The satisfying math of folding origami - Evan Zodl

433,662 views ・ 2021-02-11

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: 至磊Zi Le 黃Ng 審譯者: Helen Chang
00:07
As the space telescope prepares to snap a photo,
0
7954
3500
太空望遠鏡準備拍照時,
00:11
the light of the nearby star blocks its view.
1
11454
2917
鄰近的星光遮蔽了它的視線。
00:14
But the telescope has a trick up its sleeve:
2
14996
2750
但望遠鏡有個祕密招數:
00:17
a massive shield to block the glare.
3
17746
3333
用巨大的板子擋住亮光。
00:21
This starshade has a diameter of about 35 meters—
4
21079
4625
遮星板直徑長達約 35 公尺,
00:25
that folds down to just under 2.5 meters,
5
25704
3667
摺起來卻只有 2.5 公尺以下,
00:29
small enough to carry on the end of a rocket.
6
29371
3083
小得可以裝在火箭的尾端。
00:32
Its compact design is based on an ancient art form.
7
32454
5000
它緊湊密實的設計源自 一種古老的藝術形式。
00:37
Origami, which literally translates to “folding paper,”
8
37454
5042
Origami 翻譯成「摺紙」,
00:42
is a Japanese practice dating back to at least the 17th century.
9
42496
4583
這項日本風俗至少 可追溯到十七世紀。
00:47
In origami, the same simple concepts
10
47079
2375
摺紙藝術中,同樣幾條簡單的原則
00:49
yield everything from a paper crane with about 20 steps,
11
49454
4000
可以從摺大約二十個步驟的紙鶴,
00:53
to this dragon with over 1,000 steps, to a starshade.
12
53454
5167
到需要超過一千個步驟的龍,
再到遮星板。
00:58
A single, traditionally square sheet of paper
13
58621
2791
只要一張紙,傳統上是正方形,
01:01
can be transformed into almost any shape, purely by folding.
14
61412
4459
幾乎可以轉化為任何形態, 而且只需要用摺的。
01:05
Unfold that sheet, and there’s a pattern of lines,
15
65871
3250
攤平那張紙,就有線構成的圖樣,
01:09
each of which represents a concave valley fold or a convex mountain fold.
16
69121
6833
每條都代表凹陷的谷摺 或凸起的山摺。
01:15
Origami artists arrange these folds to create crease patterns,
17
75954
4709
摺紙藝術家安排摺法, 製作摺痕的圖樣,
01:20
which serve as blueprints for their designs.
18
80663
2875
當成他們的設計藍圖。
01:23
Though most origami models are three dimensional,
19
83579
2750
儘管多數摺紙作品是立體的,
01:26
their crease patterns are usually designed to fold flat
20
86329
3459
它們的摺痕圖樣通常會 設計成可以摺成平的,
01:29
without introducing any new creases or cutting the paper.
21
89788
4166
而且不需要新的摺痕或剪裁紙張。
01:33
The mathematical rules behind flat-foldable crease patterns
22
93954
4000
可以摺平的摺痕圖樣背後的數學規則
01:37
are much simpler than those behind 3D crease patterns—
23
97954
4209
比立體摺痕圖樣的規則簡單多了,
01:42
it’s easier to create an abstract 2D design and then shape it into a 3D form.
24
102163
5875
做出抽象的平面設計, 再塑造為立體形式比較簡單。
01:48
There are four rules that any flat-foldable crease pattern must obey.
25
108954
4542
可以摺平的摺痕圖樣 必須遵循四條規則。
01:54
First, the crease pattern must be two-colorable—
26
114246
3542
第一,摺痕圖樣必須 可用兩種顏色上色,
01:57
meaning the areas between creases can be filled with two colors
27
117788
4208
意思是摺痕之間的區域 只用兩種顏色就能填滿,
02:01
so that areas of the same color never touch.
28
121996
3417
同色的區域永遠不會接在一起。
02:05
Add another crease here,
29
125413
1833
若在此多加一條摺痕,
02:07
and the crease pattern no longer displays two-colorability.
30
127246
3958
摺痕圖樣就不能用兩種顏色上色了。
02:11
Second, the number of mountain and valley folds
31
131871
2833
第二,山摺和谷摺的數量
02:14
at any interior vertex must differ by exactly two—
32
134704
4792
在每一個內部的頂點 都必須剛好差 2 ,
02:19
like the three valley folds and one mountain fold that meet here.
33
139496
4833
例如這裡是三個谷摺和一個山摺。
02:24
Here’s a closer look at what happens when we make the folds at this vertex.
34
144329
4875
我們把這個頂點的摺法看仔細一點。
02:29
If we add a mountain fold at this vertex, there are three valleys and two mountains.
35
149204
5584
如果在這個頂點多加一個山摺, 就會是三個谷摺和兩個山摺。
02:34
If it’s a valley, there are four valleys and one mountain.
36
154788
3541
如果多加一個谷摺, 就是四個谷摺和一個山摺。
02:39
Either way, the model doesn't fall flat.
37
159121
3208
無論何者,都無法摺成平的。
02:42
The third rule is that if we number all the angles
38
162913
3166
第三條規則是
如果我們將某個內部頂點周圍的角 順時針或逆時針編號,
02:46
at an interior vertex moving clockwise or counterclockwise,
39
166079
3917
02:49
the even-numbered angles must add up to 180 degrees,
40
169996
5458
偶數角加總必須是 180 度,
02:55
as must the odd-numbered angles.
41
175454
2792
奇數角也一樣。
02:58
Looking closer at the folds, we can see why.
42
178246
3292
把摺法看仔細一點就知道為什麼了。
03:02
If we add a crease and number the new angles at this vertex,
43
182288
4208
如果我們多加一條摺痕, 重新幫這個頂點的角編號,
03:06
the even and odd angles no longer add up to 180 degrees,
44
186496
5042
偶數角和奇數角各自的 總和就不會是 180 度,
03:11
and the model doesn’t fold flat.
45
191538
2500
作品就無法摺成平的。
03:14
Finally, a layer cannot penetrate a fold.
46
194038
3791
最後,不能有某一層 貫穿整個摺紙作品。
03:18
A 2D, flat-foldable base is often an abstract representation
47
198663
4541
一張平面且可以摺平的基礎
常是最終的立體外形的抽象代表。
03:23
of a final 3D shape.
48
203204
2167
03:25
Understanding the relationship between crease patterns, 2D bases,
49
205829
4750
摺紙藝術家理解平面摺痕圖樣 和最終立體外形的關聯,
03:30
and the final 3D form allows origami artists
50
210579
4084
所以可以設計出 不可思議的複雜形體。
03:34
to design incredibly complex shapes.
51
214663
3333
03:37
Take this crease pattern by origami artist Robert J. Lang.
52
217996
3958
以摺紙藝術家羅伯特‧ J ‧朗 創作的摺痕圖樣為例。
03:41
The crease pattern allocates areas for a creature's legs,
53
221954
3375
這張摺痕圖樣可分成 一隻生物的腿、尾、其他附肢。
03:45
tail, and other appendages.
54
225329
2500
03:47
When we fold the crease pattern into this flat base,
55
227829
3167
當我們將摺痕圖樣摺成平面基礎,
03:50
each of these allocated areas becomes a separate flap.
56
230996
4125
每個劃分好的區塊 都會變成獨立的一層。
03:55
By narrowing, bending, and sculpting these flaps,
57
235121
3125
將其縮窄、彎曲、變形,
03:58
the 2D base becomes a 3D scorpion.
58
238246
3917
平面基礎就成了立體的蠍子。
04:02
Now, what if we wanted to fold 7 of these flowers from the same sheet of paper?
59
242913
5458
那如果我們想用同一張紙 摺七朵這種花呢?
04:08
If we can duplicate the flower’s crease pattern
60
248371
2542
如果我們能重複這朵花的摺痕圖樣,
04:10
and connect each of them in such a way that all four laws are satisfied,
61
250913
4958
並以滿足四條規則的方式連接,
04:15
we can create a tessellation, or a repeating pattern of shapes
62
255871
4042
就可以製造出密鋪, 也就是重複的形狀圖樣
04:19
that covers a plane without any gaps or overlaps.
63
259913
3875
沒有縫隙且不會重疊地覆蓋一平面。
04:23
The ability to fold a large surface into a compact shape
64
263788
3958
將巨大平面摺成緊緻形體的能力
04:27
has applications from the vastness of space
65
267746
2792
可以用在寬廣的宇宙,
04:30
to the microscopic world of our cells.
66
270538
3291
也能用在細胞的微觀世界。
04:33
Using principles of origami,
67
273829
2084
利用摺紙的原則,
04:35
medical engineers have re-imagined the traditional stent graft,
68
275913
4291
醫學工程師已經重新塑造 傳統的主動脈覆膜支架,
04:40
a tube used to open and support damaged blood vessels.
69
280204
3709
這是一種可以張開 並支撐損毀血管的管子。
04:43
Through tessellation, the rigid tubular structure folds into a compact sheet
70
283913
5083
透過密鋪,固定的管狀結構 可以摺成緊密的薄片,
04:48
about half its expanded size.
71
288996
2708
大小只有張開時的一半左右。
04:51
Origami principles have been used in airbags, solar arrays,
72
291704
4584
摺紙的原則已經用在 安全氣囊、太陽能板、
04:56
self-folding robots, and even DNA nanostructures—
73
296288
4750
自我摺疊的機器人, 甚至是 DNA 的奈米結構,
05:01
who knows what possibilities will unfold next.
74
301038
4000
誰知道下一個可能的發展是什麼呢?
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7