A brief history of numerical systems - Alessandra King

1,062,114 views ・ 2017-01-19

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Ruilin Yao 校对人员: Cissy Yun
00:10
One, two, three, four, five, six, seven, eight, nine, and zero.
0
10947
7542
1,2,3,4,5,6,7,8,9,0
00:18
With just these ten symbols, we can write any rational number imaginable.
1
18489
5699
只用这十个符号, 我们可以写出任何有理数
00:24
But why these particular symbols?
2
24188
2503
但是为什么是这几个符号呢?
00:26
Why ten of them?
3
26691
1661
为什么有十个?
00:28
And why do we arrange them the way we do?
4
28352
3247
而为什么人们会按照这样的方式排列它们呢?
00:31
Numbers have been a fact of life throughout recorded history.
5
31599
3820
有史以来,数字一直是生活中必不可少的
00:35
Early humans likely counted animals in a flock or members in a tribe
6
35419
4430
最早人们通常用身体的某部分或计数标记
00:39
using body parts or tally marks.
7
39849
3140
来表示一群动物或部落的人的数量
00:42
But as the complexity of life increased, along with the number of things to count,
8
42989
4491
但是随着生活越来越复杂 需要数的数量也不断增加
00:47
these methods were no longer sufficient.
9
47480
3070
这些方法不再够用了
00:50
So as they developed,
10
50550
1499
随着不同文明的发展,
00:52
different civilizations came up with ways of recording higher numbers.
11
52049
4759
人们想出了很多用了记录更多数量的办法。
00:56
Many of these systems,
12
56808
1251
很多数字系统,
00:58
like Greek,
13
58059
760
00:58
Hebrew,
14
58819
720
比如希腊数字
希伯来数字
00:59
and Egyptian numerals,
15
59539
1231
以及埃及数字
01:00
were just extensions of tally marks
16
60770
2530
只是原来计数标记的加强版
01:03
with new symbols added to represent larger magnitudes of value.
17
63300
4050
加入了用来代表更高数量级的新符号
01:07
Each symbol was repeated as many times as necessary and all were added together.
18
67350
5800
每个符号都尽可能多次重复使用再把它们加起来
01:13
Roman numerals added another twist.
19
73150
2840
罗马数字添加了另一种方式
01:15
If a numeral appeared before one with a higher value,
20
75990
2500
如果1前面有一个值更大的数字
01:18
it would be subtracted rather than added.
21
78490
3460
它们会被相减,而不会被相加
01:21
But even with this innovation,
22
81950
1500
但尽管有了这种创新
01:23
it was still a cumbersome method for writing large numbers.
23
83450
5051
对较大的数字来说 这依旧是种累赘的方法
01:28
The way to a more useful and elegant system
24
88501
2360
有一种更有用更优雅的方式
01:30
lay in something called positional notation.
25
90861
4180
称为定位数系
01:35
Previous number systems needed to draw many symbols repeatedly
26
95041
3389
之前的数字系统需要不断重复地画很多符号
01:38
and invent a new symbol for each larger magnitude.
27
98430
4180
而且每一个更大的数量级都需要引入新的符号
01:42
But a positional system could reuse the same symbols,
28
102610
3361
但是定位数系可以重复使用同样的符号,
01:45
assigning them different values based on their position in the sequence.
29
105971
4991
根据它们的位置赋予它们不同的值
01:50
Several civilizations developed positional notation independently,
30
110962
3949
一些社会文明发展了自己的定位数系
01:54
including the Babylonians,
31
114911
1911
其中包括巴比伦人
01:56
the Ancient Chinese,
32
116822
1210
古中国人
01:58
and the Aztecs.
33
118032
1950
还有阿芝特克人
01:59
By the 8th century, Indian mathematicians had perfected such a system
34
119982
4580
到了第八世纪,印度数学家完善了一种记数制
02:04
and over the next several centuries,
35
124562
1990
它在接下来的几个世纪中
02:06
Arab merchants, scholars, and conquerors began to spread it into Europe.
36
126552
5791
被阿拉伯商人,学者和征服者传到了欧洲
02:12
This was a decimal, or base ten, system,
37
132343
3700
这就是十进制
02:16
which could represent any number using only ten unique glyphs.
38
136043
4471
一种可以只用十个独特的图像字符 就能表示出任何数字的方法
02:20
The positions of these symbols indicate different powers of ten,
39
140514
3429
这些字符的位置表明了10的不同次方,
02:23
starting on the right and increasing as we move left.
40
143943
3540
从右开始,次方数向左不断递增。
02:27
For example, the number 316
41
147483
2720
比如数字316,
02:30
reads as 6x10^0
42
150203
3490
读成 6乘以10的0次方
02:33
plus 1x10^1
43
153693
2599
加上 1乘以10的1次方
02:36
plus 3x10^2.
44
156292
3651
加上 3乘以10的2次方。
02:39
A key breakthrough of this system,
45
159943
1890
这个方法的一个巨大突破是
02:41
which was also independently developed by the Mayans,
46
161833
2901
同时也被玛雅人发明了的
02:44
was the number zero.
47
164734
2749
数字0.
02:47
Older positional notation systems that lacked this symbol
48
167483
3090
旧的定位数系没有这个符号,
02:50
would leave a blank in its place,
49
170573
1821
便会在那个位置留一个空格,
02:52
making it hard to distinguish between 63 and 603,
50
172394
4541
这让63和603,12和120
02:56
or 12 and 120.
51
176935
3068
难以区分
03:00
The understanding of zero as both a value and a placeholder
52
180003
4051
0这既是一个值又是一个占位符的特质
03:04
made for reliable and consistent notation.
53
184054
3970
让它成为一个可靠,一致的符号
03:08
Of course, it's possible to use any ten symbols
54
188024
2369
当然,也可以用任何十个符号
03:10
to represent the numerals zero through nine.
55
190393
3350
来代替数字0到9.
03:13
For a long time, the glyphs varied regionally.
56
193743
3295
很长一段时间 图像字符在各地区不断变化发展着
03:17
Most scholars agree that our current digits
57
197038
2164
大多数学者认为我们如今的数字
03:19
evolved from those used in the North African Maghreb region
58
199202
3524
是从北非阿拉伯王国马格里布地区曾用过的符号
03:22
of the Arab Empire.
59
202726
2158
进化而来的
03:24
And by the 15th century, what we now know as the Hindu-Arabic numeral system
60
204884
5021
到十五世纪 我们现在日常所熟悉的阿拉伯数字体系
03:29
had replaced Roman numerals in everyday life
61
209905
2884
已经取代了罗马数字
03:32
to become the most commonly used number system in the world.
62
212789
4486
变成了世界上最常用的数字系统。
03:37
So why did the Hindu-Arabic system, along with so many others,
63
217275
3451
那为什么阿拉伯数字系统和其他的一些
03:40
use base ten?
64
220726
2133
都用十进制呢?
03:42
The most likely answer is the simplest.
65
222859
3925
最可能的答案是因为它是最简单的。
03:46
That also explains why the Aztecs used a base 20, or vigesimal system.
66
226784
5571
这也解释了阿芝特克人使用二十进制的原因
03:52
But other bases are possible, too.
67
232355
2620
但是其他进制也是可以用的
03:54
Babylonian numerals were sexigesimal, or base 60.
68
234975
3990
巴比伦数字是六十进制
03:58
Any many people think that a base 12, or duodecimal system,
69
238965
3271
很多人认为十二进制
04:02
would be a good idea.
70
242236
2109
也挺好的
04:04
Like 60, 12 is a highly composite number that can be divided by two,
71
244345
3920
12和60都是因数很多的合数,它们可以被2,
04:08
three,
72
248265
770
被3,
04:09
four,
73
249035
712
04:09
and six,
74
249747
1179
被4,
被6整除,
04:10
making it much better for representing common fractions.
75
250926
3779
用这些数来表示共同因数更好一些
04:14
In fact, both systems appear in our everyday lives,
76
254705
3050
事实上,我们日常生活中存在很多数字系统,
04:17
from how we measure degrees and time,
77
257755
2116
从测量角度和时间,
04:19
to common measurements, like a dozen or a gross.
78
259871
3545
到日常的计量单位,比如一打。 (a dozen意为12个,a gross意为144个)
04:23
And, of course, the base two, or binary system,
79
263416
3750
当然,二进制
04:27
is used in all of our digital devices,
80
267166
2882
也被使用于所有的电子设备。
04:30
though programmers also use base eight and base 16 for more compact notation.
81
270048
5918
尽管程序员也将八进制和十六进制用于更精简的表达。
04:35
So the next time you use a large number,
82
275966
2024
所以下一次你使用一个很大的数字时,
04:37
think of the massive quantity captured in just these few symbols,
83
277990
4406
想想你仅用了这几个符号就获得了一个如此大的量,
04:42
and see if you can come up with a different way to represent it.
84
282396
3383
也试试看你是否能用不同的方式把它表达出来。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7