืืช ืžืžืœื›ืช ื”ื—ื™.
04:17
Which brings us to bats.
93
257103
3320
ืžื” ืฉืžื‘ื™ื ืื•ืชื™ ืœืขื˜ืœืคื™ื.
04:20
Bechstein's bats are a common species of European bats.
94
260423
3051
ืขื˜ืœืคื™ ื‘ืฉื˜ื™ื™ืŸ ื”ื ืขื˜ืœืคื™ื ืืจื•ืคืื™ื™ื ื ืคื•ืฆื™ื.
04:23
They are very social animals.
95
263474
1413
ื”ื ื—ื™ื” ืžืื•ื“ ื—ื‘ืจื•ืชื™ืช.
04:24
Mostly they roost, or sleep, together.
96
264887
3291
ื”ื ื™ืฉื ื™ื ืื• ืžืงื ื ื™ื ื‘ืขื™ืงืจ ื™ื—ื“.
04:28
And they live in maternity colonies,
97
268178
1679
ื•ื”ื ื—ื™ื™ื ื‘ืงื”ื™ืœื•ืช ืืžื”ื™ื•ืช,
04:29
which means that every spring,
98
269857
1540
ืฉื–ื” ืื•ืžืจ ืฉื›ืœ ืื‘ื™ื‘,
04:31
the females meet after the winter hibernation,
99
271397
3258
ื”ื ืงื‘ื•ืช ื ืคื’ืฉื•ืช ืื—ืจื™ ืชืจื“ืžืช ื”ื—ื•ืจืฃ,
04:34
and they stay together for about six months
100
274655
2089
ื•ื”ืŸ ื ืฉืืจื•ืช ื™ื—ื“ ืœื›ืฉื™ืฉื” ื—ื•ื“ืฉื™ื
04:36
to rear their young,
101
276744
2486
ืœื’ื“ืœ ืืช ื”ืฆืืฆืื™ื,
04:39
and they all carry a very small chip,
102
279230
2805
ื•ื”ืŸ ื™ื ืฉืื• ืฆ'ื™ืค ืžืื•ื“ ืงื˜ืŸ,
04:42
which means that every time one of them
103
282035
1871
ืฉืื•ืžืจ ืฉื›ืœ ืคืขื ืฉืื—ืช ืžื”ืŸ
04:43
enters one of these specially equipped bat boxes,
104
283906
3057
ื ื›ื ืกืช ืœืื—ืช ืžืงื•ืคืกืื•ืช ื”ืขื˜ืœืคื™ื ื”ืžื™ื•ื—ื“ื•ืช ื”ืืœื•,
04:46
we know where she is,
105
286963
1643
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืื™ืคื” ื”ื™ื,
04:48
and more importantly,
106
288606
1169
ื•ื—ืฉื•ื‘ ื™ื•ืชืจ,
04:49
we know with whom she is.
107
289775
2563
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืขื ืžื™ ื”ื™ื.
04:52
So I study roosting associations in bats,
108
292338
3694
ืื– ืื ื™ ื—ื•ืงืจ ื™ื—ืกื™ ืงื™ื ื•ืŸ ื‘ืขื˜ืœืคื™ื,
04:56
and this is what it looks like.
109
296032
2445
ื•ื›ืš ื–ื” ื ืจืื”.
04:58
During the day, the bats roost
110
298477
2442
ื‘ืžื”ืœืš ื”ื™ื•ื, ื”ืขื˜ืœืคื™ื ืžืงื ื ื™ื
05:00
in a number of sub-groups in different boxes.
111
300919
2304
ื‘ืžืกืคืจ ืชืชื™ ืงื‘ื•ืฆื•ืช ื‘ืงื•ืคืกืื•ืช ืฉื•ื ื•ืช.
05:03
It could be that on one day,
112
303223
1929
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื‘ื™ื•ื ืื—ื“,
05:05
the colony is split between two boxes,
113
305152
2220
ื”ืงื•ืœื•ื ื™ื” ืžื—ื•ืœืงืช ื‘ื™ืŸ ืฉืชื™ ืงื•ืคืกืื•ืช,
05:07
but on another day,
114
307372
1300
ืื‘ืœ ื‘ื™ื•ื ืื—ืจ,
05:08
it could be together in a single box,
115
308672
2241
ื”ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื™ื—ื“ ื‘ืงื•ืคืกื” ืื—ืช,
05:10
or split between three or more boxes,
116
310913
2316
ืื• ืœื”ืชื—ืœืง ื‘ื™ืŸ ืฉืœื•ืฉ ืงื•ืคืกืื•ืช ืื• ื™ื•ืชืจ,
05:13
and that all seems rather erratic, really.
117
313229
2927
ื•ื–ื” ื ืจืื” ื“ื™ ืืงืจืื™, ืœืžืขืฉื”,
05:16
It's called fission-fusion dynamics,
118
316156
3203
ื–ื” ื ืงืจื ื“ื™ื ืžื™ืงืช ื”ื™ืชื•ืš- ื‘ื™ืงื•ืข,
05:19
the property for an animal group
119
319359
1713
ื”ืชื›ื•ื ื” ืฉืœ ืงื‘ื•ืฆืช ื—ื™ื•ืช
05:21
of regularly splitting and merging
120
321072
2178
ืฉืžืชื—ืœืงืช ื•ืžืชืžื–ื’ืช ื‘ืื•ืคืŸ ืจื’ื™ืœ
05:23
into different subgroups.
121
323250
1661
ืœืชืช ืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช.
05:24
So what we do is take all these data
122
324911
2562
ืื– ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื–ื” ืœืงื—ืช ืืช ื”ืžื™ื“ืข ื”ื–ื”
05:27
from all these different days
123
327473
1662
ืžื›ืœ ื”ื™ืžื™ื ื”ืฉื•ื ื™ื
05:29
and pool them together
124
329135
1504
ื•ืœืืกื•ืฃ ืื•ืชื ื™ื—ื“
05:30
to extract a long-term association pattern
125
330639
2617
ื›ื“ื™ ืœืžืฆื•ืช ื“ื•ื’ืžืช ืฉื™ื•ืš ืœื˜ื•ื•ื— ืืจื•ืš
05:33
by applying techniques with network analysis
126
333256
2505
ืขืœ ื™ื“ื™ ื™ืฉื•ื ืฉื™ื˜ื•ืช ืฉืœ ืื ืœื™ื–ืช ืจืฉืชื•ืช
05:35
to get a complete picture
127
335761
1621
ื›ื“ื™ ืœืงื‘ืœ ืืช ื”ืชืžื•ื ื” ื”ืžืœืื”
05:37
of the social structure of the colony.
128
337382
2537
ืฉืœ ื”ืžื‘ื ื” ื”ื—ื‘ืจืชื™ ืฉืœ ื”ืงื•ืœื•ื ื™ื”.
05:39
Okay? So that's what this picture looks like.
129
339919
4265
ืื•ืงื™ื™? ืื– ื›ืš ื”ืชืžื•ื ื” ื ืจืื™ืช.
05:44
In this network, all the circles
130
344184
2394
ื‘ืจืฉืช ื”ื–ื•, ื›ืœ ื”ืžืขื’ืœื™ื
05:46
are nodes, individual bats,
131
346578
2777
ื”ื ืฆืžืชื™ื, ืขื˜ืœืคื™ื ื‘ื•ื“ื“ื™ื,
05:49
and the lines between them
132
349355
1583
ื•ื”ืงื•ื™ื ื‘ื™ื ื”ื
05:50
are social bonds, associations between individuals.
133
350938
3664
ื”ื ืงืฉืจื™ื ื—ื‘ืจืชื™ื™ื, ืงื™ืฉื•ืจื™ื ื‘ื™ืŸ ืคืจื˜ื™ื.
05:54
It turns out this is a very interesting picture.
134
354602
2678
ืžืกืชื‘ืจ ืฉื–ื• ืชืžื•ื ื” ืžืื•ื“ ืžืขื ื™ื™ื ืช.
05:57
This bat colony is organized
135
357280
1982
ืžื•ืฉื‘ืช ื”ืขื˜ืœืคื™ื ื”ื–ื• ืžืื•ืจื’ื ืช
05:59
in two different communities
136
359262
1868
ื‘ืฉืชื™ ืงื”ื™ืœื•ืช ืฉื•ื ื•ืช
06:01
which cannot be predicted
137
361130
1839
ืฉืœื ื ื™ืชืŸ ืœื—ื–ื•ืช ืื•ืชืŸ
06:02
from the daily fission-fusion dynamics.
138
362969
2249
ืžื“ื™ื ืžื™ืงืช ื”ื”ื™ืชื•ืš-ื‘ื™ืงื•ืข ื”ื™ื•ื ื™ื•ืžื™ืช.
06:05
We call them cryptic social units.
139
365218
3550
ืื ื—ื ื• ืงื•ืจืื™ื ืœื”ื ื™ื—ื™ื“ื•ืช ื—ื‘ืจืชื™ื•ืช ืงืจื™ืคื™ื˜ื™ื•ืช.
06:08
Even more interesting, in fact:
140
368768
1616
ืืคื™ืœื• ืžืขื ื™ื™ืŸ ื™ื•ืชืจ, ืœืžืขืฉื”:
06:10
Every year, around October,
141
370384
2364
ื›ืœ ืฉื ื”, ืกื‘ื™ื‘ ืื•ืงื˜ื•ื‘ืจ,
06:12
the colony splits up,
142
372748
1561
ื”ืžื•ืฉื‘ื” ืžืชื—ืœืงืช,
06:14
and all bats hibernate separately,
143
374309
2698
ื•ื›ืœ ื”ืขื˜ืœืคื™ื ื—ื•ืจืคื™ื ื‘ื ืคืจื“,
06:17
but year after year,
144
377007
1461
ืื‘ืœ ืฉื ื” ืื—ืจื™ ืฉื ื”,
06:18
when the bats come together again in the spring,
145
378468
3073
ื›ืฉื”ืขื˜ืœืคื™ื ืžืชืื—ื“ื™ื ืฉื•ื‘ ื‘ืื‘ื™ื‘,
06:21
the communities stay the same.
146
381541
2590
ื”ืงื”ื™ืœื•ืช ื ืฉืืจื•ืช ืื•ืชื• ื”ื“ื‘ืจ.
06:24
So these bats remember their friends
147
384131
2720
ืื– ื”ืขื˜ืœืคื™ื ื”ืืœื” ื–ื•ื›ืจื™ื ืืช ื”ื—ื‘ืจื™ื ืฉืœื”ื
06:26
for a really long time.
148
386851
1830
ืœื–ืžืŸ ืžืžืฉ ืืจื•ืš.
06:28
With a brain the size of a peanut,
149
388681
2474
ืขื ืžื•ื— ื‘ื’ื•ื“ืœ ืฉืœ ื‘ื•ื˜ืŸ,
06:31
they maintain individualized,
150
391155
2125
ื”ื ืฉื•ืžืจื™ื ืขืœ ืงืฉืจื™ื
06:33
long-term social bonds,
151
393280
2142
ื™ื—ื•ื“ื™ื™ื ืืจื•ื›ื™ ื˜ื•ื•ื—,
06:35
We didn't know that was possible.
152
395422
1724
ืœื ื™ื“ืขื ื• ืฉื–ื” ืืคืฉืจื™.
06:37
We knew that primates
153
397146
1759
ืื ื—ื ื• ื™ื“ืขื ื• ืฉืคืจื™ืžื˜ื™ื
06:38
and elephants and dolphins could do that,
154
398905
2568
ื•ืคื™ืœื™ื ื•ื“ื•ืœืคื™ื ื™ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช,
06:41
but compared to bats, they have huge brains.
155
401473
2628
ืื‘ืœ ื™ื—ืกื™ืช ืœืขื˜ืœืคื™ื, ื™ืฉ ืœื”ื ืžื•ื—ื•ืช ืขื ืงื™ื™ื.
06:44
So how could it be
156
404101
2399
ืื– ืื™ืš ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช
06:46
that the bats maintain this complex,
157
406500
1951
ืฉื”ืขื˜ืœืคื™ื ืฉื•ืžืจื™ื ืขืœ ื”ืžื‘ื ื”
06:48
stable social structure
158
408451
1688
ื”ื—ื‘ืจืชื™ ื”ืžื•ืจื›ื‘ ื•ื”ื™ืฆื™ื‘ ื”ื–ื”
06:50
with such limited cognitive abilities?
159
410139
3532
ืขื ื™ื›ื•ืœื•ืช ืงื•ื’ื ื™ื˜ื™ื‘ื™ื•ืช ื›ืœ ื›ืš ืžื•ื’ื‘ืœื•ืช?
06:53
And this is where complexity brings an answer.
160
413671
2889
ื•ืฉื ื”ืžื•ืจื›ื‘ื•ืช ืžื‘ื™ืื” ืืช ื”ืชืฉื•ื‘ื”.
06:56
To understand this system,
161
416560
2141
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ืžืขืจื›ืช ื”ื–ื•,
06:58
we built a computer model of roosting,
162
418701
2797
ื‘ื ื™ื ื• ืžื•ื“ืœ ืžื—ืฉื•ื‘ื™ ืฉืœ ืงื™ื ื•ืŸ,
07:01
based on simple, individual rules,
163
421498
2018
ืฉืžื‘ื•ืกืก ืขืœ ื—ื•ืงื™ื ืคืฉื•ื˜ื™ื ื•ื™ื—ื™ื“ื™ื,
07:03
and simulated thousands and thousands of days
164
423516
2435
ื•ืžื“ืžื™ื ืืœืคื™ ืืœืคื™ื ืฉืœ ื™ืžื™ื
07:05
in the virtual bat colony.
165
425951
2019
ื‘ืžื•ืฉื‘ืช ื”ืขื˜ืœืคื™ื ื”ื•ื™ืจื˜ื•ืืœื™ืช.
07:07
It's a mathematical model,
166
427970
2124
ื–ื” ืžื•ื“ืœ ืžืชืžื˜ื™,
07:10
but it's not complicated.
167
430094
1954
ืื‘ืœ ื–ื” ืœื ืžืกื•ื‘ืš.
07:12
What the model told us is that, in a nutshell,
168
432048
3098
ืžื” ืฉื”ืžื•ื“ืœ ืืžืจ ืœื ื• ื–ื”, ื‘ืขื™ืงืจื•ืŸ,
07:15
each bat knows a few other colony members
169
435146
3186
ื›ืœ ืขื˜ืœืฃ ืžื›ื™ืจ ื›ืžื” ื—ื‘ืจื™ื ืื—ืจื™ื ื‘ืงื”ื™ืœื”
07:18
as her friends, and is just slightly more likely
170
438332
2488
ื›ื—ื‘ืจื™ื ืฉืœื”, ื•ื™ืฉ ืกื™ื›ื•ื™ ืžืขื˜ ื’ื‘ื•ื” ื™ื•ืชืจ
07:20
to roost in a box with them.
171
440820
2510
ืœืงื ืŸ ื‘ืงื•ืคืกื” ืื™ืชื.
07:23
Simple, individual rules.
172
443330
2444
ื—ื•ืงื™ื ื™ื—ื™ื“ื™ื ืคืฉื•ื˜ื™ื.
07:25
This is all it takes to explain
173
445774
1712
ื–ื” ื›ืœ ืžื” ืฉื ื“ืจืฉ ื›ื“ื™ ืœื”ืกื‘ื™ืจ
07:27
the social complexity of these bats.
174
447486
2389
ืืช ื”ืžื•ืจื›ื‘ื•ืช ื”ื—ื‘ืจืชื™ืช ืฉืœ ื”ืขื˜ืœืคื™ื ื”ืืœื”.
07:29
But it gets better.
175
449875
1718
ืื‘ืœ ื–ื” ื ืขืฉื” ื˜ื•ื‘ ื™ื•ืชืจ.
07:31
Between 2010 and 2011,
176
451593
2848
ื‘ื™ืŸ 2010 ื• 2011,
07:34
the colony lost more than two thirds of its members,
177
454441
3453
ื”ืžื•ืฉื‘ื” ืื™ื‘ื“ื” ื™ื•ืชืจ ืžืฉื ื™ ืฉืœื™ืฉื™ื ืžื—ื‘ืจื™ื”,
07:37
probably due to the very cold winter.
178
457894
2986
ื›ื ืจืื” ื‘ืฉืœ ื”ื—ื•ืจืฃ ื”ืงืจ.
07:40
The next spring, it didn't form two communities
179
460880
3144
ื‘ืื‘ื™ื‘ ื”ื‘ื, ื”ื™ื ืœื ื™ืฆืจื” ืฉืชื™ ืงื”ื™ืœื•ืช
07:44
like every year,
180
464024
1271
ื›ืžื• ื›ืœ ืฉื ื”,
07:45
which may have led the whole colony to die
181
465295
2203
ืžื” ืฉื”ื™ื” ืžื•ื‘ื™ืœ ืœืžื•ืช ื›ืœ ื”ืžื•ืฉื‘ื”
07:47
because it had become too small.
182
467498
2095
ืžืคื ื™ ืฉื”ื™ื ื”ืคื›ื” ืงื˜ื ื” ืžื“ื™.
07:49
Instead, it formed a single, cohesive social unit,
183
469593
5373
ื‘ืžืงื•ื, ื”ื™ื ื™ืฆืจื” ื™ื—ื™ื“ื” ื—ื‘ืจืชื™ืช ืื—ืช ืžืื•ื—ื“ืช,
07:54
which allowed the colony to survive that season
184
474966
2732
ืžื” ืฉืืคืฉืจ ืœืžื•ืฉื‘ื” ืœืฉืจื•ื“ ืืช ื”ืขื•ื ื”
07:57
and thrive again in the next two years.
185
477698
3104
ื•ืœืฉื’ืฉื’ ืฉื•ื‘ ื‘ืฉื ืชื™ื™ื ื”ื‘ืื•ืช.
08:00
What we know is that the bats
186
480802
1778
ืžื” ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ื–ื” ืฉื”ืขื˜ืœืคื™ื
08:02
are not aware that their colony is doing this.
187
482580
2907
ืœื ืžื•ื“ืขื™ื ืœื–ื” ืฉื”ืงื”ื™ืœื” ืฉืœื”ื ืขื•ืฉื” ืืช ื–ื”.
08:05
All they do is follow simple association rules,
188
485487
3546
ื›ืœ ืžื” ืฉื”ื ืขื•ืฉื™ื ื–ื” ืœืขืงื•ื‘ ืื—ืจื™ ื—ื•ืง ืฉื™ื•ืš ืคืฉื•ื˜,
08:09
and from this simplicity
189
489033
1349
ื•ืžืชื•ืš ื”ืคืฉื˜ื•ืช ื”ื–ื•
08:10
emerges social complexity
190
490382
2441
ื ื•ื‘ืขืช ืžื•ืจื›ื‘ื•ืช ื—ื‘ืจืชื™ืช
08:12
which allows the colony to be resilient
191
492823
2840
ืฉืžืืคืฉืจืช ืœืžื•ืฉื‘ื” ืœื”ื™ื•ืช ืขืžื™ื“ื”
08:15
against dramatic changes in the population structure.
192
495663
2981
ืžื•ืœ ืฉื™ื ื•ื™ื™ื ื“ืจืžื˜ื™ื ื‘ืžื‘ื ื” ื”ืื•ื›ืœื•ืกื™ื”.
08:18
And I find this incredible.
193
498644
2694
ื•ืื ื™ ืžื•ืฆื ืืช ื–ื” ืžื“ื”ื™ื.
08:21
Now I want to tell you another story,
194
501338
2084
ืขื›ืฉื™ื• ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืกื™ืคื•ืจ ืื—ืจ,
08:23
but for this we have to travel from Europe
195
503422
1555
ืื‘ืœ ื‘ืฉื‘ื™ืœ ื–ื” ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขื‘ื•ืจ ืžืื™ืจื•ืคื”
08:24
to the Kalahari Desert in South Africa.
196
504977
3048
ืœืžื“ื‘ืจ ืงืœื”ืจื™ ื‘ื“ืจื•ื ืืคืจื™ืงื”.
08:28
This is where meerkats live.
197
508025
2027
ืฉื ื”ืกื•ืจื™ืงื˜ื•ืช ื—ื™ื•ืช.
08:30
I'm sure you know meerkats.
198
510052
1500
ืื ื™ ื‘ื˜ื•ื— ืฉืืชื ืžื›ื™ืจื™ื ืืช ื”ืกื•ืจื™ืงื˜ื•ืช.
08:31
They're fascinating creatures.
199
511552
2106
ื”ื ื™ืฆื•ืจื™ื ืžืจืชืงื™ื.
08:33
They live in groups with a very strict social hierarchy.
200
513658
2989
ื”ื ื—ื™ื™ื ื‘ืงื‘ื•ืฆื•ืช ืขื ืžื‘ื ื” ื—ื‘ืจืชื™ ื”ื™ืจืจื›ื™ ื ื•ืงืฉื”,
08:36
There is one dominant pair,
201
516647
1459
ื™ืฉ ื–ื•ื’ ื“ื•ืžื™ื ื ื˜ื™ ืื—ื“,
08:38
and many subordinates,
202
518106
1382
ื•ื”ืจื‘ื” ื›ืคื•ืคื™ื,
08:39
some acting as sentinels,
203
519488
1714
ื—ืœืง ืžืฉืžืฉื™ื ื›ื–ืงื™ืคื™ื,
08:41
some acting as babysitters,
204
521202
1337
ื—ืœืง ืžืฉืžืฉื™ื ื›ื‘ื™ื™ื‘ื™ืกื™ื˜ืจื™ื,
08:42
some teaching pups, and so on.
205
522539
1897
ื—ืœืง ืžืœืžื“ื™ื ืืช ื”ื’ื•ืจื™ื, ื•ื›ืš ื”ืœืื”.
08:44
What we do is put very small GPS collars
206
524436
3321
ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื–ื” ืœืฉื™ื ืงื•ืœืจื™ GPS ื–ืขื™ืจื™ื
08:47
on these animals
207
527757
1525
ืขืœ ื”ื—ื™ื•ืช ื”ืืœื•
08:49
to study how they move together,
208
529282
1875
ื›ื“ื™ ืœื—ืงื•ืจ ืื™ืš ื”ื™ืŸ ื ืขื•ืช ื™ื—ื“,
08:51
and what this has to do with their social structure.
209
531157
3717
ื•ืžื” ื‘ื™ืŸ ื–ื” ืœืžื‘ื ื” ื”ื—ื‘ืจืชื™ ืฉืœื”ื.
08:54
And there's a very interesting example
210
534874
1490
ื•ื™ืฉ ื“ื•ื’ืžื” ืžืื•ื“ ืžืขื ื™ื™ื ืช
08:56
of collective movement in meerkats.
211
536364
2716
ืฉืœ ืชื ื•ืขื” ืงื•ืœืงื˜ื™ื‘ื™ืช ื‘ืกื•ืจื™ืงื˜ื•ืช.
08:59
In the middle of the reserve which they live in
212
539080
2367
ื‘ืืžืฆืข ื”ืฉืžื•ืจื” ื‘ื” ื”ื ื—ื™ื™ื
09:01
lies a road.
213
541447
1209
ื™ืฉ ื›ื‘ื™ืฉ.
09:02
On this road there are cars, so it's dangerous.
214
542656
3233
ื‘ื›ื‘ื™ืฉ ื™ืฉ ืžื›ื•ื ื™ื•ืช, ืื– ื–ื” ืžืกื•ื›ืŸ.
09:05
But the meerkats have to cross it
215
545889
2284
ืื‘ืœ ื”ืกื•ืจื™ืงื˜ื•ืช ืฆืจื™ื›ื•ืช ืœื—ืฆื•ืช ืื•ืชื•
09:08
to get from one feeding place to another.
216
548173
2574
ื›ื“ื™ ืœื”ื’ื™ืข ืžืื–ื•ืจ ืื›ื™ืœื” ืื—ื“ ืœืฉื ื™.
09:10
So we asked, how exactly do they do this?
217
550747
4751
ืื– ืื ื—ื ื• ืฉื•ืืœื™ื, ืื™ืš ื‘ื“ื™ื•ืง ื”ื ืขื•ืฉื™ื ืืช ื–ื”?
09:15
We found that the dominant female
218
555498
1836
ืžืฆืื ื• ืฉื”ื ืงื‘ื” ื”ื“ื•ืžื™ื ื ื˜ื™ืช
09:17
is mostly the one who leads the group to the road,
219
557334
2621
ื”ื™ื ื–ื• ืฉืžื•ื‘ื™ืœื” ืืช ื”ืงื‘ื•ืฆื” ืœื›ื‘ื™ืฉ,
09:19
but when it comes to crossing it, crossing the road,
220
559955
3272
ืื‘ืœ ื›ืฉื–ื” ืžื’ื™ืข ืœื—ืฆื™ื” ืฉืœื•, ื—ืฆื™ื™ืช ื”ื›ื‘ื™ืฉ,
09:23
she gives way to the subordinates,
221
563227
2351
ื”ื™ื ื ื•ืชื ืช ื–ื›ื•ืช ืงื“ื™ืžื” ืœื›ืคื•ืคื™ื ืืœื™ื”,
09:25
a manner of saying,
222
565578
1777
ืืคืฉืจ ืœื”ื’ื™ื“,
09:27
"Go ahead, tell me if it's safe."
223
567355
2682
"ืชืชืงื“ืžื•, ืชื’ื™ื“ื• ืœื™ ืื ื–ื” ื‘ื˜ื•ื—."
09:30
What I didn't know, in fact,
224
570037
1664
ืžื” ืฉืœื ื™ื“ืขืชื™, ืœืžืขืฉื”,
09:31
was what rules in their behavior the meerkats follow
225
571701
3142
ื”ื™ื” ืื—ืจื™ ืื™ืœื• ื—ื•ืงื™ื ื‘ื”ืชื ื”ื’ื•ืช ืฉืœื”ื ื”ืกื•ืจื™ืงื˜ื•ืช ืขื•ืงื‘ื•ืช
09:34
for this change at the edge of the group to happen
226
574843
2925
ื›ื“ื™ ืฉื™ืงืจื” ื”ืฉื™ื ื•ื™ ื‘ืงืฆื” ื”ืงื‘ื•ืฆื”
09:37
and if simple rules were sufficient to explain it.
227
577768
3850
ื•ืื ื—ื•ืงื™ื ืคืฉื•ื˜ื™ื ื”ื™ื• ืžืกืคื™ืงื™ื ื›ื“ื™ ืœื”ืกื‘ื™ืจ ืืช ื–ื”.
09:41
So I built a model, a model of simulated meerkats
228
581618
3991
ืื– ืื ื™ ื‘ื•ื ื” ืžื•ื“ืœ, ืžื•ื“ืœ ืฉืœ ืกื•ืจื™ืงื˜ื•ืช ืžื“ื•ืžื•ืช
09:45
crossing a simulated road.
229
585609
1913
ืฉื—ื•ืฆื•ืช ื›ื‘ื™ืฉ ืžื“ื•ืžื”.
09:47
It's a simplistic model.
230
587522
1872
ื–ื” ืžื•ื“ืœ ืžื•ืคืฉื˜.
09:49
Moving meerkats are like random particles
231
589394
2840
ืกื•ืจื™ืงื˜ื•ืช ื ืขื•ืช ื”ืŸ ื›ืžื• ื—ืœืงื™ืงื™ื ืืงืจืื™ื™ื
09:52
whose unique rule is one of alignment.
232
592234
2222
ืฉื”ื—ื•ืง ื”ืื—ื“ ื•ื”ื™ื—ื•ื“ื™ ื”ื•ื ืชืื•ื.
09:54
They simply move together.
233
594456
2406
ื”ื ืคืฉื•ื˜ ื ืขื™ื ื™ื—ื“.
09:56
When these particles get to the road,
234
596862
3184
ื›ืฉื”ื—ืœืงื™ืงื™ื ื”ืืœื” ืžื’ื™ืขื™ื ืœื›ื‘ื™ืฉ,
10:00
they sense some kind of obstacle,
235
600046
1942
ื”ื ื—ืฉื™ื ืกื•ื’ ืžืกื•ื™ื™ื ืฉืœ ืžื›ืฉื•ืœ,
10:01
and they bounce against it.
236
601988
2084
ื•ื”ื ืžื•ื—ื–ืจื™ื ืžื•ืœื•.
10:04
The only difference
237
604072
1156
ื”ื”ื‘ื“ืœ ื”ื™ื—ื™ื“
10:05
between the dominant female, here in red,
238
605228
2042
ื‘ื™ืŸ ื”ื ืงื‘ื” ื”ืฉืœื˜ืช, ืคื” ื‘ืื“ื•ื,
10:07
and the other individuals,
239
607270
1485
ื•ื”ืคืจื˜ื™ื ื”ืื—ืจื™ื,
10:08
is that for her, the height of the obstacle,
240
608755
2554
ื”ื•ื ืฉื‘ืฉื‘ื™ืœื”, ื’ื•ื‘ื” ื”ืžื›ืฉื•ืœ,
10:11
which is in fact the risk perceived from the road,
241
611309
2505
ืฉื”ื™ื ืœืžืขืฉื” ื”ืกื™ื›ื•ืŸ ืฉื”ื›ื‘ื™ืฉ ื ื—ืฉื‘,
10:13
is just slightly higher,
242
613814
1949
ื”ื•ื ืžืขื˜ ื’ื‘ื•ื” ื™ื•ืชืจ,
10:15
and this tiny difference
243
615763
1661
ื•ื”ื”ื‘ื“ืœ ื”ื–ืขื™ืจ ื”ื–ื”
10:17
in the individual's rule of movement
244
617424
1838
ื‘ื—ื•ืงื™ ื”ืชื ื•ืขื” ืฉืœ ื”ืคืจื™ื˜ื™ื
10:19
is sufficient to explain what we observe,
245
619262
2446
ืžืกืคื™ืง ื›ื“ื™ ืœื”ืกื‘ื™ืจ ืืช ืžื” ืฉืื ื—ื ื• ืจื•ืื™ื,
10:21
that the dominant female
246
621708
2560
ืฉื”ื ืงื‘ื” ื”ืฉืœื˜ืช
10:24
leads her group to the road
247
624268
1434
ืžื•ื‘ื™ืœื” ืืช ื”ืงื‘ื•ืฆื” ืœื›ื‘ื™ืฉ
10:25
and then gives way to the others
248
625702
1670
ื•ืื– ื ื•ืชื ืช ืœืื—ืจื™ื
10:27
for them to cross first.
249
627372
2863
ืœื—ืฆื•ืช ืงื•ื“ื.
10:30
George Box, who was an English statistician,
250
630235
3651
ื’'ื•ืจื’' ื‘ื•ืงืก, ืฉื”ื™ื” ืกื˜ื˜ื™ืกื˜ื™ืงืื™ ืื ื’ืœื™,
10:33
once wrote, "All models are false,
251
633886
2962
ื›ืชื‘ ืคืขื, "ื›ืœ ื”ืžื•ื“ืœื™ื ืฉื’ื•ื™ื™ื,
10:36
but some models are useful."
252
636848
2059
ืื‘ืœ ื—ืœืง ืžื”ืžื•ื“ืœื™ื ืžื•ืขื™ืœื™ื"
10:38
And in fact, this model is obviously false,
253
638907
3197
ื•ืœืžืขืฉื”, ื”ืžื•ื“ืœ ื”ื–ื” ืฉื’ื•ื™ ื‘ื‘ืจื•ืจ,
10:42
because in reality, meerkats are anything but random particles.
254
642104
3968
ืžืคื ื™ ืฉื‘ืžืฆื™ืื•ืช, ืกื•ืจื™ืงื˜ื•ืช ื”ืŸ ื”ื›ืœ ื—ื•ืฅ ืžื—ืœืงื™ืงื™ื ืืงืจืื™ื™ื.
10:46
But it's also useful,
255
646072
1637
ืื‘ืœ ื”ื•ื ื’ื ืžื•ืขื™ืœ,
10:47
because it tells us that extreme simplicity
256
647709
2749
ืžืคื ื™ ืฉื”ื•ื ืื•ืžืจ ืœื ื• ืฉืคืฉื˜ื•ืช ืงื™ืฆื•ื ื™ืช
10:50
in movement rules at the individual level
257
650458
3358
ื‘ื—ื•ืงื™ ืชื ื•ืขื” ื‘ืจืžืช ื”ืคืจื˜ื™ื
10:53
can result in a great deal of complexity
258
653816
2351
ื™ื›ื•ืœื” ืœื™ืฆื•ืจ ืžื•ืจื›ื‘ื•ืช ืงื™ืฆื•ื ื™ืช
10:56
at the level of the group.
259
656167
1938
ื‘ืจืžื” ื”ืงื‘ื•ืฆืชื™ืช.
10:58
So again, that's simplifying complexity.
260
658105
4056
ืื– ืฉื•ื‘, ื–ื” ืคื™ืฉื˜ ืืช ื”ืžื•ืจื›ื‘ื•ืช.
11:02
I would like to conclude
261
662161
1448
ื”ื™ื™ืชื™ ืจื•ืฆื” ืœืกื›ื
11:03
on what this means for the whole species.
262
663609
2817
ื‘ืžื” ืฉื–ื” ืื•ืžืจ ืœื›ืœ ื”ืžื™ื ื™ื.
11:06
When the dominant female
263
666426
1664
ื›ืฉื ืงื‘ื” ื“ื•ืžื™ื ื ื˜ื™ืช
11:08
gives way to a subordinate,
264
668090
1566
ื ื•ืชื ืช ืœืคืงื•ื“ ืœืขื‘ื•ืจ,
11:09
it's not out of courtesy.
265
669656
2117
ื–ื” ืœื ืžืื“ื™ื‘ื•ืช.
11:11
In fact, the dominant female
266
671773
1507
ืœืžืขืฉื”, ื”ื ืงื‘ื” ื”ื“ื•ืžื ื ื˜ื™ืช
11:13
is extremely important for the cohesion of the group.
267
673280
2519
ื”ื™ื ื—ืฉื•ื‘ื” ืžืื•ื“ ืœืื™ื—ื•ื“ ื”ืงื‘ื•ืฆื”.
11:15
If she dies on the road, the whole group is at risk.
268
675799
3512
ืื ื”ื™ื ืžืชื” ืขืœ ื”ื›ื‘ื™ืฉ, ื›ืœ ื”ืงื‘ื•ืฆื” ื‘ืกื›ื ื”.
11:19
So this behavior of risk avoidance
269
679311
2236
ืื– ื”ื”ืชื ื”ื’ื•ืช ื”ื–ื• ืฉืœ ื”ืžื ืขื•ืช ืžืกื™ื›ื•ื ื™ื
11:21
is a very old evolutionary response.
270
681547
2801
ื”ื™ื ืชื’ื•ื‘ื” ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช ืขืชื™ืงื”.
11:24
These meerkats are replicating an evolved tactic
271
684348
3869
ื”ืกื•ืจื™ืงื˜ื•ืช ื”ืืœื• ืžืฉื›ืคืœื™ื ื˜ืงื˜ื™ืงื” ืžืคื•ืชื—ืช
11:28
that is thousands of generations old,
272
688217
2233
ืฉื”ื™ื ื‘ืช ืืœืคื™ ื“ื•ืจื•ืช,
11:30
and they're adapting it to a modern risk,
273
690450
2414
ื•ื”ื ืžืืžืฆื™ื ืื•ืชื” ืœืกื™ื›ื•ืŸ ืžื•ื“ืจื ื™,
11:32
in this case a road built by humans.
274
692864
3325
ื‘ืžืงืจื” ื”ื–ื” ื›ื‘ื™ืฉ ืฉื ื‘ื ื” ืขืœ ื™ื“ื™ ืื ืฉื™ื.
11:36
They adapt very simple rules,
275
696189
2395
ื”ื ืžืชืื™ืžื™ื ื—ื•ืงื™ื ืžืื•ื“ ืคืฉื•ื˜ื™ื,
11:38
and the resulting complex behavior
276
698584
2289
ื•ื”ื”ืชื ื”ื’ื•ืช ื”ืžื•ืจื›ื‘ืช ืฉื‘ืื” ื›ืชื•ืฆืื”
11:40
allows them to resist human encroachment
277
700873
2956
ืžืืคืฉืจืช ืœื”ื ืœื”ืชื ื’ื“ ืœื—ื“ื™ืจื” ื”ืื ื•ืฉื™ืช
11:43
into their natural habitat.
278
703829
2448
ืœืกื‘ื™ื‘ืช ื”ืžื—ื™ื” ื”ื˜ื‘ืขื™ืช ืฉืœื”ื.
11:46
In the end,
279
706277
1802
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ,
11:48
it may be bats which change their social structure
280
708079
2700
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืขื˜ืœืคื™ื ืฉืžืฉื ื™ื ืืช ื”ืžื‘ื ื” ื”ื—ื‘ืจืชื™ ืฉืœื”ื
11:50
in response to a population crash,
281
710779
2384
ื›ืชื’ื•ื‘ื” ืœื”ืชืจืกืงื•ืช ื”ืื•ื›ืœื•ืกื™ื”,
11:53
or it may be meerkats
282
713163
1399
ืื• ืกื•ืจื™ืงื˜ื•ืช
11:54
who show a novel adaptation to a human road,
283
714562
3202
ืฉืžืจืื•ืช ื”ืชืืžื” ืžืจืฉื™ืžื” ืœื›ื‘ื™ืฉ ืื ื•ืฉื™,
11:57
or it may be another species.
284
717764
2685
ืื• ืฉื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื™ืŸ ืื—ืจ.
12:00
My message here -- and it's not a complicated one,
285
720449
2793
ื”ืžืกืจ ืฉืœื™ ื”ื•ื -- ื•ื”ื•ื ืœื ืžืกื•ื‘ืš,
12:03
but a simple one of wonder and hope --
286
723242
2764
ืืœื ืื—ื“ ืคืฉื•ื˜ ืฉืœ ืคืœื™ืื” ื•ืชืงื•ื•ื” --
12:06
my message here is that animals
287
726006
3093
ื”ืžืกืจ ืฉืœื™ ืคื” ื”ื•ื ืฉื—ื™ื•ืช
12:09
show extraordinary social complexity,
288
729099
2424
ืžืจืื•ืช ืžื•ืจื›ื‘ื•ืช ื—ื‘ืจืชื™ืช ื™ื•ืฆืืช ื“ื•ืคืŸ,
12:11
and this allows them to adapt
289
731523
2441
ื•ื–ื” ืžืืคืฉืจ ืœื”ืŸ ืœื”ืชืื™ื ืืช ืขืฆืžืŸ
12:13
and respond to changes in their environment.
290
733964
3481
ื•ืœื”ื’ื™ื‘ ืœืฉื™ื ื•ื™ื™ื ื‘ืกื‘ื™ื‘ื” ืฉืœื”ื.
12:17
In three words, in the animal kingdom,
291
737445
2768
ื‘ืฉืœื•ืฉ ืžื™ืœื™ื, ื‘ืžืžืœื›ืช ื”ื—ื™,
12:20
simplicity leads to complexity
292
740213
2774
ืคืฉื˜ื•ืช ืžื•ื‘ื™ืœื” ืœืžื•ืจื›ื‘ื•ืช
12:22
which leads to resilience.
293
742987
1483
ืฉืžื•ื‘ื™ืœื” ืœื’ืžื™ืฉื•ืช.
12:24
Thank you.
294
744470
2284
ืชื•ื“ื” ืœื›ื.
12:26
(Applause)
295
746754
6680
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
12:42
Dania Gerhardt: Thank you very much, Nicolas,
296
762694
1953
ื“ื ื™ื” ื’ืจื”ืจื“ื˜: ืชื•ื“ื” ืจื‘ื” ืœืš, ื ื™ืงื•ืœืืก,
12:44
for this great start. Little bit nervous?
297
764647
3279
ืขืœ ื”ื”ืชื—ืœื” ื”ืžืขื•ืœื” ื”ื–ื•, ืžืขื˜ ืœื—ื•ืฅ?
12:47
Nicolas Perony: I'm okay, thanks.
298
767926
1644
ื ื™ืงื•ืœืืก ืคืจื•ื ื™: ืื ื™ ื‘ืกื“ืจ, ืชื•ื“ื”.
12:49
DG: Okay, great. I'm sure a lot of people in the audience
299
769570
2460
ื“.ื’: ืื•ืงื™ื™, ืžืขื•ืœื”, ืื ื™ ื‘ื˜ื•ื—ื” ืฉื”ืจื‘ื” ืื ืฉื™ื ื‘ืงื”ืœ
12:52
somehow tried to make associations
300
772030
1864
ืื™ื›ืฉื”ื• ื ื™ืกื• ืœืขืฉื•ืช ืงื™ืฉื•ืจื™ื
12:53
between the animals you were talking about --
301
773894
1824
ื‘ื™ืŸ ื”ื—ื™ื•ืช ืฉื“ื™ื‘ืจืช ืขืœื™ื”ืŸ --
12:55
the bats, meerkats -- and humans.
302
775718
2056
ื”ืขื˜ืœืคื™ื, ื”ืกื•ืจื™ืงื˜ื•ืช -- ื•ืื ืฉื™ื.
12:57
You brought some examples:
303
777774
1208
ื”ื‘ืืช ื“ื•ื’ืžืื•ืช:
12:58
The females are the social ones,
304
778982
1735
ื”ื ืงื‘ื•ืช ื”ืŸ ื”ื—ื‘ืจืชื™ื•ืช,
13:00
the females are the dominant ones,
305
780717
1713
ื”ื ืงื‘ื•ืช ื”ืŸ ื”ื“ื•ืžื™ื ื ื˜ื™ื•ืช,
13:02
I'm not sure who thinks how.
306
782430
1673
ืื ื™ ืœื ื‘ื˜ื•ื—ื” ืžื™ ื—ื•ืฉื‘ ืื™ืš.
13:04
But is it okay to do these associations?
307
784103
2895
ืื‘ืœ ื”ืื ื–ื” ื‘ืกื“ืจ ืœืขืฉื•ืช ืงื™ืฉื•ืจื™ื?
13:06
Are there stereotypes you can confirm in this regard
308
786998
2800
ื”ืื ืฉื™ืฉ ืกื˜ืจืื•ื˜ื™ืคื™ื ืฉืืชื” ื™ื›ื•ืœ ืœืืฉืจ ื‘ื”ืงืฉืจ ื”ื–ื”
13:09
that can be valid across all species?
309
789798
3273
ืฉื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื ื›ื•ื ื™ื ืœื›ืœ ื”ืžื™ื ื™ื?
13:13
NP: Well, I would say there are also
310
793071
1603
ื .ืค: ื•ื‘ื›ืŸ, ื”ื™ื™ืชื™ ืื•ืžืจ ืฉื™ืฉ ื’ื
13:14
counter-examples to these stereotypes.
311
794674
1952
ื“ื•ื’ืžืื•ืช ื ื’ื“ื™ื•ืช ืœืกื˜ืจืื•ื˜ื™ืคื™ื ื”ืืœื”.
13:16
For examples, in sea horses or in koalas, in fact,
312
796626
3140
ืœื“ื•ื’ืžื”, ื‘ืกื•ืกื•ื ื™ ื™ื ืื• ื‘ืงื•ืืœื•ืช, ืœืžืขืฉื”,
13:19
it is the males who take care of the young always.
313
799766
3698
ื–ื” ื”ื–ื›ืจ ืฉืžื˜ืคืœ ื‘ืฆืขื™ืจื™ื ืชืžื™ื“.
13:23
And the lesson is that it's often difficult,
314
803464
5041
ื•ื”ืฉื™ืขื•ืจ ื”ื•ื ืฉื–ื” ืœืจื•ื‘ ืงืฉื”,
13:28
and sometimes even a bit dangerous,
315
808505
1752
ื•ืœืคืขืžื™ื ืืคื™ืœื• ืžืกื•ื›ืŸ ืžืขื˜,
13:30
to draw parallels between humans and animals.
316
810257
2672
ืœืขืฉื•ืช ื”ืฉื•ื•ืื•ืช ื‘ื™ืŸ ืื ืฉื™ื ืœื—ื™ื•ืช.
13:32
So that's it.
317
812929
2106
ืื– ื–ื”ื• ื–ื”.
13:35
DG: Okay. Thank you very much for this great start.
318
815035
2846
ื“.ื’: ืื•ืงื™ื™, ืชื•ื“ื” ืจื‘ื” ืœืš ืขืœ ื”ื”ืชื—ืœื” ื”ืžืขื•ืœื” ื”ื–ื•.
13:37
Thank you, Nicolas Perony.
319
817881
2080
ืชื•ื“ื” ืœืš, ื ื™ืงื•ืœืืก ืคืจื•ื ื™.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7