The accelerating power of technology | Ray Kurzweil

312,157 views ・ 2007-01-12

TED


请双击下面的英文字幕来播放视频。

翻译人员: Ming Li 校对人员: Tony Yet
00:25
Well, it's great to be here.
0
25000
1000
好,很高兴来到这里。
00:26
We've heard a lot about the promise of technology, and the peril.
1
26000
5000
我们听到了很多关于科技的承诺,和未来的隐患。
00:31
I've been quite interested in both.
2
31000
2000
我一直对这两者都很感兴趣。
00:33
If we could convert 0.03 percent
3
33000
4000
如果我们将落在地球上的阳光的0.03%
00:37
of the sunlight that falls on the earth into energy,
4
37000
2000
转化成能量,
00:39
we could meet all of our projected needs for 2030.
5
39000
5000
预计将可以满足我们2030年的能源需求。
00:44
We can't do that today because solar panels are heavy,
6
44000
3000
现在我们还不能,因为今天的太阳能板笨重,
00:47
expensive and very inefficient.
7
47000
2000
昂贵,且效率很低。
00:49
There are nano-engineered designs,
8
49000
3000
不过现在有纳米工程设计的太阳板,
00:52
which at least have been analyzed theoretically,
9
52000
2000
它们从理论分析上来说
00:54
that show the potential to be very lightweight,
10
54000
2000
可以变得很轻
00:56
very inexpensive, very efficient,
11
56000
2000
很便宜,且效率很高。
00:58
and we'd be able to actually provide all of our energy needs in this renewable way.
12
58000
4000
而且我们将可以用这种可再生的方法提供我们所需的能量。
01:02
Nano-engineered fuel cells
13
62000
2000
纳米工程燃料电池
01:04
could provide the energy where it's needed.
14
64000
3000
可以为需要的地方提供能量。
01:07
That's a key trend, which is decentralization,
15
67000
2000
分散式分布是一个关键的趋势
01:09
moving from centralized nuclear power plants and
16
69000
3000
从集中式的核电厂,
01:12
liquid natural gas tankers
17
72000
2000
液体天然气储存储罐
01:14
to decentralized resources that are environmentally more friendly,
18
74000
4000
到分散分布的能源会更加环保,
01:18
a lot more efficient
19
78000
3000
效率更高
01:21
and capable and safe from disruption.
20
81000
4000
且在灾难中更加安全。
01:25
Bono spoke very eloquently,
21
85000
2000
Bono 雄辩地指出
01:27
that we have the tools, for the first time,
22
87000
4000
我们第一次使用工具
01:31
to address age-old problems of disease and poverty.
23
91000
4000
来对待疾病和贫困这些古老的问题。
01:35
Most regions of the world are moving in that direction.
24
95000
4000
世界上大部分地区已经朝那个方向前进。
01:39
In 1990, in East Asia and the Pacific region,
25
99000
4000
1990年,在东亚和太平洋地区,
01:43
there were 500 million people living in poverty --
26
103000
2000
有5亿人生活在贫困里-
01:45
that number now is under 200 million.
27
105000
3000
这个数字现在是2亿。
01:48
The World Bank projects by 2011, it will be under 20 million,
28
108000
3000
世界银行预测在2011年,这个数字将会在2000万以下。
01:51
which is a reduction of 95 percent.
29
111000
3000
下降了95%。
01:54
I did enjoy Bono's comment
30
114000
3000
我很喜欢 Bono 的观点
01:57
linking Haight-Ashbury to Silicon Valley.
31
117000
4000
把嬉皮区和硅谷连在一起。
02:01
Being from the Massachusetts high-tech community myself,
32
121000
3000
作为马萨诸塞州的高科技社区的一员
02:04
I'd point out that we were hippies also in the 1960s,
33
124000
4000
我要指出我们也曾经是1960年时代的嬉皮,
02:09
although we hung around Harvard Square.
34
129000
3000
尽管我们是在哈佛广场附近活动。
02:12
But we do have the potential to overcome disease and poverty,
35
132000
5000
但是我们拥有克服疾病和贫困的潜力。
02:17
and I'm going to talk about those issues, if we have the will.
36
137000
3000
而且我要说一说这些问题,如果我们有这个愿望的话。
02:20
Kevin Kelly talked about the acceleration of technology.
37
140000
3000
Kevin Kelly 说到了关于科技的加速
02:23
That's been a strong interest of mine,
38
143000
3000
我一直对这很感兴趣,
02:26
and a theme that I've developed for some 30 years.
39
146000
3000
而且这个主题是我30年来一直在研究的。
02:29
I realized that my technologies had to make sense when I finished a project.
40
149000
5000
我意识到在我完成我的项目时,这些技术要有意义。
02:34
That invariably, the world was a different place
41
154000
3000
在这个始终不变的前提下,每当我引进一个技术时
02:37
when I would introduce a technology.
42
157000
2000
世界已经不再是原来的世界了。
02:39
And, I noticed that most inventions fail,
43
159000
2000
还有,我发现大部分的发明失败了,
02:41
not because the R&D department can't get it to work --
44
161000
3000
不是因为研发部门不能让它运作 --
02:44
if you look at most business plans, they will actually succeed
45
164000
3000
如果你看一看大部分的企业计划书,他们其实是会成功的
02:47
if given the opportunity to build what they say they're going to build --
46
167000
4000
如果给他们机会让他们建造计划要建造的东西,
02:51
and 90 percent of those projects or more will fail, because the timing is wrong --
47
171000
3000
而其百分之90的这些项目会失败,原因是时机不对--
02:54
not all the enabling factors will be in place when they're needed.
48
174000
3000
不是所有成功所需的因素都会在需要它们时出现。
02:57
So I began to be an ardent student of technology trends,
49
177000
4000
因此,我成为一个对技术发展趋势很热衷的学生,
03:01
and track where technology would be at different points in time,
50
181000
3000
并关注在不同的时间点,科技将会变成什么样子,
03:04
and began to build the mathematical models of that.
51
184000
3000
并且开始建造其数学模型。
03:07
It's kind of taken on a life of its own.
52
187000
2000
这个项目已经形成了一个自己的生命,
03:09
I've got a group of 10 people that work with me to gather data
53
189000
3000
我有一个10人的小组和我一起来收集数据,
03:12
on key measures of technology in many different areas, and we build models.
54
192000
5000
这些数据是反映不同领域科技的重要指标,并据此,我们建造模型。
03:17
And you'll hear people say, well, we can't predict the future.
55
197000
3000
然后你会听到有人说,我们不能预测未来。
03:20
And if you ask me,
56
200000
2000
且如果你问我,
03:22
will the price of Google be higher or lower than it is today three years from now,
57
202000
3000
谷歌的股价3年后会比今天高还是低,
03:25
that's very hard to say.
58
205000
2000
那是很难说。
03:27
Will WiMax CDMA G3
59
207000
3000
WiMax CDMA G3 会不会
03:30
be the wireless standard three years from now? That's hard to say.
60
210000
2000
成为3年后无线领域的标准?那很难说。
03:32
But if you ask me, what will it cost
61
212000
2000
但是如果你问我,在2010年
03:34
for one MIPS of computing in 2010,
62
214000
3000
每秒百万次计算的成本
03:37
or the cost to sequence a base pair of DNA in 2012,
63
217000
3000
或者一个DNA碱基对的排序在2012年的成本,
03:40
or the cost of sending a megabyte of data wirelessly in 2014,
64
220000
4000
或者是在2014年无线发送一兆字节数据的成本,
03:44
it turns out that those are very predictable.
65
224000
3000
这些东西是非常可以预测的。
03:47
There are remarkably smooth exponential curves
66
227000
2000
这些有十分平滑的指数曲线
03:49
that govern price performance, capacity, bandwidth.
67
229000
3000
来反应性价比,容量和带宽。
03:52
And I'm going to show you a small sample of this,
68
232000
2000
我要给你看一个这个的小例子,
03:54
but there's really a theoretical reason
69
234000
2000
但是这里其实有一个理论上的原因
03:56
why technology develops in an exponential fashion.
70
236000
5000
为什么科技在一个指数形势发展。
04:01
And a lot of people, when they think about the future, think about it linearly.
71
241000
2000
有很多人,当他们考虑到未来,用线性的方法来思想。
04:03
They think they're going to continue
72
243000
2000
他们认为他们会持续
04:05
to develop a problem
73
245000
2000
发展一个问题
04:07
or address a problem using today's tools,
74
247000
3000
或者用今天的工具,
04:10
at today's pace of progress,
75
250000
2000
和今天的发展速度来诠释未来的问题,
04:12
and fail to take into consideration this exponential growth.
76
252000
4000
但是没有考虑到指数的发展模式。
04:16
The Genome Project was a controversial project in 1990.
77
256000
3000
基因组计划曾经在1990年是一个有争议的项目。
04:19
We had our best Ph.D. students,
78
259000
2000
我们有我们最好的博士学生,
04:21
our most advanced equipment around the world,
79
261000
2000
世界各地最先进的设备,
04:23
we got 1/10,000th of the project done,
80
263000
2000
在世界范围呢,我们完成了项目的万分之一,
04:25
so how're we going to get this done in 15 years?
81
265000
2000
那么,我们怎么能在15年里完成这个项目呢?
04:27
And 10 years into the project,
82
267000
3000
在这个项目进展10年的时候,
04:31
the skeptics were still going strong -- says, "You're two-thirds through this project,
83
271000
2000
怀疑的态度还是非常的强大 -- 说“你已经进入到这个项目的三分之二了,
04:33
and you've managed to only sequence
84
273000
2000
而你仅仅完成了
04:35
a very tiny percentage of the whole genome."
85
275000
3000
整个基因组工程非常小部分的排序。
04:38
But it's the nature of exponential growth
86
278000
2000
但是这是指数增长的本质
04:40
that once it reaches the knee of the curve, it explodes.
87
280000
2000
当到了曲线的转折点时,它会爆炸。
04:42
Most of the project was done in the last
88
282000
2000
大部分的项目是在
04:44
few years of the project.
89
284000
2000
项目的最后几年完成的。
04:46
It took us 15 years to sequence HIV --
90
286000
2000
我们用了15年完成了艾滋病毒的排序 --
04:48
we sequenced SARS in 31 days.
91
288000
2000
而对于非典病毒只用了31天。
04:50
So we are gaining the potential to overcome these problems.
92
290000
4000
所以我们正在增加克服这些困难的可能性。
04:54
I'm going to show you just a few examples
93
294000
2000
我要给你看几个例子
04:56
of how pervasive this phenomena is.
94
296000
3000
说明这个现象是多么的普遍。
04:59
The actual paradigm-shift rate, the rate of adopting new ideas,
95
299000
4000
根据我们的模型,事实的思维转化率,也就是新想法被接受的速率,
05:03
is doubling every decade, according to our models.
96
303000
3000
每十几年增加一倍。
05:06
These are all logarithmic graphs,
97
306000
3000
这些都是对数图,
05:09
so as you go up the levels it represents, generally multiplying by factor of 10 or 100.
98
309000
3000
就好比每当你提高它代表的一个等级,一般来讲会乘以10或者100。
05:12
It took us half a century to adopt the telephone,
99
312000
3000
我们用了半个世纪来采用电话,
05:15
the first virtual-reality technology.
100
315000
3000
第一个虚拟现实的科技。
05:18
Cell phones were adopted in about eight years.
101
318000
2000
只用了8年就接受了手机。
05:20
If you put different communication technologies
102
320000
3000
如果你把不同的通信科技放在
05:23
on this logarithmic graph,
103
323000
2000
这个对数图上,
05:25
television, radio, telephone
104
325000
2000
电视,收音机,电话
05:27
were adopted in decades.
105
327000
2000
都用了几十年才被采用。
05:29
Recent technologies -- like the PC, the web, cell phones --
106
329000
3000
最近的科技 -- 像电脑,网络,手机 --
05:32
were under a decade.
107
332000
2000
是十年以下。
05:34
Now this is an interesting chart,
108
334000
2000
这是一个有意思的图表,
05:36
and this really gets at the fundamental reason why
109
336000
2000
而其这个通道最基本的原因为什么
05:38
an evolutionary process -- and both biology and technology are evolutionary processes --
110
338000
4000
一个进化过程 -- 生物学和科技都是进化过程 --
05:42
accelerate.
111
342000
2000
加速。
05:44
They work through interaction -- they create a capability,
112
344000
3000
他们是一种互动的运转 -- 他们创造一个能力,
05:47
and then it uses that capability to bring on the next stage.
113
347000
3000
然后用那个能力来推进到下一个层次。
05:50
So the first step in biological evolution,
114
350000
3000
生物进化的第一步,
05:53
the evolution of DNA -- actually it was RNA came first --
115
353000
2000
DNA的进化 -- 其实是先有的RNA --
05:55
took billions of years,
116
355000
2000
用了几十亿年,
05:57
but then evolution used that information-processing backbone
117
357000
3000
但是以后的进化过程是用这个信息处理支柱
06:00
to bring on the next stage.
118
360000
2000
来促使下一个层次。
06:02
So the Cambrian Explosion, when all the body plans of the animals were evolved,
119
362000
3000
所以寒武纪大爆发,当所有动物的身体结构进化了
06:05
took only 10 million years. It was 200 times faster.
120
365000
4000
用了才一千万年。快了200倍。
06:09
And then evolution used those body plans
121
369000
2000
然后进化过程用这些身体结构
06:11
to evolve higher cognitive functions,
122
371000
2000
来进化出更高级的认知功能,
06:13
and biological evolution kept accelerating.
123
373000
2000
而且生物进化一直在加速。
06:15
It's an inherent nature of an evolutionary process.
124
375000
3000
这是一个进化过程固有的性质。
06:18
So Homo sapiens, the first technology-creating species,
125
378000
3000
所以智人,第一个创造科技的物种,
06:21
the species that combined a cognitive function
126
381000
2000
把认知功能
06:23
with an opposable appendage --
127
383000
2000
和大拇指运动结合的物种 --
06:25
and by the way, chimpanzees don't really have a very good opposable thumb --
128
385000
4000
顺便提一下,黑猩猩其实没有一个非常好的大拇指 --
06:29
so we could actually manipulate our environment with a power grip
129
389000
2000
所以我们可以用很强的握力来操纵我们的环境
06:31
and fine motor coordination,
130
391000
2000
和好的动作协调,
06:33
and use our mental models to actually change the world
131
393000
2000
和用我们的心智模式来真正改变世界
06:35
and bring on technology.
132
395000
2000
而且带来科技。
06:37
But anyway, the evolution of our species took hundreds of thousands of years,
133
397000
3000
但是总而言之,我们这个物种的进化用了几十万年,
06:40
and then working through interaction,
134
400000
2000
然后通过互动的运转,
06:42
evolution used, essentially,
135
402000
2000
从本质上来讲,进化运用
06:44
the technology-creating species to bring on the next stage,
136
404000
3000
这种科技来创造下一代物种,
06:47
which were the first steps in technological evolution.
137
407000
3000
这是科技进化的第一步。
06:50
And the first step took tens of thousands of years --
138
410000
3000
而且这第一步用了几万年 --
06:53
stone tools, fire, the wheel -- kept accelerating.
139
413000
3000
石器,火,和轮子 - 一直加速。
06:56
We always used then the latest generation of technology
140
416000
2000
我们一直用当时最新一代的科技
06:58
to create the next generation.
141
418000
2000
来创造下一代。
07:00
Printing press took a century to be adopted;
142
420000
2000
印刷机用了一个世纪来被采用,
07:02
the first computers were designed pen-on-paper -- now we use computers.
143
422000
4000
第一个电脑是用笔和纸来设计的 - 现在我们用电脑来设计。
07:06
And we've had a continual acceleration of this process.
144
426000
3000
我们在这个过程是不断加速的。
07:09
Now by the way, if you look at this on a linear graph, it looks like everything has just happened,
145
429000
3000
顺便说一下,如果你在一个线性图上看这个,好像所有的东西顺其自然地发生,
07:12
but some observer says, "Well, Kurzweil just put points on this graph
146
432000
6000
但是一次观察者说,“嗯, Kurzweil 是有意把这些点
07:18
that fall on that straight line."
147
438000
2000
放在了这个直线图上。”
07:20
So, I took 15 different lists from key thinkers,
148
440000
3000
所以,一共用了15个不同重要思想家的列表,
07:23
like the Encyclopedia Britannica, the Museum of Natural History, Carl Sagan's Cosmic Calendar
149
443000
4000
像大英百科全书,自然历史博物馆,卡尔萨根的宇宙日历
07:27
on the same -- and these people were not trying to make my point;
150
447000
3000
而这些人并没有试着证明我的观点,
07:30
these were just lists in reference works,
151
450000
2000
他们只是列举参考文献。
07:32
and I think that's what they thought the key events were
152
452000
3000
我想这就是他们所认为的在生物进化和科技进化中
07:35
in biological evolution and technological evolution.
153
455000
3000
的关键事件。
07:38
And again, it forms the same straight line. You have a little bit of thickening in the line
154
458000
3000
再次,它形成相同的直线。
07:41
because people do have disagreements, what the key points are,
155
461000
3000
因为人们有不同的意见,关于什么是要点
07:44
there's differences of opinion when agriculture started,
156
464000
2000
人们对农业什么时候开始的有着不同的意见,
07:46
or how long the Cambrian Explosion took.
157
466000
3000
或者什么时候 -- 寒武纪大爆发用了多长时间。
07:49
But you see a very clear trend.
158
469000
2000
但是有一个非常明显的趋势。
07:51
There's a basic, profound acceleration of this evolutionary process.
159
471000
5000
进化过程有一个基本的,深奥的加速。
07:56
Information technologies double their capacity, price performance, bandwidth,
160
476000
5000
信息技术的能力,性价比,带宽,
08:01
every year.
161
481000
2000
每年增加一倍。
08:03
And that's a very profound explosion of exponential growth.
162
483000
4000
这是一个非常深奥的指数增长爆炸。
08:07
A personal experience, when I was at MIT --
163
487000
2000
一个个人的经验,当我在麻省理工学院-
08:09
computer taking up about the size of this room,
164
489000
2000
计算机大概是这个房间大,
08:11
less powerful than the computer in your cell phone.
165
491000
5000
性能比你手机里的电脑还弱。
08:16
But Moore's Law, which is very often identified with this exponential growth,
166
496000
4000
但是根据摩尔定律,经常和这个成倍增一起认定,
08:20
is just one example of many, because it's basically
167
500000
2000
只是很多例子里的一个,因为它基本是
08:22
a property of the evolutionary process of technology.
168
502000
5000
科技进化过程的一个性质。
08:27
I put 49 famous computers on this logarithmic graph --
169
507000
3000
如果我们-我把49个著名的电脑放在这个对数图上-
08:30
by the way, a straight line on a logarithmic graph is exponential growth --
170
510000
4000
顺便说一下,一条直线在一个对数图,是成倍增 -
08:34
that's another exponential.
171
514000
2000
那是另一个成倍。
08:36
It took us three years to double our price performance of computing in 1900,
172
516000
3000
我们用了三年把1900年的计算的性价比翻倍。
08:39
two years in the middle; we're now doubling it every one year.
173
519000
3000
中间是两年,我们现在每一年增加一倍。
08:43
And that's exponential growth through five different paradigms.
174
523000
3000
这是通过5种不同模式的成倍增。
08:46
Moore's Law was just the last part of that,
175
526000
2000
摩尔定律只是最后的部分,
08:48
where we were shrinking transistors on an integrated circuit,
176
528000
3000
在一个积体电路,被缩小的晶体管,
08:51
but we had electro-mechanical calculators,
177
531000
3000
但我们有机电计算器,
08:54
relay-based computers that cracked the German Enigma Code,
178
534000
2000
继电器为基础的计算机破译了德国的密码,
08:56
vacuum tubes in the 1950s predicted the election of Eisenhower,
179
536000
4000
真空管在上世纪50年代预测到艾森豪威尔的当选,
09:00
discreet transistors used in the first space flights
180
540000
3000
首次太空飞行使用的离散晶体管
09:03
and then Moore's Law.
181
543000
2000
然后是摩尔定律。
09:05
Every time one paradigm ran out of steam,
182
545000
2000
每当一个范例被用尽了,
09:07
another paradigm came out of left field to continue the exponential growth.
183
547000
3000
另一个范例从左外野出来继续这个成倍增长。
09:10
They were shrinking vacuum tubes, making them smaller and smaller.
184
550000
3000
他们曾经缩小真空管,使他们越来越小。
09:13
That hit a wall. They couldn't shrink them and keep the vacuum.
185
553000
3000
这撞上了墙。他们无法继续收缩并保留真空。
09:16
Whole different paradigm -- transistors came out of the woodwork.
186
556000
2000
完全不同的范例-木工出来的晶体管。
09:18
In fact, when we see the end of the line for a particular paradigm,
187
558000
3000
事实上,当我们看到一个特定范例的结束线时,
09:21
it creates research pressure to create the next paradigm.
188
561000
4000
它会创建研究的压力来创造下一个的范例。
09:25
And because we've been predicting the end of Moore's Law
189
565000
3000
而且因为我们一直在预测摩尔定律终点
09:28
for quite a long time -- the first prediction said 2002, until now it says 2022.
190
568000
3000
用了相当长的时间-第一次预测说2002年,到现在它说2022年。
09:31
But by the teen years,
191
571000
3000
但是到了23世纪,
09:34
the features of transistors will be a few atoms in width,
192
574000
3000
晶体管的特点将会是几个原子的宽度
09:37
and we won't be able to shrink them any more.
193
577000
2000
我们将无法继续把它缩小。
09:39
That'll be the end of Moore's Law, but it won't be the end of
194
579000
3000
这将结束摩尔定律,但这不会结束
09:42
the exponential growth of computing, because chips are flat.
195
582000
2000
计算的倍数增长,因为芯片是平的。
09:44
We live in a three-dimensional world; we might as well use the third dimension.
196
584000
3000
我们生活在一个三维的世界,我们也应该利用第三纬。
09:47
We will go into the third dimension
197
587000
2000
我们将会走入第三纬
09:49
and there's been tremendous progress, just in the last few years,
198
589000
3000
而且它已经在最近几年有了惊人的进展,
09:52
of getting three-dimensional, self-organizing molecular circuits to work.
199
592000
4000
包括运用三维的,自组织分子电路来工作。
09:56
We'll have those ready well before Moore's Law runs out of steam.
200
596000
7000
我们将会在莫尔定律走到尽头以前准备好。
10:03
Supercomputers -- same thing.
201
603000
2000
超级计算机也是一样。
10:06
Processor performance on Intel chips,
202
606000
3000
以英特尔处理器的性能为例,
10:09
the average price of a transistor --
203
609000
3000
看一下晶体管的价格--
10:12
1968, you could buy one transistor for a dollar.
204
612000
3000
在1968年,一美元可以买一个晶体管。
10:15
You could buy 10 million in 2002.
205
615000
3000
而在2002年,一美元可以买一千万个。
10:18
It's pretty remarkable how smooth
206
618000
3000
这是一个非常显著的平顺的
10:21
an exponential process that is.
207
621000
2000
指数过程。
10:23
I mean, you'd think this is the result of some tabletop experiment,
208
623000
3000
你会认为这是一个实验桌上的结果,
10:27
but this is the result of worldwide chaotic behavior --
209
627000
3000
但是我认为这个是一个世界范围内,无章法的行为的结果--
10:30
countries accusing each other of dumping products,
210
630000
2000
各个国家指责彼此倾销商品,
10:32
IPOs, bankruptcies, marketing programs.
211
632000
2000
首次公开发行股票,破产,市场活动。
10:34
You would think it would be a very erratic process,
212
634000
3000
你会认为这是一个非常不确定的过程,
10:37
and you have a very smooth
213
637000
2000
而你会看到这样一个混乱的过程的结果
10:39
outcome of this chaotic process.
214
639000
2000
是非常平顺的。
10:41
Just as we can't predict
215
641000
2000
正如我们无法预测
10:43
what one molecule in a gas will do --
216
643000
2000
汽油中的一个分子如何运动一样--
10:45
it's hopeless to predict a single molecule --
217
645000
3000
我们是无法预测一个分子的--
10:48
yet we can predict the properties of the whole gas,
218
648000
2000
但是运用热力学,我们可以非常准确低知道
10:50
using thermodynamics, very accurately.
219
650000
3000
作为一个整体,汽油有什么样的性质。
10:53
It's the same thing here. We can't predict any particular project,
220
653000
3000
这里是一样的。我们无法预测某一个项目会怎样,
10:56
but the result of this whole worldwide,
221
656000
2000
但是可以知道世界范围内的趋势--
10:58
chaotic, unpredictable activity of competition
222
658000
5000
世界范围内的,无序的,不可预测的竞争。
11:03
and the evolutionary process of technology is very predictable.
223
663000
3000
科技进步的过程是可以被很好预测的。
11:06
And we can predict these trends far into the future.
224
666000
3000
而我们可以预言科技进步的未来趋势。
11:11
Unlike Gertrude Stein's roses,
225
671000
2000
不象Gertrude Stein的玫瑰,
11:13
it's not the case that a transistor is a transistor.
226
673000
2000
这病不是一个晶体管是一个晶体管。
11:15
As we make them smaller and less expensive,
227
675000
2000
当我们把他们做地越来越小时,
11:17
the electrons have less distance to travel.
228
677000
2000
电子运动的距离会变小。
11:19
They're faster, so you've got exponential growth in the speed of transistors,
229
679000
4000
他们的运动非常快,所以我们会发现晶体管的性能的指数性增长,
11:23
so the cost of a cycle of one transistor
230
683000
4000
进而,晶体管的价格
11:27
has been coming down with a halving rate of 1.1 years.
231
687000
3000
将会在每1.1年下降一半。
11:30
You add other forms of innovation and processor design,
232
690000
3000
加入一种创新和另一种处理器的设计,
11:33
you get a doubling of price performance of computing every one year.
233
693000
4000
你将会使计算的性价比每年提高一倍。
11:37
And that's basically deflation --
234
697000
3000
这其实就是价格下降--
11:40
50 percent deflation.
235
700000
2000
50%的价格下降。
11:42
And it's not just computers. I mean, it's true of DNA sequencing;
236
702000
3000
而这不仅仅是计算机。这对于基因组序列
11:45
it's true of brain scanning;
237
705000
2000
和大脑的扫描,
11:47
it's true of the World Wide Web. I mean, anything that we can quantify,
238
707000
2000
和国际互联网也是成立的。我的意思是对于任何我们可以量化的东西,
11:49
we have hundreds of different measurements
239
709000
3000
我们有几百种不同的指标
11:52
of different, information-related measurements --
240
712000
3000
不同的信息相关的指标--
11:55
capacity, adoption rates --
241
715000
2000
存储量,采用率--
11:57
and they basically double every 12, 13, 15 months,
242
717000
3000
他们几乎每12,13 或15个月就要翻一番,
12:00
depending on what you're looking at.
243
720000
2000
关键在于我们如何看待。
12:02
In terms of price performance, that's a 40 to 50 percent deflation rate.
244
722000
4000
对于性价比,这是一个百分之50 到 百分之40 的价格下降。
12:07
And economists have actually started worrying about that.
245
727000
2000
而经济学家已经开始担心这些。
12:09
We had deflation during the Depression,
246
729000
2000
我们在经济萧条的时候会经历价格下降,通货紧缩,
12:11
but that was collapse of the money supply,
247
731000
2000
但是那是由于货币的供应崩溃,
12:13
collapse of consumer confidence, a completely different phenomena.
248
733000
3000
消费者信心的崩溃,一个完全不同的现象。
12:16
This is due to greater productivity,
249
736000
2000
这是由于生产力的极大提高,
12:19
but the economist says, "But there's no way you're going to be able to keep up with that.
250
739000
2000
但是经济学家说:“没有办法来保持这样的节奏。”
12:21
If you have 50 percent deflation, people may increase their volume
251
741000
3000
如果有50%的价格下降,人们的购买量会增加
12:24
30, 40 percent, but they won't keep up with it."
252
744000
2000
百分之30-40,但是没办法保持这个增长。
12:26
But what we're actually seeing is that
253
746000
2000
但是我们真正看到的
12:28
we actually more than keep up with it.
254
748000
2000
是我们不仅仅是保持。
12:30
We've had 28 percent per year compounded growth in dollars
255
750000
3000
我们看到在过去的50年里,
12:33
in information technology over the last 50 years.
256
753000
3000
信息产业的美元在以每年28%的复合增长速度增长。
12:36
I mean, people didn't build iPods for 10,000 dollars 10 years ago.
257
756000
4000
我的意思是,人们不会在10年制造价值10,000美元的iPod.
12:40
As the price performance makes new applications feasible,
258
760000
3000
当性价比使得新应用称为可能,
12:43
new applications come to the market.
259
763000
2000
这些新的应用将走向市场。
12:45
And this is a very widespread phenomena.
260
765000
3000
这是一个非常广泛的现象。
12:48
Magnetic data storage --
261
768000
2000
磁存储技术--
12:50
that's not Moore's Law, it's shrinking magnetic spots,
262
770000
3000
这不是摩尔定律,这个缩小磁点,
12:53
different engineers, different companies, same exponential process.
263
773000
4000
不同的工程师,不同公司,但是相同的指数增长过程。
12:57
A key revolution is that we're understanding our own biology
264
777000
4000
一个关键性革命是我们通过信息,
13:01
in these information terms.
265
781000
2000
了解了我们自身的生命体。
13:03
We're understanding the software programs
266
783000
2000
我们懂得了让我们的机体运转
13:05
that make our body run.
267
785000
2000
的软件程序。
13:07
These were evolved in very different times --
268
787000
2000
这些都是在不同的时间进化--
13:09
we'd like to actually change those programs.
269
789000
2000
实际上,我们会改变这些程序。
13:11
One little software program, called the fat insulin receptor gene,
270
791000
2000
一个叫做脂肪胰岛素受体基因的软件,
13:13
basically says, "Hold onto every calorie,
271
793000
2000
简单地说, 要合理使用每个卡路里,
13:15
because the next hunting season may not work out so well."
272
795000
4000
因为下一个狩猎季节也许不会很顺利。
13:19
That was in the interests of the species tens of thousands of years ago.
273
799000
3000
这是千百年前,复合物种生存条件的一个例子。
13:22
We'd like to actually turn that program off.
274
802000
3000
我们现在关掉这个程序。
13:25
They tried that in animals, and these mice ate ravenously
275
805000
3000
我们把它用到其他动物身上,老鼠们非常贪婪地吃着,
13:28
and remained slim and got the health benefits of being slim.
276
808000
2000
并且保持着很瘦地身材,而且更加健康。
13:30
They didn't get diabetes; they didn't get heart disease;
277
810000
3000
他们不会得糖尿病,也没有心脏病。
13:33
they lived 20 percent longer; they got the health benefits of caloric restriction
278
813000
3000
他们的寿命延长了20%,他们从卡路里的约束中
13:36
without the restriction.
279
816000
2000
得到了更加健康。
13:38
Four or five pharmaceutical companies have noticed this,
280
818000
3000
四五个制药公司已经注意到了这一点。
13:41
felt that would be
281
821000
3000
觉得这将会
13:44
interesting drug for the human market,
282
824000
3000
称为市场上非常有趣的药品,
13:47
and that's just one of the 30,000 genes
283
827000
2000
而那只是30,000个影响
13:49
that affect our biochemistry.
284
829000
3000
我们生物化学的基因中的一个。
13:52
We were evolved in an era where it wasn't in the interests of people
285
832000
3000
我们发展进化的时代是这样一个时代,像在座的各位,包括我在内
13:55
at the age of most people at this conference, like myself,
286
835000
3000
希望活得更长,但是却事与愿违。
13:58
to live much longer, because we were using up the precious resources
287
838000
4000
因为我们正在用尽宝贵的资源,
14:02
which were better deployed towards the children
288
842000
1000
这些资源可以被我们的子孙后代以及更在意这些资源的人
14:03
and those caring for them.
289
843000
2000
所更好地利用。
14:05
So, life -- long lifespans --
290
845000
2000
所以,生命,长寿
14:07
like, that is to say, much more than 30 --
291
847000
2000
30年以上的寿命
14:09
weren't selected for,
292
849000
3000
并不是自然选择的结果
14:12
but we are learning to actually manipulate
293
852000
3000
而是我们通过生命科技的进步来学习如何控制
14:15
and change these software programs
294
855000
2000
这些程序
14:17
through the biotechnology revolution.
295
857000
2000
的结果。
14:19
For example, we can inhibit genes now with RNA interference.
296
859000
4000
例如,我们可以通过影响RNA来抑制某些基因。
14:23
There are exciting new forms of gene therapy
297
863000
2000
这些令人兴奋的新的基因疗法
14:25
that overcome the problem of placing the genetic material
298
865000
2000
成功地实现了将这些基因材料
14:27
in the right place on the chromosome.
299
867000
2000
放置染色体的正确位置。
14:29
There's actually a -- for the first time now,
300
869000
3000
现在,第一次出现了能够治愈肺动脉高血压症
14:32
something going to human trials, that actually cures pulmonary hypertension --
301
872000
3000
这样一个致命病症地人体实验
14:35
a fatal disease -- using gene therapy.
302
875000
3000
这都是运用的基因疗法。
14:38
So we'll have not just designer babies, but designer baby boomers.
303
878000
3000
所以,我们不仅仅是有了婴儿的设计师,更是婴儿潮地设计师。
14:41
And this technology is also accelerating.
304
881000
3000
而这个技术也是在加速发展。
14:44
It cost 10 dollars per base pair in 1990,
305
884000
3000
在1990年,每个碱基对要花10美元,
14:47
then a penny in 2000.
306
887000
2000
2000年只需要一美分。
14:49
It's now under a 10th of a cent.
307
889000
2000
现在是十分之一分。
14:51
The amount of genetic data --
308
891000
2000
基因数据每年增长一倍
14:53
basically this shows that smooth exponential growth
309
893000
3000
基本上来说
14:56
doubled every year,
310
896000
2000
是指数增长,
14:58
enabling the genome project to be completed.
311
898000
3000
这个发展会促进基因组测序计划的成功。
15:01
Another major revolution: the communications revolution.
312
901000
3000
另一项重要的革命是通信革命。
15:04
The price performance, bandwidth, capacity of communications measured many different ways;
313
904000
5000
从性价比,带宽,通信容量来看,
15:09
wired, wireless is growing exponentially.
314
909000
3000
有线和无线通信都是指数增长。
15:12
The Internet has been doubling in power and continues to,
315
912000
3000
从各个方面看,国际互联网的能量已经翻番
15:15
measured many different ways.
316
915000
2000
并还将继续。
15:17
This is based on the number of hosts.
317
917000
2000
这长图是基于主机的数量。
15:19
Miniaturization -- we're shrinking the size of technology
318
919000
2000
小型化,我们缩小这个技术的速度
15:21
at an exponential rate,
319
921000
2000
是指数增长的。
15:23
both wired and wireless.
320
923000
2000
无论是有线还是无线。
15:25
These are some designs from Eric Drexler's book --
321
925000
4000
从Eric Drexler书中的设计来看,
15:29
which we're now showing are feasible
322
929000
2000
我们所展示的,
15:31
with super-computing simulations,
323
931000
2000
都是超级计算模拟出可行的设计,
15:33
where actually there are scientists building
324
933000
2000
科学家们正在制造
15:35
molecule-scale robots.
325
935000
2000
分子级的机器人。
15:37
One has one that actually walks with a surprisingly human-like gait,
326
937000
2000
某些机器人非常令人惊讶地以人类的步态行走。
15:39
that's built out of molecules.
327
939000
3000
那是由分子建造的。
15:42
There are little machines doing things in experimental bases.
328
942000
4000
一些小机器已经在实验室环境中成型。
15:46
The most exciting opportunity
329
946000
3000
最令人兴奋的前景
15:49
is actually to go inside the human body
330
949000
2000
实际上是在人体内部
15:51
and perform therapeutic and diagnostic functions.
331
951000
3000
完成治疗和诊断的功能。
15:54
And this is less futuristic than it may sound.
332
954000
2000
这并没有看起来那么遥远。
15:56
These things have already been done in animals.
333
956000
2000
这些机器人已经运用在了动物实验上。
15:58
There's one nano-engineered device that cures type 1 diabetes. It's blood cell-sized.
334
958000
4000
已经有纳米工程的装置可以治愈1型糖尿病,而它只有血细胞的大小。
16:02
They put tens of thousands of these
335
962000
2000
科学家将很多的这些装置
16:04
in the blood cell -- they tried this in rats --
336
964000
2000
放入老鼠的血液中,
16:06
it lets insulin out in a controlled fashion,
337
966000
2000
它可以控制胰岛素的释放,
16:08
and actually cures type 1 diabetes.
338
968000
2000
而确实治愈了1型糖尿病。
16:10
What you're watching is a design
339
970000
3000
现在我们看到是
16:13
of a robotic red blood cell,
340
973000
2000
一个血红细胞机器人,
16:15
and it does bring up the issue that our biology
341
975000
2000
它引发的话题表明,我们的生命体
16:17
is actually very sub-optimal,
342
977000
2000
仅仅是次优
16:19
even though it's remarkable in its intricacy.
343
979000
3000
尽管有其显著的复杂程度。
16:22
Once we understand its principles of operation,
344
982000
3000
一旦我们了解了运作的原理,
16:25
and the pace with which we are reverse-engineering biology is accelerating,
345
985000
3000
我们逆向生命工程的发展是加速的。
16:29
we can actually design these things to be
346
989000
2000
我们可以将这些东西设计得
16:31
thousands of times more capable.
347
991000
2000
强大数千倍。
16:33
An analysis of this respirocyte, designed by Rob Freitas,
348
993000
4000
Rob Freitas发明的人造红细胞的分析
16:38
indicates if you replace 10 percent of your red blood cells with these robotic versions,
349
998000
2000
显示,如果你将身体中百分之十的红细胞替换成人造红细胞,
16:41
you could do an Olympic sprint for 15 minutes without taking a breath.
350
1001000
3000
你将可以不废吹灰之力完成15分钟的奥林匹克冲刺。
16:44
You could sit at the bottom of your pool for four hours --
351
1004000
3000
你可以坐在游泳池底部4小时--
16:47
so, "Honey, I'm in the pool," will take on a whole new meaning.
352
1007000
4000
所以,“亲爱的,我在游泳池” 将会有全新的意思。
16:51
It will be interesting to see what we do in our Olympic trials.
353
1011000
2000
我们做这个奥林匹克的实验将会非常有趣。
16:53
Presumably we'll ban them,
354
1013000
2000
可以预测,我们将会禁止这样做。
16:55
but then we'll have the specter of teenagers in their high schools gyms
355
1015000
2000
我们会发现我们的青少年在高中的体育馆中的表现,
16:57
routinely out-performing the Olympic athletes.
356
1017000
3000
会经常超过奥林匹克运动员。
17:02
Freitas has a design for a robotic white blood cell.
357
1022000
3000
Freitas 设计了一个白细胞机器人。
17:05
These are 2020-circa scenarios,
358
1025000
4000
有一个大概的2020年的方案,
17:09
but they're not as futuristic as it may sound.
359
1029000
2000
但是他们并没有那么遥不可及。
17:11
There are four major conferences on building blood cell-sized devices;
360
1031000
4000
有四个研讨会组织正在研究建造血细胞大小的设备,
17:15
there are many experiments in animals.
361
1035000
2000
有很多用在动物身上的实验。
17:17
There's actually one going into human trial,
362
1037000
2000
实际上有一个已经进入了人体实验的阶段,
17:19
so this is feasible technology.
363
1039000
3000
所以,这是可行的科技。
17:23
If we come back to our exponential growth of computing,
364
1043000
2000
如果我们回到我们计算的指数增长模型,
17:25
1,000 dollars of computing is now somewhere between an insect and a mouse brain.
365
1045000
3000
1000美元的计算现在相当于昆虫或者老鼠的大脑。
17:28
It will intersect human intelligence
366
1048000
3000
到2020年时
17:31
in terms of capacity in the 2020s,
367
1051000
3000
从存储量上来说,将会有人类的存量。
17:34
but that'll be the hardware side of the equation.
368
1054000
2000
但是这只是方程式的硬件的那一边。
17:36
Where will we get the software?
369
1056000
2000
我们从哪里得到我们的软件呢?
17:38
Well, it turns out we can see inside the human brain,
370
1058000
2000
嗯,我们将会看到我们大脑的内部,
17:40
and in fact not surprisingly,
371
1060000
2000
并且事实上并不惊讶,
17:42
the spatial and temporal resolution of brain scanning is doubling every year.
372
1062000
4000
大脑的扫描空间和时间分辨率是每年翻一番。
17:46
And with the new generation of scanning tools,
373
1066000
2000
并且会有新一代的扫描工具出现,
17:48
for the first time we can actually see
374
1068000
2000
实现我们第一次看到
17:50
individual inter-neural fibers
375
1070000
2000
单个的跨神经纤维
17:52
and see them processing and signaling in real time --
376
1072000
3000
并且实时地看到他们是如何处理并且发送信号
17:55
but then the question is, OK, we can get this data now,
377
1075000
2000
于是,之后就没问题了,我们现在可以得到数据了,
17:57
but can we understand it?
378
1077000
2000
但是我们能明白这些数据吗?
17:59
Doug Hofstadter wonders, well, maybe our intelligence
379
1079000
3000
Doug Hofstadter怀疑也许我们的理解力
18:02
just isn't great enough to understand our intelligence,
380
1082000
3000
不足以明白我们自己的智力,
18:05
and if we were smarter, well, then our brains would be that much more complicated,
381
1085000
3000
如果我们更加聪明一点,那么我们的大脑会便得更加复杂,
18:08
and we'd never catch up to it.
382
1088000
2000
我们永远都无法赶上。
18:11
It turns out that we can understand it.
383
1091000
3000
最终我们可以明白。
18:14
This is a block diagram of
384
1094000
3000
这个是一个框图,
18:17
a model and simulation of the human auditory cortex
385
1097000
4000
这个框图是一个人类听觉皮层的模型和仿真
18:21
that actually works quite well --
386
1101000
2000
这个模型的拟真程度很好--
18:23
in applying psychoacoustic tests, gets very similar results to human auditory perception.
387
1103000
2000
在音质测试的实验中,它得到了非常类似人类听觉的结果。
18:27
There's another simulation of the cerebellum --
388
1107000
3000
在另一项小脑的仿真中--
18:30
that's more than half the neurons in the brain --
389
1110000
2000
小脑包含了人脑中一半的神经--
18:32
again, works very similarly to human skill formation.
390
1112000
3000
同样,这个仿真的模拟效果非常好。
18:36
This is at an early stage, but you can show
391
1116000
3000
这是早期的阶段,但是你可以看出
18:39
with the exponential growth of the amount of information about the brain
392
1119000
3000
对于人脑数据的指数增长,
18:42
and the exponential improvement
393
1122000
2000
和人脑扫描解析度
18:44
in the resolution of brain scanning,
394
1124000
2000
的增长,
18:46
we will succeed in reverse-engineering the human brain
395
1126000
3000
到2020年,我们将会成功地
18:49
by the 2020s.
396
1129000
2000
实现人脑的反向工程研究。
18:51
We've already had very good models and simulation of about 15 regions
397
1131000
3000
我们已经有了几百个区域中
18:54
out of the several hundred.
398
1134000
3000
15个区域非常好的模型和仿真。
18:57
All of this is driving
399
1137000
2000
所有的这些都是指数增长-
18:59
exponentially growing economic progress.
400
1139000
2000
指数增长经济的进展。
19:01
We've had productivity go from 30 dollars to 150 dollars per hour
401
1141000
3000
在过去的50年中,我们的生产率
19:06
of labor in the last 50 years.
402
1146000
2000
从一小时30美元提高到一小时150美元
19:08
E-commerce has been growing exponentially. It's now a trillion dollars.
403
1148000
3000
电子商务已经在以指数增长。现在已经是万亿美元。
19:11
You might wonder, well, wasn't there a boom and a bust?
404
1151000
2000
你也许会怀疑,那么,那会不会有繁荣期也有萧条期呢?
19:13
That was strictly a capital-markets phenomena.
405
1153000
2000
这是一个严格的资本市场的现象。
19:15
Wall Street noticed that this was a revolutionary technology, which it was,
406
1155000
4000
华尔街注意到了这个革命性的科技,的确,
19:19
but then six months later, when it hadn't revolutionized all business models,
407
1159000
3000
但是6个月之后,如果它并没有革命性的商业模型,
19:22
they figured, well, that was wrong,
408
1162000
2000
他们认为,那不对,
19:24
and then we had this bust.
409
1164000
2000
于是,我们有了萧条。
19:27
All right, this is a technology
410
1167000
2000
好吧,这是科技
19:29
that we put together using some of the technologies we're involved in.
411
1169000
3000
这科技可以把我们所用的一切技术整合到一起。
19:32
This will be a routine feature in a cell phone.
412
1172000
4000
手机会有常规的功能。
19:36
It would be able to translate from one language to another.
413
1176000
2000
它将可以把一种语言翻译成另一种语言。
19:48
So let me just end with a couple of scenarios.
414
1188000
2000
那么,让我来以两个情景来结束。
19:50
By 2010 computers will disappear.
415
1190000
3000
到2010年,计算机将消失。
19:54
They'll be so small, they'll be embedded in our clothing, in our environment.
416
1194000
3000
他们将会变得非常小,会嵌入到衣服,和我们的环境中。
19:57
Images will be written directly to our retina,
417
1197000
2000
图像将会直接写到我们的视网膜上,
19:59
providing full-immersion virtual reality,
418
1199000
2000
展现出全沉浸的虚拟现实,
20:01
augmented real reality. We'll be interacting with virtual personalities.
419
1201000
3000
增强真实的显示。我们会直接和虚拟人物互动。
20:05
But if we go to 2029, we really have the full maturity of these trends,
420
1205000
4000
但是如果到2029年,这些趋势将会发展成熟,
20:09
and you have to appreciate how many turns of the screw
421
1209000
3000
你必须了解科技发展中
20:12
in terms of generations of technology, which are getting faster and faster, we'll have at that point.
422
1212000
4000
很多的转折,这些转折会越来越快,
20:16
I mean, we will have two-to-the-25th-power
423
1216000
2000
我是说我们会有2到二十五倍
20:18
greater price performance, capacity and bandwidth
424
1218000
3000
这些科技的性价比,存量和带宽,
20:21
of these technologies, which is pretty phenomenal.
425
1221000
2000
这些变化是巨大的。
20:23
It'll be millions of times more powerful than it is today.
426
1223000
2000
它将会比现在的科技强大数百万倍。
20:25
We'll have completed the reverse-engineering of the human brain,
427
1225000
2000
我们将完成人脑的反向工程计算,
20:28
1,000 dollars of computing will be far more powerful
428
1228000
3000
1000美元的计算以将会比人脑的基本裸存量
20:31
than the human brain in terms of basic raw capacity.
429
1231000
4000
还要强大很多。
20:35
Computers will combine
430
1235000
2000
计算机将会集合
20:37
the subtle pan-recognition powers
431
1237000
2000
非常微妙的人类智能的认知能力,
20:39
of human intelligence with ways in which machines are already superior,
432
1239000
3000
和非常强大的机器,
20:42
in terms of doing analytic thinking,
433
1242000
2000
可以完成分析思考,
20:44
remembering billions of facts accurately.
434
1244000
2000
准确地记住数十亿的事实。
20:46
Machines can share their knowledge very quickly.
435
1246000
2000
机器可以非常迅速地分享它们的知识,
20:48
But it's not just an alien invasion of intelligent machines.
436
1248000
5000
但是这不只是智能机器的入侵。
20:53
We are going to merge with our technology.
437
1253000
2000
我们将会融合我们的科技。
20:55
These nano-bots I mentioned
438
1255000
2000
这些我刚提到过的纳米机器人
20:57
will first be used for medical and health applications:
439
1257000
4000
将首次被用于药物和健康;
21:01
cleaning up the environment, providing powerful fuel cells
440
1261000
3000
清理我们的环境,提供燃料--非常强大的燃料电池
21:04
and widely distributed decentralized solar panels and so on in the environment.
441
1264000
5000
广泛分布的分布式太阳能板,和其他很多在环境中的应用。
21:09
But they'll also go inside our brain,
442
1269000
2000
但是它们将会走进我们的大脑,
21:11
interact with our biological neurons.
443
1271000
2000
和我们的生物神经交互。
21:13
We've demonstrated the key principles of being able to do this.
444
1273000
3000
我们将会展示这些成功的原理。
21:16
So, for example,
445
1276000
2000
例如,
21:18
full-immersion virtual reality from within the nervous system,
446
1278000
2000
在神经系统内部的全沉浸虚拟现实,
21:20
the nano-bots shut down the signals coming from your real senses,
447
1280000
3000
纳米机器人会关掉你真实感受的信号,
21:23
replace them with the signals that your brain would be receiving
448
1283000
3000
替代它们并传递给大脑
21:26
if you were in the virtual environment,
449
1286000
2000
如果你是在一个虚拟的环境,
21:28
and then it'll feel like you're in that virtual environment.
450
1288000
2000
你将会感觉到你正在这个虚拟的环境中。
21:30
You can go there with other people, have any kind of experience
451
1290000
2000
你可以和其他人一起进入,
21:32
with anyone involving all of the senses.
452
1292000
2000
和其他人一起去感受这些感觉。
21:35
"Experience beamers," I call them, will put their whole flow of sensory experiences
453
1295000
3000
我把他们叫做" Experience Beamers", 将会把在神经系统中的
21:38
in the neurological correlates of their emotions out on the Internet.
454
1298000
3000
感觉流引起的情感放入互联网上。
21:41
You can plug in and experience what it's like to be someone else.
455
1301000
3000
你可以进入然后体验别人的感觉。
21:44
But most importantly,
456
1304000
2000
但是最重要的,
21:46
it'll be a tremendous expansion
457
1306000
2000
它将会是人类智能的惊人扩散
21:48
of human intelligence through this direct merger with our technology,
458
1308000
4000
通过和我们科技的直接融合,
21:52
which in some sense we're doing already.
459
1312000
2000
从某些方面来说,我们已经在这样做。
21:54
We routinely do intellectual feats
460
1314000
2000
我们经常的智能表现
21:56
that would be impossible without our technology.
461
1316000
2000
是离开了我们的科技无法实现的。
21:58
Human life expectancy is expanding. It was 37 in 1800,
462
1318000
3000
在1800年,人类的预期寿命是37岁,
22:01
and with this sort of biotechnology, nano-technology revolutions,
463
1321000
5000
但是随着生物技术,纳米科技的革命,
22:06
this will move up very rapidly
464
1326000
2000
在未来几年,
22:08
in the years ahead.
465
1328000
2000
预期寿命会增长的非常迅速。
22:10
My main message is that progress in technology
466
1330000
4000
我主要传递的想法,是科技进步的速度
22:14
is exponential, not linear.
467
1334000
3000
是指数增长的,而非线性增长。
22:17
Many -- even scientists -- assume a linear model,
468
1337000
4000
很多人,甚至是科学家,都在线性模型的基础上假设,
22:21
so they'll say, "Oh, it'll be hundreds of years
469
1341000
2000
所以他们会说,这将会用几百年,
22:23
before we have self-replicating nano-technology assembly
470
1343000
3000
我们才能实现自复制纳米技术组装
22:26
or artificial intelligence."
471
1346000
2000
或人工智能。
22:28
If you really look at the power of exponential growth,
472
1348000
3000
如果你真地看到指数增长的力量,
22:31
you'll see that these things are pretty soon at hand.
473
1351000
3000
你将会看到这些事情会更快变成现实。
22:34
And information technology is increasingly encompassing
474
1354000
3000
信息技术正在加速指引着
22:37
all of our lives, from our music to our manufacturing
475
1357000
4000
我们的生活,从我们的音乐到生产制造,
22:41
to our biology to our energy to materials.
476
1361000
4000
到我们的生物体,到能源,到材料。
22:45
We'll be able to manufacture almost anything we need in the 2020s,
477
1365000
3000
到21世纪20年代,我们将有能力生产我们所需的任何东西,
22:48
from information, in very inexpensive raw materials,
478
1368000
2000
从信息,非常便宜的原材料,
22:50
using nano-technology.
479
1370000
3000
运用纳米技术。
22:53
These are very powerful technologies.
480
1373000
2000
它们是非常强大的科技。
22:55
They both empower our promise and our peril.
481
1375000
4000
它们将会成就我们的前景和隐患。
22:59
So we have to have the will to apply them to the right problems.
482
1379000
3000
所以,我们必须将他们运用在正确的地方。
23:02
Thank you very much.
483
1382000
1000
非常感谢。
23:03
(Applause)
484
1383000
1000
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog