The accelerating power of technology | Ray Kurzweil

309,710 views ใƒป 2007-01-12

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Sigal Tifferet
00:25
Well, it's great to be here.
0
25000
1000
ื•ื‘ื›ืŸ, ื ืคืœื ืœื”ื™ื•ืช ื›ืืŸ.
00:26
We've heard a lot about the promise of technology, and the peril.
1
26000
5000
ืฉืžืขื ื• ืจื‘ื•ืช ืขืœ ื”ื”ื‘ื˜ื—ื•ืช ืฉื‘ื˜ื›ื ื•ืœื•ื’ื™ื”, ื›ืžื• ื’ื ืขืœ ื”ืกื›ื ื•ืช ืฉื‘ื”
00:31
I've been quite interested in both.
2
31000
2000
ื“ื™ ื”ืชืขื ื™ื™ื ืชื™ ื‘ืฉืชื™ ื”ืกื•ื’ื™ื•ืช.
00:33
If we could convert 0.03 percent
3
33000
4000
ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืžื™ืจ 0.03 ืื—ื•ื–
00:37
of the sunlight that falls on the earth into energy,
4
37000
2000
ืžืื•ืจ ื”ืฉืžืฉ ื”ื ื•ืคืœ ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ ืœืื ืจื’ื™ื”
00:39
we could meet all of our projected needs for 2030.
5
39000
5000
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœืกืคืง ืืช ื›ืœ ืฆืจื›ื™ ื”ืื ืจื’ื™ื” ื”ืฆืคื•ื™ื™ื ืขื“ ืฉื ืช 2030.
00:44
We can't do that today because solar panels are heavy,
6
44000
3000
ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช ื›ื™ื•ื ื›ื™ ืคืื ืœื™ื ืกื•ืœืจื™ื ื›ื‘ื“ื™ื,
00:47
expensive and very inefficient.
7
47000
2000
ื™ืงืจื™ื ื•ืžืื•ื“ ืœื ื™ืขื™ืœื™ื.
00:49
There are nano-engineered designs,
8
49000
3000
ื™ืฉื ื ืขื™ืฆื•ื‘ื™ ื”ื ื“ืกืช-ื ื ื•,
00:52
which at least have been analyzed theoretically,
9
52000
2000
ืฉืขื‘ืจื• ืœืคื—ื•ืช ื ื™ืชื•ื— ืชื™ืื•ืจื˜ื™
00:54
that show the potential to be very lightweight,
10
54000
2000
ื•ืžืจืื™ื ืคื•ื˜ื ืฆื™ืืœ ืœื”ื™ื•ืช ืžืื•ื“ ืงืœื™ื,
00:56
very inexpensive, very efficient,
11
56000
2000
ืžืื•ื“ ื–ื•ืœื™ื ื•ืžืื•ื“ ื™ืขื™ืœื™ื,
00:58
and we'd be able to actually provide all of our energy needs in this renewable way.
12
58000
4000
ื•ื ื•ื›ืœ ื‘ืืžืช ืœืกืคืง ืืช ื›ืœ ืฆืจื›ื™ ื”ืื ืจื’ื™ื” ืฉืœื ื• ื‘ืฆื•ืจื” ืžืชื—ื“ืฉืช.
01:02
Nano-engineered fuel cells
13
62000
2000
ืชืื™ ื“ืœืง ื‘ื”ื ื“ืกืช ื ื ื•
01:04
could provide the energy where it's needed.
14
64000
3000
ื™ื•ื›ืœื• ืœืกืคืง ืืช ื”ืื ืจื’ื™ื” ื‘ืžืงื•ื ื‘ื• ื”ื™ื ื“ืจื•ืฉื”.
01:07
That's a key trend, which is decentralization,
15
67000
2000
ื–ื•ื”ื™ ืžื’ืžืช ืžืคืชื—, ื‘ื™ื–ื•ืจ,
01:09
moving from centralized nuclear power plants and
16
69000
3000
ืžืขื‘ืจ ืžืจื™ื›ื•ื–ื™ื•ืช ื‘ืชื—ื ื•ืช ื›ื— ื’ืจืขื™ื ื™ื•ืช
01:12
liquid natural gas tankers
17
72000
2000
ื•ืžื™ื›ืœื™ื•ืช ื’ื– ื˜ื‘ืขื™ ื ื•ื–ืœื™
01:14
to decentralized resources that are environmentally more friendly,
18
74000
4000
ืœืžืฉืื‘ื™ื ืžื‘ื•ื–ืจื™ื ื™ื“ื™ื“ื•ืชื™ื™ื ื™ื•ืชืจ ืœืกื‘ื™ื‘ื”,
01:18
a lot more efficient
19
78000
3000
ื™ืขื™ืœื™ื ื‘ื”ืจื‘ื”
01:21
and capable and safe from disruption.
20
81000
4000
ื›ืฉื™ืจื™ื ื•ื‘ื˜ื•ื—ื™ื ืžื”ืคืจืขื•ืช.
01:25
Bono spoke very eloquently,
21
85000
2000
ื‘ื•ื ื• ื“ื™ื‘ืจ ื‘ืจื”ื™ื˜ื•ืช ืจื‘ื”,
01:27
that we have the tools, for the first time,
22
87000
4000
ืขืœ ื›ืš ืฉื™ืฉ ืœื ื•, ื‘ืคืขื ื”ืจืืฉื•ื ื”, ืืช ื”ื›ืœื™ื
01:31
to address age-old problems of disease and poverty.
23
91000
4000
ืœื˜ื™ืคื•ืœ ื‘ื‘ืขื™ื•ืช ืขืชื™ืงื•ืช ื”ื™ื•ืžื™ืŸ ืฉืœ ืžื—ืœื•ืช ื•ืขื•ื ื™.
01:35
Most regions of the world are moving in that direction.
24
95000
4000
ืจื•ื‘ ืื™ื–ื•ืจื™ ื”ืขื•ืœื ื ืขื™ื ื‘ื›ื™ื•ื•ืŸ ื–ื”.
01:39
In 1990, in East Asia and the Pacific region,
25
99000
4000
ื‘-1990, ื‘ืžื–ืจื— ืืกื™ื” ื•ืื™ื–ื•ืจ ื”ืื•ืงื™ื™ื ื•ืก ื”ืฉืงื˜,
01:43
there were 500 million people living in poverty --
26
103000
2000
ื”ื™ื• 500 ืžืœื™ื•ืŸ ื‘ื ื™ ืื“ื ืฉื—ื™ื• ื‘ืขื•ื ื™ -
01:45
that number now is under 200 million.
27
105000
3000
ื”ืžืกืคืจ ื”ื–ื” ื”ื™ื•ื ื”ื•ื ืคื—ื•ืช ืž-200 ืžืœื™ื•ืŸ.
01:48
The World Bank projects by 2011, it will be under 20 million,
28
108000
3000
ื”ื‘ื ืง ื”ืขื•ืœืžื™ ืžืขืจื™ืš ืฉืขื“ 2011 ื”ื•ื ื™ื”ื™ื” ืžืชื—ืช ืœ-20 ืžืœื™ื•ืŸ,
01:51
which is a reduction of 95 percent.
29
111000
3000
ื”ืคื—ืชื” ืฉืœ 95 ืื—ื•ื–.
01:54
I did enjoy Bono's comment
30
114000
3000
ื ื”ื ื™ืชื™ ืžื”ื”ืขืจื” ืฉืœ ื‘ื•ื ื•
01:57
linking Haight-Ashbury to Silicon Valley.
31
117000
4000
ืขืœ ื”ืงื™ืฉื•ืจ ื‘ื™ืŸ ื”ื™ื™ื˜-ืืฉื‘ื•ืจื™ ืœืขืžืง ื”ืกื™ืœื™ืงื•ืŸ.
02:01
Being from the Massachusetts high-tech community myself,
32
121000
3000
ื‘ืขื•ื“ ืฉืื ื™ ืืžื ื ืžืงื”ื™ืœืช ื”ื”ื™ื™-ื˜ืง ืฉืœ ืžืกืฆ'ื•ืกื˜ืก
02:04
I'd point out that we were hippies also in the 1960s,
33
124000
4000
ื”ื™ื™ืชื™ ืžืฆื™ื™ืŸ ืฉื’ื ืื ื—ื ื• ื”ื™ื™ื ื• ื”ื™ืคื™ื ื‘ืฉื ื•ืช ื”ืฉื™ืฉื™ื,
02:09
although we hung around Harvard Square.
34
129000
3000
ืœืžืจื•ืช ืฉื”ืกืชื•ื‘ื‘ื ื• ืกื‘ื™ื‘ ื›ื™ื›ืจ ื”ืจื•ื•ืืจื“.
02:12
But we do have the potential to overcome disease and poverty,
35
132000
5000
ืื‘ืœ ืื›ืŸ ื™ืฉ ืœื ื• ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ืœื”ืชื’ื‘ืจ ืขืœ ืžื—ืœื•ืช ื•ืขื•ื ื™,
02:17
and I'm going to talk about those issues, if we have the will.
36
137000
3000
ื•ืื ื™ ื”ื•ืœืš ืœื“ื‘ืจ ืขืœ ื”ื ื•ืฉืื™ื ื”ืœืœื•, ืื ื™ืฉ ืœื ื• ืืช ื”ืจืฆื•ืŸ.
02:20
Kevin Kelly talked about the acceleration of technology.
37
140000
3000
ืงื•ื•ื™ืŸ ืงืœื™ ื“ื™ื‘ืจ ืขืœ ื”ื”ืืฆื” ื”ื˜ื›ื ื•ืœื•ื’ื™ืช.
02:23
That's been a strong interest of mine,
38
143000
3000
ื–ื”ื• ืชื—ื•ื ืขื ื™ื™ืŸ ืจืฆื™ื ื™ ืฉืœื™,
02:26
and a theme that I've developed for some 30 years.
39
146000
3000
ื•ื ื•ืฉื ืฉืคื™ืชื—ืชื™ ื‘ืขืจืš 30 ืฉื ื”.
02:29
I realized that my technologies had to make sense when I finished a project.
40
149000
5000
ื”ื’ืขืชื™ ืœืžืกืงื ื” ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉืœื™ ื”ื™ื• ืฆืจื™ื›ื•ืช ืœื”ืชืงื‘ืœ ืขืœ ื”ื“ืขืช ื‘ื–ืžืŸ ืกื™ื•ื ื”ืคืจื•ื™ืงื˜.
02:34
That invariably, the world was a different place
41
154000
3000
ืฉื‘ืื•ืคืŸ ืขืงื‘ื™, ื”ืขื•ืœื ื”ื™ื” ืžืงื•ื ืฉื•ื ื”
02:37
when I would introduce a technology.
42
157000
2000
ื›ืฉื”ื™ื™ืชื™ ืžืฆื™ื’ ื˜ื›ื ื•ืœื•ื’ื™ื”.
02:39
And, I noticed that most inventions fail,
43
159000
2000
ื•ืฉืžืชื™ ืœื‘ ืฉืจื•ื‘ ื”ื”ืžืฆืื•ืช ื ื›ืฉืœื•ืช
02:41
not because the R&D department can't get it to work --
44
161000
3000
ืœื ื‘ื’ืœืœ ืฉืžื—ืœืงืช ื”ืžื—ืงืจ ื•ื”ืคื™ืชื•ื— ืœื ืžืฆืœื™ื—ื” ืœื’ืจื•ื ืœื–ื” ืœืขื‘ื•ื“ -
02:44
if you look at most business plans, they will actually succeed
45
164000
3000
ืื ืžืกืชื›ืœื™ื ืขืœ ืจื•ื‘ ื”ืชื›ื ื™ื•ืช ื”ืขืกืงื™ื•ืช, ื”ืŸ ืœืžืขืฉื” ื™ืฆืœื™ื—ื•
02:47
if given the opportunity to build what they say they're going to build --
46
167000
4000
ืื ืชื™ื ืชืŸ ืœื”ืŸ ื”ื”ื–ื“ืžื ื•ืช ืœื‘ื ื•ืช ืืช ืžื” ืฉื”ืŸ ืืžืจื• ืฉื”ืŸ ื”ื•ืœื›ื•ืช ืœื‘ื ื•ืช,
02:51
and 90 percent of those projects or more will fail, because the timing is wrong --
47
171000
3000
ื•ืชืฉืขื™ื ืื—ื•ื– ืžื”ืคืจื•ื™ื™ืงื˜ื™ื ื”ืืœื• ื™ื›ืฉืœื•, ื‘ื’ืœืœ ืฉื”ืชื–ืžื•ืŸ ืฉื’ื•ื™ -
02:54
not all the enabling factors will be in place when they're needed.
48
174000
3000
ืœื ื›ืœ ื”ื’ื•ืจืžื™ื ื”ืžืืคืฉืจื™ื ื™ื”ื™ื• ื‘ืžืงื•ืžื ื›ืฉื™ื”ื™ื• ืฆืจื™ื›ื™ื ืื•ืชื.
02:57
So I began to be an ardent student of technology trends,
49
177000
4000
ืื– ื”ืชื—ืœืชื™ ืœื”ื™ื•ืช ืชืœืžื™ื“ ื ืœื”ื‘ ืฉืœ ืžื’ืžื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช,
03:01
and track where technology would be at different points in time,
50
181000
3000
ื•ืœืขืงื•ื‘ ืื—ืจื™ ืžื™ืงื•ืžื ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื‘ื ืงื•ื“ื•ืช ืฉื•ื ื•ืช ื‘ื–ืžืŸ,
03:04
and began to build the mathematical models of that.
51
184000
3000
ื•ื”ืชื—ืœืชื™ ืœื‘ื ื•ืช ืœื–ื” ืžื•ื“ืœื™ื ืžืชืžื˜ื™ื™ื.
03:07
It's kind of taken on a life of its own.
52
187000
2000
ื–ื” ื“ื™ ืงื™ื‘ืœ ื—ื™ื™ื ืžืฉืœื•,
03:09
I've got a group of 10 people that work with me to gather data
53
189000
3000
ื™ืฉ ืœื™ ืงื‘ื•ืฆื” ืฉืœ 10 ืื ืฉื™ื ืฉืขื•ื‘ื“ื™ื ืื™ืชื™ ืขืœ ืื™ืกื•ืฃ ื ืชื•ื ื™ื
03:12
on key measures of technology in many different areas, and we build models.
54
192000
5000
ืฉืœ ืžื™ื“ื•ืช ืžืคืชื— ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ื”ืจื‘ื” ืชื—ื•ืžื™ื ืฉื•ื ื™ื, ื•ืื ื—ื ื• ื‘ื•ื ื™ื ืžื•ื“ืœื™ื.
03:17
And you'll hear people say, well, we can't predict the future.
55
197000
3000
ื•ืชืฉืžืขื• ืื ืฉื™ื ืื•ืžืจื™ื ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืืช ื”ืขืชื™ื“.
03:20
And if you ask me,
56
200000
2000
ื•ืื ืชืฉืืœื• ืื•ืชื™,
03:22
will the price of Google be higher or lower than it is today three years from now,
57
202000
3000
ื”ืื ื”ืžื—ื™ืจ ืฉืœ ื’ื•ื’ืœ ื™ื”ื™ื” ื’ื‘ื•ื” ืื• ื ืžื•ืš ื™ื•ืชืจ ื‘ืขื•ื“ ืฉืœื•ืฉ ืฉื ื™ื,
03:25
that's very hard to say.
58
205000
2000
ื™ื”ื™ื” ืžืื•ื“ ืงืฉื” ืœื•ืžืจ.
03:27
Will WiMax CDMA G3
59
207000
3000
ื”ืื WiMax, CDMA, G3
03:30
be the wireless standard three years from now? That's hard to say.
60
210000
2000
ื™ื”ื™ื• ื”ืกื˜ื ื“ืจื˜ื™ื ื”ืืœื—ื•ื˜ื™ื™ื ื‘ืขื•ื“ ืฉืœื•ืฉ ืฉื ื™ื? ืžืื•ื“ ืงืฉื” ืœื•ืžืจ.
03:32
But if you ask me, what will it cost
61
212000
2000
ืื‘ืœ ืื ืชืฉืืœื• ืื•ืชื™, ื›ืžื” ื™ืขืœื”
03:34
for one MIPS of computing in 2010,
62
214000
3000
MIPS (ืžืœื™ื•ืŸ ื—ื™ืฉื•ื‘ื™ื ื‘ืฉื ื™ื”) ืื—ื“ ื‘ืฉื ืช 2010,
03:37
or the cost to sequence a base pair of DNA in 2012,
63
217000
3000
ืื• ืขืœื•ืช ืจื™ืฆื•ืฃ ื–ื•ื’ ื‘ืกื™ืกื™ื ืฉืœ DNA ื‘-2012,
03:40
or the cost of sending a megabyte of data wirelessly in 2014,
64
220000
4000
ืื• ืขืœื•ืช ืฉืœื™ื—ื” ืืœื—ื•ื˜ื™ืช ืฉืœ ืžื’ื”-ื‘ื™ื™ื˜ ื‘-2014,
03:44
it turns out that those are very predictable.
65
224000
3000
ืžืกืชื‘ืจ ืฉืืœื• ืžืื•ื“ ืฆืคื•ื™ื™ื.
03:47
There are remarkably smooth exponential curves
66
227000
2000
ื™ืฉื ืŸ ืขืงื•ืžื•ืช ืืงืกืคื•ื ื ืฆื™ืืœื™ื•ืช ื—ืœืงื•ืช ื‘ืื•ืคืŸ ื™ื•ืฆื ื“ื•ืคืŸ
03:49
that govern price performance, capacity, bandwidth.
67
229000
3000
ืฉืžื•ืฉืœื•ืช ื‘ืžื—ื™ืจื™ ื‘ื™ืฆื•ืขื™ื, ืชื›ื•ืœื” ื•ืจื•ื—ื‘ ืคืก.
03:52
And I'm going to show you a small sample of this,
68
232000
2000
ื•ืื ื™ ื”ื•ืœืš ืœื”ืจืื•ืช ืœื›ื ื“ื•ื’ืžื ืงื˜ื ื” ืฉืœ ื–ื”,
03:54
but there's really a theoretical reason
69
234000
2000
ืื‘ืœ ื™ืฉื ื” ืกื™ื‘ื” ืชืื•ืจื˜ื™ืช
03:56
why technology develops in an exponential fashion.
70
236000
5000
ืžื“ื•ืข ื˜ื›ื ื•ืœื•ื’ื™ื” ืžืชืคืชื—ืช ื‘ืื•ืคืŸ ืืงืกืคื•ื ื ืฆื™ืืœื™.
04:01
And a lot of people, when they think about the future, think about it linearly.
71
241000
2000
ื•ื”ืจื‘ื” ืื ืฉื™ื, ื›ืฉื”ื ื—ื•ืฉื‘ื™ื ืขืœ ื”ืขืชื™ื“, ื—ื•ืฉื‘ื™ื ื‘ืฆื•ืจื” ืœื™ื ืืจื™ืช.
04:03
They think they're going to continue
72
243000
2000
ื”ื ื—ื•ืฉื‘ื™ื ืฉื”ื ื™ืžืฉื™ื›ื•
04:05
to develop a problem
73
245000
2000
ืœืคืชื— ื‘ืขื™ื”
04:07
or address a problem using today's tools,
74
247000
3000
ืื• ืœื˜ืคืœ ื‘ื‘ืขื™ื” ืชื•ืš ืฉื™ืžื•ืฉ ื‘ื›ืœื™ื ืฉืœ ื”ื™ื•ื,
04:10
at today's pace of progress,
75
250000
2000
ื‘ืงืฆื‘ ื”ื”ืชืงื“ืžื•ืช ืฉืœ ื”ื™ื•ื,
04:12
and fail to take into consideration this exponential growth.
76
252000
4000
ื•ื”ื ืœื ืžื‘ื™ืื™ื ื‘ื—ืฉื‘ื•ืŸ ืืช ื”ื’ื™ื“ื•ืœ ื”ืืงืกืคื•ื ื ืฆื™ืืœื™ ื”ื–ื”.
04:16
The Genome Project was a controversial project in 1990.
77
256000
3000
ืคืจื•ื™ืงื˜ ื”ื’ื ื•ื ื”ื™ื” ืฉื ื•ื™ ื‘ืžื—ืœื•ืงืช ื‘-1990.
04:19
We had our best Ph.D. students,
78
259000
2000
ื”ื™ื• ื‘ื• ืžื™ื˜ื‘ ื”ื“ื•ืงื˜ื•ืจื ื˜ื™ื,
04:21
our most advanced equipment around the world,
79
261000
2000
ื•ื”ืฆื™ื•ื“ ื”ื›ื™ ืžืชืงื“ื, ื‘ื›ืœ ื”ืขื•ืœื,
04:23
we got 1/10,000th of the project done,
80
263000
2000
ื•ืกื™ื™ืžื ื• 1/10,000 ืฉืœ ื”ืคืจื•ื™ืงื˜,
04:25
so how're we going to get this done in 15 years?
81
265000
2000
ืื– ืื™ืš ื”ื™ื™ื ื• ืืžื•ืจื™ื ืœืกื™ื™ื ืืช ื›ื•ืœื• ืชื•ืš 15 ืฉื ื”?
04:27
And 10 years into the project,
82
267000
3000
ื•ืขืฉืจ ืฉื ื™ื ืœืชื•ืš ื”ืคืจื•ื™ืงื˜,
04:31
the skeptics were still going strong -- says, "You're two-thirds through this project,
83
271000
2000
ื”ืžืคืงืคืงื™ื ื”ื™ื• ืžืื•ื“ ื ื—ื•ืฉื™ื, ื‘ืื•ืžืจื "ืืชื ื›ื‘ืจ ืื—ืจื™ ืฉื ื™-ืฉืœื™ืฉ ืžื”ืคืจื•ื™ืงื˜,
04:33
and you've managed to only sequence
84
273000
2000
ื•ื›ืœ ืžื” ืฉื”ืฆืœื—ืชื ื–ื” ืœืจืฆืฃ ืจืง
04:35
a very tiny percentage of the whole genome."
85
275000
3000
ืื—ื•ื– ืžืื•ื“ ืงื˜ืŸ ืฉืœ ื”ื’ื ื•ื ื›ื•ืœื•."
04:38
But it's the nature of exponential growth
86
278000
2000
ืื‘ืœ ื–ื”ื• ื”ื˜ื‘ืข ืฉืœ ื’ื™ื“ื•ืœ ืืงืกืคื•ื ื ืฆื™ืืœื™
04:40
that once it reaches the knee of the curve, it explodes.
87
280000
2000
ืฉื‘ืจื’ืข ืฉื”ื•ื ืžื’ื™ืข ืœ"ื‘ืจืš" ืฉืœ ื”ืขืงื•ืžื”, ื”ื•ื ืžืชืคื•ืฆืฅ.
04:42
Most of the project was done in the last
88
282000
2000
ืจื•ื‘ ื”ืคืจื•ื™ืงื˜ ื‘ื•ืฆืข
04:44
few years of the project.
89
284000
2000
ื‘ืฉื ืชื™ื™ื ื”ืื—ืจื•ื ื•ืช ืฉืœื•.
04:46
It took us 15 years to sequence HIV --
90
286000
2000
ืœืงื— ืœื ื• 15 ืฉื ื” ืœืจืฆืฃ ืืช ื•ื™ืจื•ืก ื”-HIV -
04:48
we sequenced SARS in 31 days.
91
288000
2000
ืจื™ืฆืคื ื• ืืช ื”-SARS ื‘-31 ื™ื•ื.
04:50
So we are gaining the potential to overcome these problems.
92
290000
4000
ื›ืœื•ืžืจ, ื”ื™ื›ื•ืœื•ืช ืฉืœื ื• ืœื”ืชื’ื‘ืจ ืขืœ ื‘ืขื™ื•ืช ืžืกื•ื’ ื–ื” ื’ื“ืœื•ืช.
04:54
I'm going to show you just a few examples
93
294000
2000
ืื ื™ ื”ื•ืœืš ืœื”ืจืื•ืช ืœื›ื ืจืง ื›ืžื” ื“ื•ื’ืžืื•ืช
04:56
of how pervasive this phenomena is.
94
296000
3000
ืฉืžืจืื•ืช ื›ืžื” ื ืจื—ื‘ืช ื”ืชื•ืคืขื” ื”ื–ื•.
04:59
The actual paradigm-shift rate, the rate of adopting new ideas,
95
299000
4000
ืงืฆื‘ ื”ืฉื™ื ื•ื™ ื”ืชืคื™ืกืชื™ ื”ืžืžืฉื™, ื”ืงืฆื‘ ืฉืœ ืื™ืžื•ืฅ ืจืขื™ื•ื ื•ืช ื—ื“ืฉื™ื,
05:03
is doubling every decade, according to our models.
96
303000
3000
ืžื›ืคื™ืœ ืืช ืขืฆืžื• ื›ืœ ืขืฉื•ืจ, ืœืคื™ ื”ืžื•ื“ืœื™ื ืฉืœื ื•.
05:06
These are all logarithmic graphs,
97
306000
3000
ื›ืœ ื”ื’ืจืคื™ื ื”ืœืœื• ืœื•ื’ืจื™ืชืžื™ื™ื,
05:09
so as you go up the levels it represents, generally multiplying by factor of 10 or 100.
98
309000
3000
ื›ืš ืฉื›ืฉืขื•ืœื™ื ื‘ื“ืจื’ื•ืช ื”ืชืฆื•ื’ื” ืžื•ื›ืคืœืช ื‘ืคืงื˜ื•ืจ ืฉืœ 10 ืื• 100.
05:12
It took us half a century to adopt the telephone,
99
312000
3000
ืœืงื— ืœื ื• ื—ืฆื™ ืžืื” ืœืืžืฅ ืืช ืจืขื™ื•ืŸ ื”ื˜ืœืคื•ืŸ,
05:15
the first virtual-reality technology.
100
315000
3000
ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื”ืžืฆื™ืื•ืช ื”ืžื“ื•ืžื” ื”ืจืืฉื•ื ื”.
05:18
Cell phones were adopted in about eight years.
101
318000
2000
ื˜ืœืคื•ื ื™ื ืกืœื•ืœืจื™ื™ื ืื•ืžืฆื• ื‘ืฉืžื•ื ื” ืฉื ื™ื ื‘ืขืจืš.
05:20
If you put different communication technologies
102
320000
3000
ืื ืฉืžื™ื ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืชืงืฉื•ืจืช ืฉื•ื ื•ืช
05:23
on this logarithmic graph,
103
323000
2000
ืขืœ ืชืจืฉื™ื ืœื•ื’ืจื™ืชืžื™,
05:25
television, radio, telephone
104
325000
2000
ื˜ืœื•ื™ื–ื™ื”, ืจื“ื™ื•, ื˜ืœืคื•ืŸ
05:27
were adopted in decades.
105
327000
2000
ืื•ืžืฆื• ืขืœ ื’ื‘ื™ ืขืฉื•ืจื™ื.
05:29
Recent technologies -- like the PC, the web, cell phones --
106
329000
3000
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื“ืฉื•ืช - ื›ื’ื•ืŸ ื”ืžื—ืฉื‘ ื”ืื™ืฉื™, ื”ื•ื•ื‘, ื˜ืœืคื•ื ื™ื ืกืœื•ืœืจื™ื™ื -
05:32
were under a decade.
107
332000
2000
ืœืงื—ื• ืคื—ื•ืช ืžืขืฉื•ืจ.
05:34
Now this is an interesting chart,
108
334000
2000
ืขื›ืฉื™ื•, ื”ื ื” ืฉืจื˜ื•ื˜ ืžืขื ื™ื™ืŸ,
05:36
and this really gets at the fundamental reason why
109
336000
2000
ื•ื›ืืŸ ืžืžืฉ ื ื•ื’ืขื™ื ื‘ืกื™ื‘ื” ื”ื‘ืกื™ืกื™ืช ืœื›ืš
05:38
an evolutionary process -- and both biology and technology are evolutionary processes --
110
338000
4000
ืฉืชื”ืœื™ื›ื™ื ืื‘ื•ืœื•ืฆื™ื•ื ื™ื™ื - ื•ืชื”ืœื™ื›ื™ื ื˜ื›ื ื•ืœื•ื’ื™ื™ื, ื›ืžื• ื‘ื™ื•ืœื•ื’ื™ื™ื ื”ื ืื‘ื•ืœื•ืฆื™ื•ื ื™ื™ื -
05:42
accelerate.
111
342000
2000
ืžืื™ืฆื™ื.
05:44
They work through interaction -- they create a capability,
112
344000
3000
ื”ื ืžืชืคืงื“ื™ื ื›ืชื”ืœื™ื›ื™ ื’ื•ืžืœื™ืŸ - ื”ื ื™ื•ืฆืจื™ื ืงื™ื‘ื•ืœืช,
05:47
and then it uses that capability to bring on the next stage.
113
347000
3000
ื•ืื– ืžื ืฆืœื™ื ืืช ื”ืงื™ื‘ื•ืœืช ืฉื™ืฆืจื• ื›ื“ื™ ืœื”ื‘ื™ื ืืช ื”ืฉืœื‘ ื”ื‘ื.
05:50
So the first step in biological evolution,
114
350000
3000
ืื–, ื”ืฉืœื‘ ื”ืจืืฉื•ืŸ ื‘ืื‘ื•ืœื•ืฆื™ื” ื”ื‘ื™ื•ืœื•ื’ื™ืช,
05:53
the evolution of DNA -- actually it was RNA came first --
115
353000
2000
ื”ืชืคืชื—ื•ืช ื”-DNA - ื‘ืขืฆื ื–ื” ื”ื™ื” ื”-RNA ืฉื”ื•ืคื™ืข ืงื•ื“ื -
05:55
took billions of years,
116
355000
2000
ืœืงื— ืžื™ืœื™ืืจื“ื™ ืฉื ื™ื,
05:57
but then evolution used that information-processing backbone
117
357000
3000
ืื‘ืœ ืื– ื”ืื‘ื•ืœื•ืฆื™ื” ื ื™ืฆืœื” ืืช ืฉื™ืœื“ืช ืขื™ื‘ื•ื“ ื”ื ืชื•ื ื™ื ื”ื–ื•
06:00
to bring on the next stage.
118
360000
2000
ื›ื“ื™ ืœื”ื‘ื™ื ืืช ื”ืฉืœื‘ ื”ื‘ื.
06:02
So the Cambrian Explosion, when all the body plans of the animals were evolved,
119
362000
3000
ืื– ื”ืžืคืฅ ื”ืงืžื‘ืจื™ื•ื ื™, ื‘ื• ื”ืชืคืชื—ื• ื›ืœ ืชื‘ื ื™ื•ืช ื”ื’ื•ืฃ ืฉืœ ื”ื—ื™ื•ืช,
06:05
took only 10 million years. It was 200 times faster.
120
365000
4000
ืœืงื— ืจืง 10 ืžืœื™ื•ืŸ ืฉื ื™ื. ื”ื•ื ื”ื™ื” ืžื”ื™ืจ ืคื™ 200.
06:09
And then evolution used those body plans
121
369000
2000
ื•ืื– ื”ืื‘ื•ืœื•ืฆื™ื” ื”ืฉืชืžืฉื” ื‘ืชื‘ื ื™ื•ืช ื”ื’ื•ืฃ ื”ืืœื•
06:11
to evolve higher cognitive functions,
122
371000
2000
ื›ื“ื™ ืœืคืชื— ืชืคืงื•ื“ื™ื ืงื•ื’ื ื™ื˜ื™ื‘ื™ื™ื ื’ื‘ื•ื”ื™ื,
06:13
and biological evolution kept accelerating.
123
373000
2000
ื•ื”ืื‘ื•ืœื•ืฆื™ื” ื”ื‘ื™ื•ืœื•ื’ื™ืช ื”ืžืฉื™ื›ื” ืœื”ืื™ืฅ.
06:15
It's an inherent nature of an evolutionary process.
124
375000
3000
ื–ื•ื”ื™ ืชื›ื•ื ื” ื˜ื‘ืขื™ืช ืฉืœ ืชื”ืœื™ื›ื™ื ืื‘ื•ืœื•ืฆื™ื•ื ื™ื™ื.
06:18
So Homo sapiens, the first technology-creating species,
125
378000
3000
ืื– ื”ื•ืžื• ืกืคื™ื™ืื ืก, ื”ืžื™ืŸ ื”ืจืืฉื•ืŸ ืฉื™ืฆืจ ื˜ื›ื ื•ืœื•ื’ื™ื”,
06:21
the species that combined a cognitive function
126
381000
2000
ื”ืžื™ืŸ ืฉืฉื™ืœื‘ ืชืคืงื•ื“ ืงื•ื’ื ื™ื˜ื™ื‘ื™
06:23
with an opposable appendage --
127
383000
2000
ืขื ืื’ื•ื“ืœ ื ื’ื“ื™ -
06:25
and by the way, chimpanzees don't really have a very good opposable thumb --
128
385000
4000
ื•ื“ืจืš ืื’ื‘, ืœืฉื™ืคื ื–ื™ื ืื™ืŸ ืžืžืฉ ืื’ื•ื“ืœ
06:29
so we could actually manipulate our environment with a power grip
129
389000
2000
ื›ืš ืฉื™ื›ื•ืœื ื• ืœืชืคืขืœ ืืช ืกื‘ื™ื‘ืชื ื• ื‘ืืžืฆืขื•ืช ืื—ื™ื–ื”
06:31
and fine motor coordination,
130
391000
2000
ื•ืงื•ืื•ืจื“ื™ื ืฆื™ื” ืขื“ื™ื ื”,
06:33
and use our mental models to actually change the world
131
393000
2000
ื•ืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœื™ื ื”ืžื—ืฉื‘ืชื™ื™ื ืฉืœื ื• ืœืฉื ื•ืช ืืช ื”ืขื•ืœื
06:35
and bring on technology.
132
395000
2000
ื•ืœื”ื‘ื™ื ืงื“ื™ืžื” ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
06:37
But anyway, the evolution of our species took hundreds of thousands of years,
133
397000
3000
ืื‘ืœ, ื‘ื›ืœ ืžืงืจื”, ื”ืื‘ื•ืœื•ืฆื™ื” ืฉืœ ื”ืžื™ืŸ ืฉืœื ื• ืœืงื—ื” ืžืื•ืช ืืœืคื™ ืฉื ื™ื,
06:40
and then working through interaction,
134
400000
2000
ื•ืื–, ื“ืจืš ืขื‘ื•ื“ืช ื’ื•ืžืœื™ืŸ,
06:42
evolution used, essentially,
135
402000
2000
ืื‘ื•ืœื•ืฆื™ื” ื‘ืขืฆื ื”ืฉืชืžืฉื”
06:44
the technology-creating species to bring on the next stage,
136
404000
3000
ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ืœื™ืฆื™ืจืช ืžื™ื ื™ื ื›ื“ื™ ืœื”ื’ื™ืข ืืœ ื”ืฉืœื‘ ื”ื‘ื
06:47
which were the first steps in technological evolution.
137
407000
3000
ืฉื”ื™ื” ื‘ืขืฆื ื”ืฆืขื“ื™ื ื”ืจืืฉื•ื ื™ื ื‘ืื‘ื•ืœื•ืฆื™ื” ื”ื˜ื›ื ื•ืœื•ื’ื™ืช.
06:50
And the first step took tens of thousands of years --
138
410000
3000
ื•ื”ืฉืœื‘ ื”ืจืืฉื•ืŸ ืœืงื— ืขืฉืจื•ืช ืืœืคื™ ืฉื ื™ื -
06:53
stone tools, fire, the wheel -- kept accelerating.
139
413000
3000
ื›ืœื™ ืื‘ืŸ, ื”ืืฉ, ื”ื’ืœื’ืœ - ื”ื”ืืฆื” ื”ืžืฉื™ื›ื”.
06:56
We always used then the latest generation of technology
140
416000
2000
ืชืžื™ื“ ื”ืฉืชืžืฉื ื• ื‘ื“ื•ืจ ื”ืื—ืจื•ืŸ ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื”
06:58
to create the next generation.
141
418000
2000
ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ื”ื“ื•ืจ ื”ื‘ื.
07:00
Printing press took a century to be adopted;
142
420000
2000
ืื™ืžื•ืฅ ื”ืžืฆืืช ื”ื“ืคื•ืก ืœืงื— ืžืื” ืฉื ื”,
07:02
the first computers were designed pen-on-paper -- now we use computers.
143
422000
4000
ื”ืžื—ืฉื‘ื™ื ื”ืจืืฉื•ื ื™ื ืชื•ื›ื ื ื• ืขื ืขื˜ ื•ื ื™ื™ืจ - ื”ื™ื•ื ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืžื—ืฉื‘ื™ื.
07:06
And we've had a continual acceleration of this process.
144
426000
3000
ื•ื—ื•ื•ื™ื ื• ื”ืืฆื” ืžืชืžืฉื›ืช ืฉืœ ื”ืชื”ืœื™ืš.
07:09
Now by the way, if you look at this on a linear graph, it looks like everything has just happened,
145
429000
3000
ื“ืจืš ืื’ื‘, ืื ืืช ืžืกืชื›ืœื™ื ืขืœ ื”ื’ืจืฃ ื”ืœื™ื ื™ืืจื™ ื”ื–ื”, ื ืจืื” ื›ืื™ืœื• ื”ื›ืœ ืงืจื” ืžืžืฉ ืขื›ืฉื™ื•,
07:12
but some observer says, "Well, Kurzweil just put points on this graph
146
432000
6000
ืื‘ืœ ืฆื•ืคื” ืคืœื•ื ื™ ืื•ืžืจ: "ื˜ื•ื‘, ืงื•ืจืฆื•ื•ื™ืœ ืคืฉื•ื˜ ืฉื ื ืงื•ื“ื•ืช ืขืœ ื”ื’ืจืฃ
07:18
that fall on that straight line."
147
438000
2000
ืฉืžืกืชื“ืจื•ืช ื‘ืงื• ื™ืฉืจ."
07:20
So, I took 15 different lists from key thinkers,
148
440000
3000
ืื–, ืœืงื—ืชื™ 15 ืจืฉื™ืžื•ืช ืฉื•ื ื•ืช ืžื”ื•ื’ื™ ืžืคืชื—,
07:23
like the Encyclopedia Britannica, the Museum of Natural History, Carl Sagan's Cosmic Calendar
149
443000
4000
ื›ืžื• ืื ืฆื™ืงืœื•ืคื“ื™ื” ื‘ืจื™ื˜ื ื™ืงื”, ืžื•ื–ื™ืื•ืŸ ื”ื™ืกื˜ื•ืจื™ืช ื”ื˜ื‘ืข, ืœื•ื— ื”ืฉื ื” ื”ืงื•ืกืžื™ ืฉืœ ืงืืจืœ ืกืื’ืืŸ
07:27
on the same -- and these people were not trying to make my point;
150
447000
3000
ืขืœ ืื•ืชื• - ื•ืืœื• ืœื ื”ื™ื• ืื ืฉื™ื ืฉื ื™ืกื• ืœื”ื•ื›ื™ื— ืืช ื”ื ืงื•ื“ื” ืฉืœื™,
07:30
these were just lists in reference works,
151
450000
2000
ืืœื• ื”ื™ื• ืจืง ืจืฉื™ืžื•ืช ืฉืœ ืขื‘ื•ื“ื•ืช ืกื™ืžื•ื›ื™ืŸ.
07:32
and I think that's what they thought the key events were
152
452000
3000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืžื” ืฉื”ื ื—ืฉื‘ื• ืฉื”ื™ื• ืื™ืจื•ืขื™ ื”ืžืคืชื—
07:35
in biological evolution and technological evolution.
153
455000
3000
ื‘ืื‘ื•ืœื•ืฆื™ื” ื”ื‘ื™ื•ืœื•ื’ื™ืช ื•ื”ื˜ื›ื ื•ืœื•ื’ื™ืช.
07:38
And again, it forms the same straight line. You have a little bit of thickening in the line
154
458000
3000
ื•ืฉื•ื‘, ื–ื” ืžืกืชื“ืจ ื‘ืื•ืชื• ืงื• ื™ืฉืจ. ื™ืฉื ื” ืงืฆืช ื”ืชืขื‘ื•ืช ืฉืœ ื”ืงื•
07:41
because people do have disagreements, what the key points are,
155
461000
3000
ื›ื™ ืงื™ื™ืžืช ืžื™ื“ื” ืฉืœ ืื™ ื”ืกื›ืžื” ื‘ื™ืŸ ืื ืฉื™ื, ืžื” ื”ื ืื™ืจื•ืขื™ ื”ืžืคืชื—,
07:44
there's differences of opinion when agriculture started,
156
464000
2000
ื™ืฉ ื—ื™ืœื•ืงื™ ื“ืขื•ืช ืžืชื™ ื”ื—ืœื” ื”ื—ืงืœืื•ืช,
07:46
or how long the Cambrian Explosion took.
157
466000
3000
ืื• ืžืชื™ - ื›ืžื” ื–ืžืŸ ื ืžืฉืš ื”ืžืคืฅ ื”ืงืžื‘ืจื™ื•ื ื™.
07:49
But you see a very clear trend.
158
469000
2000
ืื‘ืœ ื ื™ืชืŸ ืœืจืื•ืช ืžื’ืžื” ืžืื•ื“ ื‘ืจื•ืจื”.
07:51
There's a basic, profound acceleration of this evolutionary process.
159
471000
5000
ื™ืฉื ื” ื”ืืฆื” ื‘ืกื™ืกื™ืช ื•ืขืžื•ืงื” ืฉืœ ื”ืชื”ืœื™ืš ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ ื”ื–ื”.
07:56
Information technologies double their capacity, price performance, bandwidth,
160
476000
5000
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžื™ื“ืข ืžื›ืคื™ืœื•ืช ืืช ื”ืงื™ื‘ื•ืœืช ืฉืœื”ืŸ, ืžื—ื™ืจ ืžื•ืœ ื‘ื™ืฆื•ืขื™ื, ืจื•ื—ื‘ ืคืก,
08:01
every year.
161
481000
2000
ื›ืœ ืฉื ื”.
08:03
And that's a very profound explosion of exponential growth.
162
483000
4000
ื•ื–ื” ื”ืคื™ืฆื•ืฅ ื”ืžืขืžื™ืง ืฉืœ ื’ื™ื“ื•ืœ ืืงืกืคื•ื ื ืฆื™ืืœื™.
08:07
A personal experience, when I was at MIT --
163
487000
2000
ื—ื•ื•ื™ื” ืื™ืฉื™ืช, ื›ืฉื”ื™ื™ืชื™ ื‘-MIT
08:09
computer taking up about the size of this room,
164
489000
2000
ืžื—ืฉื‘ ืฉื’ื•ื“ืœื• ื”ื™ื” ื›ื’ื•ื“ืœ ื”ื—ื“ืจ ื”ื–ื”,
08:11
less powerful than the computer in your cell phone.
165
491000
5000
ื”ื™ื” ืคื—ื•ืช ื—ื–ืง ืžื”ืžื—ืฉื‘ ื‘ื˜ืœืคื•ื ื™ื ื”ืกืœื•ืœืจื™ื ืฉืœื›ื.
08:16
But Moore's Law, which is very often identified with this exponential growth,
166
496000
4000
ืื‘ืœ ื—ื•ืง ืžื•ืจ, ืฉืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืžื–ื•ื”ื” ืขื ื”ื’ื™ื“ื•ืœ ื”ืืงืกืคื•ื ื ืฆื™ืืœื™ ื”ื–ื”,
08:20
is just one example of many, because it's basically
167
500000
2000
ื”ื•ื ืจืง ื“ื•ื’ืžื ืื—ืช ืžื ื™ ืจื‘ื•ืช, ื‘ื’ืœืœ ืฉื–ืืช
08:22
a property of the evolutionary process of technology.
168
502000
5000
ืชื›ื•ื ื” ื‘ืกื™ืกื™ืช ืฉืœ ื”ืชื”ืœื™ืš ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื”.
08:27
I put 49 famous computers on this logarithmic graph --
169
507000
3000
ืื ืื ื—ื ื• - ื”ื ื—ืชื™ 49 ืžื—ืฉื‘ื™ื ืžืคื•ืจืกืžื™ื ืขืœ ื”ื’ืจืฃ ื”ืœื•ื’ืจื™ืชืžื™ ื”ื–ื” -
08:30
by the way, a straight line on a logarithmic graph is exponential growth --
170
510000
4000
ื“ืจืš ืื’ื‘, ืงื• ื™ืฉืจ ื‘ื’ืจืฃ ืœื•ื’ืจื™ืชืžื™ ื”ื•ื ื’ื™ื“ื•ืœ ืืงืกืคื•ื ื ืฆื™ืืœื™ -
08:34
that's another exponential.
171
514000
2000
ื–ื” ืขื•ื“ ืืงืกืคื•ื ื ื˜.
08:36
It took us three years to double our price performance of computing in 1900,
172
516000
3000
ืœืงื— ืœื ื• ืฉืœื•ืฉ ืฉื ื™ื ืœื”ื›ืคื™ืœ ืžื—ื™ืจ ืžื•ืœ ื‘ื™ืฆื•ืขื™ื ืฉืœ ืžื—ืฉื‘ื™ื ื‘-1900,
08:39
two years in the middle; we're now doubling it every one year.
173
519000
3000
ืฉื ืชื™ื™ื ื‘ืืžืฆืข ื”ืžืื”, ื•ืขื›ืฉื™ื• ืžื•ื›ืคืœ ื›ืœ ืฉื ื”.
08:43
And that's exponential growth through five different paradigms.
174
523000
3000
ื•ื–ืืช ืฆืžื™ื—ื” ืืงืกืคื•ื ื ืฆื™ืืœื™ืช ื“ืจืš ื—ืžืฉ ืชืคื™ืกื•ืช ืฉื•ื ื•ืช.
08:46
Moore's Law was just the last part of that,
175
526000
2000
ื—ื•ืง ืžื•ืจ ื”ื•ื ืจืง ื”ื—ืœืง ื”ืื—ืจื•ืŸ ืฉืœ ื–ื”,
08:48
where we were shrinking transistors on an integrated circuit,
176
528000
3000
ืขืœ ืžืขื’ืœ ืžืฉื•ืœื‘, ื‘ื• ืื ื—ื ื• ืžืฆืžืงื™ื ื˜ืจื ื–ื™ืกื˜ื•ืจื™ื,
08:51
but we had electro-mechanical calculators,
177
531000
3000
ืื‘ืœ ื”ื™ื• ืœื ื• ืžื—ืฉื‘ื•ื ื™ื ืืœืงื˜ืจื•-ืžื›ื ื™ื™ื,
08:54
relay-based computers that cracked the German Enigma Code,
178
534000
2000
ืžื—ืฉื‘ื™ื ืžื‘ื•ืกืกื™ ืžืžืกืจื™ื ืฉืคื™ืฆื—ื• ืืช ืงื•ื“ ื”ืื ื™ื’ืžื”,
08:56
vacuum tubes in the 1950s predicted the election of Eisenhower,
179
536000
4000
ืฉืคื•ืคืจื•ืช ืจื™ืง ื‘ืฉื ื•ืช ื”-50 ืฉื—ื–ื• ืืช ื‘ื—ื™ืจืชื• ืฉืœ ืื™ื™ื–ื ื”ืื•ืืจ,
09:00
discreet transistors used in the first space flights
180
540000
3000
ื˜ืจื ื–ื™ืกื˜ื•ืจื™ื ื“ื™ืกืงืจื˜ื™ื™ื ืฉื”ื™ื• ื‘ืฉื™ืžื•ืฉ ื‘ื˜ื™ืกื•ืช ื”ืจืืฉื•ื ื•ืช ืœื—ืœืœ
09:03
and then Moore's Law.
181
543000
2000
ื•ืื– ื—ื•ืง ืžื•ืจ.
09:05
Every time one paradigm ran out of steam,
182
545000
2000
ื‘ื›ืœ ืคืขื ืฉืœืชืคื™ืกื” ืื—ืช ื ื’ืžืจ ื”ืกื•ืก,
09:07
another paradigm came out of left field to continue the exponential growth.
183
547000
3000
ื‘ืื” ืชืคื™ืกื” ืื—ืจืช, ืœื ืงืฉื•ืจื”, ืœื”ืžืฉื™ืš ืืช ื”ื’ื™ื“ื•ืœ ื”ืืงืกืคื•ื ื ืฆื™ืืœื™.
09:10
They were shrinking vacuum tubes, making them smaller and smaller.
184
550000
3000
ื‘ื–ืžื ื• ื›ื™ื•ื•ืฆื• ืฉืคื•ืคืจื•ืช ืจื™ืง, ื•ืขืฉื• ืื•ืชื ื™ื•ืชืจ ื•ื™ื•ืชืจ ืงื˜ื ื•ืช.
09:13
That hit a wall. They couldn't shrink them and keep the vacuum.
185
553000
3000
ืขื“ ืฉื ืชืงืœื• ื‘ืงื™ืจ. ืื™ ืืคืฉืจ ื”ื™ื” ืœื›ื•ื•ืฅ ืื•ืชื ื•ืœืฉืžื•ืจ ืขืœ ื”ืจื™ืง.
09:16
Whole different paradigm -- transistors came out of the woodwork.
186
556000
2000
ืชืคื™ืกื” ืฉื•ื ื” ืœื’ืžืจื™ - ื˜ืจื ื–ื™ืกื˜ื•ืจื™ื ื”ื•ืคื™ืขื” ืคืชืื•ื.
09:18
In fact, when we see the end of the line for a particular paradigm,
187
558000
3000
ืœืžืขืฉื”, ื›ืฉืื ื—ื ื• ืจื•ืื™ื ืืช ืกื•ืฃ ื”ื“ืจืš ืฉืœ ืชืคื™ืกื” ืžืกื•ื™ืžืช,
09:21
it creates research pressure to create the next paradigm.
188
561000
4000
ื ื•ืฆืจ ืœื—ืฅ ืžื—ืงืจื™ ืœื™ืฆื•ืจ ืืช ื”ืชืคื™ืกื” ื”ื‘ืื”.
09:25
And because we've been predicting the end of Moore's Law
189
565000
3000
ื•ืžื›ื™ื•ื•ืŸ ืฉืื ื—ื ื• ืžื ื‘ืื™ื ืืช ืกื•ืคื• ืฉืœ ื—ื•ืง ืžื•ืจ
09:28
for quite a long time -- the first prediction said 2002, until now it says 2022.
190
568000
3000
ื›ื‘ืจ ื–ืžืŸ ืœื ืžื•ืขื˜ - ื”ื ื™ื‘ื•ื™ ื”ืจืืฉื•ื ื™ ื”ื™ื” 2002, ืขื“ ืฉื”ื™ื•ื ืื•ืžืจื™ื 2022.
09:31
But by the teen years,
191
571000
3000
ืื‘ืœ ืขื“ ืฉื ื•ืช ื”ืขืฉืจื”,
09:34
the features of transistors will be a few atoms in width,
192
574000
3000
ืžืืคื™ื™ื ื™ ื”ื˜ืจื ื–ื™ืกื˜ื•ืจื™ื ื™ื”ื™ื” ื‘ืจื•ื—ื‘ ื›ืžื” ืื˜ื•ืžื™ื,
09:37
and we won't be able to shrink them any more.
193
577000
2000
ื•ืœื ื ื•ื›ืœ ืœื›ื•ื•ืฅ ืื•ืชื ื™ื•ืชืจ.
09:39
That'll be the end of Moore's Law, but it won't be the end of
194
579000
3000
ื–ื” ื™ื”ื™ื” ืกื•ืคื• ืฉืœ ื—ื•ืง ืžื•ืจ, ืื‘ืœ ื–ื” ืœื ื™ื”ื™ื” ืกื•ืคื” ืฉืœ
09:42
the exponential growth of computing, because chips are flat.
195
582000
2000
ื”ื’ื“ื™ืœื” ื”ืืงืกืคื•ื ื ืฆื™ืืœื™ืช ืฉืœ ื”ืžื—ืฉื•ื‘ ืžื›ื™ื•ื•ืŸ ืฉืฉื‘ื‘ื™ื ืฉื˜ื•ื—ื™ื.
09:44
We live in a three-dimensional world; we might as well use the third dimension.
196
584000
3000
ืื ื—ื ื• ื—ื™ื™ื ื‘ืขื•ืœื ืชืœืช ืžืžื“ื™, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื’ื ื‘ืžื™ืžื“ ื”ืฉืœื™ืฉื™.
09:47
We will go into the third dimension
197
587000
2000
ืื ื—ื ื• ื ื›ื ืก ืœืชื•ืš ื”ืžื™ืžื“ ื”ืฉืœื™ืฉื™
09:49
and there's been tremendous progress, just in the last few years,
198
589000
3000
ื•ื”ื™ืชื” ื”ืชืงื“ืžื•ืช ืื“ื™ืจื”, ืชื•ืš ืžืกืคืจ ืฉื ื™ื ืžื•ืขื˜,
09:52
of getting three-dimensional, self-organizing molecular circuits to work.
199
592000
4000
ื‘ื‘ื ื™ื™ื” ืžื•ืฆืœื—ืช ืฉืœ ืžืขื’ืœื™ื ืžื•ืœืงื•ืœืจื™ื™ื ืชืœืช-ืžื™ืžื“ื™ื™ื.
09:56
We'll have those ready well before Moore's Law runs out of steam.
200
596000
7000
ืืœื• ื™ื”ื™ื• ืžื•ื›ื ื™ื ื”ืจื‘ื” ืœืคื ื™ ืฉืœื—ื•ืง ืžื•ืจ ื™ื’ืžืจ ื”ืกื•ืก.
10:03
Supercomputers -- same thing.
201
603000
2000
ืžื—ืฉื‘ื™ ืขืœ - ืื•ืชื• ื“ื‘ืจ.
10:06
Processor performance on Intel chips,
202
606000
3000
ื‘ื™ืฆื•ืข ืžืขื‘ื“ื™ื ืขืœ ืฉื‘ื‘ื™ ืื™ื ื˜ืœ,
10:09
the average price of a transistor --
203
609000
3000
ื”ืžื—ื™ืจ ื”ืžืžื•ืฆืข ืฉืœ ื˜ืจื ื–ื™ืกื˜ื•ืจ -
10:12
1968, you could buy one transistor for a dollar.
204
612000
3000
ื‘-1968, ื”ื™ื” ืืคืฉืจ ืœืงื ื•ืช ืื—ื“ ื‘ื“ื•ืœืจ.
10:15
You could buy 10 million in 2002.
205
615000
3000
ื‘-2002 ืืคืฉืจ ืœืงื ื•ืช 10 ืžืœื™ื•ืŸ.
10:18
It's pretty remarkable how smooth
206
618000
3000
ื–ื” ื“ื™ ืžื“ื”ื™ื ื›ืžื” ื”ืชื”ืœื™ืš
10:21
an exponential process that is.
207
621000
2000
ื”ืืงืกืคื•ื ื ืฆื™ืืœื™ ื”ื–ื” ื—ืœืง.
10:23
I mean, you'd think this is the result of some tabletop experiment,
208
623000
3000
ื›ืœื•ืžืจ, ื”ื™ื™ืชื ื—ื•ืฉื‘ื™ื ืฉื–ืืช ื”ืชื•ืฆืื” ืฉืœ ื ื™ืกื•ื™ ื‘ืžืขื‘ื“ื”,
10:27
but this is the result of worldwide chaotic behavior --
209
627000
3000
ืื‘ืœ ื–ืืช ืชื•ืฆืื” ืฉืœ ื”ืชื ื”ื’ื•ืช ื›ืื•ื˜ื™ืช ืขื•ืœืžื™ืช -
10:30
countries accusing each other of dumping products,
210
630000
2000
ืžื“ื™ื ื•ืช ื”ืžืืฉื™ืžื•ืช ืื—ืช ืืช ื”ืฉื ื™ื” ื‘ื”ืฆืคืช ืžื•ืฆืจื™ื,
10:32
IPOs, bankruptcies, marketing programs.
211
632000
2000
ื”ื ืคืงื•ืช, ืคืฉื™ื˜ื•ืช ืจื’ืœ, ืชื›ื ื™ื•ืช ืฉื™ื•ื•ืงื™ื•ืช.
10:34
You would think it would be a very erratic process,
212
634000
3000
ื”ื™ื™ืชื ื—ื•ืฉื‘ื™ื ืฉื–ื” ื™ื”ื™ื” ืชื”ืœื™ืš ืžืื•ื“ ื‘ืœืชื™ ืฆืคื•ื™,
10:37
and you have a very smooth
213
637000
2000
ื•ื™ืฉ ืœื›ื ืชื•ืฆืื” ืžืื•ื“ ื—ืœืงื”
10:39
outcome of this chaotic process.
214
639000
2000
ืฉืœ ื”ืชื”ืœื™ืš ื”ื›ืื•ื˜ื™ ื”ื–ื”.
10:41
Just as we can't predict
215
641000
2000
ื›ืžื• ืฉืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช
10:43
what one molecule in a gas will do --
216
643000
2000
ืžื” ืžื•ืœืงื•ืœืช ื’ื– ืื—ืช ืชืขืฉื” -
10:45
it's hopeless to predict a single molecule --
217
645000
3000
ื–ื” ื—ืกืจ ืกื™ื›ื•ื™ ืœื—ื–ื•ืช ืžื•ืœืงื•ืœื” ืื—ืช -
10:48
yet we can predict the properties of the whole gas,
218
648000
2000
ื•ื‘ื›ืœ ื–ืืช ื ื™ืชืŸ ืœื—ื–ื•ืช ืืช ืชื›ื•ื ื•ืช ื”ื’ื– ื”ื›ื•ืœืœ
10:50
using thermodynamics, very accurately.
219
650000
3000
ื‘ืื•ืคืŸ ืžืื•ื“ ืžื“ื•ื™ืง, ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ืชืจืžื•ื“ื™ื ืžื™ืงื”.
10:53
It's the same thing here. We can't predict any particular project,
220
653000
3000
ื–ื” ืื•ืชื• ื“ื‘ืจ. ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืคืจื•ื™ืงื˜ ืžืกื•ื™ื,
10:56
but the result of this whole worldwide,
221
656000
2000
ืื‘ืœ ื”ืชื•ืฆืื” ืฉืœ ื”ืชื—ืจื•ืช ื”ืขื•ืœืžื™ืช,
10:58
chaotic, unpredictable activity of competition
222
658000
5000
ื”ื›ืื•ื˜ื™ืช ื•ื”ืœื ืฆืคื•ื™ื” ื”ื–ืืช
11:03
and the evolutionary process of technology is very predictable.
223
663000
3000
ื•ืฉืœ ื”ืชื”ืœื™ืš ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ ื”ื˜ื›ื ื•ืœื•ื’ื™, ื ื™ืชื ืช ืžืื•ื“ ืœื—ื™ื–ื•ื™.
11:06
And we can predict these trends far into the future.
224
666000
3000
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืืช ื”ืžื’ืžื•ืช ื”ืœืœื• ืืœ ื”ืขืชื™ื“ ื”ืจื—ื•ืง.
11:11
Unlike Gertrude Stein's roses,
225
671000
2000
ืฉืœื ื›ืžื• ื”ื•ืจื“ื™ื ืฉืœ ื’ืจื˜ืจื•ื“ ืฉื˜ื™ื™ืŸ,
11:13
it's not the case that a transistor is a transistor.
226
673000
2000
ื–ื” ืœื ื”ืžืงืจื” ืฉื˜ืจื ื–ื™ืกื˜ื•ืจ ื”ื•ื ื˜ืจื ื–ื™ืกื˜ื•ืจ.
11:15
As we make them smaller and less expensive,
227
675000
2000
ื›ื›ืœ ืฉืื ื—ื ื• ืžืงื˜ื™ื ื™ื ืื•ืชื ื•ืžื•ื–ื™ืœื™ื ืื•ืชื,
11:17
the electrons have less distance to travel.
228
677000
2000
ื”ืžืจื—ืง ืื•ืชื• ืฆืจื™ื›ื™ื ื”ืืœืงื˜ืจื•ื ื™ื ืœืขื‘ื•ืจ ืงื˜ืŸ.
11:19
They're faster, so you've got exponential growth in the speed of transistors,
229
679000
4000
ื”ื ืžื”ื™ืจื™ื ื™ื•ืชืจ, ื›ืš ืฉืžืชืงื‘ืœืช ืฆืžื™ื—ื” ืืงืกืคื•ื ื ืฆื™ืืœื™ืช ื‘ืžื”ื™ืจื•ืช ื˜ืจื ื–ื™ืกื˜ื•ืจื™ื,
11:23
so the cost of a cycle of one transistor
230
683000
4000
ืื– ืžื—ื™ืจื• ืฉืœ ืžื—ื–ื•ืจ ืฉืœ ื˜ืจื ื–ื™ืกื˜ื•ืจ ืื—ื“
11:27
has been coming down with a halving rate of 1.1 years.
231
687000
3000
ื™ื•ืจื“ ื‘ื—ืฆื™ ื›ืœ 1.1 ืฉื ื™ื.
11:30
You add other forms of innovation and processor design,
232
690000
3000
ืื ืžื•ืกื™ืคื™ื ืขื•ื“ ืฆื•ืจื•ืช ื—ื“ืฉื ื•ืช ื•ืขื™ืฆื•ื‘ ืžืขื‘ื“ื™ื,
11:33
you get a doubling of price performance of computing every one year.
233
693000
4000
ืžืงื‘ืœื™ื ื”ื›ืคืœื” ืฉืœ ืžื—ื™ืจ/ื‘ื™ืฆื•ืข ืฉืœ ืžื—ืฉื‘ื™ื ื›ืœ ืฉื ื”.
11:37
And that's basically deflation --
234
697000
3000
ื•ื–ืืช ื‘ืขืฆื ื“ืคืœืฆื™ื” -
11:40
50 percent deflation.
235
700000
2000
ื“ืคืœืฆื™ื” ืฉืœ 50 ืื—ื•ื–.
11:42
And it's not just computers. I mean, it's true of DNA sequencing;
236
702000
3000
ื•ื–ื” ืœื ืจืง ืžื—ืฉื‘ื™ื, ื›ืœื•ืžืจ, ื–ื” ื ื›ื•ืŸ ืœื’ื‘ื™ ืจื™ืฆื•ืฃ DNA,
11:45
it's true of brain scanning;
237
705000
2000
ื–ื” ื ื›ื•ืŸ ืœื’ื‘ื™ ืกืจื™ืงื•ืช ืžื•ื—,
11:47
it's true of the World Wide Web. I mean, anything that we can quantify,
238
707000
2000
ื–ื” ื ื›ื•ืŸ ืœื’ื‘ื™ ื”ื•ื•ื‘. ื›ืœ ื“ื‘ืจ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื›ืžืช,
11:49
we have hundreds of different measurements
239
709000
3000
ื™ืฉ ืœื ื• ืžืื•ืช ืžื“ื™ื“ื•ืช ืฉื•ื ื•ืช
11:52
of different, information-related measurements --
240
712000
3000
ืฉืœ ืžื“ื“ื™ื ืชืœื•ื™ื™ ืžื™ื“ืข -
11:55
capacity, adoption rates --
241
715000
2000
ืงื™ื‘ื•ืœืช, ืงืฆื‘ ืื™ืžื•ืฅ -
11:57
and they basically double every 12, 13, 15 months,
242
717000
3000
ื•ื”ื ื‘ื‘ืกื™ืกื ืžื•ื›ืคืœื™ื ื›ืœ 12, 13, 15 ื—ื•ื“ืฉื™ื,
12:00
depending on what you're looking at.
243
720000
2000
ืชืœื•ื™ ืขืœ ืžื” ืžืกืชื›ืœื™ื.
12:02
In terms of price performance, that's a 40 to 50 percent deflation rate.
244
722000
4000
ืžื‘ื—ื™ื ืช ื‘ื™ืฆื•ืขื™ื, ื–ื”ื• ืงืฆื‘ ื“ืคืœืฆื™ื” ืฉืœ 40 ืขื“ 50 ืื—ื•ื–.
12:07
And economists have actually started worrying about that.
245
727000
2000
ื•ื›ืœื›ืœื ื™ื ื”ืชื—ื™ืœื• ืœื“ืื•ื’ ื‘ื ื•ื’ืข ืœื–ื”.
12:09
We had deflation during the Depression,
246
729000
2000
ื”ื™ืชื” ื“ืคืœืฆื™ื” ื‘ื–ืžืŸ ื”ืฉืคืœ ื”ื’ื“ื•ืœ,
12:11
but that was collapse of the money supply,
247
731000
2000
ืื‘ืœ ื–ื• ื”ื™ืชื” ื”ืชืžื•ื˜ื˜ื•ืช ืฉืœ ืืกืคืงืช ื›ืกืฃ,
12:13
collapse of consumer confidence, a completely different phenomena.
248
733000
3000
ื”ืชืžื•ื˜ื˜ื•ืช ืฉืœ ืืžื•ืŸ ื”ืฆืจื›ื ื™ื, ืชื•ืคืขื” ืื—ืจืช ืœื’ืžืจื™.
12:16
This is due to greater productivity,
249
736000
2000
ืขื›ืฉื™ื• ื–ื•ื”ื™ ื™ืฆืจื ื•ืช ื’ื“ืœื” ื•ื”ื•ืœื›ืช,
12:19
but the economist says, "But there's no way you're going to be able to keep up with that.
250
739000
2000
ืื‘ืœ ื”ื›ืœื›ืœืŸ ืื•ืžืจ "ืื™ืŸ ืกื™ื›ื•ื™ ืฉืชื•ื›ืœ ืœืฉืžื•ืจ ืขืœ ื”ืงืฆื‘ ื”ื–ื”.
12:21
If you have 50 percent deflation, people may increase their volume
251
741000
3000
ืื ื™ืฉ ื“ืคืœืฆื™ื” ืฉืœ 50 ืื—ื•ื–, ืื ืฉื™ื ื™ื’ื“ื™ืœื• ืืช ื ืคื—ื
12:24
30, 40 percent, but they won't keep up with it."
252
744000
2000
ื‘-30, 40 ืื—ื•ื– ืื‘ืœ ืœื ื™ื•ื›ืœื• ืœืฉืžื•ืจ ืขืœ ื”ืงืฆื‘.
12:26
But what we're actually seeing is that
253
746000
2000
ืื‘ืœ ืžื” ืฉืื ื—ื ื• ื‘ืขืฆื ืจื•ืื™ื ื–ื”
12:28
we actually more than keep up with it.
254
748000
2000
ืฉืื ื—ื ื• ืืคื™ืœื• ื™ื•ืชืจ ืžืฉื•ืžืจื™ื ืขืœ ื”ืงืฆื‘.
12:30
We've had 28 percent per year compounded growth in dollars
255
750000
3000
ื”ื™ืชื” ืœื ื• ืฆืžื™ื—ื” ืžื•ืจื›ื‘ืช ืฉืœ 28 ืื—ื•ื– ืœืฉื ื” ื‘ื“ื•ืœืจื™ื
12:33
in information technology over the last 50 years.
256
753000
3000
ื‘ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ืžื™ื“ืข ื‘ืžืฉืš 50 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
12:36
I mean, people didn't build iPods for 10,000 dollars 10 years ago.
257
756000
4000
ื›ืœื•ืžืจ, ืื ืฉื™ื ืœื ื‘ื ื• ืื™ื™ืคื•ื“ื™ื ื‘-10,000 ื“ื•ืœืจ ืœืคื ื™ 10 ืฉื ื™ื.
12:40
As the price performance makes new applications feasible,
258
760000
3000
ื›ืฉืžื—ื™ืจ/ื‘ื™ืฆื•ืข ื”ื•ืคืš ื™ื™ืฉื•ืžื™ื ื—ื“ืฉื™ื ืœื‘ืจื™ ื‘ื™ืฆื•ืข,
12:43
new applications come to the market.
259
763000
2000
ื™ื™ืฉื•ืžื™ื ื—ื“ืฉื™ื ืžื’ื™ืขื™ื ืœืฉื•ืง,
12:45
And this is a very widespread phenomena.
260
765000
3000
ื•ื–ืืช ืชื•ืคืขื” ืžืื•ื“ ื ืคื•ืฆื”.
12:48
Magnetic data storage --
261
768000
2000
ืื—ืกื•ืŸ ืžื™ื“ืข ืžื’ื ื˜ื™ -
12:50
that's not Moore's Law, it's shrinking magnetic spots,
262
770000
3000
ื–ื” ืœื ื—ื•ืง ืžื•ืจ, ื–ื” ื›ื™ื•ื•ืฅ ื ืงื•ื“ื•ืช ืžื’ื ื˜ื™ื•ืช,
12:53
different engineers, different companies, same exponential process.
263
773000
4000
ืžื”ื ื“ืกื™ื ืฉื•ื ื™ื, ื—ื‘ืจื•ืช ืฉื•ื ื•ืช, ืื•ืชื• ืชื”ืœื™ืš ืืงืกืคื•ื ื ืฆื™ืืœื™.
12:57
A key revolution is that we're understanding our own biology
264
777000
4000
ืžื”ืคื›ื” ื—ืฉื•ื‘ื” ื”ื™ื ืฉืื ื—ื ื• ืžื‘ื™ื ื™ื ืืช ื”ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ืขืฆืžื™ื ื•
13:01
in these information terms.
265
781000
2000
ื‘ืžื•ื ื—ื™ ื”ืžื™ื“ืข ื”ืืœื”.
13:03
We're understanding the software programs
266
783000
2000
ืื ื—ื ื• ืžื‘ื™ื ื™ื ืืช ืชื•ื›ื ื•ืช ื”ืžื—ืฉื‘
13:05
that make our body run.
267
785000
2000
ืฉืžืจื™ืฆื•ืช ืืช ื’ื•ืคื™ื ื•.
13:07
These were evolved in very different times --
268
787000
2000
ื”ืŸ ื”ืชืคืชื—ื• ื‘ื–ืžื ื™ื ืฉื•ื ื™ื ืžืื•ื“ --
13:09
we'd like to actually change those programs.
269
789000
2000
ื•ื”ื™ื™ื ื• ืจื•ืฆื™ื ื‘ืขืฆื ืœืฉื ื•ืช ืืช ื”ืชื•ื›ื ื•ืช ื”ืืœื”.
13:11
One little software program, called the fat insulin receptor gene,
270
791000
2000
ืชื•ื›ื ื” ืื—ืช ืงื˜ื ื”, ืฉื ืงืจืืช ื’ืŸ ื”ืฉื•ืžืŸ ื•ื”ืื™ื ืกื•ืœื™ืŸ,
13:13
basically says, "Hold onto every calorie,
271
793000
2000
ืื•ืžืจืช ื‘ืขื™ืงืจื•ืŸ, "ืชื—ื–ื™ืง ื›ืœ ืงืœื•ืจื™ื”,
13:15
because the next hunting season may not work out so well."
272
795000
4000
ืžืคื ื™ ืฉื‘ืขื•ื ืช ื”ืฆื™ื“ ื”ื‘ืื” ืื•ืœื™ ืœื ืชืฆืœื™ื— ื›ืœ ื›ืš."
13:19
That was in the interests of the species tens of thousands of years ago.
273
799000
3000
ื–ื” ืคืขืœ ืœื˜ื•ื‘ืช ื”ืžื™ืŸ ืœืคื ื™ ืขืฉืจื•ืช ืืœืคื™ ืฉื ื™ื.
13:22
We'd like to actually turn that program off.
274
802000
3000
ื”ื™ื™ื ื• ืจื•ืฆื™ื ื‘ืขืฆื ืœื›ื‘ื•ืช ืืช ื”ืชื•ื›ื ื™ืช ื”ื–ื•.
13:25
They tried that in animals, and these mice ate ravenously
275
805000
3000
ื”ื ื ื™ืกื• ืืช ื–ื” ื‘ื—ื™ื•ืช, ื•ื”ืขื›ื‘ืจื™ื ื”ืืœื” ืื›ืœื• ื‘ืจืขื‘
13:28
and remained slim and got the health benefits of being slim.
276
808000
2000
ื•ื ืฉืืจื• ืจื–ื™ื ื•ืงื™ื‘ืœื• ื”ื˜ื‘ื•ืช ื‘ืจื™ืื•ืชื™ื•ืช ืžืœื”ื™ื•ืช ืจื–ื™ื.
13:30
They didn't get diabetes; they didn't get heart disease;
277
810000
3000
ื”ื ืœื ื—ืœื• ื‘ืกื•ื›ืจืช, ื”ื ืœื ื—ืœื• ื‘ืžื—ืœื•ืช ืœื‘,
13:33
they lived 20 percent longer; they got the health benefits of caloric restriction
278
813000
3000
ื”ื ื—ื™ื• 20 ืื—ื•ื– ื™ื•ืชืจ, ื”ื ืงื™ื‘ืœื• ืืช ื”ื”ื˜ื‘ื•ืช ื”ื‘ืจื™ืื•ืชื™ื•ืช ืฉืœ ื”ื’ื‘ืœืช ืงืœื•ืจื™ื•ืช
13:36
without the restriction.
279
816000
2000
ื‘ืœื™ ื”ื”ื’ื‘ืœื•ืช.
13:38
Four or five pharmaceutical companies have noticed this,
280
818000
3000
ืืจื‘ืข ืื• ื—ืžืฉ ื—ื‘ืจื•ืช ืชืจื•ืคื•ืช ื”ื‘ื—ื™ื ื• ื‘ื–ื”,
13:41
felt that would be
281
821000
3000
ื•ื—ืฉื• ืฉื–ื• ืชื”ื™ื”
13:44
interesting drug for the human market,
282
824000
3000
ืชืจื•ืคื” ืžืขื ื™ื™ื ืช ืœืฉื•ืง ื”ืื ื•ืฉื™,
13:47
and that's just one of the 30,000 genes
283
827000
2000
ื•ื–ื” ืจืง ืื—ื“ ืž30000 ื’ื ื™ื
13:49
that affect our biochemistry.
284
829000
3000
ืฉืžืฉืคื™ืขื™ื ืขืœ ื”ื‘ื™ื•ื›ื™ืžื™ื” ืฉืœื ื•.
13:52
We were evolved in an era where it wasn't in the interests of people
285
832000
3000
ื”ืชืคืชื—ื ื• ื‘ืขื™ื“ืŸ ื‘ื• ืœื ื”ื™ื” ืื™ื ื˜ืจืก ืœืื ืฉื™ื
13:55
at the age of most people at this conference, like myself,
286
835000
3000
ื‘ื’ื™ืœ ืฉืœ ืจื•ื‘ ื”ืื ืฉื™ื ื‘ื•ืขื™ื“ื” ื”ื–ื•, ื›ืžื•ื ื™,
13:58
to live much longer, because we were using up the precious resources
287
838000
4000
ืœื—ื™ื•ืช ื”ืจื‘ื” ื™ื•ืชืจ, ืžืคื ื™ ืฉื”ืฉืชืžืฉื ื• ื‘ืžืฉืื‘ื™ื ื”ื™ืงืจื™ื
14:02
which were better deployed towards the children
288
842000
1000
ืฉื”ื™ื• ื™ื•ืชืจ ื—ืฉื•ื‘ื™ื ืœื™ืœื“ื™ื
14:03
and those caring for them.
289
843000
2000
ื•ืœืืœื” ื”ื ื•ืฉืื™ื ืื•ืชื.
14:05
So, life -- long lifespans --
290
845000
2000
ืื–, ื—ื™ื™ื -- ื—ื™ื™ื ืืจื•ื›ื™ื --
14:07
like, that is to say, much more than 30 --
291
847000
2000
ื›ืžื•, ืœื”ื’ื™ื“, ื”ืจื‘ื” ื™ื•ืชืจ ืž30 --
14:09
weren't selected for,
292
849000
3000
ืœื ื ื‘ืจืจื•,
14:12
but we are learning to actually manipulate
293
852000
3000
ืื‘ืœ ืœืžื“ื ื• ืžืžืฉ ืœืชืคืขืœ
14:15
and change these software programs
294
855000
2000
ื•ืœืฉื ื•ืช ืืช ื”ืชื•ื›ื ื•ืช ื”ืืœื”
14:17
through the biotechnology revolution.
295
857000
2000
ื“ืจืš ืžื”ืคื›ืช ื”ื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื”.
14:19
For example, we can inhibit genes now with RNA interference.
296
859000
4000
ืœื“ื•ื’ืžื”, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉื”ื•ืช ื’ื ื™ื ืขื ื”ืชืขืจื‘ื•ืช ื‘RNA.
14:23
There are exciting new forms of gene therapy
297
863000
2000
ื™ืฉ ืฉื™ื˜ื•ืช ื—ื“ืฉื•ืช ื•ืžืœื”ื™ื‘ื•ืช ืœืจืคื•ืืช ื’ื ื™ื
14:25
that overcome the problem of placing the genetic material
298
865000
2000
ืฉืžืชื’ื‘ืจื•ืช ืขืœ ื”ื‘ืขื™ื” ืฉืœ ืœื”ื ื™ื— ื—ื•ืžืจ ื’ื ื˜ื™
14:27
in the right place on the chromosome.
299
867000
2000
ื‘ืžืงื•ื ื”ื ื›ื•ืŸ ื‘ื›ืจื•ืžื•ื–ื•ื.
14:29
There's actually a -- for the first time now,
300
869000
3000
ืœืžืขืฉื” ื™ืฉ -- ื‘ืคืขื ื”ืจืืฉื•ื ื” ืขื›ืฉื™ื•,
14:32
something going to human trials, that actually cures pulmonary hypertension --
301
872000
3000
ืžืฉื”ื• ืฉืขื•ื‘ืจ ืœื ื™ืกื•ื™ื™ื ื‘ืื“ื, ืฉืžืจืคื ืœื—ืฅ ื“ื --
14:35
a fatal disease -- using gene therapy.
302
875000
3000
ืžื—ืœื” ืงื˜ืœื ื™ืช -- ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ืชืจืคื™ื™ืช ื’ื ื™ื.
14:38
So we'll have not just designer babies, but designer baby boomers.
303
878000
3000
ืื– ื™ื”ื™ื• ืœื ื• ืœื ืจืง ืชื™ื ื•ืงื•ืช ืžืขื•ืฆื‘ื™ื, ืืœื ื’ื ื‘ื™ื™ื‘ื™ ื‘ื•ืžืจืก ืžืขื•ืฆื‘ื™ื.
14:41
And this technology is also accelerating.
304
881000
3000
ื•ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื• ื’ื ืžืื™ืฆื”.
14:44
It cost 10 dollars per base pair in 1990,
305
884000
3000
ื–ื” ืขืœื” 10 ื“ื•ืœืจ ืœื–ื•ื’ ื‘ืกื™ืก ื‘1990,
14:47
then a penny in 2000.
306
887000
2000
ื•ืื– ืคื ื™ ื‘2000.
14:49
It's now under a 10th of a cent.
307
889000
2000
ื–ื” ืขื›ืฉื™ื• ืคื—ื•ืช ืžืขืฉื™ืจื™ืช ืกื ื˜.
14:51
The amount of genetic data --
308
891000
2000
ื›ืžื•ืช ื”ืžื™ื“ืข ื”ื’ื ื˜ื™ --
14:53
basically this shows that smooth exponential growth
309
893000
3000
ื‘ืขื™ืงืจื•ืŸ ื–ื” -- ื–ื” ืžืจืื” ืฉื”ื’ื™ื“ื•ืœ ื”ืืงืกืคื•ื ื ืฆื™ืืœื™ ื”ื—ืœืง
14:56
doubled every year,
310
896000
2000
ืžื•ื›ืคืœ ื›ืœ ืฉื ื”,
14:58
enabling the genome project to be completed.
311
898000
3000
ืžื” ืฉืžืืคืฉืจ ืœืคืจื•ื™ื™ืงื˜ ืžื™ืคื•ื™ ื”ื’ื ื•ื ืœื”ื™ื•ืช ืžื•ืฉืœื.
15:01
Another major revolution: the communications revolution.
312
901000
3000
ื’ื™ืœื•ื™ ื’ื“ื•ืœ ื ื•ืกืฃ, ืžื”ืคื›ืช ื”ืชืงืฉื•ืจืช.
15:04
The price performance, bandwidth, capacity of communications measured many different ways;
313
904000
5000
ื‘ื™ืฆื•ืขื™ ื”ืžื—ื™ืจ, ืจื•ื—ื‘ ื”ืคืก, ืงื™ื‘ื•ืœืช ื”ืชืงืฉื•ืจืช ื ืžื“ื“ืช ื‘ื“ืจื›ื™ื ืจื‘ื•ืช;
15:09
wired, wireless is growing exponentially.
314
909000
3000
ืžื—ื•ื•ื˜ืช, ืืœื—ื•ื˜ื™ืช ื’ื“ืœื” ืืงืกืคื•ื ื ืฆื™ืืœื™ืช.
15:12
The Internet has been doubling in power and continues to,
315
912000
3000
ื”ืื™ื ื˜ืจื ื˜ ื”ื›ืคื™ืœ ืืช ื›ื•ื—ื• ื•ืžืžืฉื™ืš ื›ืš,
15:15
measured many different ways.
316
915000
2000
ื ืžื“ื“ ื‘ื“ืจื›ื™ื ืจื‘ื•ืช.
15:17
This is based on the number of hosts.
317
917000
2000
ื–ื” ืžื‘ื•ืกืก ืขืœ ืžืกืคืจ ืžืืจื—ื™ื.
15:19
Miniaturization -- we're shrinking the size of technology
318
919000
2000
ื”ืงื˜ื ื” -- ืื ื—ื ื• ืžืงื˜ื™ื ื™ื ืืช ื’ื•ื“ืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื”
15:21
at an exponential rate,
319
921000
2000
ื‘ืงืฆื‘ ืืงืกืคื•ื ื ืฆื™ืืœื™,
15:23
both wired and wireless.
320
923000
2000
ื’ื ืžื—ื•ื•ื˜ืช ื•ื’ื ืืœื—ื•ื˜ื™ืช.
15:25
These are some designs from Eric Drexler's book --
321
925000
4000
ืืœื” ื›ืžื” ืขื™ืฆื•ื‘ื™ื ืžื”ืกืคืจ ืฉืœ ืืจื™ืง ื“ืจืงืกืœืจ --
15:29
which we're now showing are feasible
322
929000
2000
ืฉืขื›ืฉื™ื• ืื ื—ื ื• ืžืจืื™ื ืฉื”ื ืืคืฉืจื™ื™ื
15:31
with super-computing simulations,
323
931000
2000
ื‘ื”ื“ืžื™ื•ืช ืžื—ืฉื‘ื™ ืขืœ,
15:33
where actually there are scientists building
324
933000
2000
ืฉื ืื ืฉื™ื ื‘ืขืฆื ื‘ื•ื ื™ื
15:35
molecule-scale robots.
325
935000
2000
ืจื•ื‘ื•ื˜ื™ื ื‘ืงื ื” ืžื™ื“ื” ืžื•ืœืงื•ืœืจื™.
15:37
One has one that actually walks with a surprisingly human-like gait,
326
937000
2000
ืœืื—ื“ ื™ืฉ ืื—ื“ ืฉื”ื•ืœืš ื‘ืฆื•ืจืช ื”ืœื™ื›ื” ื“ื™ ืื ื•ืฉื™ืช,
15:39
that's built out of molecules.
327
939000
3000
ืฉื‘ื ื•ื™ ืžืžื•ืœืงื•ืœื•ืช.
15:42
There are little machines doing things in experimental bases.
328
942000
4000
ื™ืฉ ืžื›ื•ื ื•ืช ืงื˜ื ื•ืช ืฉืขื•ืฉื•ืช ื“ื‘ืจื™ื ืขืœ ื‘ืกื™ืก ื ืกื™ื•ื ื™.
15:46
The most exciting opportunity
329
946000
3000
ื”ื”ื–ื“ืžื ื•ืช ื”ืžืกืขื™ืจื” ืžื›ื•ืœืŸ
15:49
is actually to go inside the human body
330
949000
2000
ื”ื™ื ื‘ืขืฆื ืœื”ื™ื›ื ืก ืœืชื•ืš ื”ื’ื•ืฃ ื”ืื ื•ืฉื™
15:51
and perform therapeutic and diagnostic functions.
331
951000
3000
ื•ืœื‘ืฆืข ืคืขื•ืœื•ืช ืื™ื‘ื—ื•ื ื™ื•ืช ื•ื˜ื™ืคื•ืœื™ื•ืช.
15:54
And this is less futuristic than it may sound.
332
954000
2000
ื•ื–ื” ืคื—ื•ืช ืขืชื™ื“ื ื™ ืžืฉื–ื” ื ืฉืžืข.
15:56
These things have already been done in animals.
333
956000
2000
ื”ื“ื‘ืจื™ื ื”ืืœื” ื›ื‘ืจ ื ืขืฉื• ื‘ื—ื™ื•ืช.
15:58
There's one nano-engineered device that cures type 1 diabetes. It's blood cell-sized.
334
958000
4000
ื™ืฉ ืžื›ืฉื™ืจ ืžื”ื•ื ื“ืก ื‘ืจืžืช ื”ื ื ื• ืฉืžืจืคื ืกื•ื›ืจืช ืžืกื•ื’ 1. ื”ื•ื ื‘ื’ื•ื“ืœ ืชื ื“ื.
16:02
They put tens of thousands of these
335
962000
2000
ื”ื ืฉืžื™ื ืžืื•ืช ืืœืคื™ื ืžืืœื”
16:04
in the blood cell -- they tried this in rats --
336
964000
2000
ื‘ื›ื“ื•ืจื™ืช ื”ื“ื -- ื”ื ื ื™ืกื• ืืช ื–ื” ื‘ื—ื•ืœื“ื•ืช
16:06
it lets insulin out in a controlled fashion,
337
966000
2000
ื–ื” ืžืฉื—ืจืจ ืื™ื ืกื•ืœื™ืŸ ื‘ืฆื•ืจื” ืžื‘ื•ืงืจืช,
16:08
and actually cures type 1 diabetes.
338
968000
2000
ื•ืœืžืขืฉื” ืžืจืคื ืกื•ื›ืจืช ืžืกื•ื’ 1.
16:10
What you're watching is a design
339
970000
3000
ืžื” ืฉืืชื ืจื•ืื™ื ื–ื” ืชื›ื ื•ืŸ
16:13
of a robotic red blood cell,
340
973000
2000
ืฉืœ ื›ื“ื•ืจื™ืช ื“ื ืื“ื•ืžื” ืจื•ื‘ื•ื˜ื™ืช,
16:15
and it does bring up the issue that our biology
341
975000
2000
ื•ื–ื” ืžืขืœื” ืืช ื”ื ื•ืฉื ืฉื”ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœื ื•
16:17
is actually very sub-optimal,
342
977000
2000
ื”ื™ื ืœืžืขืฉื” ืจื—ื•ืงื” ืžืื•ืคื˜ื™ืžืœื™ืช,
16:19
even though it's remarkable in its intricacy.
343
979000
3000
ืืคื™ืœื• ืฉื”ื™ื ืžื“ื”ื™ืžื” ื‘ืžื•ืจื›ื‘ื•ืช ืฉืœื”.
16:22
Once we understand its principles of operation,
344
982000
3000
ื‘ืจื’ืข ืฉื ื‘ื™ืŸ ืืช ื“ืจืš ื”ืคืขื•ืœื” ื”ืขืงืจื•ื ื™ืช ืฉืœื”,
16:25
and the pace with which we are reverse-engineering biology is accelerating,
345
985000
3000
ื•ื”ืงืฆื‘ ื‘ื• ืื ื—ื ื• ืœื•ืžื“ื™ื ืืช ื”ื‘ื™ื•ืœื•ื’ื™ื” ืžื•ืืฅ.
16:29
we can actually design these things to be
346
989000
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœืชื›ื ืŸ ืืช ื”ื“ื‘ืจื™ื ื”ืืœื” ืœื”ื™ื•ืช
16:31
thousands of times more capable.
347
991000
2000
ื‘ืขืœื™ ื™ื›ื•ืœืช ื‘ืืœืคื™ ื“ืจื’ื•ืช ื™ื•ืชืจ.
16:33
An analysis of this respirocyte, designed by Rob Freitas,
348
993000
4000
ืื ืœื™ื–ื” ืฉืœ ื”ืจืกืคื™ืจื•ืกื™ื˜ ื”ื–ื”, ืฉืชื•ื›ื ืŸ ืขืœ ื™ื“ื™ ืจื•ื‘ ืคืจื™ื˜ืก,
16:38
indicates if you replace 10 percent of your red blood cells with these robotic versions,
349
998000
2000
ืžืจืื” ืฉืื ืชื—ืœื™ืคื• 10 ืื—ื•ื– ืฉืœ ืชืื™ ื”ื“ื ื”ืื“ื•ืžื™ื ืฉืœื›ื ืขื ื”ื’ืจืกืื•ืช ื”ืจื•ื‘ื•ื˜ื™ื•ืช ื”ืืœื”,
16:41
you could do an Olympic sprint for 15 minutes without taking a breath.
350
1001000
3000
ืชื•ื›ืœื• ืœืขืฉื•ืช ืกืคืจื™ื ื˜ ืื•ืœื™ืžืคื™ ืœืžืฉืš 15 ื“ืงื•ืช ื‘ืœื™ ืœืงื—ืช ื ืฉื™ืžื”.
16:44
You could sit at the bottom of your pool for four hours --
351
1004000
3000
ืชื•ื›ืœื• ืœืฉื‘ืช ื‘ืชื—ืชื™ืช ื”ื‘ืจื™ื›ื” ืœืžืฉืš ืืจื‘ืข ืฉืขื•ืช --
16:47
so, "Honey, I'm in the pool," will take on a whole new meaning.
352
1007000
4000
ืื–, "ื—ืžื•ื“ื”, ืื ื™ ื‘ื‘ืจื™ื›ื”," ื™ืงื‘ืœ ืžืฉืžืขื•ืช ืื—ืจืช ืœื—ืœื•ื˜ื™ืŸ.
16:51
It will be interesting to see what we do in our Olympic trials.
353
1011000
2000
ื–ื” ื™ื”ื™ื” ืžืขื ื™ื™ืŸ ืœืจืื•ืช ืžื” ื ืขืฉื” ื‘ืžื‘ื—ื ื™ื ื”ืื•ืœื™ืžืคื™ื™ื.
16:53
Presumably we'll ban them,
354
1013000
2000
ื›ื ืจืื” ื ืืกื•ืจ ืื•ืชื,
16:55
but then we'll have the specter of teenagers in their high schools gyms
355
1015000
2000
ืื‘ืœ ืื– ื™ื”ื™ื• ืœื ื• ืจื•ื—ื•ืช ืจืคืื™ื ืฉืœ ืชืœืžื™ื“ื™ ืชื™ื›ื•ืŸ ื‘ืื•ืœืžื•ืช ื”ื”ืชืขืžืœื•ืช
16:57
routinely out-performing the Olympic athletes.
356
1017000
3000
ื‘ืื•ืคืŸ ืขื™ืงื‘ื™ ืžื‘ื™ืื™ื ืชื•ืฆืื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ืžืกืคื•ืจื˜ืื™ื ืื•ืœื™ืžืคื™ื™ื.
17:02
Freitas has a design for a robotic white blood cell.
357
1022000
3000
ืœืคืจื™ื˜ืก ื™ืฉ ืชื›ื ื•ืŸ ืœื›ื“ื•ืจื™ืช ื“ื ืœื‘ื ื” ืจื•ื‘ื•ื˜ื™ืช.
17:05
These are 2020-circa scenarios,
358
1025000
4000
ืืœื” ืฆืคื•ื™ื™ื ื‘ืื–ื•ืจ 2020,
17:09
but they're not as futuristic as it may sound.
359
1029000
2000
ืื‘ืœ ื”ื ืœื ืขืชื™ื“ื ื™ื™ื ื›ืžื• ืฉื–ื” ื ืฉืžืข.
17:11
There are four major conferences on building blood cell-sized devices;
360
1031000
4000
ื™ืฉ ืืจื‘ืข ื•ืขื™ื“ื•ืช ืฉื•ื ื•ืช ืœื‘ื ื™ื™ืช ืžื›ืฉื™ืจื™ื ื‘ื’ื•ื“ืœ ืฉืœ ื›ื“ื•ืจื™ืช ื“ื,
17:15
there are many experiments in animals.
361
1035000
2000
ื™ืฉ ื”ืจื‘ื” ื ื™ืกื•ื™ื™ื ื‘ื—ื™ื•ืช.
17:17
There's actually one going into human trial,
362
1037000
2000
ื™ืฉ ืื—ื“ ืฉืขื•ื‘ืจ ืœืžืขืฉื” ืœื ื™ืกื•ื™ ื‘ื‘ื ื™ ืื“ื,
17:19
so this is feasible technology.
363
1039000
3000
ืื– ื–ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ื”ืฉื’ ื™ื“.
17:23
If we come back to our exponential growth of computing,
364
1043000
2000
ืื ื ื—ื–ื•ืจ ืœืฆืžื™ื—ื” ื”ืืงืกืคื•ื ื ืฆื™ืืœื™ืช ืฉืœ ื”ืžื—ืฉื•ื‘,
17:25
1,000 dollars of computing is now somewhere between an insect and a mouse brain.
365
1045000
3000
ืืœืฃ ื“ื•ืœืจ ืฉืœ ืžื—ืฉื•ื‘ ืฉื•ื•ื” ืขืจืš ื”ื™ื•ื ื‘ื™ืŸ ื—ืจืง ืœืžื•ื— ืฉืœ ืขื›ื‘ืจ.
17:28
It will intersect human intelligence
366
1048000
3000
ื–ื” ื™ืฆื˜ืœื‘ ืขื ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืื ื•ืฉื™ืช
17:31
in terms of capacity in the 2020s,
367
1051000
3000
ื‘ืžื•ื ื—ื™ื ืฉืœ ืชืคื•ืงื” ื‘ืฉื ื•ืช ื”20,
17:34
but that'll be the hardware side of the equation.
368
1054000
2000
ืื‘ืœ ื–ื” ื™ื”ื™ื” ื‘ืฆื“ ื”ื—ื•ืžืจื” ืฉืœ ื”ืžืฉื•ื•ืื”.
17:36
Where will we get the software?
369
1056000
2000
ืžืื™ืคื” ื ื‘ื™ื ืืช ื”ืชื•ื›ื ื”?
17:38
Well, it turns out we can see inside the human brain,
370
1058000
2000
ื•ื‘ื›ืŸ, ืžืกืชื‘ืจ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืœืชื•ืš ืžื•ื—ื•ืช ืื ื•ืฉื™ื™ื,
17:40
and in fact not surprisingly,
371
1060000
2000
ื•ืœืžืขืฉื” ื‘ืื•ืคืŸ ืœื ืžืคืชื™ืข,
17:42
the spatial and temporal resolution of brain scanning is doubling every year.
372
1062000
4000
ื™ื›ื•ืœื•ืช ืกืจื™ืงืช ื”ืžื•ื— ืžื•ื›ืคืœื•ืช ื›ืœ ืฉื ื”.
17:46
And with the new generation of scanning tools,
373
1066000
2000
ื•ืขื ื›ืœื™ ื”ืกืจื™ืงื” ืžื”ื“ื•ืจ ื”ื—ื“ืฉ,
17:48
for the first time we can actually see
374
1068000
2000
ืœืจืืฉื•ื ื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช
17:50
individual inter-neural fibers
375
1070000
2000
ืกื™ื‘ื™ื ื‘ื™ืŸ ื ื™ื•ืจื•ื ื™ื
17:52
and see them processing and signaling in real time --
376
1072000
3000
ื•ืœืจืื•ืช ืื•ืชื ืžืขื‘ื“ื™ื ื•ืžืชืงืฉืจื™ื ื‘ื–ืžืŸ ืืžืช
17:55
but then the question is, OK, we can get this data now,
377
1075000
2000
-- ื•ืื– ื”ืฉืืœื” ื”ื™ื, ืื•ืงื™ื™, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื‘ืœ ืืช ื”ืžื™ื“ืข ื”ื–ื” ืขื›ืฉื™ื•,
17:57
but can we understand it?
378
1077000
2000
ืื‘ืœ ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ืŸ ืื•ืชื•?
17:59
Doug Hofstadter wonders, well, maybe our intelligence
379
1079000
3000
ื“ืื’ ื”ื•ืคืกื˜ื˜ืจ ืชื•ื”ื”, ื•ื‘ื›ืŸ, ืื•ืœื™ ื”ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืฉืœื ื•
18:02
just isn't great enough to understand our intelligence,
380
1082000
3000
ืœื ืžืกืคื™ืง ื’ื‘ื•ื”ื” ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืฉืœื ื•,
18:05
and if we were smarter, well, then our brains would be that much more complicated,
381
1085000
3000
ื•ืื ื”ื™ื™ื ื• ื—ื›ืžื™ื ื™ื•ืชืจ, ื•ื‘ื›ืŸ, ืื– ื”ืžื•ื—ื•ืช ืฉืœื ื• ื”ื™ื• ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ื™ื,
18:08
and we'd never catch up to it.
382
1088000
2000
ื•ืœืขื•ืœื ืœื ื ื’ื™ืข ืœื–ื”.
18:11
It turns out that we can understand it.
383
1091000
3000
ืžืกืชื‘ืจ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ืŸ ืืช ื–ื”.
18:14
This is a block diagram of
384
1094000
3000
ื–ื• ื“ื™ืื’ืจืžืช ื‘ืœื•ืงื™ื ืฉืœ
18:17
a model and simulation of the human auditory cortex
385
1097000
4000
ืžื•ื“ืœ ื•ื”ื“ืžื™ื” ืฉืœ ืื–ื•ืจ ื”ืฉืžืข ื”ืื ื•ืฉื™
18:21
that actually works quite well --
386
1101000
2000
ืฉื‘ืืžืช ืขื•ื‘ื“ ื“ื™ ื˜ื•ื‘ --
18:23
in applying psychoacoustic tests, gets very similar results to human auditory perception.
387
1103000
2000
ื‘ืžืขื‘ืจ ืžื‘ื—ื ื™ื ืคืกื™ื›ื•ืืงื•ืกื˜ื™ื™ื, ืžืงื‘ืœ ืชื•ืฆืื•ืช ืฉื™ ืฉื•ืžื•ืช ืœืชืคื™ืกื” ื”ืฉืžื™ืขืชื™ืช ื”ืื ื•ืฉื™ืช.
18:27
There's another simulation of the cerebellum --
388
1107000
3000
ื”ื ื” ืขื•ื“ ืกื™ืžื•ืœืฆื™ื” ืฉืœ ื”ืฆืจื‘ืœื•ื --
18:30
that's more than half the neurons in the brain --
389
1110000
2000
ื–ื” ื™ื•ืชืจ ืžื—ืฆื™ ืžื”ื ื™ื•ืจื•ื ื™ื ื‘ืžื•ื— --
18:32
again, works very similarly to human skill formation.
390
1112000
3000
ืฉื•ื‘, ืขื•ื‘ื“ ื“ื•ืžื” ืžืื•ื“ ืœืจื›ื™ืฉืช ื™ื›ื•ืœื•ืช ืื ื•ืฉื™ื•ืช.
18:36
This is at an early stage, but you can show
391
1116000
3000
ื–ื” ืฉืœื‘ ืžื•ืงื“ื, ืื‘ืœ ืืคืฉืจ ืœื”ืจืื•ืช
18:39
with the exponential growth of the amount of information about the brain
392
1119000
3000
ืขื ื”ืฆืžื™ื—ื” ื”ืืงืกืคื•ื ื ืฆื™ืืœื™ืช ืฉืœ ื›ืžื•ืช ื”ืžื™ื“ืข ืขืœ ื”ืžื•ื—
18:42
and the exponential improvement
393
1122000
2000
ื•ื”ืฉื™ืคื•ืจ ื”ืืงืกืคื•ื ื ืฆื™ืืœื™
18:44
in the resolution of brain scanning,
394
1124000
2000
ื‘ืจื–ื•ืœื•ืฆื™ืช ืกืจื™ืงืช ื”ืžื•ื—,
18:46
we will succeed in reverse-engineering the human brain
395
1126000
3000
ื ืฆืœื™ื— ืœื”ื ื“ืก ืื—ื•ืจื” ืืช ื”ืžื•ื— ื”ืื ื•ืฉื™
18:49
by the 2020s.
396
1129000
2000
ืขื“ ืฉื ื•ืช ื”20.
18:51
We've already had very good models and simulation of about 15 regions
397
1131000
3000
ื›ื‘ืจ ื”ื™ื• ืœื ื• ืžื•ื“ืœื™ื ื•ืกื™ืžื•ืœืฆื™ื•ืช ื“ื™ ื˜ื•ื‘ื•ืช ืฉืœ 15 ืื–ื•ืจื™ื
18:54
out of the several hundred.
398
1134000
3000
ืžืชื•ืš ื›ืžื” ืžืื•ืช.
18:57
All of this is driving
399
1137000
2000
ื›ืœ ื–ื” ื“ื•ื—ืฃ --
18:59
exponentially growing economic progress.
400
1139000
2000
ืงื“ืžื” ื›ืœื›ืœื™ืช ืฉืฆื•ืžื—ืช ืืงืกืคื•ื ื ืฆื™ืืœื™ืช.
19:01
We've had productivity go from 30 dollars to 150 dollars per hour
401
1141000
3000
ื”ืคืจื•ื“ื•ืงื˜ื™ื‘ื™ื•ืช ืขืœืชื” ืž30 ืœ150 ื“ื•ืœืจ ืœืฉืขื”
19:06
of labor in the last 50 years.
402
1146000
2000
ื‘ืขื‘ื•ื“ื” ื‘50 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
19:08
E-commerce has been growing exponentially. It's now a trillion dollars.
403
1148000
3000
ืžืกื—ืจ ืืœืงื˜ืจื•ื ื™ ื’ื•ื“ืœ ืืงืกืคื•ื ื ืฆื™ืืœื™ืช. ื”ื•ื ืขื›ืฉื™ื• ื˜ืจื™ืœื™ื•ืŸ ื“ื•ืœืจ.
19:11
You might wonder, well, wasn't there a boom and a bust?
404
1151000
2000
ืื•ืœื™ ืชืชื”ื•, ื•ื‘ื›ืŸ, ืœื ื”ื™ื” ื‘ื•ื ื•ืื– ืจื™ืกื•ืง?
19:13
That was strictly a capital-markets phenomena.
405
1153000
2000
ื–ื• ื”ื™ืชื” ืชื•ืคืขื” ืฉืžื™ื•ื—ืกืช ืœืฉื•ืง ื”ื”ื•ืŸ ื‘ืœื‘ื“.
19:15
Wall Street noticed that this was a revolutionary technology, which it was,
406
1155000
4000
ื•ื•ืœ ืกื˜ืจื™ื˜ ื”ื‘ื—ื™ื ื• ืฉื–ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ืžื”ืคื›ื ื™ืช, ืžื” ืฉื”ื™ื ื”ื™ืชื”,
19:19
but then six months later, when it hadn't revolutionized all business models,
407
1159000
3000
ืื‘ืœ ืื– ืฉื™ืฉื” ื—ื•ื“ืฉื™ื ืžืื•ื—ืจ ื™ื•ืชืจ, ื›ืฉื”ื™ื ืœื ื”ืคื›ื” ืœืžื•ื“ืœ ืขืกืงื™,
19:22
they figured, well, that was wrong,
408
1162000
2000
ื”ื ืืžืจื•, ื•ื‘ื›ืŸ, ื–ื• ื”ื™ืชื” ื˜ืขื•ืช,
19:24
and then we had this bust.
409
1164000
2000
ื•ืื– ื”ื™ื” ืœื ื• ืืช ื”ืจื™ืกื•ืง ื”ื–ื”.
19:27
All right, this is a technology
410
1167000
2000
ื‘ืกื“ืจ, ื–ื• ื˜ื›ื ื•ืœื•ื’ื™ื”
19:29
that we put together using some of the technologies we're involved in.
411
1169000
3000
ืฉื—ื™ื‘ืจื ื• ื‘ืขื–ืจืช ื—ืœืง ืžื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉืื ื—ื ื• ืžืขื•ืจื‘ื™ื ื‘ื”ืŸ.
19:32
This will be a routine feature in a cell phone.
412
1172000
4000
ื–ื• ืชื”ื™ื” ืชื›ื•ื ื” ืฉื›ื™ื—ื” ื‘ื˜ืœืคื•ื ื™ื ืกืœื•ืœืจื™ื™ื.
19:36
It would be able to translate from one language to another.
413
1176000
2000
ื”ื™ื ืชื”ื™ื” ืžืกื•ื’ืœืช ืœืชืจื’ื ืžืฉืคื” ืื—ืช ืœืื—ืจืช.
19:48
So let me just end with a couple of scenarios.
414
1188000
2000
ืื– ืชื ื• ืœื™ ืจืง ืœืกื™ื™ื ืขื ืฉื ื™ ืชืจื—ื™ืฉื™ื.
19:50
By 2010 computers will disappear.
415
1190000
3000
ืขื“ 2010 ืžื—ืฉื‘ื™ื ื™ืขืœืžื•.
19:54
They'll be so small, they'll be embedded in our clothing, in our environment.
416
1194000
3000
ื”ื ื™ื”ื™ื• ื›ืœ ื›ืš ืงื˜ื ื™ื, ืฉื”ื ื™ื•ื˜ืžืขื• ื‘ื‘ื’ื“ื™ื ืฉืœื ื•, ื‘ืกื‘ื™ื‘ื” ืฉืœื ื•.
19:57
Images will be written directly to our retina,
417
1197000
2000
ืชืžื•ื ื•ืช ื™ื›ืชื‘ื• ื™ืฉื™ืจื•ืช ืœืจืฉืชื™ืช ืฉืœื ื•,
19:59
providing full-immersion virtual reality,
418
1199000
2000
ื•ื™ืกืคืงื• ื—ื•ื•ื™ื” ืขื•ื˜ืคืช ืฉืœ ืžืฆื™ืื•ืช ืžื“ื•ืžื”,
20:01
augmented real reality. We'll be interacting with virtual personalities.
419
1201000
3000
ืžืฆื™ืื•ืช ืืžื™ืชื™ืช ืžืจื•ื‘ื“ืช. ืื ื—ื ื• ื ืชืงืฉืจ ืขื ื™ืฉื•ื™ื•ืช ื•ื™ืจื˜ื•ืืœื™ื•ืช.
20:05
But if we go to 2029, we really have the full maturity of these trends,
420
1205000
4000
ืื‘ืœ ืื ื ืจื—ื™ืง ืœ2029, ื‘ืืžืช ื ื’ื™ืข ืœื”ื‘ืฉืœื” ื”ืžืœืื” ืฉืœ ื”ื˜ืจื ื“ื™ื ื”ืืœื”,
20:09
and you have to appreciate how many turns of the screw
421
1209000
3000
ื•ืืชื ืฆืจื™ื›ื™ื ืœื”ืขืจื™ืš ื›ืžื” ืกื™ื‘ื•ื‘ื™ื ืฉืœ ื”ื‘ื•ืจื’
20:12
in terms of generations of technology, which are getting faster and faster, we'll have at that point.
422
1212000
4000
ื‘ืžื•ื ื—ื™ื ืฉืœ ื“ื•ืจื•ืช ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืžื’ื™ืขื™ื ืžื”ืจ ื™ื•ืชืจ ื•ื™ื•ืชืจ ื™ื”ื™ื• ืœื ื• ื‘ื ืงื•ื“ื” ื”ื”ื™ื.
20:16
I mean, we will have two-to-the-25th-power
423
1216000
2000
ืื ื™ ืžืชื›ื•ื•ืŸ, ื™ื”ื™ื” ืœื ื• 2 ื‘ื—ื–ืงืช 25
20:18
greater price performance, capacity and bandwidth
424
1218000
3000
ื™ื•ืชืจ ื™ื—ืก ืขืœื•ืช ื‘ื™ืฆื•ืขื™ื, ื ืคื— ื•ืจื•ื—ื‘ ืคืก
20:21
of these technologies, which is pretty phenomenal.
425
1221000
2000
ืžื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืืœื”, ืฉื–ื” ื“ื™ ืžื“ื”ื™ื.
20:23
It'll be millions of times more powerful than it is today.
426
1223000
2000
ื–ื” ื™ื”ื™ื” ืžื™ืœื™ื•ื ื™ ืคืขืžื™ื ื™ื•ืชืจ ื—ื–ืง ืžืฉื–ื” ื”ื™ื•ื.
20:25
We'll have completed the reverse-engineering of the human brain,
427
1225000
2000
ื ืฉืœื™ื ืืช ื”ื”ื ื“ืกื” ืœืื—ื•ืจ ืฉืœ ื”ืžื•ื— ื”ืื ื•ืฉื™,
20:28
1,000 dollars of computing will be far more powerful
428
1228000
3000
ืžื—ืฉื‘ื™ื -- 1000 ื“ื•ืœืจ ืฉืœ ื›ื•ื— ืžื—ืฉื•ื‘ ื™ื”ื™ื• ื”ืจื‘ื” ื™ื•ืชืจ ื—ื–ืงื™ื
20:31
than the human brain in terms of basic raw capacity.
429
1231000
4000
ืžื”ืžื•ื— ื”ืื ื•ืฉื™ ื‘ืžื•ื ื—ื™ื ืฉืœ ืงื™ื‘ื•ืœืช ื‘ืกื™ืกื™ืช.
20:35
Computers will combine
430
1235000
2000
ืžื—ืฉื‘ื™ื ื™ืฉืœื‘ื•
20:37
the subtle pan-recognition powers
431
1237000
2000
ืืช ื›ื•ื— ื”ื”ื‘ื—ื ื”
20:39
of human intelligence with ways in which machines are already superior,
432
1239000
3000
ืฉืœ ื”ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ื”ืื ื•ืฉื™ืช ืขื ื“ืจื›ื™ื ื‘ื”ื ืžื›ื•ื ื•ืช ื›ื‘ืจ ืขืœื™ื•ื ื•ืช ื™ื•ืชืจ,
20:42
in terms of doing analytic thinking,
433
1242000
2000
ื‘ืžื•ื ื—ื™ื ืฉืœ ื—ืฉื™ื‘ื” ืื ืœื™ื˜ื™ืช,
20:44
remembering billions of facts accurately.
434
1244000
2000
ื–ื™ื›ืจื•ืŸ ืฉืœ ืžื™ืœื™ืืจื“ื™ ืขื•ื‘ื“ื•ืช ื‘ื“ื™ื•ืง.
20:46
Machines can share their knowledge very quickly.
435
1246000
2000
ืžื›ื•ื ื•ืช ื™ื›ื•ืœื•ืช ืœื—ืœื•ืง ืืช ื”ื™ื“ืข ืžืื•ื“ ืžื”ืจ.
20:48
But it's not just an alien invasion of intelligent machines.
436
1248000
5000
ืื‘ืœ ื–ื• ืœื ืจืง ืคืœื™ืฉื” ื—ื™ื™ื–ืจื™ืช ืฉืœ ืžื›ื•ื ื•ืช ื—ื›ืžื•ืช.
20:53
We are going to merge with our technology.
437
1253000
2000
ืื ื—ื ื• ืขื•ืžื“ื™ื ืœื”ืชืžื–ื’ ืขื ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
20:55
These nano-bots I mentioned
438
1255000
2000
ื”ื ื ื•ื‘ื•ื˜ื™ื ื”ืืœื” ืฉื”ื–ื›ืจืชื™
20:57
will first be used for medical and health applications:
439
1257000
4000
ื™ื”ื™ื• ื‘ืฉื™ืžื•ืฉ ืจืืฉื™ืช ืœืฆืจื›ื™ื ืจืคื•ืื™ื™ื ื•ื‘ืจื™ืื•ืชื™ื™ื:
21:01
cleaning up the environment, providing powerful fuel cells
440
1261000
3000
ืœื ืงื•ืช ืืช ื”ืกื‘ื™ื‘ื”, ืœืกืคืง ื“ืœืง -- ืชืื™ ื“ืœืง ื—ื–ืงื™ื
21:04
and widely distributed decentralized solar panels and so on in the environment.
441
1264000
5000
ื•ืคืื ืœื™ื ืกื•ืœืจื™ื™ื ืžื‘ื•ื–ืจื™ื ื•ืขื•ื“ ื‘ืกื‘ื™ื‘ื”.
21:09
But they'll also go inside our brain,
442
1269000
2000
ืื‘ืœ ื”ื ื’ื ื™ื›ื ืกื• ืœืชื•ืš ื”ืžื•ื— ืฉืœื ื•,
21:11
interact with our biological neurons.
443
1271000
2000
ื•ื™ืชืงืฉืจื• ืขื ื”ื ื™ื•ืจื•ื ื™ื ื”ื‘ื™ื•ืœื•ื’ื™ื™ื.
21:13
We've demonstrated the key principles of being able to do this.
444
1273000
3000
ื”ื“ื’ืžื ื• ืืช ื”ืขืงืจื•ื ื•ืช ื”ื‘ืกื™ืกื™ื™ื ืฉืœ ื”ื™ื›ื•ืœืช ืœืขืฉื•ืช ืืช ื–ื”.
21:16
So, for example,
445
1276000
2000
ืื–, ืœื“ื•ื’ืžื”,
21:18
full-immersion virtual reality from within the nervous system,
446
1278000
2000
ืžืฆื™ืื•ืช ืžื“ื•ืžื” ืขื•ื˜ืคืช ืžืชื•ืš ืžืขืจื›ืช ื”ืขืฆื‘ื™ื,
21:20
the nano-bots shut down the signals coming from your real senses,
447
1280000
3000
ื”ื ื ื•ื‘ื•ื˜ื™ื ื™ื›ื‘ื• ืืช ื”ืกื™ื’ื ืœ ื”ืžื’ื™ืข ืžื—ื•ืฉื™ ื”ืจืื™ื” ืฉืœื ื•,
21:23
replace them with the signals that your brain would be receiving
448
1283000
3000
ื•ื™ื—ืœื™ืคื• ืื•ืชื ืขื ืกื™ื’ื ืœื™ื ืฉื”ืžื•ื— ืฉืœื›ื ื”ื™ื” ืžืงื‘ืœ
21:26
if you were in the virtual environment,
449
1286000
2000
ืื ื”ื™ื™ืชื ื‘ืชื•ืš ื”ืกื‘ื™ื‘ื” ื”ื•ื™ืจื˜ื•ืืœื™ืช,
21:28
and then it'll feel like you're in that virtual environment.
450
1288000
2000
ื•ืื– ื–ื” ื™ืจื’ื™ืฉ ื›ืื™ืœื• ืืชื ื‘ืชื•ืš ื”ืกื‘ื™ื‘ื” ื”ื•ื™ืจื˜ื•ืืœื™ืช.
21:30
You can go there with other people, have any kind of experience
451
1290000
2000
ืชื•ื›ืœื• ืœืœื›ืช ืœืฉื ืขื ืขื•ื“ ืื ืฉื™ื, ื•ืœืขื‘ื•ืจ ื›ืœ ืกื•ื’ ืฉืœ ื—ื•ื•ื™ื”
21:32
with anyone involving all of the senses.
452
1292000
2000
ื•ืœืขืจื‘ ืืช ื›ืœ ื”ื—ื•ืฉื™ื.
21:35
"Experience beamers," I call them, will put their whole flow of sensory experiences
453
1295000
3000
"ืžืงืจื ื™ ื—ื•ื•ื™ื”" ืื ื™ ืงื•ืจื ืœื”ื, ื™ืฉื™ืžื• ืืช ื›ืœ ื–ืจื ื”ื—ื•ื•ื™ื” ื”ื—ื•ืฉื™ืช ืฉืœื”ื
21:38
in the neurological correlates of their emotions out on the Internet.
454
1298000
3000
ื‘ืžืงื‘ื™ืœื” ื”ื ื™ื•ืจื•ืœื•ื’ื™ืช ืœืจื’ืฉื•ืช ืฉืœื”ื ื‘ืื™ื ื˜ืจื ื˜.
21:41
You can plug in and experience what it's like to be someone else.
455
1301000
3000
ืชื•ื›ืœื• ืœื”ืชื—ื‘ืจ ื•ืœื—ื•ื•ืช ืžื” ื–ื” ืœื”ื™ื•ืช ืžื™ืฉื”ื• ืื—ืจ.
21:44
But most importantly,
456
1304000
2000
ืื‘ืœ ื—ืฉื•ื‘ ื™ื•ืชืจ,
21:46
it'll be a tremendous expansion
457
1306000
2000
ื–ื• ืชื”ื™ื” ื”ืจื—ื‘ื” ืขืฆื•ืžื”
21:48
of human intelligence through this direct merger with our technology,
458
1308000
4000
ืฉืœ ื”ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ื”ืื ื•ืฉื™ืช ื“ืจืš ื”ืžื™ื–ื•ื’ ื”ื™ืฉื™ืจ ื”ื–ื” ืขื ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœื ื•.
21:52
which in some sense we're doing already.
459
1312000
2000
ืฉื‘ืžื•ื‘ืŸ ืžืกื•ื™ื™ื ืื ื—ื ื• ื›ื‘ืจ ืขื•ืฉื™ื.
21:54
We routinely do intellectual feats
460
1314000
2000
ืื ื—ื ื• ืขื•ืฉื™ื ื‘ืฆื•ืจื” ืฉื’ืจืชื™ืช ืžืืžืฆื™ื ืื™ื ื˜ืœืงื˜ื•ืืœื™ื™ื
21:56
that would be impossible without our technology.
461
1316000
2000
ืฉื”ื™ื• ื‘ืœืชื™ ืืคืฉืจื™ื™ื ื‘ืœื™ ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
21:58
Human life expectancy is expanding. It was 37 in 1800,
462
1318000
3000
ืื•ืจืš ื”ื—ื™ื™ื ื”ืื ื•ืฉื™ ืžืชืืจืš. ื”ื•ื ื”ื™ื” 37 ื‘1800,
22:01
and with this sort of biotechnology, nano-technology revolutions,
463
1321000
5000
ื•ืขื ืกื•ื’ ื›ื–ื” ืฉืœ ืžื”ืคื›ื•ืช ื‘ื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื”, ื•ื ื ื• ื˜ื›ื ื•ืœื•ื’ื™ื”,
22:06
this will move up very rapidly
464
1326000
2000
ื–ื” ื™ืขืœื” ื‘ืžื”ื™ืจื•ืช ื’ื“ื•ืœื”
22:08
in the years ahead.
465
1328000
2000
ื‘ืฉื ื™ื ื”ื‘ืื•ืช.
22:10
My main message is that progress in technology
466
1330000
4000
ื”ืžืกืจ ื”ืขื™ืงืจื™ ืฉืœื™ ื”ื•ื ืฉื”ืงื™ื“ืžื” ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”
22:14
is exponential, not linear.
467
1334000
3000
ื”ื™ื ืืงืกืคื•ื ื ืฆื™ืืœื™ืช, ืœื ืœื™ื ืืจื™ืช.
22:17
Many -- even scientists -- assume a linear model,
468
1337000
4000
ืจื‘ื™ื -- ืืคื™ืœื• ืžื“ืขื ื™ื -- ืžื ื™ื—ื™ื ืžื•ื“ืœ ืœื™ื ืืจื™,
22:21
so they'll say, "Oh, it'll be hundreds of years
469
1341000
2000
ืื– ื”ื ื™ื’ื™ื“ื•, "ืื•, ื–ื” ื™ืงื— ืžืื•ืช ืฉื ื™ื
22:23
before we have self-replicating nano-technology assembly
470
1343000
3000
ืขื“ ืฉืชื”ื™ื” ืœื ื• ื ื ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืžืฉื›ืคืœืช ืืช ืขืฆืžื”
22:26
or artificial intelligence."
471
1346000
2000
ืื• ืื™ื ื˜ื™ืœื™ื’ื ืฆื™ื” ืžืœืื›ื•ืชื™ืช."
22:28
If you really look at the power of exponential growth,
472
1348000
3000
ืื ืชื‘ื™ื˜ื• ื‘ืืžืช ืขืœ ื”ื›ื•ื— ืฉืœ ืฆืžื™ื—ื” ืืงืกืคื•ื ื ืฆื™ืืœื™ืช,
22:31
you'll see that these things are pretty soon at hand.
473
1351000
3000
ืชืจืื• ืฉื”ื“ื‘ืจื™ื ื”ืืœื” ืžืื•ื“ ืงืจื•ื‘ื™ื.
22:34
And information technology is increasingly encompassing
474
1354000
3000
ื•ื˜ื›ื ื•ืœื•ื’ื™ืช ื”ืžื™ื“ืข ืžื›ื™ืœื” ื™ื•ืชืจ ื•ื™ื•ืชืจ
22:37
all of our lives, from our music to our manufacturing
475
1357000
4000
ืืช ื›ืœ ื—ื™ื™ื ื•, ืžื”ืžื•ื–ื™ืงื” ืœื™ืฆื•ืจ
22:41
to our biology to our energy to materials.
476
1361000
4000
ืœื‘ื™ื•ืœื•ื’ื™ื” ืฉืœื ื• ืœืื ืจื’ื™ื” ื•ืœื—ื•ืžืจื™ื.
22:45
We'll be able to manufacture almost anything we need in the 2020s,
477
1365000
3000
ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœื™ื™ืฆืจ ื›ืžืขื˜ ื›ืœ ื“ื‘ืจ ืฉื ืฆื˜ืจืš ื‘ืฉื ื•ืช ื”20,
22:48
from information, in very inexpensive raw materials,
478
1368000
2000
ืžืžื™ื“ืข, ืžื—ื•ืžืจื™ ื’ืœื ืžืื•ื“ ื–ื•ืœื™ื,
22:50
using nano-technology.
479
1370000
3000
ืขืœ ื™ื“ื™ ื ื ื• ื˜ื›ื ื•ืœื•ื’ื™ื”.
22:53
These are very powerful technologies.
480
1373000
2000
ืืœื” ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื–ืงื•ืช ืžืื•ื“.
22:55
They both empower our promise and our peril.
481
1375000
4000
ื”ืŸ ื’ื ืžืืคืฉืจื•ืช ืืช ื”ืขืชื™ื“ ืฉืœื ื• ื•ื’ื ืžืกื›ื ื•ืช ืื•ืชื•.
22:59
So we have to have the will to apply them to the right problems.
482
1379000
3000
ืื– ืฆืจื™ืš ืœื”ื™ื•ืช ืœื ื• ื”ืจืฆื•ืŸ ืœื™ื™ืฉื ืื•ืชืŸ ื‘ืžืงื•ืžื•ืช ื”ื ื›ื•ื ื™ื.
23:02
Thank you very much.
483
1382000
1000
ืชื•ื“ื” ืจื‘ื” ืœื›ื
23:03
(Applause)
484
1383000
1000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7