Check your intuition: The birthday problem - David Knuffke

2,810,424 views ・ 2017-05-04

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Crystal Yip 審譯者: nr chan
00:10
Imagine a group of people.
0
10048
1885
想像有一組人
00:11
How big do you think the group would have to be
1
11933
2371
你覺得組內要有多少人
00:14
before there's more than a 50% chance that two people in the group
2
14304
4474
其中二人生日相同的機率 才會超過 50%?
00:18
have the same birthday?
3
18778
2440
00:21
Assume for the sake of argument that there are no twins,
4
21218
2969
為了方便討論 假設組內沒有雙胞胎
00:24
that every birthday is equally likely,
5
24187
2561
每個生日的機率均等
00:26
and ignore leap years.
6
26748
3229
不計閏年
00:29
Take a moment to think about it.
7
29977
3072
現在試想一想
00:33
The answer may seem surprisingly low.
8
33049
2859
答案或許看來驚人地低
00:35
In a group of 23 people,
9
35908
1800
在 23 人的組內
00:37
there's a 50.73% chance that two people will share the same birthday.
10
37708
6961
有 50.3% 機率 二人會有相同的生日
00:44
But with 365 days in a year,
11
44669
2570
但一年 365 日
00:47
how's it possible that you need such a small group
12
47239
3250
為何人數如此少的組內
00:50
to get even odds of a shared birthday?
13
50489
3211
會有過半機會有相同生日的人
00:53
Why is our intuition so wrong?
14
53700
4456
為什麼我們的直覺錯得這麼離譜?
00:58
To figure out the answer,
15
58156
1342
要找出答案
00:59
let's look at one way a mathematician
16
59498
1891
就讓我們看看數學家其中一種方法
01:01
might calculate the odds of a birthday match.
17
61389
3829
可用作計算二人擁有相同生日的機率
01:05
We can use a field of mathematics known as combinatorics,
18
65218
3892
我們可用一門數學領域 名為組合學
01:09
which deals with the likelihoods of different combinations.
19
69110
5309
處理不同組合的機率
01:14
The first step is to flip the problem.
20
74419
2531
第一步是反轉問題
01:16
Trying to calculate the odds of a match directly is challenging
21
76950
4380
嘗試直接計算相同生日的機率 是個挑戰
因為有相同生日的組合很多
01:21
because there are many ways you could get a birthday match in a group.
22
81330
3899
01:25
Instead, it's easier to calculate the odds that everyone's birthday is different.
23
85229
6160
相反地,計算每人 都有不同生日就比較容易
01:31
How does that help?
24
91389
1431
這樣如何幫助我們解決問題呢?
01:32
Either there's a birthday match in the group, or there isn't,
25
92820
2921
組內的人不是有相同生日,就是沒有
01:35
so the odds of a match and the odds of no match
26
95741
2720
所以有相同生日的人的機率 和沒有的機率
01:38
must add up to 100%.
27
98461
3399
加起來必然是 100%
01:41
That means we can find the probability of a match
28
101860
2411
從 100% 減去無相同生日機率 便是有相同生日的機率
01:44
by subtracting the probability of no match from 100.
29
104271
6110
01:50
To calculate the odds of no match, start small.
30
110381
3425
要計算沒有相同生日的機率 先考慮人數少的組
01:53
Calculate the odds that just one pair of people have different birthdays.
31
113806
4475
計算只有一對人有不同生日的機率
01:58
One day of the year will be Person A's birthday,
32
118281
2351
一年中的某日會是 A 君的生日
02:00
which leaves only 364 possible birthdays for Person B.
33
120632
5390
餘下的 364 天 皆有可能是 B 君的生日
02:06
The probability of different birthdays for A and B, or any pair of people,
34
126022
4570
A 和 B,或任意二人 有不同生日的機率
02:10
is 364 out of 365,
35
130592
3820
是 365 分之 364
02:14
about 0.997, or 99.7%, pretty high.
36
134412
6102
約 0.997 或 99.7% 這是相當高的機率
02:20
Bring in Person C.
37
140514
2048
再考慮 C 君
02:22
The probability that she has a unique birthday in this small group
38
142562
3231
她在這小組內有不同生日的機率
02:25
is 363 out of 365
39
145793
3739
是 365 分之 363
02:29
because there are two birthdates already accounted for by A and B.
40
149532
4432
因為 A 和 B 的生日 已佔兩個日子
02:33
D's odds will be 362 out of 365, and so on,
41
153964
4618
D 的機率會是 365 分之 362 如此類推
02:38
all the way down to W's odds of 343 out of 365.
42
158582
5892
一直至 W 的機率是 365 分之 343
02:44
Multiply all of those terms together,
43
164474
1911
把這些機率相乘
02:46
and you'll get the probability that no one shares a birthday.
44
166385
4557
你會得出沒有人生日相同的機率
02:50
This works out to 0.4927,
45
170942
3122
得出 0.4927
02:54
so there's a 49.27% chance that no one in the group of 23 people shares a birthday.
46
174064
7298
因此在 23 人的組內 沒有人生日相同的機率是 49.27%
03:01
When we subtract that from 100, we get a 50.73% chance
47
181362
4593
當我們從 100% 減去這機率 便得 50.73%
03:05
of at least one birthday match,
48
185955
2746
即至少有二人生日相同的機率
03:08
better than even odds.
49
188701
3254
這機率高於一半
03:11
The key to such a high probability of a match in a relatively small group
50
191955
4189
人數相對少的組內有人生日相同的 機率如此高的關鍵在於
03:16
is the surprisingly large number of possible pairs.
51
196144
4181
相同生日的可能組合出人意料地多
03:20
As a group grows, the number of possible combinations gets bigger much faster.
52
200325
5692
當組內人數逐漸增加 可能組合的數目愈快速增加
03:26
A group of five people has ten possible pairs.
53
206017
3179
五人組內有十對可能組合
03:29
Each of the five people can be paired with any of the other four.
54
209196
3709
每人能與其餘四人各自組合
03:32
Half of those combinations are redundant
55
212905
1930
這些組合有一半是重複的
03:34
because pairing Person A with Person B is the same as pairing B with A,
56
214835
4780
因為把 A 君配以 B 君 等同於把 B 君配以 A 君
03:39
so we divide by two.
57
219615
2070
所以我們將之除以二
03:41
By the same reasoning,
58
221685
1360
同樣道理
03:43
a group of ten people has 45 pairs,
59
223045
2791
十人組內有 45 對組合
03:45
and a group of 23 has 253.
60
225836
3999
而 23 人的組內有 253 對
03:49
The number of pairs grows quadratically,
61
229835
3070
組合的數量以平方關係增長
03:52
meaning it's proportional to the square of the number of people in the group.
62
232905
4760
意即它按組內人數的平方比例增長
03:57
Unfortunately, our brains are notoriously bad
63
237665
3301
遺憾地,我們的腦袋不擅於
04:00
at intuitively grasping non-linear functions.
64
240966
3481
憑直覺即領會非線性函數
04:04
So it seems improbable at first that 23 people could produce 253 possible pairs.
65
244447
6788
所以 23 人看來不大可能 產生出 253 對可能組合
04:11
Once our brains accept that, the birthday problem makes more sense.
66
251235
4032
當我們的腦袋接受這事實 生日問題變得容易理解
04:15
Every one of those 253 pairs is a chance for a birthday match.
67
255267
4868
253 對組合皆可能有相同生日
04:20
For the same reason, in a group of 70 people,
68
260135
2762
同樣原因,在 70 人的組內
04:22
there are 2,415 possible pairs,
69
262897
3719
有 2,415 對可能組合
04:26
and the probability that two people have the same birthday is more than 99.9%.
70
266616
6721
而有兩人有相同生日的機率 高於 99.9%
04:33
The birthday problem is just one example where math can show
71
273337
3370
生日問題只是其中一個例子 來藉由數學展示
04:36
that things that seem impossible,
72
276707
2210
看似不可能的事情
04:38
like the same person winning the lottery twice,
73
278917
2493
例如同一人中了兩次彩券
04:41
actually aren't unlikely at all.
74
281410
3141
事實上不是不大可能發生的
04:44
Sometimes coincidences aren't as coincidental as they seem.
75
284551
4317
有時巧合不如看似般巧合
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7