Check your intuition: The birthday problem - David Knuffke

2,810,424 views ・ 2017-05-04

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Riley WANG 校对人员: Lipeng Chen
00:10
Imagine a group of people.
0
10048
1885
设想有一组人。
00:11
How big do you think the group would have to be
1
11933
2371
当人数达到多少时,
00:14
before there's more than a 50% chance that two people in the group
2
14304
4474
其中两人生日相同的概率
00:18
have the same birthday?
3
18778
2440
会超过50%?
00:21
Assume for the sake of argument that there are no twins,
4
21218
2969
假设这人群中没有双胞胎,
00:24
that every birthday is equally likely,
5
24187
2561
所有人的生日概率都相等,
00:26
and ignore leap years.
6
26748
3229
并且排除掉闰年的存在。
00:29
Take a moment to think about it.
7
29977
3072
花一点时间想想。
00:33
The answer may seem surprisingly low.
8
33049
2859
所需要的人数其实是相当少的。
00:35
In a group of 23 people,
9
35908
1800
若一组有23个人,
00:37
there's a 50.73% chance that two people will share the same birthday.
10
37708
6961
那么两个人有相同生日的概率是50.73%。
00:44
But with 365 days in a year,
11
44669
2570
但一年有365天这么多天,
00:47
how's it possible that you need such a small group
12
47239
3250
为什么只需要这么少的人
00:50
to get even odds of a shared birthday?
13
50489
3211
就可以使其中两人生日相同?
00:53
Why is our intuition so wrong?
14
53700
4456
为什么我们的直觉是如此错误的?
00:58
To figure out the answer,
15
58156
1342
为了找到答案,
00:59
let's look at one way a mathematician
16
59498
1891
让我们看看数学家
01:01
might calculate the odds of a birthday match.
17
61389
3829
是如何计算生日相同的概率的。
01:05
We can use a field of mathematics known as combinatorics,
18
65218
3892
我们可以使用组合数学的分析方法,
01:09
which deals with the likelihoods of different combinations.
19
69110
5309
它用来计算不同组合的概率。
01:14
The first step is to flip the problem.
20
74419
2531
首先我们需要转换问题,
01:16
Trying to calculate the odds of a match directly is challenging
21
76950
4380
直接计算生日相同的概率是很困难的,
因为二人相同的生日可能是在任一天。
01:21
because there are many ways you could get a birthday match in a group.
22
81330
3899
01:25
Instead, it's easier to calculate the odds that everyone's birthday is different.
23
85229
6160
相反,计算每个人生日不同的概率是更简单的。
01:31
How does that help?
24
91389
1431
这对于问题有什么帮助呢?
01:32
Either there's a birthday match in the group, or there isn't,
25
92820
2921
一组人中,要么有两人生日相同,要么没有,
01:35
so the odds of a match and the odds of no match
26
95741
2720
所以这两种情况的概率
01:38
must add up to 100%.
27
98461
3399
相加必然等于100%
01:41
That means we can find the probability of a match
28
101860
2411
这意味着我们可以通过
01:44
by subtracting the probability of no match from 100.
29
104271
6110
将无相同生日的概率从100%中减去 而得到有相同生日的概率。
01:50
To calculate the odds of no match, start small.
30
110381
3425
让我们先考虑简单情况。
01:53
Calculate the odds that just one pair of people have different birthdays.
31
113806
4475
先从只有一对人拥有不同生日开始。
01:58
One day of the year will be Person A's birthday,
32
118281
2351
假定对象A的生日是某天,
02:00
which leaves only 364 possible birthdays for Person B.
33
120632
5390
那么对象B的生日就是其余364天之一。
02:06
The probability of different birthdays for A and B, or any pair of people,
34
126022
4570
对象A和B或是任何两人生日不同的概率就是
02:10
is 364 out of 365,
35
130592
3820
364/365,
02:14
about 0.997, or 99.7%, pretty high.
36
134412
6102
大约是99.7%,非常高的概率。
02:20
Bring in Person C.
37
140514
2048
我们再引入对象C。
02:22
The probability that she has a unique birthday in this small group
38
142562
3231
她和其他人生日都不同的概率
02:25
is 363 out of 365
39
145793
3739
是363/365,
02:29
because there are two birthdates already accounted for by A and B.
40
149532
4432
因为已经有两个日期被对象A和B占用。
02:33
D's odds will be 362 out of 365, and so on,
41
153964
4618
对象D不与他人生日相同的概率是362/365,
02:38
all the way down to W's odds of 343 out of 365.
42
158582
5892
以此类推,到对象W是概率为343/365。
02:44
Multiply all of those terms together,
43
164474
1911
将这些数字相乘,
02:46
and you'll get the probability that no one shares a birthday.
44
166385
4557
就会得到没有人生日相同的概率。
02:50
This works out to 0.4927,
45
170942
3122
结果是0.4927,
02:54
so there's a 49.27% chance that no one in the group of 23 people shares a birthday.
46
174064
7298
所以23人当中,大家生日都不同的概率是49.27%。
03:01
When we subtract that from 100, we get a 50.73% chance
47
181362
4593
再用100%减去这个数值,就得到50.73%,
03:05
of at least one birthday match,
48
185955
2746
这就是至少有两个人生日相同的概率,
03:08
better than even odds.
49
188701
3254
已经超过了50%。
03:11
The key to such a high probability of a match in a relatively small group
50
191955
4189
在人数如此少的小组中出现高概率,
03:16
is the surprisingly large number of possible pairs.
51
196144
4181
其关键在于可能的组合数量巨大。
03:20
As a group grows, the number of possible combinations gets bigger much faster.
52
200325
5692
随着人数增加,可能出现的组合数量会快速增加。
03:26
A group of five people has ten possible pairs.
53
206017
3179
5人当中就有10种不同的组合方式。
03:29
Each of the five people can be paired with any of the other four.
54
209196
3709
五个人的任何一人都可以和其他四人构成组合。
03:32
Half of those combinations are redundant
55
212905
1930
其中一半是重复计算,
03:34
because pairing Person A with Person B is the same as pairing B with A,
56
214835
4780
因为对象A+对象B的组合与对象B+对象A相同,
03:39
so we divide by two.
57
219615
2070
所以我们将数字除以2。
03:41
By the same reasoning,
58
221685
1360
相同的道理,
03:43
a group of ten people has 45 pairs,
59
223045
2791
10个人当中就会出现45对组合,
03:45
and a group of 23 has 253.
60
225836
3999
23人当中会有253对组合。
03:49
The number of pairs grows quadratically,
61
229835
3070
组合的数量成倍增加,
03:52
meaning it's proportional to the square of the number of people in the group.
62
232905
4760
即以小组人数的基数的成比例增长。
03:57
Unfortunately, our brains are notoriously bad
63
237665
3301
不幸的是,我们的大脑非常不擅长
04:00
at intuitively grasping non-linear functions.
64
240966
3481
直接处理非线性函数。
04:04
So it seems improbable at first that 23 people could produce 253 possible pairs.
65
244447
6788
所以23人就有253种配对组合看上去是不可能的。
04:11
Once our brains accept that, the birthday problem makes more sense.
66
251235
4032
一旦明白了这个道理,生日问题就变得合理了。
04:15
Every one of those 253 pairs is a chance for a birthday match.
67
255267
4868
253对组合中的人都能找到生日相同的另一半。
04:20
For the same reason, in a group of 70 people,
68
260135
2762
同样的,在70个人构成的小组中,
04:22
there are 2,415 possible pairs,
69
262897
3719
组合数量能达到2415个,
04:26
and the probability that two people have the same birthday is more than 99.9%.
70
266616
6721
两个人拥有相同生日的概率超过了99.9%。
04:33
The birthday problem is just one example where math can show
71
273337
3370
生日问题是一个很好的例子
04:36
that things that seem impossible,
72
276707
2210
展示出数学可以解释看起来不可能的事情,
04:38
like the same person winning the lottery twice,
73
278917
2493
例如同一个人中两次彩票,
04:41
actually aren't unlikely at all.
74
281410
3141
不是几乎不可能的。
04:44
Sometimes coincidences aren't as coincidental as they seem.
75
284551
4317
有时巧合并没有看上去那么巧。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7