The accelerating power of technology | Ray Kurzweil

308,980 views ・ 2007-01-12

TED


请双击下面的英文字幕来播放视频。

翻译人员: Ming Li 校对人员: Tony Yet
00:25
Well, it's great to be here.
0
25000
1000
好,很高兴来到这里。
00:26
We've heard a lot about the promise of technology, and the peril.
1
26000
5000
我们听到了很多关于科技的承诺,和未来的隐患。
00:31
I've been quite interested in both.
2
31000
2000
我一直对这两者都很感兴趣。
00:33
If we could convert 0.03 percent
3
33000
4000
如果我们将落在地球上的阳光的0.03%
00:37
of the sunlight that falls on the earth into energy,
4
37000
2000
转化成能量,
00:39
we could meet all of our projected needs for 2030.
5
39000
5000
预计将可以满足我们2030年的能源需求。
00:44
We can't do that today because solar panels are heavy,
6
44000
3000
现在我们还不能,因为今天的太阳能板笨重,
00:47
expensive and very inefficient.
7
47000
2000
昂贵,且效率很低。
00:49
There are nano-engineered designs,
8
49000
3000
不过现在有纳米工程设计的太阳板,
00:52
which at least have been analyzed theoretically,
9
52000
2000
它们从理论分析上来说
00:54
that show the potential to be very lightweight,
10
54000
2000
可以变得很轻
00:56
very inexpensive, very efficient,
11
56000
2000
很便宜,且效率很高。
00:58
and we'd be able to actually provide all of our energy needs in this renewable way.
12
58000
4000
而且我们将可以用这种可再生的方法提供我们所需的能量。
01:02
Nano-engineered fuel cells
13
62000
2000
纳米工程燃料电池
01:04
could provide the energy where it's needed.
14
64000
3000
可以为需要的地方提供能量。
01:07
That's a key trend, which is decentralization,
15
67000
2000
分散式分布是一个关键的趋势
01:09
moving from centralized nuclear power plants and
16
69000
3000
从集中式的核电厂,
01:12
liquid natural gas tankers
17
72000
2000
液体天然气储存储罐
01:14
to decentralized resources that are environmentally more friendly,
18
74000
4000
到分散分布的能源会更加环保,
01:18
a lot more efficient
19
78000
3000
效率更高
01:21
and capable and safe from disruption.
20
81000
4000
且在灾难中更加安全。
01:25
Bono spoke very eloquently,
21
85000
2000
Bono 雄辩地指出
01:27
that we have the tools, for the first time,
22
87000
4000
我们第一次使用工具
01:31
to address age-old problems of disease and poverty.
23
91000
4000
来对待疾病和贫困这些古老的问题。
01:35
Most regions of the world are moving in that direction.
24
95000
4000
世界上大部分地区已经朝那个方向前进。
01:39
In 1990, in East Asia and the Pacific region,
25
99000
4000
1990年,在东亚和太平洋地区,
01:43
there were 500 million people living in poverty --
26
103000
2000
有5亿人生活在贫困里-
01:45
that number now is under 200 million.
27
105000
3000
这个数字现在是2亿。
01:48
The World Bank projects by 2011, it will be under 20 million,
28
108000
3000
世界银行预测在2011年,这个数字将会在2000万以下。
01:51
which is a reduction of 95 percent.
29
111000
3000
下降了95%。
01:54
I did enjoy Bono's comment
30
114000
3000
我很喜欢 Bono 的观点
01:57
linking Haight-Ashbury to Silicon Valley.
31
117000
4000
把嬉皮区和硅谷连在一起。
02:01
Being from the Massachusetts high-tech community myself,
32
121000
3000
作为马萨诸塞州的高科技社区的一员
02:04
I'd point out that we were hippies also in the 1960s,
33
124000
4000
我要指出我们也曾经是1960年时代的嬉皮,
02:09
although we hung around Harvard Square.
34
129000
3000
尽管我们是在哈佛广场附近活动。
02:12
But we do have the potential to overcome disease and poverty,
35
132000
5000
但是我们拥有克服疾病和贫困的潜力。
02:17
and I'm going to talk about those issues, if we have the will.
36
137000
3000
而且我要说一说这些问题,如果我们有这个愿望的话。
02:20
Kevin Kelly talked about the acceleration of technology.
37
140000
3000
Kevin Kelly 说到了关于科技的加速
02:23
That's been a strong interest of mine,
38
143000
3000
我一直对这很感兴趣,
02:26
and a theme that I've developed for some 30 years.
39
146000
3000
而且这个主题是我30年来一直在研究的。
02:29
I realized that my technologies had to make sense when I finished a project.
40
149000
5000
我意识到在我完成我的项目时,这些技术要有意义。
02:34
That invariably, the world was a different place
41
154000
3000
在这个始终不变的前提下,每当我引进一个技术时
02:37
when I would introduce a technology.
42
157000
2000
世界已经不再是原来的世界了。
02:39
And, I noticed that most inventions fail,
43
159000
2000
还有,我发现大部分的发明失败了,
02:41
not because the R&D department can't get it to work --
44
161000
3000
不是因为研发部门不能让它运作 --
02:44
if you look at most business plans, they will actually succeed
45
164000
3000
如果你看一看大部分的企业计划书,他们其实是会成功的
02:47
if given the opportunity to build what they say they're going to build --
46
167000
4000
如果给他们机会让他们建造计划要建造的东西,
02:51
and 90 percent of those projects or more will fail, because the timing is wrong --
47
171000
3000
而其百分之90的这些项目会失败,原因是时机不对--
02:54
not all the enabling factors will be in place when they're needed.
48
174000
3000
不是所有成功所需的因素都会在需要它们时出现。
02:57
So I began to be an ardent student of technology trends,
49
177000
4000
因此,我成为一个对技术发展趋势很热衷的学生,
03:01
and track where technology would be at different points in time,
50
181000
3000
并关注在不同的时间点,科技将会变成什么样子,
03:04
and began to build the mathematical models of that.
51
184000
3000
并且开始建造其数学模型。
03:07
It's kind of taken on a life of its own.
52
187000
2000
这个项目已经形成了一个自己的生命,
03:09
I've got a group of 10 people that work with me to gather data
53
189000
3000
我有一个10人的小组和我一起来收集数据,
03:12
on key measures of technology in many different areas, and we build models.
54
192000
5000
这些数据是反映不同领域科技的重要指标,并据此,我们建造模型。
03:17
And you'll hear people say, well, we can't predict the future.
55
197000
3000
然后你会听到有人说,我们不能预测未来。
03:20
And if you ask me,
56
200000
2000
且如果你问我,
03:22
will the price of Google be higher or lower than it is today three years from now,
57
202000
3000
谷歌的股价3年后会比今天高还是低,
03:25
that's very hard to say.
58
205000
2000
那是很难说。
03:27
Will WiMax CDMA G3
59
207000
3000
WiMax CDMA G3 会不会
03:30
be the wireless standard three years from now? That's hard to say.
60
210000
2000
成为3年后无线领域的标准?那很难说。
03:32
But if you ask me, what will it cost
61
212000
2000
但是如果你问我,在2010年
03:34
for one MIPS of computing in 2010,
62
214000
3000
每秒百万次计算的成本
03:37
or the cost to sequence a base pair of DNA in 2012,
63
217000
3000
或者一个DNA碱基对的排序在2012年的成本,
03:40
or the cost of sending a megabyte of data wirelessly in 2014,
64
220000
4000
或者是在2014年无线发送一兆字节数据的成本,
03:44
it turns out that those are very predictable.
65
224000
3000
这些东西是非常可以预测的。
03:47
There are remarkably smooth exponential curves
66
227000
2000
这些有十分平滑的指数曲线
03:49
that govern price performance, capacity, bandwidth.
67
229000
3000
来反应性价比,容量和带宽。
03:52
And I'm going to show you a small sample of this,
68
232000
2000
我要给你看一个这个的小例子,
03:54
but there's really a theoretical reason
69
234000
2000
但是这里其实有一个理论上的原因
03:56
why technology develops in an exponential fashion.
70
236000
5000
为什么科技在一个指数形势发展。
04:01
And a lot of people, when they think about the future, think about it linearly.
71
241000
2000
有很多人,当他们考虑到未来,用线性的方法来思想。
04:03
They think they're going to continue
72
243000
2000
他们认为他们会持续
04:05
to develop a problem
73
245000
2000
发展一个问题
04:07
or address a problem using today's tools,
74
247000
3000
或者用今天的工具,
04:10
at today's pace of progress,
75
250000
2000
和今天的发展速度来诠释未来的问题,
04:12
and fail to take into consideration this exponential growth.
76
252000
4000
但是没有考虑到指数的发展模式。
04:16
The Genome Project was a controversial project in 1990.
77
256000
3000
基因组计划曾经在1990年是一个有争议的项目。
04:19
We had our best Ph.D. students,
78
259000
2000
我们有我们最好的博士学生,
04:21
our most advanced equipment around the world,
79
261000
2000
世界各地最先进的设备,
04:23
we got 1/10,000th of the project done,
80
263000
2000
在世界范围呢,我们完成了项目的万分之一,
04:25
so how're we going to get this done in 15 years?
81
265000
2000
那么,我们怎么能在15年里完成这个项目呢?
04:27
And 10 years into the project,
82
267000
3000
在这个项目进展10年的时候,
04:31
the skeptics were still going strong -- says, "You're two-thirds through this project,
83
271000
2000
怀疑的态度还是非常的强大 -- 说“你已经进入到这个项目的三分之二了,
04:33
and you've managed to only sequence
84
273000
2000
而你仅仅完成了
04:35
a very tiny percentage of the whole genome."
85
275000
3000
整个基因组工程非常小部分的排序。
04:38
But it's the nature of exponential growth
86
278000
2000
但是这是指数增长的本质
04:40
that once it reaches the knee of the curve, it explodes.
87
280000
2000
当到了曲线的转折点时,它会爆炸。
04:42
Most of the project was done in the last
88
282000
2000
大部分的项目是在
04:44
few years of the project.
89
284000
2000
项目的最后几年完成的。
04:46
It took us 15 years to sequence HIV --
90
286000
2000
我们用了15年完成了艾滋病毒的排序 --
04:48
we sequenced SARS in 31 days.
91
288000
2000
而对于非典病毒只用了31天。
04:50
So we are gaining the potential to overcome these problems.
92
290000
4000
所以我们正在增加克服这些困难的可能性。
04:54
I'm going to show you just a few examples
93
294000
2000
我要给你看几个例子
04:56
of how pervasive this phenomena is.
94
296000
3000
说明这个现象是多么的普遍。
04:59
The actual paradigm-shift rate, the rate of adopting new ideas,
95
299000
4000
根据我们的模型,事实的思维转化率,也就是新想法被接受的速率,
05:03
is doubling every decade, according to our models.
96
303000
3000
每十几年增加一倍。
05:06
These are all logarithmic graphs,
97
306000
3000
这些都是对数图,
05:09
so as you go up the levels it represents, generally multiplying by factor of 10 or 100.
98
309000
3000
就好比每当你提高它代表的一个等级,一般来讲会乘以10或者100。
05:12
It took us half a century to adopt the telephone,
99
312000
3000
我们用了半个世纪来采用电话,
05:15
the first virtual-reality technology.
100
315000
3000
第一个虚拟现实的科技。
05:18
Cell phones were adopted in about eight years.
101
318000
2000
只用了8年就接受了手机。
05:20
If you put different communication technologies
102
320000
3000
如果你把不同的通信科技放在
05:23
on this logarithmic graph,
103
323000
2000
这个对数图上,
05:25
television, radio, telephone
104
325000
2000
电视,收音机,电话
05:27
were adopted in decades.
105
327000
2000
都用了几十年才被采用。
05:29
Recent technologies -- like the PC, the web, cell phones --
106
329000
3000
最近的科技 -- 像电脑,网络,手机 --
05:32
were under a decade.
107
332000
2000
是十年以下。
05:34
Now this is an interesting chart,
108
334000
2000
这是一个有意思的图表,
05:36
and this really gets at the fundamental reason why
109
336000
2000
而其这个通道最基本的原因为什么
05:38
an evolutionary process -- and both biology and technology are evolutionary processes --
110
338000
4000
一个进化过程 -- 生物学和科技都是进化过程 --
05:42
accelerate.
111
342000
2000
加速。
05:44
They work through interaction -- they create a capability,
112
344000
3000
他们是一种互动的运转 -- 他们创造一个能力,
05:47
and then it uses that capability to bring on the next stage.
113
347000
3000
然后用那个能力来推进到下一个层次。
05:50
So the first step in biological evolution,
114
350000
3000
生物进化的第一步,
05:53
the evolution of DNA -- actually it was RNA came first --
115
353000
2000
DNA的进化 -- 其实是先有的RNA --
05:55
took billions of years,
116
355000
2000
用了几十亿年,
05:57
but then evolution used that information-processing backbone
117
357000
3000
但是以后的进化过程是用这个信息处理支柱
06:00
to bring on the next stage.
118
360000
2000
来促使下一个层次。
06:02
So the Cambrian Explosion, when all the body plans of the animals were evolved,
119
362000
3000
所以寒武纪大爆发,当所有动物的身体结构进化了
06:05
took only 10 million years. It was 200 times faster.
120
365000
4000
用了才一千万年。快了200倍。
06:09
And then evolution used those body plans
121
369000
2000
然后进化过程用这些身体结构
06:11
to evolve higher cognitive functions,
122
371000
2000
来进化出更高级的认知功能,
06:13
and biological evolution kept accelerating.
123
373000
2000
而且生物进化一直在加速。
06:15
It's an inherent nature of an evolutionary process.
124
375000
3000
这是一个进化过程固有的性质。
06:18
So Homo sapiens, the first technology-creating species,
125
378000
3000
所以智人,第一个创造科技的物种,
06:21
the species that combined a cognitive function
126
381000
2000
把认知功能
06:23
with an opposable appendage --
127
383000
2000
和大拇指运动结合的物种 --
06:25
and by the way, chimpanzees don't really have a very good opposable thumb --
128
385000
4000
顺便提一下,黑猩猩其实没有一个非常好的大拇指 --
06:29
so we could actually manipulate our environment with a power grip
129
389000
2000
所以我们可以用很强的握力来操纵我们的环境
06:31
and fine motor coordination,
130
391000
2000
和好的动作协调,
06:33
and use our mental models to actually change the world
131
393000
2000
和用我们的心智模式来真正改变世界
06:35
and bring on technology.
132
395000
2000
而且带来科技。
06:37
But anyway, the evolution of our species took hundreds of thousands of years,
133
397000
3000
但是总而言之,我们这个物种的进化用了几十万年,
06:40
and then working through interaction,
134
400000
2000
然后通过互动的运转,
06:42
evolution used, essentially,
135
402000
2000
从本质上来讲,进化运用
06:44
the technology-creating species to bring on the next stage,
136
404000
3000
这种科技来创造下一代物种,
06:47
which were the first steps in technological evolution.
137
407000
3000
这是科技进化的第一步。
06:50
And the first step took tens of thousands of years --
138
410000
3000
而且这第一步用了几万年 --
06:53
stone tools, fire, the wheel -- kept accelerating.
139
413000
3000
石器,火,和轮子 - 一直加速。
06:56
We always used then the latest generation of technology
140
416000
2000
我们一直用当时最新一代的科技
06:58
to create the next generation.
141
418000
2000
来创造下一代。
07:00
Printing press took a century to be adopted;
142
420000
2000
印刷机用了一个世纪来被采用,
07:02
the first computers were designed pen-on-paper -- now we use computers.
143
422000
4000
第一个电脑是用笔和纸来设计的 - 现在我们用电脑来设计。
07:06
And we've had a continual acceleration of this process.
144
426000
3000
我们在这个过程是不断加速的。
07:09
Now by the way, if you look at this on a linear graph, it looks like everything has just happened,
145
429000
3000
顺便说一下,如果你在一个线性图上看这个,好像所有的东西顺其自然地发生,
07:12
but some observer says, "Well, Kurzweil just put points on this graph
146
432000
6000
但是一次观察者说,“嗯, Kurzweil 是有意把这些点
07:18
that fall on that straight line."
147
438000
2000
放在了这个直线图上。”
07:20
So, I took 15 different lists from key thinkers,
148
440000
3000
所以,一共用了15个不同重要思想家的列表,
07:23
like the Encyclopedia Britannica, the Museum of Natural History, Carl Sagan's Cosmic Calendar
149
443000
4000
像大英百科全书,自然历史博物馆,卡尔萨根的宇宙日历
07:27
on the same -- and these people were not trying to make my point;
150
447000
3000
而这些人并没有试着证明我的观点,
07:30
these were just lists in reference works,
151
450000
2000
他们只是列举参考文献。
07:32
and I think that's what they thought the key events were
152
452000
3000
我想这就是他们所认为的在生物进化和科技进化中
07:35
in biological evolution and technological evolution.
153
455000
3000
的关键事件。
07:38
And again, it forms the same straight line. You have a little bit of thickening in the line
154
458000
3000
再次,它形成相同的直线。
07:41
because people do have disagreements, what the key points are,
155
461000
3000
因为人们有不同的意见,关于什么是要点
07:44
there's differences of opinion when agriculture started,
156
464000
2000
人们对农业什么时候开始的有着不同的意见,
07:46
or how long the Cambrian Explosion took.
157
466000
3000
或者什么时候 -- 寒武纪大爆发用了多长时间。
07:49
But you see a very clear trend.
158
469000
2000
但是有一个非常明显的趋势。
07:51
There's a basic, profound acceleration of this evolutionary process.
159
471000
5000
进化过程有一个基本的,深奥的加速。
07:56
Information technologies double their capacity, price performance, bandwidth,
160
476000
5000
信息技术的能力,性价比,带宽,
08:01
every year.
161
481000
2000
每年增加一倍。
08:03
And that's a very profound explosion of exponential growth.
162
483000
4000
这是一个非常深奥的指数增长爆炸。
08:07
A personal experience, when I was at MIT --
163
487000
2000
一个个人的经验,当我在麻省理工学院-
08:09
computer taking up about the size of this room,
164
489000
2000
计算机大概是这个房间大,
08:11
less powerful than the computer in your cell phone.
165
491000
5000
性能比你手机里的电脑还弱。
08:16
But Moore's Law, which is very often identified with this exponential growth,
166
496000
4000
但是根据摩尔定律,经常和这个成倍增一起认定,
08:20
is just one example of many, because it's basically
167
500000
2000
只是很多例子里的一个,因为它基本是
08:22
a property of the evolutionary process of technology.
168
502000
5000
科技进化过程的一个性质。
08:27
I put 49 famous computers on this logarithmic graph --
169
507000
3000
如果我们-我把49个著名的电脑放在这个对数图上-
08:30
by the way, a straight line on a logarithmic graph is exponential growth --
170
510000
4000
顺便说一下,一条直线在一个对数图,是成倍增 -
08:34
that's another exponential.
171
514000
2000
那是另一个成倍。
08:36
It took us three years to double our price performance of computing in 1900,
172
516000
3000
我们用了三年把1900年的计算的性价比翻倍。
08:39
two years in the middle; we're now doubling it every one year.
173
519000
3000
中间是两年,我们现在每一年增加一倍。
08:43
And that's exponential growth through five different paradigms.
174
523000
3000
这是通过5种不同模式的成倍增。
08:46
Moore's Law was just the last part of that,
175
526000
2000
摩尔定律只是最后的部分,
08:48
where we were shrinking transistors on an integrated circuit,
176
528000
3000
在一个积体电路,被缩小的晶体管,
08:51
but we had electro-mechanical calculators,
177
531000
3000
但我们有机电计算器,
08:54
relay-based computers that cracked the German Enigma Code,
178
534000
2000
继电器为基础的计算机破译了德国的密码,
08:56
vacuum tubes in the 1950s predicted the election of Eisenhower,
179
536000
4000
真空管在上世纪50年代预测到艾森豪威尔的当选,
09:00
discreet transistors used in the first space flights
180
540000
3000
首次太空飞行使用的离散晶体管
09:03
and then Moore's Law.
181
543000
2000
然后是摩尔定律。
09:05
Every time one paradigm ran out of steam,
182
545000
2000
每当一个范例被用尽了,
09:07
another paradigm came out of left field to continue the exponential growth.
183
547000
3000
另一个范例从左外野出来继续这个成倍增长。
09:10
They were shrinking vacuum tubes, making them smaller and smaller.
184
550000
3000
他们曾经缩小真空管,使他们越来越小。
09:13
That hit a wall. They couldn't shrink them and keep the vacuum.
185
553000
3000
这撞上了墙。他们无法继续收缩并保留真空。
09:16
Whole different paradigm -- transistors came out of the woodwork.
186
556000
2000
完全不同的范例-木工出来的晶体管。
09:18
In fact, when we see the end of the line for a particular paradigm,
187
558000
3000
事实上,当我们看到一个特定范例的结束线时,
09:21
it creates research pressure to create the next paradigm.
188
561000
4000
它会创建研究的压力来创造下一个的范例。
09:25
And because we've been predicting the end of Moore's Law
189
565000
3000
而且因为我们一直在预测摩尔定律终点
09:28
for quite a long time -- the first prediction said 2002, until now it says 2022.
190
568000
3000
用了相当长的时间-第一次预测说2002年,到现在它说2022年。
09:31
But by the teen years,
191
571000
3000
但是到了23世纪,
09:34
the features of transistors will be a few atoms in width,
192
574000
3000
晶体管的特点将会是几个原子的宽度
09:37
and we won't be able to shrink them any more.
193
577000
2000
我们将无法继续把它缩小。
09:39
That'll be the end of Moore's Law, but it won't be the end of
194
579000
3000
这将结束摩尔定律,但这不会结束
09:42
the exponential growth of computing, because chips are flat.
195
582000
2000
计算的倍数增长,因为芯片是平的。
09:44
We live in a three-dimensional world; we might as well use the third dimension.
196
584000
3000
我们生活在一个三维的世界,我们也应该利用第三纬。
09:47
We will go into the third dimension
197
587000
2000
我们将会走入第三纬
09:49
and there's been tremendous progress, just in the last few years,
198
589000
3000
而且它已经在最近几年有了惊人的进展,
09:52
of getting three-dimensional, self-organizing molecular circuits to work.
199
592000
4000
包括运用三维的,自组织分子电路来工作。
09:56
We'll have those ready well before Moore's Law runs out of steam.
200
596000
7000
我们将会在莫尔定律走到尽头以前准备好。
10:03
Supercomputers -- same thing.
201
603000
2000
超级计算机也是一样。
10:06
Processor performance on Intel chips,
202
606000
3000
以英特尔处理器的性能为例,
10:09
the average price of a transistor --
203
609000
3000
看一下晶体管的价格--
10:12
1968, you could buy one transistor for a dollar.
204
612000
3000
在1968年,一美元可以买一个晶体管。
10:15
You could buy 10 million in 2002.
205
615000
3000
而在2002年,一美元可以买一千万个。
10:18
It's pretty remarkable how smooth
206
618000
3000
这是一个非常显著的平顺的
10:21
an exponential process that is.
207
621000
2000
指数过程。
10:23
I mean, you'd think this is the result of some tabletop experiment,
208
623000
3000
你会认为这是一个实验桌上的结果,
10:27
but this is the result of worldwide chaotic behavior --
209
627000
3000
但是我认为这个是一个世界范围内,无章法的行为的结果--
10:30
countries accusing each other of dumping products,
210
630000
2000
各个国家指责彼此倾销商品,
10:32
IPOs, bankruptcies, marketing programs.
211
632000
2000
首次公开发行股票,破产,市场活动。
10:34
You would think it would be a very erratic process,
212
634000
3000
你会认为这是一个非常不确定的过程,
10:37
and you have a very smooth
213
637000
2000
而你会看到这样一个混乱的过程的结果
10:39
outcome of this chaotic process.
214
639000
2000
是非常平顺的。
10:41
Just as we can't predict
215
641000
2000
正如我们无法预测
10:43
what one molecule in a gas will do --
216
643000
2000
汽油中的一个分子如何运动一样--
10:45
it's hopeless to predict a single molecule --
217
645000
3000
我们是无法预测一个分子的--
10:48
yet we can predict the properties of the whole gas,
218
648000
2000
但是运用热力学,我们可以非常准确低知道
10:50
using thermodynamics, very accurately.
219
650000
3000
作为一个整体,汽油有什么样的性质。
10:53
It's the same thing here. We can't predict any particular project,
220
653000
3000
这里是一样的。我们无法预测某一个项目会怎样,
10:56
but the result of this whole worldwide,
221
656000
2000
但是可以知道世界范围内的趋势--
10:58
chaotic, unpredictable activity of competition
222
658000
5000
世界范围内的,无序的,不可预测的竞争。
11:03
and the evolutionary process of technology is very predictable.
223
663000
3000
科技进步的过程是可以被很好预测的。
11:06
And we can predict these trends far into the future.
224
666000
3000
而我们可以预言科技进步的未来趋势。
11:11
Unlike Gertrude Stein's roses,
225
671000
2000
不象Gertrude Stein的玫瑰,
11:13
it's not the case that a transistor is a transistor.
226
673000
2000
这病不是一个晶体管是一个晶体管。
11:15
As we make them smaller and less expensive,
227
675000
2000
当我们把他们做地越来越小时,
11:17
the electrons have less distance to travel.
228
677000
2000
电子运动的距离会变小。
11:19
They're faster, so you've got exponential growth in the speed of transistors,
229
679000
4000
他们的运动非常快,所以我们会发现晶体管的性能的指数性增长,
11:23
so the cost of a cycle of one transistor
230
683000
4000
进而,晶体管的价格
11:27
has been coming down with a halving rate of 1.1 years.
231
687000
3000
将会在每1.1年下降一半。
11:30
You add other forms of innovation and processor design,
232
690000
3000
加入一种创新和另一种处理器的设计,
11:33
you get a doubling of price performance of computing every one year.
233
693000
4000
你将会使计算的性价比每年提高一倍。
11:37
And that's basically deflation --
234
697000
3000
这其实就是价格下降--
11:40
50 percent deflation.
235
700000
2000
50%的价格下降。
11:42
And it's not just computers. I mean, it's true of DNA sequencing;
236
702000
3000
而这不仅仅是计算机。这对于基因组序列
11:45
it's true of brain scanning;
237
705000
2000
和大脑的扫描,
11:47
it's true of the World Wide Web. I mean, anything that we can quantify,
238
707000
2000
和国际互联网也是成立的。我的意思是对于任何我们可以量化的东西,
11:49
we have hundreds of different measurements
239
709000
3000
我们有几百种不同的指标
11:52
of different, information-related measurements --
240
712000
3000
不同的信息相关的指标--
11:55
capacity, adoption rates --
241
715000
2000
存储量,采用率--
11:57
and they basically double every 12, 13, 15 months,
242
717000
3000
他们几乎每12,13 或15个月就要翻一番,
12:00
depending on what you're looking at.
243
720000
2000
关键在于我们如何看待。
12:02
In terms of price performance, that's a 40 to 50 percent deflation rate.
244
722000
4000
对于性价比,这是一个百分之50 到 百分之40 的价格下降。
12:07
And economists have actually started worrying about that.
245
727000
2000
而经济学家已经开始担心这些。
12:09
We had deflation during the Depression,
246
729000
2000
我们在经济萧条的时候会经历价格下降,通货紧缩,
12:11
but that was collapse of the money supply,
247
731000
2000
但是那是由于货币的供应崩溃,
12:13
collapse of consumer confidence, a completely different phenomena.
248
733000
3000
消费者信心的崩溃,一个完全不同的现象。
12:16
This is due to greater productivity,
249
736000
2000
这是由于生产力的极大提高,
12:19
but the economist says, "But there's no way you're going to be able to keep up with that.
250
739000
2000
但是经济学家说:“没有办法来保持这样的节奏。”
12:21
If you have 50 percent deflation, people may increase their volume
251
741000
3000
如果有50%的价格下降,人们的购买量会增加
12:24
30, 40 percent, but they won't keep up with it."
252
744000
2000
百分之30-40,但是没办法保持这个增长。
12:26
But what we're actually seeing is that
253
746000
2000
但是我们真正看到的
12:28
we actually more than keep up with it.
254
748000
2000
是我们不仅仅是保持。
12:30
We've had 28 percent per year compounded growth in dollars
255
750000
3000
我们看到在过去的50年里,
12:33
in information technology over the last 50 years.
256
753000
3000
信息产业的美元在以每年28%的复合增长速度增长。
12:36
I mean, people didn't build iPods for 10,000 dollars 10 years ago.
257
756000
4000
我的意思是,人们不会在10年制造价值10,000美元的iPod.
12:40
As the price performance makes new applications feasible,
258
760000
3000
当性价比使得新应用称为可能,
12:43
new applications come to the market.
259
763000
2000
这些新的应用将走向市场。
12:45
And this is a very widespread phenomena.
260
765000
3000
这是一个非常广泛的现象。
12:48
Magnetic data storage --
261
768000
2000
磁存储技术--
12:50
that's not Moore's Law, it's shrinking magnetic spots,
262
770000
3000
这不是摩尔定律,这个缩小磁点,
12:53
different engineers, different companies, same exponential process.
263
773000
4000
不同的工程师,不同公司,但是相同的指数增长过程。
12:57
A key revolution is that we're understanding our own biology
264
777000
4000
一个关键性革命是我们通过信息,
13:01
in these information terms.
265
781000
2000
了解了我们自身的生命体。
13:03
We're understanding the software programs
266
783000
2000
我们懂得了让我们的机体运转
13:05
that make our body run.
267
785000
2000
的软件程序。
13:07
These were evolved in very different times --
268
787000
2000
这些都是在不同的时间进化--
13:09
we'd like to actually change those programs.
269
789000
2000
实际上,我们会改变这些程序。
13:11
One little software program, called the fat insulin receptor gene,
270
791000
2000
一个叫做脂肪胰岛素受体基因的软件,
13:13
basically says, "Hold onto every calorie,
271
793000
2000
简单地说, 要合理使用每个卡路里,
13:15
because the next hunting season may not work out so well."
272
795000
4000
因为下一个狩猎季节也许不会很顺利。
13:19
That was in the interests of the species tens of thousands of years ago.
273
799000
3000
这是千百年前,复合物种生存条件的一个例子。
13:22
We'd like to actually turn that program off.
274
802000
3000
我们现在关掉这个程序。
13:25
They tried that in animals, and these mice ate ravenously
275
805000
3000
我们把它用到其他动物身上,老鼠们非常贪婪地吃着,
13:28
and remained slim and got the health benefits of being slim.
276
808000
2000
并且保持着很瘦地身材,而且更加健康。
13:30
They didn't get diabetes; they didn't get heart disease;
277
810000
3000
他们不会得糖尿病,也没有心脏病。
13:33
they lived 20 percent longer; they got the health benefits of caloric restriction
278
813000
3000
他们的寿命延长了20%,他们从卡路里的约束中
13:36
without the restriction.
279
816000
2000
得到了更加健康。
13:38
Four or five pharmaceutical companies have noticed this,
280
818000
3000
四五个制药公司已经注意到了这一点。
13:41
felt that would be
281
821000
3000
觉得这将会
13:44
interesting drug for the human market,
282
824000
3000
称为市场上非常有趣的药品,
13:47
and that's just one of the 30,000 genes
283
827000
2000
而那只是30,000个影响
13:49
that affect our biochemistry.
284
829000
3000
我们生物化学的基因中的一个。
13:52
We were evolved in an era where it wasn't in the interests of people
285
832000
3000
我们发展进化的时代是这样一个时代,像在座的各位,包括我在内
13:55
at the age of most people at this conference, like myself,
286
835000
3000
希望活得更长,但是却事与愿违。
13:58
to live much longer, because we were using up the precious resources
287
838000
4000
因为我们正在用尽宝贵的资源,
14:02
which were better deployed towards the children
288
842000
1000
这些资源可以被我们的子孙后代以及更在意这些资源的人
14:03
and those caring for them.
289
843000
2000
所更好地利用。
14:05
So, life -- long lifespans --
290
845000
2000
所以,生命,长寿
14:07
like, that is to say, much more than 30 --
291
847000
2000
30年以上的寿命
14:09
weren't selected for,
292
849000
3000
并不是自然选择的结果
14:12
but we are learning to actually manipulate
293
852000
3000
而是我们通过生命科技的进步来学习如何控制
14:15
and change these software programs
294
855000
2000
这些程序
14:17
through the biotechnology revolution.
295
857000
2000
的结果。
14:19
For example, we can inhibit genes now with RNA interference.
296
859000
4000
例如,我们可以通过影响RNA来抑制某些基因。
14:23
There are exciting new forms of gene therapy
297
863000
2000
这些令人兴奋的新的基因疗法
14:25
that overcome the problem of placing the genetic material
298
865000
2000
成功地实现了将这些基因材料
14:27
in the right place on the chromosome.
299
867000
2000
放置染色体的正确位置。
14:29
There's actually a -- for the first time now,
300
869000
3000
现在,第一次出现了能够治愈肺动脉高血压症
14:32
something going to human trials, that actually cures pulmonary hypertension --
301
872000
3000
这样一个致命病症地人体实验
14:35
a fatal disease -- using gene therapy.
302
875000
3000
这都是运用的基因疗法。
14:38
So we'll have not just designer babies, but designer baby boomers.
303
878000
3000
所以,我们不仅仅是有了婴儿的设计师,更是婴儿潮地设计师。
14:41
And this technology is also accelerating.
304
881000
3000
而这个技术也是在加速发展。
14:44
It cost 10 dollars per base pair in 1990,
305
884000
3000
在1990年,每个碱基对要花10美元,
14:47
then a penny in 2000.
306
887000
2000
2000年只需要一美分。
14:49
It's now under a 10th of a cent.
307
889000
2000
现在是十分之一分。
14:51
The amount of genetic data --
308
891000
2000
基因数据每年增长一倍
14:53
basically this shows that smooth exponential growth
309
893000
3000
基本上来说
14:56
doubled every year,
310
896000
2000
是指数增长,
14:58
enabling the genome project to be completed.
311
898000
3000
这个发展会促进基因组测序计划的成功。
15:01
Another major revolution: the communications revolution.
312
901000
3000
另一项重要的革命是通信革命。
15:04
The price performance, bandwidth, capacity of communications measured many different ways;
313
904000
5000
从性价比,带宽,通信容量来看,
15:09
wired, wireless is growing exponentially.
314
909000
3000
有线和无线通信都是指数增长。
15:12
The Internet has been doubling in power and continues to,
315
912000
3000
从各个方面看,国际互联网的能量已经翻番
15:15
measured many different ways.
316
915000
2000
并还将继续。
15:17
This is based on the number of hosts.
317
917000
2000
这长图是基于主机的数量。
15:19
Miniaturization -- we're shrinking the size of technology
318
919000
2000
小型化,我们缩小这个技术的速度
15:21
at an exponential rate,
319
921000
2000
是指数增长的。
15:23
both wired and wireless.
320
923000
2000
无论是有线还是无线。
15:25
These are some designs from Eric Drexler's book --
321
925000
4000
从Eric Drexler书中的设计来看,
15:29
which we're now showing are feasible
322
929000
2000
我们所展示的,
15:31
with super-computing simulations,
323
931000
2000
都是超级计算模拟出可行的设计,
15:33
where actually there are scientists building
324
933000
2000
科学家们正在制造
15:35
molecule-scale robots.
325
935000
2000
分子级的机器人。
15:37
One has one that actually walks with a surprisingly human-like gait,
326
937000
2000
某些机器人非常令人惊讶地以人类的步态行走。
15:39
that's built out of molecules.
327
939000
3000
那是由分子建造的。
15:42
There are little machines doing things in experimental bases.
328
942000
4000
一些小机器已经在实验室环境中成型。
15:46
The most exciting opportunity
329
946000
3000
最令人兴奋的前景
15:49
is actually to go inside the human body
330
949000
2000
实际上是在人体内部
15:51
and perform therapeutic and diagnostic functions.
331
951000
3000
完成治疗和诊断的功能。
15:54
And this is less futuristic than it may sound.
332
954000
2000
这并没有看起来那么遥远。
15:56
These things have already been done in animals.
333
956000
2000
这些机器人已经运用在了动物实验上。
15:58
There's one nano-engineered device that cures type 1 diabetes. It's blood cell-sized.
334
958000
4000
已经有纳米工程的装置可以治愈1型糖尿病,而它只有血细胞的大小。
16:02
They put tens of thousands of these
335
962000
2000
科学家将很多的这些装置
16:04
in the blood cell -- they tried this in rats --
336
964000
2000
放入老鼠的血液中,
16:06
it lets insulin out in a controlled fashion,
337
966000
2000
它可以控制胰岛素的释放,
16:08
and actually cures type 1 diabetes.
338
968000
2000
而确实治愈了1型糖尿病。
16:10
What you're watching is a design
339
970000
3000
现在我们看到是
16:13
of a robotic red blood cell,
340
973000
2000
一个血红细胞机器人,
16:15
and it does bring up the issue that our biology
341
975000
2000
它引发的话题表明,我们的生命体
16:17
is actually very sub-optimal,
342
977000
2000
仅仅是次优
16:19
even though it's remarkable in its intricacy.
343
979000
3000
尽管有其显著的复杂程度。
16:22
Once we understand its principles of operation,
344
982000
3000
一旦我们了解了运作的原理,
16:25
and the pace with which we are reverse-engineering biology is accelerating,
345
985000
3000
我们逆向生命工程的发展是加速的。
16:29
we can actually design these things to be
346
989000
2000
我们可以将这些东西设计得
16:31
thousands of times more capable.
347
991000
2000
强大数千倍。
16:33
An analysis of this respirocyte, designed by Rob Freitas,
348
993000
4000
Rob Freitas发明的人造红细胞的分析
16:38
indicates if you replace 10 percent of your red blood cells with these robotic versions,
349
998000
2000
显示,如果你将身体中百分之十的红细胞替换成人造红细胞,
16:41
you could do an Olympic sprint for 15 minutes without taking a breath.
350
1001000
3000
你将可以不废吹灰之力完成15分钟的奥林匹克冲刺。
16:44
You could sit at the bottom of your pool for four hours --
351
1004000
3000
你可以坐在游泳池底部4小时--
16:47
so, "Honey, I'm in the pool," will take on a whole new meaning.
352
1007000
4000
所以,“亲爱的,我在游泳池” 将会有全新的意思。
16:51
It will be interesting to see what we do in our Olympic trials.
353
1011000
2000
我们做这个奥林匹克的实验将会非常有趣。
16:53
Presumably we'll ban them,
354
1013000
2000
可以预测,我们将会禁止这样做。
16:55
but then we'll have the specter of teenagers in their high schools gyms
355
1015000
2000
我们会发现我们的青少年在高中的体育馆中的表现,
16:57
routinely out-performing the Olympic athletes.
356
1017000
3000
会经常超过奥林匹克运动员。
17:02
Freitas has a design for a robotic white blood cell.
357
1022000
3000
Freitas 设计了一个白细胞机器人。
17:05
These are 2020-circa scenarios,
358
1025000
4000
有一个大概的2020年的方案,
17:09
but they're not as futuristic as it may sound.
359
1029000
2000
但是他们并没有那么遥不可及。
17:11
There are four major conferences on building blood cell-sized devices;
360
1031000
4000
有四个研讨会组织正在研究建造血细胞大小的设备,
17:15
there are many experiments in animals.
361
1035000
2000
有很多用在动物身上的实验。
17:17
There's actually one going into human trial,
362
1037000
2000
实际上有一个已经进入了人体实验的阶段,
17:19
so this is feasible technology.
363
1039000
3000
所以,这是可行的科技。
17:23
If we come back to our exponential growth of computing,
364
1043000
2000
如果我们回到我们计算的指数增长模型,
17:25
1,000 dollars of computing is now somewhere between an insect and a mouse brain.
365
1045000
3000
1000美元的计算现在相当于昆虫或者老鼠的大脑。
17:28
It will intersect human intelligence
366
1048000
3000
到2020年时
17:31
in terms of capacity in the 2020s,
367
1051000
3000
从存储量上来说,将会有人类的存量。
17:34
but that'll be the hardware side of the equation.
368
1054000
2000
但是这只是方程式的硬件的那一边。
17:36
Where will we get the software?
369
1056000
2000
我们从哪里得到我们的软件呢?
17:38
Well, it turns out we can see inside the human brain,
370
1058000
2000
嗯,我们将会看到我们大脑的内部,
17:40
and in fact not surprisingly,
371
1060000
2000
并且事实上并不惊讶,
17:42
the spatial and temporal resolution of brain scanning is doubling every year.
372
1062000
4000
大脑的扫描空间和时间分辨率是每年翻一番。
17:46
And with the new generation of scanning tools,
373
1066000
2000
并且会有新一代的扫描工具出现,
17:48
for the first time we can actually see
374
1068000
2000
实现我们第一次看到
17:50
individual inter-neural fibers
375
1070000
2000
单个的跨神经纤维
17:52
and see them processing and signaling in real time --
376
1072000
3000
并且实时地看到他们是如何处理并且发送信号
17:55
but then the question is, OK, we can get this data now,
377
1075000
2000
于是,之后就没问题了,我们现在可以得到数据了,
17:57
but can we understand it?
378
1077000
2000
但是我们能明白这些数据吗?
17:59
Doug Hofstadter wonders, well, maybe our intelligence
379
1079000
3000
Doug Hofstadter怀疑也许我们的理解力
18:02
just isn't great enough to understand our intelligence,
380
1082000
3000
不足以明白我们自己的智力,
18:05
and if we were smarter, well, then our brains would be that much more complicated,
381
1085000
3000
如果我们更加聪明一点,那么我们的大脑会便得更加复杂,
18:08
and we'd never catch up to it.
382
1088000
2000
我们永远都无法赶上。
18:11
It turns out that we can understand it.
383
1091000
3000
最终我们可以明白。
18:14
This is a block diagram of
384
1094000
3000
这个是一个框图,
18:17
a model and simulation of the human auditory cortex
385
1097000
4000
这个框图是一个人类听觉皮层的模型和仿真
18:21
that actually works quite well --
386
1101000
2000
这个模型的拟真程度很好--
18:23
in applying psychoacoustic tests, gets very similar results to human auditory perception.
387
1103000
2000
在音质测试的实验中,它得到了非常类似人类听觉的结果。
18:27
There's another simulation of the cerebellum --
388
1107000
3000
在另一项小脑的仿真中--
18:30
that's more than half the neurons in the brain --
389
1110000
2000
小脑包含了人脑中一半的神经--
18:32
again, works very similarly to human skill formation.
390
1112000
3000
同样,这个仿真的模拟效果非常好。
18:36
This is at an early stage, but you can show
391
1116000
3000
这是早期的阶段,但是你可以看出
18:39
with the exponential growth of the amount of information about the brain
392
1119000
3000
对于人脑数据的指数增长,
18:42
and the exponential improvement
393
1122000
2000
和人脑扫描解析度
18:44
in the resolution of brain scanning,
394
1124000
2000
的增长,
18:46
we will succeed in reverse-engineering the human brain
395
1126000
3000
到2020年,我们将会成功地
18:49
by the 2020s.
396
1129000
2000
实现人脑的反向工程研究。
18:51
We've already had very good models and simulation of about 15 regions
397
1131000
3000
我们已经有了几百个区域中
18:54
out of the several hundred.
398
1134000
3000
15个区域非常好的模型和仿真。
18:57
All of this is driving
399
1137000
2000
所有的这些都是指数增长-
18:59
exponentially growing economic progress.
400
1139000
2000
指数增长经济的进展。
19:01
We've had productivity go from 30 dollars to 150 dollars per hour
401
1141000
3000
在过去的50年中,我们的生产率
19:06
of labor in the last 50 years.
402
1146000
2000
从一小时30美元提高到一小时150美元
19:08
E-commerce has been growing exponentially. It's now a trillion dollars.
403
1148000
3000
电子商务已经在以指数增长。现在已经是万亿美元。
19:11
You might wonder, well, wasn't there a boom and a bust?
404
1151000
2000
你也许会怀疑,那么,那会不会有繁荣期也有萧条期呢?
19:13
That was strictly a capital-markets phenomena.
405
1153000
2000
这是一个严格的资本市场的现象。
19:15
Wall Street noticed that this was a revolutionary technology, which it was,
406
1155000
4000
华尔街注意到了这个革命性的科技,的确,
19:19
but then six months later, when it hadn't revolutionized all business models,
407
1159000
3000
但是6个月之后,如果它并没有革命性的商业模型,
19:22
they figured, well, that was wrong,
408
1162000
2000
他们认为,那不对,
19:24
and then we had this bust.
409
1164000
2000
于是,我们有了萧条。
19:27
All right, this is a technology
410
1167000
2000
好吧,这是科技
19:29
that we put together using some of the technologies we're involved in.
411
1169000
3000
这科技可以把我们所用的一切技术整合到一起。
19:32
This will be a routine feature in a cell phone.
412
1172000
4000
手机会有常规的功能。
19:36
It would be able to translate from one language to another.
413
1176000
2000
它将可以把一种语言翻译成另一种语言。
19:48
So let me just end with a couple of scenarios.
414
1188000
2000
那么,让我来以两个情景来结束。
19:50
By 2010 computers will disappear.
415
1190000
3000
到2010年,计算机将消失。
19:54
They'll be so small, they'll be embedded in our clothing, in our environment.
416
1194000
3000
他们将会变得非常小,会嵌入到衣服,和我们的环境中。
19:57
Images will be written directly to our retina,
417
1197000
2000
图像将会直接写到我们的视网膜上,
19:59
providing full-immersion virtual reality,
418
1199000
2000
展现出全沉浸的虚拟现实,
20:01
augmented real reality. We'll be interacting with virtual personalities.
419
1201000
3000
增强真实的显示。我们会直接和虚拟人物互动。
20:05
But if we go to 2029, we really have the full maturity of these trends,
420
1205000
4000
但是如果到2029年,这些趋势将会发展成熟,
20:09
and you have to appreciate how many turns of the screw
421
1209000
3000
你必须了解科技发展中
20:12
in terms of generations of technology, which are getting faster and faster, we'll have at that point.
422
1212000
4000
很多的转折,这些转折会越来越快,
20:16
I mean, we will have two-to-the-25th-power
423
1216000
2000
我是说我们会有2到二十五倍
20:18
greater price performance, capacity and bandwidth
424
1218000
3000
这些科技的性价比,存量和带宽,
20:21
of these technologies, which is pretty phenomenal.
425
1221000
2000
这些变化是巨大的。
20:23
It'll be millions of times more powerful than it is today.
426
1223000
2000
它将会比现在的科技强大数百万倍。
20:25
We'll have completed the reverse-engineering of the human brain,
427
1225000
2000
我们将完成人脑的反向工程计算,
20:28
1,000 dollars of computing will be far more powerful
428
1228000
3000
1000美元的计算以将会比人脑的基本裸存量
20:31
than the human brain in terms of basic raw capacity.
429
1231000
4000
还要强大很多。
20:35
Computers will combine
430
1235000
2000
计算机将会集合
20:37
the subtle pan-recognition powers
431
1237000
2000
非常微妙的人类智能的认知能力,
20:39
of human intelligence with ways in which machines are already superior,
432
1239000
3000
和非常强大的机器,
20:42
in terms of doing analytic thinking,
433
1242000
2000
可以完成分析思考,
20:44
remembering billions of facts accurately.
434
1244000
2000
准确地记住数十亿的事实。
20:46
Machines can share their knowledge very quickly.
435
1246000
2000
机器可以非常迅速地分享它们的知识,
20:48
But it's not just an alien invasion of intelligent machines.
436
1248000
5000
但是这不只是智能机器的入侵。
20:53
We are going to merge with our technology.
437
1253000
2000
我们将会融合我们的科技。
20:55
These nano-bots I mentioned
438
1255000
2000
这些我刚提到过的纳米机器人
20:57
will first be used for medical and health applications:
439
1257000
4000
将首次被用于药物和健康;
21:01
cleaning up the environment, providing powerful fuel cells
440
1261000
3000
清理我们的环境,提供燃料--非常强大的燃料电池
21:04
and widely distributed decentralized solar panels and so on in the environment.
441
1264000
5000
广泛分布的分布式太阳能板,和其他很多在环境中的应用。
21:09
But they'll also go inside our brain,
442
1269000
2000
但是它们将会走进我们的大脑,
21:11
interact with our biological neurons.
443
1271000
2000
和我们的生物神经交互。
21:13
We've demonstrated the key principles of being able to do this.
444
1273000
3000
我们将会展示这些成功的原理。
21:16
So, for example,
445
1276000
2000
例如,
21:18
full-immersion virtual reality from within the nervous system,
446
1278000
2000
在神经系统内部的全沉浸虚拟现实,
21:20
the nano-bots shut down the signals coming from your real senses,
447
1280000
3000
纳米机器人会关掉你真实感受的信号,
21:23
replace them with the signals that your brain would be receiving
448
1283000
3000
替代它们并传递给大脑
21:26
if you were in the virtual environment,
449
1286000
2000
如果你是在一个虚拟的环境,
21:28
and then it'll feel like you're in that virtual environment.
450
1288000
2000
你将会感觉到你正在这个虚拟的环境中。
21:30
You can go there with other people, have any kind of experience
451
1290000
2000
你可以和其他人一起进入,
21:32
with anyone involving all of the senses.
452
1292000
2000
和其他人一起去感受这些感觉。
21:35
"Experience beamers," I call them, will put their whole flow of sensory experiences
453
1295000
3000
我把他们叫做" Experience Beamers", 将会把在神经系统中的
21:38
in the neurological correlates of their emotions out on the Internet.
454
1298000
3000
感觉流引起的情感放入互联网上。
21:41
You can plug in and experience what it's like to be someone else.
455
1301000
3000
你可以进入然后体验别人的感觉。
21:44
But most importantly,
456
1304000
2000
但是最重要的,
21:46
it'll be a tremendous expansion
457
1306000
2000
它将会是人类智能的惊人扩散
21:48
of human intelligence through this direct merger with our technology,
458
1308000
4000
通过和我们科技的直接融合,
21:52
which in some sense we're doing already.
459
1312000
2000
从某些方面来说,我们已经在这样做。
21:54
We routinely do intellectual feats
460
1314000
2000
我们经常的智能表现
21:56
that would be impossible without our technology.
461
1316000
2000
是离开了我们的科技无法实现的。
21:58
Human life expectancy is expanding. It was 37 in 1800,
462
1318000
3000
在1800年,人类的预期寿命是37岁,
22:01
and with this sort of biotechnology, nano-technology revolutions,
463
1321000
5000
但是随着生物技术,纳米科技的革命,
22:06
this will move up very rapidly
464
1326000
2000
在未来几年,
22:08
in the years ahead.
465
1328000
2000
预期寿命会增长的非常迅速。
22:10
My main message is that progress in technology
466
1330000
4000
我主要传递的想法,是科技进步的速度
22:14
is exponential, not linear.
467
1334000
3000
是指数增长的,而非线性增长。
22:17
Many -- even scientists -- assume a linear model,
468
1337000
4000
很多人,甚至是科学家,都在线性模型的基础上假设,
22:21
so they'll say, "Oh, it'll be hundreds of years
469
1341000
2000
所以他们会说,这将会用几百年,
22:23
before we have self-replicating nano-technology assembly
470
1343000
3000
我们才能实现自复制纳米技术组装
22:26
or artificial intelligence."
471
1346000
2000
或人工智能。
22:28
If you really look at the power of exponential growth,
472
1348000
3000
如果你真地看到指数增长的力量,
22:31
you'll see that these things are pretty soon at hand.
473
1351000
3000
你将会看到这些事情会更快变成现实。
22:34
And information technology is increasingly encompassing
474
1354000
3000
信息技术正在加速指引着
22:37
all of our lives, from our music to our manufacturing
475
1357000
4000
我们的生活,从我们的音乐到生产制造,
22:41
to our biology to our energy to materials.
476
1361000
4000
到我们的生物体,到能源,到材料。
22:45
We'll be able to manufacture almost anything we need in the 2020s,
477
1365000
3000
到21世纪20年代,我们将有能力生产我们所需的任何东西,
22:48
from information, in very inexpensive raw materials,
478
1368000
2000
从信息,非常便宜的原材料,
22:50
using nano-technology.
479
1370000
3000
运用纳米技术。
22:53
These are very powerful technologies.
480
1373000
2000
它们是非常强大的科技。
22:55
They both empower our promise and our peril.
481
1375000
4000
它们将会成就我们的前景和隐患。
22:59
So we have to have the will to apply them to the right problems.
482
1379000
3000
所以,我们必须将他们运用在正确的地方。
23:02
Thank you very much.
483
1382000
1000
非常感谢。
23:03
(Applause)
484
1383000
1000
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7