A brief history of numerical systems - Alessandra King

1,098,662 views ・ 2017-01-19

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Ruilin Yao 校对人员: Cissy Yun
00:10
One, two, three, four, five, six, seven, eight, nine, and zero.
0
10947
7542
1,2,3,4,5,6,7,8,9,0
00:18
With just these ten symbols, we can write any rational number imaginable.
1
18489
5699
只用这十个符号, 我们可以写出任何有理数
00:24
But why these particular symbols?
2
24188
2503
但是为什么是这几个符号呢?
00:26
Why ten of them?
3
26691
1661
为什么有十个?
00:28
And why do we arrange them the way we do?
4
28352
3247
而为什么人们会按照这样的方式排列它们呢?
00:31
Numbers have been a fact of life throughout recorded history.
5
31599
3820
有史以来,数字一直是生活中必不可少的
00:35
Early humans likely counted animals in a flock or members in a tribe
6
35419
4430
最早人们通常用身体的某部分或计数标记
00:39
using body parts or tally marks.
7
39849
3140
来表示一群动物或部落的人的数量
00:42
But as the complexity of life increased, along with the number of things to count,
8
42989
4491
但是随着生活越来越复杂 需要数的数量也不断增加
00:47
these methods were no longer sufficient.
9
47480
3070
这些方法不再够用了
00:50
So as they developed,
10
50550
1499
随着不同文明的发展,
00:52
different civilizations came up with ways of recording higher numbers.
11
52049
4759
人们想出了很多用了记录更多数量的办法。
00:56
Many of these systems,
12
56808
1251
很多数字系统,
00:58
like Greek,
13
58059
760
00:58
Hebrew,
14
58819
720
比如希腊数字
希伯来数字
00:59
and Egyptian numerals,
15
59539
1231
以及埃及数字
01:00
were just extensions of tally marks
16
60770
2530
只是原来计数标记的加强版
01:03
with new symbols added to represent larger magnitudes of value.
17
63300
4050
加入了用来代表更高数量级的新符号
01:07
Each symbol was repeated as many times as necessary and all were added together.
18
67350
5800
每个符号都尽可能多次重复使用再把它们加起来
01:13
Roman numerals added another twist.
19
73150
2840
罗马数字添加了另一种方式
01:15
If a numeral appeared before one with a higher value,
20
75990
2500
如果1前面有一个值更大的数字
01:18
it would be subtracted rather than added.
21
78490
3460
它们会被相减,而不会被相加
01:21
But even with this innovation,
22
81950
1500
但尽管有了这种创新
01:23
it was still a cumbersome method for writing large numbers.
23
83450
5051
对较大的数字来说 这依旧是种累赘的方法
01:28
The way to a more useful and elegant system
24
88501
2360
有一种更有用更优雅的方式
01:30
lay in something called positional notation.
25
90861
4180
称为定位数系
01:35
Previous number systems needed to draw many symbols repeatedly
26
95041
3389
之前的数字系统需要不断重复地画很多符号
01:38
and invent a new symbol for each larger magnitude.
27
98430
4180
而且每一个更大的数量级都需要引入新的符号
01:42
But a positional system could reuse the same symbols,
28
102610
3361
但是定位数系可以重复使用同样的符号,
01:45
assigning them different values based on their position in the sequence.
29
105971
4991
根据它们的位置赋予它们不同的值
01:50
Several civilizations developed positional notation independently,
30
110962
3949
一些社会文明发展了自己的定位数系
01:54
including the Babylonians,
31
114911
1911
其中包括巴比伦人
01:56
the Ancient Chinese,
32
116822
1210
古中国人
01:58
and the Aztecs.
33
118032
1950
还有阿芝特克人
01:59
By the 8th century, Indian mathematicians had perfected such a system
34
119982
4580
到了第八世纪,印度数学家完善了一种记数制
02:04
and over the next several centuries,
35
124562
1990
它在接下来的几个世纪中
02:06
Arab merchants, scholars, and conquerors began to spread it into Europe.
36
126552
5791
被阿拉伯商人,学者和征服者传到了欧洲
02:12
This was a decimal, or base ten, system,
37
132343
3700
这就是十进制
02:16
which could represent any number using only ten unique glyphs.
38
136043
4471
一种可以只用十个独特的图像字符 就能表示出任何数字的方法
02:20
The positions of these symbols indicate different powers of ten,
39
140514
3429
这些字符的位置表明了10的不同次方,
02:23
starting on the right and increasing as we move left.
40
143943
3540
从右开始,次方数向左不断递增。
02:27
For example, the number 316
41
147483
2720
比如数字316,
02:30
reads as 6x10^0
42
150203
3490
读成 6乘以10的0次方
02:33
plus 1x10^1
43
153693
2599
加上 1乘以10的1次方
02:36
plus 3x10^2.
44
156292
3651
加上 3乘以10的2次方。
02:39
A key breakthrough of this system,
45
159943
1890
这个方法的一个巨大突破是
02:41
which was also independently developed by the Mayans,
46
161833
2901
同时也被玛雅人发明了的
02:44
was the number zero.
47
164734
2749
数字0.
02:47
Older positional notation systems that lacked this symbol
48
167483
3090
旧的定位数系没有这个符号,
02:50
would leave a blank in its place,
49
170573
1821
便会在那个位置留一个空格,
02:52
making it hard to distinguish between 63 and 603,
50
172394
4541
这让63和603,12和120
02:56
or 12 and 120.
51
176935
3068
难以区分
03:00
The understanding of zero as both a value and a placeholder
52
180003
4051
0这既是一个值又是一个占位符的特质
03:04
made for reliable and consistent notation.
53
184054
3970
让它成为一个可靠,一致的符号
03:08
Of course, it's possible to use any ten symbols
54
188024
2369
当然,也可以用任何十个符号
03:10
to represent the numerals zero through nine.
55
190393
3350
来代替数字0到9.
03:13
For a long time, the glyphs varied regionally.
56
193743
3295
很长一段时间 图像字符在各地区不断变化发展着
03:17
Most scholars agree that our current digits
57
197038
2164
大多数学者认为我们如今的数字
03:19
evolved from those used in the North African Maghreb region
58
199202
3524
是从北非阿拉伯王国马格里布地区曾用过的符号
03:22
of the Arab Empire.
59
202726
2158
进化而来的
03:24
And by the 15th century, what we now know as the Hindu-Arabic numeral system
60
204884
5021
到十五世纪 我们现在日常所熟悉的阿拉伯数字体系
03:29
had replaced Roman numerals in everyday life
61
209905
2884
已经取代了罗马数字
03:32
to become the most commonly used number system in the world.
62
212789
4486
变成了世界上最常用的数字系统。
03:37
So why did the Hindu-Arabic system, along with so many others,
63
217275
3451
那为什么阿拉伯数字系统和其他的一些
03:40
use base ten?
64
220726
2133
都用十进制呢?
03:42
The most likely answer is the simplest.
65
222859
3925
最可能的答案是因为它是最简单的。
03:46
That also explains why the Aztecs used a base 20, or vigesimal system.
66
226784
5571
这也解释了阿芝特克人使用二十进制的原因
03:52
But other bases are possible, too.
67
232355
2620
但是其他进制也是可以用的
03:54
Babylonian numerals were sexigesimal, or base 60.
68
234975
3990
巴比伦数字是六十进制
03:58
Any many people think that a base 12, or duodecimal system,
69
238965
3271
很多人认为十二进制
04:02
would be a good idea.
70
242236
2109
也挺好的
04:04
Like 60, 12 is a highly composite number that can be divided by two,
71
244345
3920
12和60都是因数很多的合数,它们可以被2,
04:08
three,
72
248265
770
被3,
04:09
four,
73
249035
712
04:09
and six,
74
249747
1179
被4,
被6整除,
04:10
making it much better for representing common fractions.
75
250926
3779
用这些数来表示共同因数更好一些
04:14
In fact, both systems appear in our everyday lives,
76
254705
3050
事实上,我们日常生活中存在很多数字系统,
04:17
from how we measure degrees and time,
77
257755
2116
从测量角度和时间,
04:19
to common measurements, like a dozen or a gross.
78
259871
3545
到日常的计量单位,比如一打。 (a dozen意为12个,a gross意为144个)
04:23
And, of course, the base two, or binary system,
79
263416
3750
当然,二进制
04:27
is used in all of our digital devices,
80
267166
2882
也被使用于所有的电子设备。
04:30
though programmers also use base eight and base 16 for more compact notation.
81
270048
5918
尽管程序员也将八进制和十六进制用于更精简的表达。
04:35
So the next time you use a large number,
82
275966
2024
所以下一次你使用一个很大的数字时,
04:37
think of the massive quantity captured in just these few symbols,
83
277990
4406
想想你仅用了这几个符号就获得了一个如此大的量,
04:42
and see if you can come up with a different way to represent it.
84
282396
3383
也试试看你是否能用不同的方式把它表达出来。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog