請雙擊下方英文字幕播放視頻。
譯者: 至磊Zi Le 黃Ng
審譯者: Helen Chang
00:07
As the space telescope prepares
to snap a photo,
0
7954
3500
太空望遠鏡準備拍照時,
00:11
the light of the nearby
star blocks its view.
1
11454
2917
鄰近的星光遮蔽了它的視線。
00:14
But the telescope
has a trick up its sleeve:
2
14996
2750
但望遠鏡有個祕密招數:
00:17
a massive shield to block the glare.
3
17746
3333
用巨大的板子擋住亮光。
00:21
This starshade has a diameter
of about 35 meters—
4
21079
4625
遮星板直徑長達約 35 公尺,
00:25
that folds down to just under 2.5 meters,
5
25704
3667
摺起來卻只有 2.5 公尺以下,
00:29
small enough to carry
on the end of a rocket.
6
29371
3083
小得可以裝在火箭的尾端。
00:32
Its compact design is based
on an ancient art form.
7
32454
5000
它緊湊密實的設計源自
一種古老的藝術形式。
00:37
Origami, which literally translates
to “folding paper,”
8
37454
5042
Origami 翻譯成「摺紙」,
00:42
is a Japanese practice dating back
to at least the 17th century.
9
42496
4583
這項日本風俗至少
可追溯到十七世紀。
00:47
In origami, the same simple concepts
10
47079
2375
摺紙藝術中,同樣幾條簡單的原則
00:49
yield everything from a paper crane
with about 20 steps,
11
49454
4000
可以從摺大約二十個步驟的紙鶴,
00:53
to this dragon with over 1,000 steps,
to a starshade.
12
53454
5167
到需要超過一千個步驟的龍,
再到遮星板。
00:58
A single, traditionally square sheet
of paper
13
58621
2791
只要一張紙,傳統上是正方形,
01:01
can be transformed into almost
any shape, purely by folding.
14
61412
4459
幾乎可以轉化為任何形態,
而且只需要用摺的。
01:05
Unfold that sheet,
and there’s a pattern of lines,
15
65871
3250
攤平那張紙,就有線構成的圖樣,
01:09
each of which represents a concave
valley fold or a convex mountain fold.
16
69121
6833
每條都代表凹陷的谷摺
或凸起的山摺。
01:15
Origami artists arrange these folds
to create crease patterns,
17
75954
4709
摺紙藝術家安排摺法,
製作摺痕的圖樣,
01:20
which serve as blueprints
for their designs.
18
80663
2875
當成他們的設計藍圖。
01:23
Though most origami models
are three dimensional,
19
83579
2750
儘管多數摺紙作品是立體的,
01:26
their crease patterns are usually designed
to fold flat
20
86329
3459
它們的摺痕圖樣通常會
設計成可以摺成平的,
01:29
without introducing any new creases
or cutting the paper.
21
89788
4166
而且不需要新的摺痕或剪裁紙張。
01:33
The mathematical rules behind
flat-foldable crease patterns
22
93954
4000
可以摺平的摺痕圖樣背後的數學規則
01:37
are much simpler than those behind
3D crease patterns—
23
97954
4209
比立體摺痕圖樣的規則簡單多了,
01:42
it’s easier to create an abstract 2D
design and then shape it into a 3D form.
24
102163
5875
做出抽象的平面設計,
再塑造為立體形式比較簡單。
01:48
There are four rules that any
flat-foldable crease pattern must obey.
25
108954
4542
可以摺平的摺痕圖樣
必須遵循四條規則。
01:54
First, the crease pattern
must be two-colorable—
26
114246
3542
第一,摺痕圖樣必須
可用兩種顏色上色,
01:57
meaning the areas between creases
can be filled with two colors
27
117788
4208
意思是摺痕之間的區域
只用兩種顏色就能填滿,
02:01
so that areas of the same
color never touch.
28
121996
3417
同色的區域永遠不會接在一起。
02:05
Add another crease here,
29
125413
1833
若在此多加一條摺痕,
02:07
and the crease pattern no longer
displays two-colorability.
30
127246
3958
摺痕圖樣就不能用兩種顏色上色了。
02:11
Second, the number
of mountain and valley folds
31
131871
2833
第二,山摺和谷摺的數量
02:14
at any interior vertex
must differ by exactly two—
32
134704
4792
在每一個內部的頂點
都必須剛好差 2 ,
02:19
like the three valley folds
and one mountain fold that meet here.
33
139496
4833
例如這裡是三個谷摺和一個山摺。
02:24
Here’s a closer look at what happens
when we make the folds at this vertex.
34
144329
4875
我們把這個頂點的摺法看仔細一點。
02:29
If we add a mountain fold at this vertex,
there are three valleys and two mountains.
35
149204
5584
如果在這個頂點多加一個山摺,
就會是三個谷摺和兩個山摺。
02:34
If it’s a valley, there are four valleys
and one mountain.
36
154788
3541
如果多加一個谷摺,
就是四個谷摺和一個山摺。
02:39
Either way, the model doesn't fall flat.
37
159121
3208
無論何者,都無法摺成平的。
02:42
The third rule is that if we number
all the angles
38
162913
3166
第三條規則是
如果我們將某個內部頂點周圍的角
順時針或逆時針編號,
02:46
at an interior vertex moving
clockwise or counterclockwise,
39
166079
3917
02:49
the even-numbered angles must
add up to 180 degrees,
40
169996
5458
偶數角加總必須是 180 度,
02:55
as must the odd-numbered angles.
41
175454
2792
奇數角也一樣。
02:58
Looking closer at the folds,
we can see why.
42
178246
3292
把摺法看仔細一點就知道為什麼了。
03:02
If we add a crease and number
the new angles at this vertex,
43
182288
4208
如果我們多加一條摺痕,
重新幫這個頂點的角編號,
03:06
the even and odd angles no longer
add up to 180 degrees,
44
186496
5042
偶數角和奇數角各自的
總和就不會是 180 度,
03:11
and the model doesn’t fold flat.
45
191538
2500
作品就無法摺成平的。
03:14
Finally,
a layer cannot penetrate a fold.
46
194038
3791
最後,不能有某一層
貫穿整個摺紙作品。
03:18
A 2D, flat-foldable base is often
an abstract representation
47
198663
4541
一張平面且可以摺平的基礎
常是最終的立體外形的抽象代表。
03:23
of a final 3D shape.
48
203204
2167
03:25
Understanding the relationship
between crease patterns, 2D bases,
49
205829
4750
摺紙藝術家理解平面摺痕圖樣
和最終立體外形的關聯,
03:30
and the final 3D form
allows origami artists
50
210579
4084
所以可以設計出
不可思議的複雜形體。
03:34
to design incredibly complex shapes.
51
214663
3333
03:37
Take this crease pattern
by origami artist Robert J. Lang.
52
217996
3958
以摺紙藝術家羅伯特‧ J ‧朗
創作的摺痕圖樣為例。
03:41
The crease pattern allocates areas
for a creature's legs,
53
221954
3375
這張摺痕圖樣可分成
一隻生物的腿、尾、其他附肢。
03:45
tail, and other appendages.
54
225329
2500
03:47
When we fold the crease pattern
into this flat base,
55
227829
3167
當我們將摺痕圖樣摺成平面基礎,
03:50
each of these allocated areas
becomes a separate flap.
56
230996
4125
每個劃分好的區塊
都會變成獨立的一層。
03:55
By narrowing, bending, and sculpting
these flaps,
57
235121
3125
將其縮窄、彎曲、變形,
03:58
the 2D base becomes a 3D scorpion.
58
238246
3917
平面基礎就成了立體的蠍子。
04:02
Now, what if we wanted to fold 7 of these
flowers from the same sheet of paper?
59
242913
5458
那如果我們想用同一張紙
摺七朵這種花呢?
04:08
If we can duplicate
the flower’s crease pattern
60
248371
2542
如果我們能重複這朵花的摺痕圖樣,
04:10
and connect each of them in such a way
that all four laws are satisfied,
61
250913
4958
並以滿足四條規則的方式連接,
04:15
we can create a tessellation,
or a repeating pattern of shapes
62
255871
4042
就可以製造出密鋪,
也就是重複的形狀圖樣
04:19
that covers a plane
without any gaps or overlaps.
63
259913
3875
沒有縫隙且不會重疊地覆蓋一平面。
04:23
The ability to fold a large surface
into a compact shape
64
263788
3958
將巨大平面摺成緊緻形體的能力
04:27
has applications
from the vastness of space
65
267746
2792
可以用在寬廣的宇宙,
04:30
to the microscopic world of our cells.
66
270538
3291
也能用在細胞的微觀世界。
04:33
Using principles of origami,
67
273829
2084
利用摺紙的原則,
04:35
medical engineers have re-imagined
the traditional stent graft,
68
275913
4291
醫學工程師已經重新塑造
傳統的主動脈覆膜支架,
04:40
a tube used to open and support
damaged blood vessels.
69
280204
3709
這是一種可以張開
並支撐損毀血管的管子。
04:43
Through tessellation, the rigid tubular
structure folds into a compact sheet
70
283913
5083
透過密鋪,固定的管狀結構
可以摺成緊密的薄片,
04:48
about half its expanded size.
71
288996
2708
大小只有張開時的一半左右。
04:51
Origami principles have been used
in airbags, solar arrays,
72
291704
4584
摺紙的原則已經用在
安全氣囊、太陽能板、
04:56
self-folding robots,
and even DNA nanostructures—
73
296288
4750
自我摺疊的機器人,
甚至是 DNA 的奈米結構,
05:01
who knows what possibilities
will unfold next.
74
301038
4000
誰知道下一個可能的發展是什麼呢?
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。