The accelerating power of technology | Ray Kurzweil

309,710 views ใƒป 2007-01-12

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Taeyong Kim ๊ฒ€ํ† : HyeRyeong Son
00:25
Well, it's great to be here.
0
25000
1000
๋„ค, ์—ฌ๊ธฐ์— ์˜ค๊ฒŒ ๋˜์„œ ๋ฐ˜๊ฐ‘์Šต๋‹ˆ๋‹ค.
00:26
We've heard a lot about the promise of technology, and the peril.
1
26000
5000
์šฐ๋ฆฌ๋Š” ๊ธฐ์ˆ ์˜ ์•ฝ์†๊ณผ ์œ„ํ—˜์— ๋Œ€ํ•ด์„œ ๋งŽ์ด ๋“ค์–ด ์™”์Šต๋‹ˆ๋‹ค.
00:31
I've been quite interested in both.
2
31000
2000
์ €๋Š” ์–‘์ชฝ ๋ชจ๋‘์— ๋งค์šฐ ๊ด€์‹ฌ์ด ๋งŽ์•˜์Šต๋‹ˆ๋‹ค.
00:33
If we could convert 0.03 percent
3
33000
4000
๋งŒ์•ฝ์— ์šฐ๋ฆฌ๊ฐ€ ์ง€๊ตฌ์— ๋„๋‹ฌํ•˜๋Š” ํ–‡๋น›์˜
00:37
of the sunlight that falls on the earth into energy,
4
37000
2000
0.03 ํผ์„ผํŠธ๋งŒ ์—๋„ˆ์ง€๋กœ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์œผ๋ฉด,
00:39
we could meet all of our projected needs for 2030.
5
39000
5000
2030๋…„๊นŒ์ง€ ์˜ˆ์ƒ๋˜๋Š” ๋ชจ๋“  ์—๋„ˆ์ง€ ์ˆ˜์š”๋ฅผ ๊ฐ๋‹นํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:44
We can't do that today because solar panels are heavy,
6
44000
3000
์ง€๊ธˆ์€ ๊ทธ๊ฒŒ ๋ถˆ๊ฐ€๋Šฅํ•œ๋ฐ์š”,
00:47
expensive and very inefficient.
7
47000
2000
ํƒœ์–‘ ์ „์ง€ํŒ์ด ๋ฌด๊ฒ๊ณ  ๋น„์‹ธ๊ณ  ๋น„ํšจ์œจ์ ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
00:49
There are nano-engineered designs,
8
49000
3000
๋‚˜๋…ธ ๊ณตํ•™์„ ์ด์šฉํ•œ ๋ฐฉ์‹๋„ ์žˆ๋Š”๋ฐ์š”,
00:52
which at least have been analyzed theoretically,
9
52000
2000
์ตœ์†Œํ•œ ์ด๋ก ์ ์œผ๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ์—์„œ๋Š”,โ™ช
00:54
that show the potential to be very lightweight,
10
54000
2000
์•„์ฃผ ๊ฐ€๋ณ๊ณ , ์ €๋ ดํ•˜๋ฉฐ ํšจ์œจ์ ์œผ๋กœ
00:56
very inexpensive, very efficient,
11
56000
2000
๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
00:58
and we'd be able to actually provide all of our energy needs in this renewable way.
12
58000
4000
๊ทธ๋ฆฌ๊ณ , ์ด ์žฌ์ƒ ๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์œผ๋กœ ๋ชจ๋“  ์šฐ๋ฆฌ์˜ ์—๋„ˆ์ง€ ์ˆ˜์š”๋ฅผ ์ถฉ์กฑ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
01:02
Nano-engineered fuel cells
13
62000
2000
๋‚˜๋…ธ ๊ณตํ•™์œผ๋กœ ๋งŒ๋“  ์—ฐ๋ฃŒ ์ „์ง€๋Š”
01:04
could provide the energy where it's needed.
14
64000
3000
์—๋„ˆ์ง€๊ฐ€ ํ•„์š”ํ•œ ๊ณณ์— ์ด๋ฅผ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:07
That's a key trend, which is decentralization,
15
67000
2000
๊ทธ๊ฒŒ ์ฃผ์š” ํŠธ๋ Œ๋“œ์ž…๋‹ˆ๋‹ค. ๋ถ„์‚ฐํ™”์ฃ .
01:09
moving from centralized nuclear power plants and
16
69000
3000
ํ•œ๊ณณ์— ์ง‘์ค‘๋œ ์›์ž๋ ฅ ๋ฐœ์ „์†Œ๋‚˜
01:12
liquid natural gas tankers
17
72000
2000
์•กํ™” ์ฒœ์—ฐ๊ฐ€์Šค ์šด๋ฐ˜ ์ฐจ๋Ÿ‰์—์„œ
01:14
to decentralized resources that are environmentally more friendly,
18
74000
4000
๋ถ„์‚ฐ๋œ ์ž์›์„ ์ด์šฉํ•˜๋ฉด, ๋ณด๋‹ค ํ™˜๊ฒฝ ์นœํ™”์ ์ด๊ณ 
01:18
a lot more efficient
19
78000
3000
ํ›จ์”ฌ ๋” ํšจ์œจ์ ์ด๋ฉฐ
01:21
and capable and safe from disruption.
20
81000
4000
๋” ์œ ์šฉํ•˜๊ณ  ํŒŒ๊ดด๋กœ๋ถ€ํ„ฐ ์•ˆ์ „ํ•ฉ๋‹ˆ๋‹ค.
01:25
Bono spoke very eloquently,
21
85000
2000
๋ณด๋…ธ๊ฐ€ ์ž˜ ๋งํ•ด์คฌ๋“ฏ์ด,
01:27
that we have the tools, for the first time,
22
87000
4000
์‚ฌ์ƒ ์ฒ˜์Œ์œผ๋กœ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ–๊ฒŒ๋œ ์ด ๋„๊ตฌ๋ฅผ ์ด์šฉํ•ด์„œ,
01:31
to address age-old problems of disease and poverty.
23
91000
4000
์ˆ˜์„ธ๋Œ€์— ๊ฑธ์ณ์˜จ ์งˆ๋ณ‘๊ณผ ๊ฐ€๋‚œ์˜ ๋ฌธ์ œ์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:35
Most regions of the world are moving in that direction.
24
95000
4000
์„ธ๊ณ„์˜ ๋Œ€๋ถ€๋ถ„์˜ ์ง€์—ญ์ด ๊ทธ ๋ฐฉํ–ฅ์œผ๋กœ ์›€์ง์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
01:39
In 1990, in East Asia and the Pacific region,
25
99000
4000
1990๋…„์—๋Š”, ๋™์•„์‹œ์•„์™€ ํƒœํ‰์–‘ ์ง€์—ญ์—,
01:43
there were 500 million people living in poverty --
26
103000
2000
5์–ต๋ช… ์ •๋„์˜ ์‚ฌ๋žŒ๋“ค์ด ๊ฐ€๋‚œ์†์— ์‚ด๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
01:45
that number now is under 200 million.
27
105000
3000
์ง€๊ธˆ์€ ๊ทธ ์ˆซ์ž๊ฐ€ 2์–ต๋ช… ๋ฏธ๋งŒ์ž…๋‹ˆ๋‹ค.โ‚ฌ
01:48
The World Bank projects by 2011, it will be under 20 million,
28
108000
3000
์„ธ๊ณ„ ์€ํ–‰์˜ ์˜ˆ์ธก์— ๋”ฐ๋ฅด๋ฉด, 2011๋…„๊นŒ์ง€ 2์ฒœ๋งŒ๋ช…์œผ๋กœ ์ค„์–ด ๋“ ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
01:51
which is a reduction of 95 percent.
29
111000
3000
์ด๋Š” 95ํผ์„ผํŠธ๊ฐ€ ๊ฐ์†Œํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:54
I did enjoy Bono's comment
30
114000
3000
๋ณด๋…ธ๊ฐ€ ํ•œ ์ด์•ผ๊ธฐ ๊ฐ€์šด๋ฐ
01:57
linking Haight-Ashbury to Silicon Valley.
31
117000
4000
ํ•˜์ดํŠธ-์• ์‰ฌ๋ฒ„๋ฆฌ์™€ ์‹ค๋ฆฌ์ฝ˜ ๋ฐธ๋ฆฌ๋ฅผ ๋น—๋Œ„ ์ด์•ผ๊ธฐ๊ฐ€ ์žฌ๋ฏธ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
02:01
Being from the Massachusetts high-tech community myself,
32
121000
3000
์ œ ์Šค์Šค๋กœ๊ฐ€ ๋ฉ”์‚ฌ์ถ”์„ธ์ธ ์˜ ํ•˜์ดํ…Œํฌ ์—…๊ณ„ ์ถœ์‹ ์œผ๋กœ์„œ,
02:04
I'd point out that we were hippies also in the 1960s,
33
124000
4000
์šฐ๋ฆฌ ์—ญ์‹œ๋„ 1960๋…„๋Œ€์—๋Š” ํžˆํ”ผ์˜€๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
02:09
although we hung around Harvard Square.
34
129000
3000
๋น„๋ก ํ•˜๋ฐ”๋“œ ์Šคํ€˜์–ด ๊ทผ์ฒ˜์˜€์Šต๋‹ˆ๋‹ค๋งŒ.
02:12
But we do have the potential to overcome disease and poverty,
35
132000
5000
ํ•˜์—ฌํŠผ, ์šฐ๋ฆฌ๋Š” ์งˆ๋ณ‘๊ณผ ๊ฐ€๋‚œ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
02:17
and I'm going to talk about those issues, if we have the will.
36
137000
3000
์šฐ๋ฆฌ์˜ ์˜์ง€๊ฐ€ ์žˆ๋‹ค๋ฉด ๋ง์ด์ฃ . ๊ทธ์— ๊ด€ํ•ด์„œ ์ด์•ผ๊ธฐ๋ฅผ ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
02:20
Kevin Kelly talked about the acceleration of technology.
37
140000
3000
์ผ€๋นˆ ์ผˆ๋ฆฌ๊ฐ€ ๊ธฐ์ˆ ์˜ ๊ฐ€์†์— ๋Œ€ํ•ด์„œ ์ด์•ผ๊ธฐ ํ–ˆ์Šต๋‹ˆ๋‹ค.
02:23
That's been a strong interest of mine,
38
143000
3000
๊ทธ๊ฑด ์ œ ์ฃผ์š” ๊ด€์‹ฌ์‚ฌ์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
02:26
and a theme that I've developed for some 30 years.
39
146000
3000
๊ทธ๋ฆฌ๊ณ  ์ œ๊ฐ€ ์•ฝ 30๋…„๊ฐ„ ๋ฐœ์ „์‹œ์ผœ์˜จ ์ฃผ์ œ์ž…๋‹ˆ๋‹ค.
02:29
I realized that my technologies had to make sense when I finished a project.
40
149000
5000
์ œ๊ฐ€ ๊นจ๋‹ฌ์€ ๊ฒƒ์€, ํ”„๋กœ์ ํŠธ๊ฐ€ ๋๋‚ฌ์„๋•Œ ์ œ ๊ธฐ์ˆ ์ด ์˜๋ฏธ๊ฐ€ ์žˆ์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฑฐ์˜€์Šต๋‹ˆ๋‹ค.
02:34
That invariably, the world was a different place
41
154000
3000
๊ทธ๋ฆฌ๊ณ , ํ‹€๋ฆผ์—†์ด, ์ œ๊ฐ€ ๊ธฐ์ˆ ์„ ์†Œ๊ฐœํ–ˆ์„๋•Œ,
02:37
when I would introduce a technology.
42
157000
2000
์„ธ์ƒ์€ ๋‹ค๋ฅธ ๊ณณ์ผ ๊ฑฐ๋ผ๋Š” ๊ฒƒ์ด์ฃ .
02:39
And, I noticed that most inventions fail,
43
159000
2000
๋˜ํ•œ๊ฐ€์ง€๋Š”, ๋Œ€๋ถ€๋ถ„์˜ ๋ฐœ๋ช…์ด ์‹คํŒจํ•˜๋Š” ๊ฒƒ์€,
02:41
not because the R&D department can't get it to work --
44
161000
3000
์—ฐ๊ตฌ ๊ฐœ๋ฐœ ๋ถ€์„œ์—์„œ ์ด๋ฅผ ์‹คํ˜„์‹œํ‚ฌ ์ˆ˜๊ฐ€ ์—†์–ด์„œ๊ฐ€ ์•„๋‹ˆ๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:44
if you look at most business plans, they will actually succeed
45
164000
3000
๊ฑฐ์˜ ๋Œ€๋ถ€๋ถ„์˜ ๋น„์ง€๋‹ˆ์Šค ๊ณ„ํš์„ ๋ณด๋ฉด,
02:47
if given the opportunity to build what they say they're going to build --
46
167000
4000
์ฒ˜์Œ ๊ณ„ํš๋Œ€๋กœ ๋งŒ๋“ค ๊ธฐํšŒ๊ฐ€ ์ฃผ์–ด์ง„๋‹ค๋ฉด, ์„ฑ๊ณตํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:51
and 90 percent of those projects or more will fail, because the timing is wrong --
47
171000
3000
90ํผ์„ผํŠธ๋‚˜ ๊ทธ ์ด์ƒ์˜ ํ”„๋กœ์ ํŠธ๊ฐ€ ์‹คํŒจํ•˜๋Š” ๊ฒƒ์€ ํƒ€์ด๋ฐ์ด ํ‹€๋ ธ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค
02:54
not all the enabling factors will be in place when they're needed.
48
174000
3000
์‹คํ˜„์— ํ•„์š”ํ•œ ๋ชจ๋“  ์š”์†Œ๋“ค์ด ์ ์ ˆํ•œ ์‹œ์ ์— ์ค€๋น„๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
02:57
So I began to be an ardent student of technology trends,
49
177000
4000
๊ทธ๋ž˜์„œ ์ €๋Š” ๊ธฐ์ˆ ์˜ ํŠธ๋ Œ๋“œ์— ๋Œ€ํ•ด์„œ ์—ด์‹ฌํžˆ ๊ณต๋ถ€ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค,
03:01
and track where technology would be at different points in time,
50
181000
3000
๊ธฐ์ˆ ์ด ์‹œ๊ฐ„์— ๊ฑธ์ณ์„œ ์–ด๋–ค ์œ„์น˜์— ์žˆ๊ฒŒ ๋˜๋Š”์ง€๋ฅผ ์ถ”์ ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:04
and began to build the mathematical models of that.
51
184000
3000
๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ์œ„ํ•œ ์ˆ˜ํ•™์ ์ธ ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:07
It's kind of taken on a life of its own.
52
187000
2000
์ด ์ž‘์—…์€ ๊ทธ ์Šค์Šค๋กœ ์ƒ๋ช…์„ ๊ฐ–๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:09
I've got a group of 10 people that work with me to gather data
53
189000
3000
10๋ช…์˜ ์‚ฌ๋žŒ๋“ค์ด ์ €์™€ ํ•จ๊ป˜ ์ผํ•˜๋ฉด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์œผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:12
on key measures of technology in many different areas, and we build models.
54
192000
5000
์—ฌ๋Ÿฌ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ์ฒ™๋„๋“ค์„ ๋ชจ์•„์„œ ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:17
And you'll hear people say, well, we can't predict the future.
55
197000
3000
์‚ฌ๋žŒ๋“ค์ด ๋งํ•˜๊ธฐ๋ฅผ, ๋ฏธ๋ž˜๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜๋Š” ์—†๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
03:20
And if you ask me,
56
200000
2000
๋งŒ์•ฝ์— ์ €ํ•œํ…Œ ๋ฌผ์–ด๋ณด์‹œ๋Š” ์งˆ๋ฌธ์ด,
03:22
will the price of Google be higher or lower than it is today three years from now,
57
202000
3000
๊ตฌ๊ธ€์˜ ์ฃผ๊ฐ€๊ฐ€ 3๋…„ํ›„์— ์˜ค๋ฅผ๊ฒƒ ๊ฐ™๋ƒ ๋‚ด๋ฆด๊ฒƒ ๊ฐ™๋ƒ๋ผ๋Š” ๊ฒƒ์ด๋ผ๋ฉด,
03:25
that's very hard to say.
58
205000
2000
๊ทธ๊ฑด ๋‹ตํ•˜๊ธฐ ๋งค์šฐ ํž˜๋“ค ๊ฒ๋‹ˆ๋‹ค.
03:27
Will WiMax CDMA G3
59
207000
3000
ํ˜น์€ ์™€์ด๋งฅ์Šค CDMA G3๊ฐ€
03:30
be the wireless standard three years from now? That's hard to say.
60
210000
2000
3๋…„ํ›„์— ๋ฌด์„  ํ‘œ์ค€์ด ๋ ๊ฑฐ๋ƒ๊ณ  ๋ฌป๋Š”๋‹ค๋ฉด, ์˜ˆ์ธกํ•˜๊ธฐ ํž˜๋“ค๊ฒ ์ฃ .
03:32
But if you ask me, what will it cost
61
212000
2000
ํ•˜์ง€๋งŒ ๋งŒ์•ฝ์— ์งˆ๋ฌธ์˜ ์ข…๋ฅ˜๊ฐ€
03:34
for one MIPS of computing in 2010,
62
214000
3000
2010๋…„์— 1 MIPS์˜ ์ปดํ“จํŒ…์˜ ๊ฐ€๊ฒฉ์ด ์–ผ๋งˆ๋‚˜ ํ• ๊ฒƒ์ธ์ง€,
03:37
or the cost to sequence a base pair of DNA in 2012,
63
217000
3000
ํ˜น์€ 2012๋…„์— DNA์˜ ๊ธฐ๋ณธ ์Œ์˜ ์—ผ๊ธฐ์„œ์—ด์„ ๊ฒฐ์ •ํ•˜๋Š”๋ฐ ๋“œ๋Š” ๊ฐ€๊ฒฉ์ด๋‚˜,
03:40
or the cost of sending a megabyte of data wirelessly in 2014,
64
220000
4000
ํ˜น์€ 2014๋…„์— ๋ฌด์„ ์œผ๋กœ 1 ๋ฉ”๊ฐ€๋ฐ”์ดํŠธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๋‚ด๋Š”๋ฐ ๋“œ๋Š” ๊ฐ€๊ฒฉ์ด๋ผ๋ฉด,
03:44
it turns out that those are very predictable.
65
224000
3000
๊ทธ๋Ÿฐ ๊ฒƒ๋“ค์€ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:47
There are remarkably smooth exponential curves
66
227000
2000
๊ฐ€๊ฒฉ๋Œ€ ์„ฑ๋Šฅ์ด๋‚˜ ์šฉ๋Ÿ‰ ํ˜น์€ ๋Œ€์—ญํญ์„ ๊ฒฐ์ •ํ•˜๋Š”
03:49
that govern price performance, capacity, bandwidth.
67
229000
3000
์•„์ฃผ ๋ถ€๋“œ๋Ÿฌ์šด ์ง€์ˆ˜ ๊ณก์„ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
03:52
And I'm going to show you a small sample of this,
68
232000
2000
์ œ๊ฐ€ ์ด์ œ ์ด์— ๊ด€ํ•œ ์ž‘์€ ์ƒ˜ํ”Œ์„ ํ•˜๋‚˜ ๋ณด์—ฌ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
03:54
but there's really a theoretical reason
69
234000
2000
์™œ ๊ธฐ์ˆ ์˜ ์ง„๋ณด๊ฐ€ ์ง€์ˆ˜์ ์ธ ๋ฐฉ์‹์ธ์ง€์— ๋Œ€ํ•œ
03:56
why technology develops in an exponential fashion.
70
236000
5000
์ด๋ก ์ ์ธ ์„ค๋ช…์ด ์žˆ์Šต๋‹ˆ๋‹ค.
04:01
And a lot of people, when they think about the future, think about it linearly.
71
241000
2000
๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด, ๋ฏธ๋ž˜์— ๋Œ€ํ•ด ์ƒ๊ฐํ• ๋•Œ ์„ ํ˜•์ ์œผ๋กœ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
04:03
They think they're going to continue
72
243000
2000
์ฆ‰, ์‚ฌ๋žŒ๋“ค์ด ์ง€์†์ ์œผ๋กœ
04:05
to develop a problem
73
245000
2000
๋ฌธ์ œ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด๊ฑฐ๋‚˜
04:07
or address a problem using today's tools,
74
247000
3000
ํ˜น์€ ์˜ค๋Š˜๋‚ ์˜ ๋„๊ตฌ๋ฅผ ์ด์šฉํ•ด์„œ ๋ฌธ์ œ์— ๋Œ€์ฒ˜ํ•˜๊ณ ,
04:10
at today's pace of progress,
75
250000
2000
์˜ค๋Š˜๋‚ ์˜ ์†๋„๋กœ ์ง„์ „์ด ์ด๋ฃจ์–ด ์งˆ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ•˜์ฃ .
04:12
and fail to take into consideration this exponential growth.
76
252000
4000
๊ทธ๋Ÿฌ๋ฉด์„œ ์ด ์ง€์ˆ˜์ ์ธ ์„ฑ์žฅ์„ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
04:16
The Genome Project was a controversial project in 1990.
77
256000
3000
1990๋…„์— ๊ฒŒ๋†ˆ ํ”„๋กœ์ ํŠธ์— ๋Œ€ํ•ด์„œ ๋…ผ๋ž€์ด ๋งŽ์•˜์Šต๋‹ˆ๋‹ค.
04:19
We had our best Ph.D. students,
78
259000
2000
์šฐ๋ฆฌ๋Š” ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ๋ฐ•์‚ฌ ๊ณผ์ • ํ•™์ƒ๋“ค์ด ์žˆ์—ˆ๊ณ ,
04:21
our most advanced equipment around the world,
79
261000
2000
์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ์ง„๋ณด๋œ ์žฅ๋น„๋“ค์ด ์žˆ์—ˆ์ง€๋งŒ,
04:23
we got 1/10,000th of the project done,
80
263000
2000
์ „์ฒด ํ”„๋กœ์ ํŠธ์˜ ๋งŒ๋ถ„์˜ 1๋ฐ–์— ๋๋‚ด์ง€ ๋ชปํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค,
04:25
so how're we going to get this done in 15 years?
81
265000
2000
๊ทธ๋Ÿฌ๋‹ˆ, ์–ด๋–ป๊ฒŒ ์ด ์ผ์„ 15๋…„๋งŒ์— ๋๋‚ผ ์ˆ˜ ์žˆ๊ฒ ์Šต๋‹ˆ๊นŒ?
04:27
And 10 years into the project,
82
267000
3000
๊ทธ๋ฆฌ๊ณ , 10๋…„๊ฐ„ ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ํ–ˆ๋Š”๋ฐ,
04:31
the skeptics were still going strong -- says, "You're two-thirds through this project,
83
271000
2000
ํšŒ์˜๋ก ์€ ์—ฌ์ „ํžˆ ๊ฐ•ํ–ˆ์Šต๋‹ˆ๋‹ค - "ํ”„๋กœ์ ํŠธ ๊ธฐ๊ฐ„์˜ 3๋ถ„์˜ 2๊ฐ€ ์ง€๋‚ฌ๋Š”๋ฐ,
04:33
and you've managed to only sequence
84
273000
2000
๋‹น์‹ ๋“ค์€, ์ด์ œ ๊ฒจ์šฐ ์ „์ฒด ๊ฒŒ๋†ˆ์˜
04:35
a very tiny percentage of the whole genome."
85
275000
3000
์•„์ฃผ ๊ทนํžˆ ์ผ๋ถ€๋ถ„์˜ ์—ผ๊ธฐ ์„œ์—ด๋ฐ–์— ๋ฐํ˜€๋‚ด์ง€ ๋ชปํ–ˆ๋‹ค."
04:38
But it's the nature of exponential growth
86
278000
2000
ํ•˜์ง€๋งŒ, ๊ทธ๊ฑด ์ง€์ˆ˜ ์„ฑ์žฅ์˜ ํŠน์ง•์ž…๋‹ˆ๋‹ค.
04:40
that once it reaches the knee of the curve, it explodes.
87
280000
2000
์ฆ‰, ํ•œ๋ฒˆ ์ปค๋ธŒ์˜ ๋ณ€๊ณก์ ์— ์ด๋ฅด๋ฉด, ํญ๋ฐœ์ ์œผ๋กœ ์„ฑ์žฅํ•˜์ฃ .
04:42
Most of the project was done in the last
88
282000
2000
ํ”„๋กœ์ ํŠธ์˜ ๊ฑฐ์˜ ๋Œ€๋ถ€๋ถ„์€,
04:44
few years of the project.
89
284000
2000
ํ”„๋กœ์ ํŠธ ๊ธฐ๊ฐ„์˜ ๋งˆ์ง€๋ง‰ ๋ช‡๋…„๊ฐ„์— ์ด๋ฃจ์–ด ์กŒ์Šต๋‹ˆ๋‹ค.
04:46
It took us 15 years to sequence HIV --
90
286000
2000
HIV ์—ผ๊ธฐ์„œ์—ด์„ ๋ฐํžˆ๋Š”๋ฐ 15๋…„ ๊ฑธ๋ ธ๋Š”๋ฐ,
04:48
we sequenced SARS in 31 days.
91
288000
2000
SARS๋Š” 31์ผ๋งŒ์— ํ•ด ๋ƒˆ์Šต๋‹ˆ๋‹ค.
04:50
So we are gaining the potential to overcome these problems.
92
290000
4000
๋”ฐ๋ผ์„œ, ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ๋ฌธ์ œ๋“ค์„ ๊ทน๋ณตํ•  ๊ฐ€๋Šฅ์„ฑ์„ ์–ป๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
04:54
I'm going to show you just a few examples
93
294000
2000
์ด์ œ ๋ช‡๊ฐ€์ง€ ์˜ˆ๋ฅผ ๋ณด์—ฌ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
04:56
of how pervasive this phenomena is.
94
296000
3000
์ด ํ˜„์ƒ์ด ์–ผ๋งˆ๋‚˜ ํ”ํžˆ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€์š”.
04:59
The actual paradigm-shift rate, the rate of adopting new ideas,
95
299000
4000
ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜์˜ ํ™•๋ฅ ์ด๋‚˜, ์ƒˆ๋กœ์šด ์•„์ด๋””์–ด์˜ ์ฑ„์šฉ๋ฅ ์€,
05:03
is doubling every decade, according to our models.
96
303000
3000
์šฐ๋ฆฌ ๋ชจ๋ธ์— ๋”ฐ๋ฅด๋ฉฐ, ๋งค 10๋…„๋งˆ๋‹ค ๋‘๋ฐฐ๋กœ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
05:06
These are all logarithmic graphs,
97
306000
3000
์ด๋“ค์€ ๋ชจ๋‘ ๋กœ๊ทธ ํ•จ์ˆ˜ ๊ทธ๋ž˜ํ”„์ž…๋‹ˆ๋‹ค.
05:09
so as you go up the levels it represents, generally multiplying by factor of 10 or 100.
98
309000
3000
๋”ฐ๋ผ์„œ, ๋ ˆ๋ฒจ์ด ํ•˜๋‚˜์”ฉ ์˜ฌ๋ผ๊ฐˆ์ˆ˜๋ก 10๋ฐฐ์—์„œ 100๋ฐฐ์”ฉ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
05:12
It took us half a century to adopt the telephone,
99
312000
3000
์ „ํ™”๊ธฐ๊ฐ€ ๋ณด๊ธ‰๋˜๋Š”๋ฐ 50๋…„ ๊ฑธ๋ ธ์Šต๋‹ˆ๋‹ค.
05:15
the first virtual-reality technology.
100
315000
3000
์ตœ์ดˆ์˜ ๊ฐ€์ƒ ํ˜„์‹ค ๊ธฐ์ˆ ์ด์—ˆ์ฃ .
05:18
Cell phones were adopted in about eight years.
101
318000
2000
ํœด๋Œ€ํฐ์˜ ๊ฒฝ์šฐ ์•ฝ 8๋…„ ๊ฑธ๋ ธ์Šต๋‹ˆ๋‹ค.
05:20
If you put different communication technologies
102
320000
3000
๋‹ค๋ฅธ ํ†ต์‹  ๊ธฐ์ˆ ์„
05:23
on this logarithmic graph,
103
323000
2000
์ด ๋กœ๊ทธ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๋ฉด,
05:25
television, radio, telephone
104
325000
2000
ํ…”๋ ˆ๋น„์ „์ด๋‚˜ ๋ผ๋””์˜ค, ์ „ํ™” ๋“ฑ์€
05:27
were adopted in decades.
105
327000
2000
๋ช‡์‹ญ๋…„์— ๊ฑธ์ณ ๋„์ž…๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
05:29
Recent technologies -- like the PC, the web, cell phones --
106
329000
3000
PC๋‚˜ ์›น, ํœด๋Œ€ํฐ ๋“ฑ์˜ ์ตœ์‹  ๊ธฐ์ˆ ์€,
05:32
were under a decade.
107
332000
2000
10๋…„์ด ๊ฑธ๋ฆฌ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
05:34
Now this is an interesting chart,
108
334000
2000
์ž, ์ด์ œ ์ด๊ฑด ํฅ๋ฏธ๋กœ์šด ์ฐจํŠธ์ž…๋‹ˆ๋‹ค.
05:36
and this really gets at the fundamental reason why
109
336000
2000
๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๋ณด๋ฉด ์ง„ํ™”์˜๊ณผ์ •์— ๋ณธ์งˆ์ ์ธ ์ด์œ ๋ฅผ ์•Œ์ˆ˜์žˆ์ฃ ,
05:38
an evolutionary process -- and both biology and technology are evolutionary processes --
110
338000
4000
์ฆ‰ ์ƒ๋ฌผํ•™์ด๋‚˜ ๊ธฐ์ˆ  ๋ถ„์•ผ ๋ชจ๋‘ ์ง„ํ™” ๊ณผ์ •์ด๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋Š”๋ฐ,
05:42
accelerate.
111
342000
2000
๊ฐ€์†๋˜๋Š” ํŠน์„ฑ์ธ์ง€ ์•Œ ์ˆ˜ ์žˆ์ฃ .
05:44
They work through interaction -- they create a capability,
112
344000
3000
์ด๋“ค์€ ์ƒํ˜ธ ์ž‘์šฉ์„ ํ•ฉ๋‹ˆ๋‹ค - ์–ด๋–ค ๊ธฐ๋Šฅ์„ ๋งŒ๋“ค์ฃ ,
05:47
and then it uses that capability to bring on the next stage.
113
347000
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ธฐ๋Šฅ์„ ์ด์šฉํ•ด์„œ ๋‹ค์Œ ๋‹จ๊ณ„๋กœ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
05:50
So the first step in biological evolution,
114
350000
3000
๋”ฐ๋ผ์„œ, ์ƒ๋ฌผํ•™์ ์ธ ์ง„ํ™”์—์„œ ์ฒซ ๋‹จ๊ณ„๋Š”,
05:53
the evolution of DNA -- actually it was RNA came first --
115
353000
2000
DNA์˜ ์ง„ํ™”์ธ๋ฐ - ์‚ฌ์‹ค์€ RNA๊ฐ€ ๋จผ์ €์ž…๋‹ˆ๋‹ค๋งŒ,
05:55
took billions of years,
116
355000
2000
์ด๋Š” ๋ช‡์‹ญ์–ต๋…„์ด ๊ฑธ๋ ธ์Šต๋‹ˆ๋‹ค,
05:57
but then evolution used that information-processing backbone
117
357000
3000
ํ•˜์ง€๋งŒ ์ง„ํ™”์˜ ๊ณผ์ •์€ ๊ทธ ์ •๋ณด ์ฒ˜๋ฆฌ ๋ฐฐ๊ฒฝ์„ ๋ฐ”ํƒ•์œผ๋กœ
06:00
to bring on the next stage.
118
360000
2000
๋‹ค์Œ ๋‹จ๊ณ„๋กœ ์ง„ํ–‰ํ•˜์ฃ .
06:02
So the Cambrian Explosion, when all the body plans of the animals were evolved,
119
362000
3000
๋”ฐ๋ผ์„œ, ๋ชจ๋“  ๋™๋ฌผ๋“ค์˜ ์‹ ์ฒด ๊ตฌ์กฐ๊ฐ€ ์ง„ํ™”ํ–ˆ๋˜ ์บ„๋ธŒ๋ฆฌ์•ˆ์˜ ๋Œ€ํญ๋ฐœ ์‹œ๊ธฐ๋Š”,
06:05
took only 10 million years. It was 200 times faster.
120
365000
4000
์ฒœ๋งŒ๋…„ ๋ฐ–์— ๊ฑธ๋ฆฌ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. 200๋ฐฐ๊ฐ€ ๋นจ๋ผ์ง„ ๊ฒ๋‹ˆ๋‹ค.
06:09
And then evolution used those body plans
121
369000
2000
๊ทธ๋ฆฌ๊ณ , ์ง„ํ™”๋Š” ๋‹ค์‹œ ๊ทธ ์‹ ์ฒด ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•ด์„œ,
06:11
to evolve higher cognitive functions,
122
371000
2000
๋ณด๋‹ค ์ธ์ง€ ๊ธฐ๋Šฅ์ด ๊ฐ•ํ™”๋˜๋„๋ก ์ง„ํ™”ํ•ฉ๋‹ˆ๋‹ค.
06:13
and biological evolution kept accelerating.
123
373000
2000
๊ทธ๋ ‡๊ฒŒ ์ƒ๋ฌผํ•™์  ์ง„ํ™”๋Š” ๊ณ„์† ์†๋„๊ฐ€ ๋นจ๋ผ์ง€์ฃ .
06:15
It's an inherent nature of an evolutionary process.
124
375000
3000
์ด๊ฒƒ์€ ์ง„ํ™” ๊ณผ์ •์˜ ๊ณ ์œ ์˜ ํŠน์„ฑ์ž…๋‹ˆ๋‹ค.
06:18
So Homo sapiens, the first technology-creating species,
125
378000
3000
๋”ฐ๋ผ์„œ ์ตœ์ดˆ๋กœ ๊ธฐ์ˆ ์„ ๋งŒ๋“œ๋Š” ์ข…์ธ ํ˜ธ๋ชจ ์‚ฌํ”ผ์—”์Šค๋Š”,
06:21
the species that combined a cognitive function
126
381000
2000
์ธ์ง€์ ์ธ ๊ธฐ๋Šฅ์„
06:23
with an opposable appendage --
127
383000
2000
๋งˆ์ฃผ๋Œˆ ์ˆ˜ ์žˆ๋Š” ์ˆ˜์กฑ๊ณผ ๊ฒฐํ•ฉํ•ด์„œ,
06:25
and by the way, chimpanzees don't really have a very good opposable thumb --
128
385000
4000
์ฐธ, ๊ทธ๋ฆฌ๊ณ , ์นจํŒฌ์ง€๋Š” ๋งˆ์ฃผ๋ณด๊ฒŒ ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์šด ์—„์ง€๋ฅผ ๊ฐ–๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒ,
06:29
so we could actually manipulate our environment with a power grip
129
389000
2000
์ธ๋ฅ˜๋Š” ๊ฝ‰ ์ฅ˜์ˆ˜ ์žˆ๋Š” ์†๊ณผ ์ •๋ฐ€ํ•œ ์šด๋™ ๋Šฅ๋ ฅ์œผ๋กœ,
06:31
and fine motor coordination,
130
391000
2000
์šฐ๋ฆฌ ์ฃผ๋ณ€์˜ ํ™˜๊ฒฝ์„ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๊ฒ๋‹ˆ๋‹ค.
06:33
and use our mental models to actually change the world
131
393000
2000
๋˜ํ•œ ์šฐ๋ฆฌ์˜ ์ •์‹  ๋ชจ๋ธ์„ ์ด์šฉํ•ด์„œ ์„ธ์ƒ์„ ๋ฐ”๊พธ๊ณ ,
06:35
and bring on technology.
132
395000
2000
๊ธฐ์ˆ ์„ ํƒ„์ƒ ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.
06:37
But anyway, the evolution of our species took hundreds of thousands of years,
133
397000
3000
ํ•˜์ง€๋งŒ ์–ด์จŒ๊ฑฐ๋‚˜, ์šฐ๋ฆฌ ์ธ๋ฅ˜์˜ ์ง„ํ™”๋Š” ์ˆ˜์‹ญ๋งŒ๋…„์ด ๊ฑธ๋ ธ๊ณ ,
06:40
and then working through interaction,
134
400000
2000
์ƒํ˜ธ ์ž‘์šฉ์„ ํ†ตํ•ด์„œ,
06:42
evolution used, essentially,
135
402000
2000
์ง„ํ™”๋Š” ๊ฒฐ๊ตญ์€,
06:44
the technology-creating species to bring on the next stage,
136
404000
3000
๊ธฐ์ˆ ์„ ๋งŒ๋“œ๋Š” ์ข…์„ ์ด์šฉํ•ด ๋‹ค์Œ ๋‹จ๊ณ„๋กœ ์ง„๋ณดํ–ˆ๊ณ ,
06:47
which were the first steps in technological evolution.
137
407000
3000
๊ทธ๊ฒŒ ๊ธฐ์ˆ ์  ์ง„ํ™”์˜ ์ฒซ ๋‹จ๊ณ„๊ฐ€ ๋œ๊ฑฐ์ฃ .
06:50
And the first step took tens of thousands of years --
138
410000
3000
๊ทธ๋ฆฌ๊ณ  ์ฒซ ๋‹จ๊ณ„๋Š” ์ˆ˜๋งŒ๋…„์ด ๊ฑธ๋ ธ๋Š”๋ฐ,ยฉ
06:53
stone tools, fire, the wheel -- kept accelerating.
139
413000
3000
๋Œ๋กœ ๋งŒ๋“  ๋„๊ตฌ๋‚˜, ๋ถˆ, ๋ฐ”ํ€ด ๋“ฑ์˜ ๊ธฐ์ˆ  ์ง„ํ™”๊ฐ€ ๊ณ„์† ๋นจ๋ผ์กŒ์ฃ .
06:56
We always used then the latest generation of technology
140
416000
2000
์šฐ๋ฆฌ๋Š” ํ•ญ์ƒ, ๋‹น์‹œ์— ๊ฐ€์žฅ ์ตœ์‹ ์˜ ๊ธฐ์ˆ ์„ ์ด์šฉํ•ด์„œ
06:58
to create the next generation.
141
418000
2000
๋‹ค์Œ ์„ธ๋Œ€์˜ ๊ธฐ์ˆ ์„ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค.
07:00
Printing press took a century to be adopted;
142
420000
2000
์ธ์‡„ ์ถœํŒ๋ฌผ์€ ๋ฐฑ๋…„์— ๊ฑธ์ณ ๋ณด๊ธ‰ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
07:02
the first computers were designed pen-on-paper -- now we use computers.
143
422000
4000
์ฒซ ์ปดํ“จํ„ฐ๋Š” ์ข…์ด์™€ ํŽœ์„ ์ด์šฉํ•ด ์„ค๊ณ„ํ–ˆ์ง€๋งŒ ์ง€๊ธˆ์€ ์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค.
07:06
And we've had a continual acceleration of this process.
144
426000
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์ด ๊ณผ์ •์„ ์ง€์†์ ์œผ๋กœ ๊ฐ€์†ํ™”ํ•ฉ๋‹ˆ๋‹ค.
07:09
Now by the way, if you look at this on a linear graph, it looks like everything has just happened,
145
429000
3000
์ด์ œ ์ด ์„ ํ˜• ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด๋ฉด, ๋งˆ์น˜ ๋ชจ๋“  ๊ฒƒ์ด ๋ฐฉ๊ธˆ ์ผ์–ด๋‚œ ์ผ์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค.
07:12
but some observer says, "Well, Kurzweil just put points on this graph
146
432000
6000
ํ•˜์ง€๋งŒ ์–ด๋–ค ๋ถ„์€ ๋งํ•˜๊ธธ, "์Œ, ์ปค์ธ ์›จ์ผ์”จ๊ฐ€ ๊ทธ๋ž˜ํ”„ ์œ„์˜
07:18
that fall on that straight line."
147
438000
2000
์ผ์ง์„ ์ƒ์— ์ ๋“ค์„ ์ฐ์—ˆ๊ตฌ๋‚˜"๋ผ๊ณ  ํ•˜๊ฒ ์ฃ .
07:20
So, I took 15 different lists from key thinkers,
148
440000
3000
๊ทธ๋ž˜์„œ ์ €๋ช…ํ•œ ๋ถ„๋“ค๋กœ๋ถ€ํ„ฐ 15๊ฐœ์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค,
07:23
like the Encyclopedia Britannica, the Museum of Natural History, Carl Sagan's Cosmic Calendar
149
443000
4000
๋ธŒ๋ฆฌํƒœ๋‹ˆ์ปค ๋ฐฑ๊ณผ์‚ฌ์ „์ด๋‚˜, ์ž์—ฐ์‚ฌ ๋ฐ•๋ฌผ๊ณผ, ์นผ ์„ธ์ด๊ฑด์˜ ์šฐ์ฃผ ๋‹ฌ๋ ฅ (Cosmic Calendar) ๋“ฑ์„ ์ฐธ๊ณ ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:27
on the same -- and these people were not trying to make my point;
150
447000
3000
์ด ๋ถ„๋“ค์€ ํŠน๋ณ„ํžˆ ์ œ ๋…ผ๋ฆฌ๋ฅผ ๋„์™€์ฃผ๊ธฐ ์œ„ํ•ด ์ผํ•œ ๋ถ„๋“ค์€ ์•„๋‹ˆ์ฃ .
07:30
these were just lists in reference works,
151
450000
2000
์ด๊ฒƒ์€ ๋‹จ์ˆœํžˆ ์ฐธ์กฐํ•œ ์ž‘์—…๋“ค์˜ ๋ฆฌ์ŠคํŠธ์ผ ๋ฟ์ž…๋‹ˆ๋‹ค.
07:32
and I think that's what they thought the key events were
152
452000
3000
์ œ ์ƒ๊ฐ์—๋Š”, ๊ทธ๋ถ„๋“ค๋„ ์ƒํƒœ์ ์ธ ์ง„ํ™”๋‚˜ ๊ธฐ์ˆ ์ ์ธ ์ง„ํ™”์— ๋Œ€ํ•ด,
07:35
in biological evolution and technological evolution.
153
455000
3000
์ด๋Ÿฐ ์‹์œผ๋กœ ์ƒ๊ฐ์„ ํ•œ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
07:38
And again, it forms the same straight line. You have a little bit of thickening in the line
154
458000
3000
๋‹ค์‹œ ๋ด๋„, ์—ญ์‹œ ๋งˆ์ฐฌ๊ฐ€์ง€์˜ ์ง์„ ์ด ๋ณด์ž…๋‹ˆ๋‹ค. ์„ ์ด ์•ฝ๊ฐ„์”ฉ ๊ตต์–ด์ง€๋Š”๋ฐ์š”,
07:41
because people do have disagreements, what the key points are,
155
461000
3000
์‚ฌ๋žŒ๋งˆ๋‹ค ๊ฒฌํ•ด์ฐจ์ด๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์ค‘์š”ํ•œ ํฌ์ธํŠธ๋“ค์— ๋Œ€ํ•ด์„œ์š”,
07:44
there's differences of opinion when agriculture started,
156
464000
2000
๋†๊ฒฝ์ด ์–ธ์ œ ์‹œ์ž‘ํ–ˆ๋Š”์ง€์— ๋Œ€ํ•œ ๊ฒฌํ•ด์ฐจ์ด๋„ ์žˆ๊ณ ,
07:46
or how long the Cambrian Explosion took.
157
466000
3000
์บ„๋ธŒ๋ฆฌ์•ˆ ๋Œ€ํญ๋ฐœ์ด ์–ผ๋งˆ๋‚˜ ์˜ค๋ž˜ ์ง€์†๋˜์—ˆ๋Š”์ง€์— ๋Œ€ํ•œ ๊ฒฌํ•ด์ฐจ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
07:49
But you see a very clear trend.
158
469000
2000
ํ•˜์ง€๋งŒ, ๋งค์šฐ ๋ถ„๋ช…ํ•œ ๊ฒฝํ–ฅ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:51
There's a basic, profound acceleration of this evolutionary process.
159
471000
5000
๊ธฐ๋ณธ์ ์ด๊ณ  ์˜๋ฏธ ์žˆ๋Š” ์ด ์ง„ํ™” ๊ณผ์ •์˜ ๊ฐ€์† ํ˜„์ƒ์ด ์žˆ๋Š” ๊ฑฐ์ฃ .
07:56
Information technologies double their capacity, price performance, bandwidth,
160
476000
5000
์ •๋ณด ๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ๋Š” ๊ทธ ๊ธฐ๋Šฅ๊ณผ, ๊ฐ€๊ฒฉ๋Œ€ ์„ฑ๋Šฅ ๊ทธ๋ฆฌ๊ณ  ๋Œ€์—ญํญ์ด
08:01
every year.
161
481000
2000
๋งค๋…„ ๋‘๋ฐฐ์”ฉ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
08:03
And that's a very profound explosion of exponential growth.
162
483000
4000
๊ทธ๊ฒƒ์€, ์•„์ฃผ ํ™•์‹คํ•œ ์ง€์ˆ˜ ์„ฑ์žฅ์˜ ๋ฐœํ˜„์ž…๋‹ˆ๋‹ค.
08:07
A personal experience, when I was at MIT --
163
487000
2000
์ œ๊ฐ€ MIT์— ์žˆ์„๋•Œ์˜ ๊ฐœ์ธ์ ์ธ ๊ฒฝํ—˜์ž…๋‹ˆ๋‹ค๋งŒ,
08:09
computer taking up about the size of this room,
164
489000
2000
์ปดํ“จํ„ฐ์˜ ํฌ๊ธฐ๊ฐ€ ์ด ๋ฐฉ์˜ ํฌ๊ธฐ์ •๋„ ๋์—ˆ๋Š”๋ฐ,
08:11
less powerful than the computer in your cell phone.
165
491000
5000
ํ˜„์žฌ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ „ํ™”๊ธฐ์— ์žˆ๋Š” ์ปดํ“จํ„ฐ๋ณด๋‹ค๋„ ์„ฑ๋Šฅ์ด ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
08:16
But Moore's Law, which is very often identified with this exponential growth,
166
496000
4000
ํ•˜์ง€๋งŒ, ์ด ์ง€์ˆ˜ ์„ฑ์žฅ์„ ์ž˜ ๋ณด์—ฌ์ฃผ๋Š” ๋ฌด์–ด์˜ ๋ฒ•์น™์€,
08:20
is just one example of many, because it's basically
167
500000
2000
์—ฌ๋Ÿฌ๊ฐ€์ง€ ์˜ˆ๋“ค ๊ฐ€์šด๋ฐ ํ•˜๋‚˜์ผ ๋ฟ์ž…๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด
08:22
a property of the evolutionary process of technology.
168
502000
5000
์ด๊ฒƒ์€ ๊ธฐ์ˆ  ์ง„ํ™” ๊ณผ์ •์˜ ๊ธฐ๋ณธ์ ์ธ ํŠน์ง•์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
08:27
I put 49 famous computers on this logarithmic graph --
169
507000
3000
๋งŒ์•ฝ์— ์ œ๊ฐ€ 49๊ฐœ์˜ ์œ ๋ช…ํ•œ ์ปดํ“จํ„ฐ๋ฅผ ์ด ๋กœ๊ทธ ๊ทธ๋ž˜ํ”„์— ์˜ฌ๋ ค๋†“์œผ๋ฉด,
08:30
by the way, a straight line on a logarithmic graph is exponential growth --
170
510000
4000
๊ทผ๋ฐ, ๋กœ๊ทธ ๊ทธ๋ž˜ํ”„์—์„œ ์ง์„ ์€ ์ง€์ˆ˜ ์„ฑ์žฅ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค๋งŒ,
08:34
that's another exponential.
171
514000
2000
์—ญ์‹œ ๋˜๋‹ค๋ฅธ ์ง€์ˆ˜ ํ•จ์ˆ˜๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:36
It took us three years to double our price performance of computing in 1900,
172
516000
3000
1900๋…„์—๋Š” ์ปดํ“จํŒ…์˜ ๊ฐ€๊ฒฉ ์„ฑ๋Šฅ๋น„๋ฅผ ๋‘๋ฐฐ ์˜ฌ๋ฆฌ๋Š”๋ฐ 3๋…„ ๊ฑธ๋ ธ์Šต๋‹ˆ๋‹ค.
08:39
two years in the middle; we're now doubling it every one year.
173
519000
3000
์ค‘๊ฐ„์—๋Š” 2๋…„์ด ๊ฑธ๋ ธ๊ณ , ์ง€๊ธˆ์€ ๋งค๋…„ ๋‘๋ฐฐ๋กœ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
08:43
And that's exponential growth through five different paradigms.
174
523000
3000
์ด๊ฑด, ๋‹ค์„ฏ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํ†ตํ•œ ์ง€์ˆ˜ ์„ฑ์žฅ์ž…๋‹ˆ๋‹ค.
08:46
Moore's Law was just the last part of that,
175
526000
2000
๋ฌด์–ด์˜ ๋ฒ•์น™์€ ๊ทธ ๋งˆ์ง€๋ง‰ ๋ถ€๋ถ„์ด์—ˆ์„ ๋ฟ์ž…๋‹ˆ๋‹ค.
08:48
where we were shrinking transistors on an integrated circuit,
176
528000
3000
ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์ž‘๊ฒŒ ๋งŒ๋“  IC(์ง‘์ ํšŒ๋กœ)์— ๋Œ€ํ•œ ๊ฒƒ์ด์—ˆ์ฃ .
08:51
but we had electro-mechanical calculators,
177
531000
3000
๊ทธ ์ „์—๋Š” ์ „๊ธฐ-๊ธฐ๊ณ„์ ์ธ ๊ณ„์‚ฐ๊ธฐ๊ฐ€ ์žˆ์—ˆ์ฃ .
08:54
relay-based computers that cracked the German Enigma Code,
178
534000
2000
๋…์ผ์˜ ์•”ํ˜ธ ์ฝ”๋“œ๋ฅผ ํ•ด๋…ํ•ด๋ƒˆ๋˜ ๋ฆด๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ ์ปดํ“จํ„ฐ๋“ค์ด๋‚˜,
08:56
vacuum tubes in the 1950s predicted the election of Eisenhower,
179
536000
4000
์•„์ด์  ํ•˜์›Œ์˜ ๋‹น์„ ์„ ์˜ˆ์ธกํ–ˆ๋˜ 1950๋…„๋Œ€์˜ ์ง„๊ณต๊ด€ ์ปดํ“จํ„ฐ๋“ค,
09:00
discreet transistors used in the first space flights
180
540000
3000
๊ทธ๋ฆฌ๊ณ  ์ตœ์ดˆ์˜ ์šฐ์ฃผ ๋น„ํ–‰์— ์‚ฌ์šฉ๋˜์—ˆ๋˜ ๊ฐœ๋ณ„ ํŠธ๋žœ์ง€์Šคํ„ฐ ์ปดํ“จํ„ฐ์— ์ด์–ด,
09:03
and then Moore's Law.
181
543000
2000
๋ฌด์–ด์˜ ๋ฒ•์น™์ด ๋‚˜์˜จ๊ฑฐ์ฃ .
09:05
Every time one paradigm ran out of steam,
182
545000
2000
ํ•˜๋‚˜์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์ด ๊ทธ ๋™๋ ฅ์„ ์žƒ์„๋•Œ๋งˆ๋‹ค,
09:07
another paradigm came out of left field to continue the exponential growth.
183
547000
3000
๋˜๋‹ค๋ฅธ ํŒจ๋Ÿฌ๋‹ค์ž„์ด ๋“ฑ์žฅํ•ด์„œ ์ง€์ˆ˜ ์„ฑ์žฅ์„ ์ง€์†์‹œํ‚ต๋‹ˆ๋‹ค.
09:10
They were shrinking vacuum tubes, making them smaller and smaller.
184
550000
3000
์ง„๊ณต๊ด€์„ ์ ์  ์ž‘๊ฒŒ ๋งŒ๋“ค๋‹ค๊ฐ€,
09:13
That hit a wall. They couldn't shrink them and keep the vacuum.
185
553000
3000
๋ฒฝ์— ๋ถ€๋”ชํ˜”์Šต๋‹ˆ๋‹ค. ๋” ์ž‘๊ฒŒ ๋งŒ๋“ค๋ฉด ์ง„๊ณต์„ ์œ ์ง€ํ•  ์ˆ˜ ์—†๊ฒŒ ๋œ๊ฑฐ์ฃ .
09:16
Whole different paradigm -- transistors came out of the woodwork.
186
556000
2000
์ด๋•Œ ์ „ํ˜€ ๋‹ค๋ฅธ ํŒจ๋Ÿฌ๋‹ค์ž„์ธ ํŠธ๋žœ์ง€์Šคํ„ฐ๊ฐ€ ๊ฐ‘์ž๊ธฐ ๋“ฑ์žฅํ•œ๊ฒ๋‹ˆ๋‹ค.
09:18
In fact, when we see the end of the line for a particular paradigm,
187
558000
3000
์‚ฌ์‹ค, ์–ด๋–ค ํŠน์ • ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ๋๋ถ€๋ถ„์„ ๋ณด๊ฒŒ ๋˜๋ฉด,
09:21
it creates research pressure to create the next paradigm.
188
561000
4000
๋‹ค์Œ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋งŒ๋“ค์–ด๋‚ด์•ผํ•  ์••๋ ฅ์ด ์—ฐ๊ตฌ ๋ถ„์•ผ์— ์ „ํ•ด์ง‘๋‹ˆ๋‹ค.
09:25
And because we've been predicting the end of Moore's Law
189
565000
3000
๊ทธ๋ฆฌ๊ณ , ์šฐ๋ฆฌ๊ฐ€ ๋ฌด์–ด์˜ ๋ฒ•์น™์˜ ๋์„ ์˜ˆ์ƒํ•ด์™”๊ธฐ๋•Œ๋ฌธ์—,
09:28
for quite a long time -- the first prediction said 2002, until now it says 2022.
190
568000
3000
๊ทธ๊ฒƒ๋„ ๊ฝค ์˜ค๋žซ๋™์•ˆ - ์ฒ˜์Œ์—๋Š” 2002๋…„์ด๋ผ๊ณ  ํ•˜๊ณ  ์ด์ œ๋Š” 2022๋…„์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค๋งŒ.
09:31
But by the teen years,
191
571000
3000
ํ•˜์ง€๋งŒ, 2010๋…„๋Œ€์—๋Š”,
09:34
the features of transistors will be a few atoms in width,
192
574000
3000
ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ํŠน์„ฑ์€ ๊ฒจ์šฐ ์›์ž ๋ช‡๊ฐœ์˜ ํญ๋ฐ–์— ์•ˆ๋  ๊ฒƒ์ด๊ณ ,
09:37
and we won't be able to shrink them any more.
193
577000
2000
๊ทธ ์ด์ƒ์œผ๋กœ ํฌ๊ธฐ๋ฅผ ์ค„์ผ ์ˆ˜๋Š” ์—†๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
09:39
That'll be the end of Moore's Law, but it won't be the end of
194
579000
3000
๊ทธ๊ฑด ๋ฌด์–ด์˜ ๋ฒ•์น™์˜ ๋์ด ๋˜๋Š”๊ฑฐ์ฃ , ํ•˜์ง€๋งŒ ๊ทธ๋ ‡๋‹ค๊ณ  ํ•ด์„œ
09:42
the exponential growth of computing, because chips are flat.
195
582000
2000
์ปดํ“จํŒ…์˜ ์ง€์ˆ˜ ์„ฑ์žฅ์˜ ๋์€ ์•„๋‹™๋‹ˆ๋‹ค, ์นฉ๋“ค์€ ํ‰ํ‰ํ•˜๊ฑฐ๋“ ์š”.
09:44
We live in a three-dimensional world; we might as well use the third dimension.
196
584000
3000
์šฐ๋ฆฌ๋Š” ์‚ผ์ฐจ์›์˜ ์„ธ์ƒ์—์„œ ์‚ด๊ณ  ์žˆ์œผ๋‹ˆ, ๊ทธ ์ ์„ ์ด์šฉํ•  ์ˆ˜๋„ ์žˆ๊ฒ ์ฃ .
09:47
We will go into the third dimension
197
587000
2000
์‚ผ์ฐจ์›์˜ ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ€๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค,
09:49
and there's been tremendous progress, just in the last few years,
198
589000
3000
์ง€๋‚œ ๋ช‡๋…„๊ฐ„ ์—„์ฒญ๋‚œ ์ง„์ „์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค,
09:52
of getting three-dimensional, self-organizing molecular circuits to work.
199
592000
4000
์‚ผ์ฐจ์›์˜, ์Šค์Šค๋กœ ์ •๋ ฌํ•˜๋Š” ๋ถ„์ž ํšŒ๋กœ๋ฅผ ๋™์ž‘์‹œํ‚ค๋Š” ์ž‘์—… ๋ง์ด์ฃ .
09:56
We'll have those ready well before Moore's Law runs out of steam.
200
596000
7000
๋ฌด์–ด์˜ ๋ฒ•์น™์ด ๋™๋ ฅ์„ ์žƒ๊ธฐ ํ•œ์ฐธ ์ „์— ๊ทธ ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•ด์งˆ ๊ฒ๋‹ˆ๋‹ค.
10:03
Supercomputers -- same thing.
201
603000
2000
์ˆ˜ํผ ์ปดํ“จํ„ฐ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€ ์ž…๋‹ˆ๋‹ค.
10:06
Processor performance on Intel chips,
202
606000
3000
์ธํ…” ์นฉ์˜ ํ”„๋กœ์„ธ์„œ ์„ฑ๋Šฅ์ด๋‚˜,
10:09
the average price of a transistor --
203
609000
3000
ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ํ‰๊ท  ๊ฐ€๊ฒฉ์€,
10:12
1968, you could buy one transistor for a dollar.
204
612000
3000
1968๋…„์—๋Š” 1๋ถˆ์ด๋ฉด ํŠธ๋žœ์ง€์Šคํ„ฐ ํ•˜๋‚˜๋ฅผ ์‚ด ์ˆ˜ ์žˆ์—ˆ๋Š”๋ฐ์š”,
10:15
You could buy 10 million in 2002.
205
615000
3000
2002๋…„์—๋Š” ์ฒœ๋งŒ๊ฐœ๋ฅผ ์‚ด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:18
It's pretty remarkable how smooth
206
618000
3000
์ƒ๊ฐํ•ด๋ณด๋ฉด ์ •๋ง ๋†€๋ผ์šด๋ฐ์š”
10:21
an exponential process that is.
207
621000
2000
๊ทธ ๊ณผ์ •์ด ์–ผ๋งˆ๋‚˜ ๋ถ€๋“œ๋Ÿฌ์šด ์ง€์ˆ˜ ๊ณผ์ •์ด๋ƒ๋Š” ๊ฑฐ์ฃ .
10:23
I mean, you'd think this is the result of some tabletop experiment,
208
623000
3000
์ด๊ฑด ๋งˆ์น˜ ํ…Œ์ด๋ธ”์—์„œ ์‹คํ—˜ํ•œ ๋‚ด์šฉ์˜ ๊ฒฐ๊ณผ๋ฌผ์ฒ˜๋Ÿผ ๋ณด์ธ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค,
10:27
but this is the result of worldwide chaotic behavior --
209
627000
3000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ ์„ธ๊ณ„์ ์ธ ๊ทœ๋ชจ์˜ ์นด์˜ค์Šค์  ํ–‰๋™์˜ ๊ฒฐ๊ณผ๋ฌผ์ž…๋‹ˆ๋‹ค.
10:30
countries accusing each other of dumping products,
210
630000
2000
๊ฐ ๋‚˜๋ผ๊ฐ€ ์ œํ’ˆ์„ ๋คํ•‘ํ•˜๋Š” ๊ฒƒ์„ ๋น„๋‚œํ•˜๋Š” ๊ฒƒ์—์„œ,
10:32
IPOs, bankruptcies, marketing programs.
211
632000
2000
์ฃผ์‹ ์‹œ์žฅ ์ƒ์žฅ๊ณผ ํŒŒ์‚ฐ, ๋งˆ์ผ€ํŒ… ํ”„๋กœ๊ทธ๋žจ๋“ค๊นŒ์ง€์š”.
10:34
You would think it would be a very erratic process,
212
634000
3000
์ด๋Ÿฐ ๊ฒƒ์€ ์•„์ฃผ ์‚ฐ๋งŒํ•œ ๊ณผ์ •์ผ ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ• ๊ฒ๋‹ˆ๋‹ค,
10:37
and you have a very smooth
213
637000
2000
๊ทธ๋Ÿฐ๋ฐ ์•„์ฃผ ๋ถ€๋“œ๋Ÿฌ์šด ๊ฒฐ๊ณผ๊ฐ€
10:39
outcome of this chaotic process.
214
639000
2000
์ด๋Ÿฐ ํ˜ผ๋ž€์Šค๋Ÿฐ ๊ณผ์ •์—์„œ ๋‚˜์˜จ๋‹ค๋Š” ๊ฑฐ์ฃ .
10:41
Just as we can't predict
215
641000
2000
์šฐ๋ฆฌ๊ฐ€ ์˜ˆ์ƒํ•˜๊ธฐ ํž˜๋“  ๊ฒƒ์ด,
10:43
what one molecule in a gas will do --
216
643000
2000
๊ฐ€์Šค ๋‚ด์˜ ํ•˜๋‚˜์˜ ๋ถ„์ž๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ ์ง€์ธ๋ฐ์š”,
10:45
it's hopeless to predict a single molecule --
217
645000
3000
๋‹จ ํ•œ๊ฐœ์˜ ๋ถ„์ž์˜ ํ–‰๋™์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์€ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•˜์ง€๋งŒ,
10:48
yet we can predict the properties of the whole gas,
218
648000
2000
์ „์ฒด ๊ฐ€์Šค์˜ ํŠน์„ฑ์€ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฑฐ์ฃ ,
10:50
using thermodynamics, very accurately.
219
650000
3000
์—ด์—ญํ•™์„ ํ†ตํ•ด์„œ ๋งค์šฐ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
10:53
It's the same thing here. We can't predict any particular project,
220
653000
3000
๊ฐ™์€ ์›๋ฆฌ์ž…๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ฐœ๋ณ„ ํ”„๋กœ์ ํŠธ์˜ ๋ฏธ๋ž˜๋ฅผ ์˜ˆ์ƒํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค,
10:56
but the result of this whole worldwide,
221
656000
2000
ํ•˜์ง€๋งŒ ์ „ ์„ธ๊ณ„์ ์ธ ๊ทœ๋ชจ์˜,
10:58
chaotic, unpredictable activity of competition
222
658000
5000
ํ˜ผ๋ž€์Šค๋Ÿฝ๊ณ , ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅํ•œ ๊ฒฝ์Ÿ ๊ตฌ๋„์˜ ๊ฒฐ๊ณผ๋‚˜,
11:03
and the evolutionary process of technology is very predictable.
223
663000
3000
๊ธฐ์ˆ ์˜ ์ง„ํ™” ๊ณผ์ •์€, ์˜ˆ์ธก์ด ๊ฐ€๋Šฅ ํ•ฉ๋‹ˆ๋‹ค.
11:06
And we can predict these trends far into the future.
224
666000
3000
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฐ ๊ฒฝํ–ฅ์„ ํ•œ์ฐธ ํ›„์˜ ๋ฏธ๋ž˜๊นŒ์ง€ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
11:11
Unlike Gertrude Stein's roses,
225
671000
2000
๊ฑฐํŠธ๋ฃจ๋“œ ์Šคํƒ€์ธ์˜ ์žฅ๋ฏธ์™€๋Š” ๋‹ฌ๋ฆฌ,
11:13
it's not the case that a transistor is a transistor.
226
673000
2000
ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ๊ทธ๋ƒฅ ํŠธ๋žœ์ง€์Šคํ„ฐ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
11:15
As we make them smaller and less expensive,
227
675000
2000
๊ทธ๊ฒƒ๋“ค์„ ๋” ์ž‘๊ณ  ๋” ์‹ธ๊ฒŒ ๋งŒ๋“ค์ˆ˜๋ก,
11:17
the electrons have less distance to travel.
228
677000
2000
์ „์ž๋“ค์ด ๋” ์ž‘์€ ๊ฑฐ๋ฆฌ๋ฅผ ์ด๋™ํ•˜๊ฒŒ ๋˜์ฃ .
11:19
They're faster, so you've got exponential growth in the speed of transistors,
229
679000
4000
๋”ฐ๋ผ์„œ ๋” ๋น ๋ฅด๊ฒŒ ๋˜๋‹ˆ๊นŒ, ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์†๋„์— ์ง€์ˆ˜ํ•จ์ˆ˜์  ์„ฑ์žฅ์ด ๊ฐ€๋Šฅํ•˜๊ณ ,
11:23
so the cost of a cycle of one transistor
230
683000
4000
ํ•˜๋‚˜์˜ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์‚ฌ์ดํด์˜ ๊ฐ€๊ฒฉ์ด,
11:27
has been coming down with a halving rate of 1.1 years.
231
687000
3000
1.1๋…„์˜ ๋ฐ˜๊ฐ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์ •๋„๋กœ ๋‚ด๋ ค์™”์Šต๋‹ˆ๋‹ค.
11:30
You add other forms of innovation and processor design,
232
690000
3000
๋‹ค๋ฅธ ํ˜•ํƒœ์˜ ํ˜์‹ ๊ณผ ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„๋ฅผ ์ถ”๊ฐ€ํ•˜๋ฉด,
11:33
you get a doubling of price performance of computing every one year.
233
693000
4000
๋งค๋…„ ๊ฐ€๊ฒฉ ๋Œ€๋น„ ์„ฑ๋Šฅ์ด ๋‘๋ฐฐ๋กœ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
11:37
And that's basically deflation --
234
697000
3000
๊ทธ๊ฑด ๊ธฐ๋ณธ์ ์œผ๋กœ ๋””ํ”Œ๋ ˆ์ด์…˜์ž…๋‹ˆ๋‹ค.
11:40
50 percent deflation.
235
700000
2000
50ํผ์„ผํŠธ์˜ ๊ฐ์ถ•์ด์ฃ .
11:42
And it's not just computers. I mean, it's true of DNA sequencing;
236
702000
3000
์ปดํ“จํ„ฐ๋งŒ์˜ ์ด์•ผ๊ธฐ๋Š” ์•„๋‹™๋‹ˆ๋‹ค. DNA ์—ผ๊ธฐ์„œ์—ด์„ ๋ฐํžˆ๋Š” ๊ฒƒ๋„ ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค.
11:45
it's true of brain scanning;
237
705000
2000
๋‡Œ ์Šค์บ๋‹๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๊ณ ,
11:47
it's true of the World Wide Web. I mean, anything that we can quantify,
238
707000
2000
์›”๋“œ์™€์ด๋“œ ์›น๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ •๋Ÿ‰ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ๋ชจ๋‘ ํ•ด๋‹น๋˜์ฃ .
11:49
we have hundreds of different measurements
239
709000
3000
์ˆ˜๋ฐฑ ๊ฐ€์ง€์˜ ๋‹ค์–‘ํ•œ ์ธก์ • ๋ฐฉ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค.
11:52
of different, information-related measurements --
240
712000
3000
์ •๋ณด ๊ด€๋ จ๋œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ธก์ • ๋ฐฉ์‹๋“ค์ž…๋‹ˆ๋‹ค.
11:55
capacity, adoption rates --
241
715000
2000
์šฉ๋Ÿ‰์ด๋‚˜ ๋„์ž…๋ฅ  ๊ฐ™์€ ๊ฒƒ์ด์ฃ .
11:57
and they basically double every 12, 13, 15 months,
242
717000
3000
๊ทธ๊ฒƒ๋“ค์€ ๊ธฐ๋ณธ์ ์œผ๋กœ 12,13, 15๊ฐœ์›”๋งˆ๋‹ค ๋‘๋ฐฐ๋กœ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
12:00
depending on what you're looking at.
243
720000
2000
๋ญ˜ ๋ณด๋Š๋ƒ์— ๋”ฐ๋ผ์„œ์š”.
12:02
In terms of price performance, that's a 40 to 50 percent deflation rate.
244
722000
4000
๊ฐ€๊ฒฉ ์„ฑ๋Šฅ์˜ ๊ฒฝ์šฐ์—”, 50์ž…๋‹ˆ๋‹ค - 40์—์„œ 50ํผ์„ผํŠธ์˜ ๊ฐ์†Œ์œจ์„ ๋ณด์ž…๋‹ˆ๋‹ค.
12:07
And economists have actually started worrying about that.
245
727000
2000
๊ฒฝ์ œํ•™์ž๋“ค์€ ๊ทธ์— ๋Œ€ํ•ด์„œ ๊ฑฑ์ •ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
12:09
We had deflation during the Depression,
246
729000
2000
๋Œ€ ๊ณตํ™ฉ ๊ธฐ๊ฐ„์— ๋””ํ”Œ๋ ˆ์ด์…˜์„ ๊ฒฝํ—˜ํ–ˆ์Šต๋‹ˆ๋‹ค,
12:11
but that was collapse of the money supply,
247
731000
2000
ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ์€ ํ†ตํ™” ๊ณต๊ธ‰์˜ ๋ถ•๊ดด์˜€์ฃ ,
12:13
collapse of consumer confidence, a completely different phenomena.
248
733000
3000
์†Œ๋น„์ž ์‹ ๋ขฐ๋„์˜ ๋ถ•๊ดด์ด๋‹ˆ, ์ „ํ˜€ ๋‹ค๋ฅธ ํ˜„์ƒ์ž…๋‹ˆ๋‹ค.
12:16
This is due to greater productivity,
249
736000
2000
์ด๊ฒƒ์€ ์ƒ์‚ฐ์„ฑ ํ˜•์ƒ์— ์˜ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค,
12:19
but the economist says, "But there's no way you're going to be able to keep up with that.
250
739000
2000
ํ•˜์ง€๋งŒ ๊ฒฝ์ œํ•™์ž๋“ค์€ ๋งํ•˜์ฃ , "๊ณ„์† ๊ทธ๋ ‡๊ฒŒ ์ง€์†ํ•ด ๋‚˜๊ฐˆ์ˆ˜๋Š” ์—†์„ ๊ฒ๋‹ˆ๋‹ค."
12:21
If you have 50 percent deflation, people may increase their volume
251
741000
3000
50ํผ์„ผํŠธ์˜ ๋””ํ”Œ๋ ˆ์ด์…˜์ด ์ƒ๊ธฐ๋ฉด, ์‚ฌ๋žŒ๋“ค์€ ์ƒ์‚ฐ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œ์ผœ์„œ
12:24
30, 40 percent, but they won't keep up with it."
252
744000
2000
30 ํ˜น์€ 40ํผ์„ผํŠธ ๋” ๋งŒ๋“ค๊ฒ ์ฃ , ํ•˜์ง€๋งŒ ๊ณ„์† ๊ทธ๋Ÿด ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.
12:26
But what we're actually seeing is that
253
746000
2000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๊ฐ€ ์‹ค์ œ๋กœ ๊ด€์ฐฐํ•œ ๋ฐ”์— ๋”ฐ๋ฅด๋ฉด
12:28
we actually more than keep up with it.
254
748000
2000
๊ทธ์ € ์ง€์†ํ•˜๋Š” ์ˆ˜์ค€ ์ด์ƒ์ž…๋‹ˆ๋‹ค.
12:30
We've had 28 percent per year compounded growth in dollars
255
750000
3000
์šฐ๋ฆฌ๋Š” ๋‹ฌ๋Ÿฌ ๊ธฐ์ค€์œผ๋กœ ์—ฐํ‰๊ท  28ํผ์„ผํŠธ์˜ ์„ฑ์žฅ๋ฅ ์„ ๊ธฐ๋กํ•ด์™”์Šต๋‹ˆ๋‹ค.
12:33
in information technology over the last 50 years.
256
753000
3000
์ง€๋‚œ 50๋…„๊ฐ„ ์ •๋ณด ๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ์š”.
12:36
I mean, people didn't build iPods for 10,000 dollars 10 years ago.
257
756000
4000
๋งํ•˜์ž๋ฉด, 10๋…„์ „์— ์•„์ดํŒŸ์„ ๋งŒ๋ถˆ์— ๋งŒ๋“ค์ง€๋Š” ์•Š์•˜๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
12:40
As the price performance makes new applications feasible,
258
760000
3000
๊ฐ€๊ฒฉ ์„ฑ๋Šฅ๋น„๊ฐ€ ์ƒˆ๋กœ์šด ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๊ฐ€๋Šฅํ•˜๋„๋ก ๋งŒ๋“ค๋ฉด์„œ,
12:43
new applications come to the market.
259
763000
2000
์ƒˆ๋กœ์šด ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜๋“ค์ด ์‹œ์žฅ์— ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
12:45
And this is a very widespread phenomena.
260
765000
3000
์ด๊ฒƒ์€ ์•„์ฃผ ๋„๋ฆฌ ํผ์ง„ ํ˜„์ƒ์ž…๋‹ˆ๋‹ค.
12:48
Magnetic data storage --
261
768000
2000
์ž๊ธฐ ๋ฐฉ์‹์˜ ๋ฐ์ดํ„ฐ ์ €์žฅ๋งค์ฒด๋Š”,
12:50
that's not Moore's Law, it's shrinking magnetic spots,
262
770000
3000
๋ฌด์–ด์˜ ๋ฒ•์น™์ด ์•„๋‹™๋‹ˆ๋‹ค, ์ด๊ฑด ์žํ™”์†Œ์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค,
12:53
different engineers, different companies, same exponential process.
263
773000
4000
๋‹ค๋ฅธ ์—”์ง€์ด์–ด๋“ค๊ณผ ๋‹ค๋ฅธ ํšŒ์‚ฌ๋“ค์ด์ง€๋งŒ, ๊ฐ™์€ ์ง€์ˆ˜ ์„ฑ์žฅ ๊ณผ์ •์ž…๋‹ˆ๋‹ค.
12:57
A key revolution is that we're understanding our own biology
264
777000
4000
์ค‘์š”ํ•œ ํ˜์‹ ์€ ์šฐ๋ฆฌ ์ž์‹ ์˜ ์ƒํƒœํ•™์„ ์ดํ•ดํ•œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค,
13:01
in these information terms.
265
781000
2000
์ด๋Ÿฐ ์ •๋ณด์ ์ธ ๊ด€์ ์—์„œ์š”.
13:03
We're understanding the software programs
266
783000
2000
์šฐ๋ฆฌ ๋ชธ์„ ์ž‘๋™์‹œํ‚ค๋Š” ์†Œํ”„ํŠธ์›จ์–ด ํ”„๋กœ๊ทธ๋žจ์„
13:05
that make our body run.
267
785000
2000
์ดํ•ดํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:07
These were evolved in very different times --
268
787000
2000
์ด๋Š” ๋งค์šฐ ๋‹ค๋ฅธ ์‹œ๋Œ€์— ์ง„ํ™”ํ•ด์™”์Šต๋‹ˆ๋‹ค.
13:09
we'd like to actually change those programs.
269
789000
2000
๊ทธ๋Ÿฐ ํ”„๋กœ๊ทธ๋žจ๋“ค์„ ๋ฐ”๊พธ๊ณ  ์‹ถ์€ ๊ฒ๋‹ˆ๋‹ค.
13:11
One little software program, called the fat insulin receptor gene,
270
791000
2000
์ง€๋ฐฉ์„ฑ ์ธ์Š๋ฆฐ ์ˆ˜์šฉ์ฒด ์œ ์ „์ž๋ผ๊ณ  ๋ถˆ๋ฆฌ์šฐ๋Š” ์ž‘์€ ์†Œํ”„ํŠธ์›จ์–ด ํ”„๋กœ๊ทธ๋žจ์ด,
13:13
basically says, "Hold onto every calorie,
271
793000
2000
๋ช…๋ นํ•˜๊ธธ, "๋ชจ๋“  ์นผ๋กœ๋ฆฌ๋ฅผ ์ €์žฅํ•ด๋ผ,
13:15
because the next hunting season may not work out so well."
272
795000
4000
์™œ๋ƒํ•˜๋ฉด ๋‹ค์Œ ์‚ฌ๋ƒฅ์ฒ ์— ๊ฒฐ๊ณผ๊ฐ€ ์ข‹์ง€ ์•Š์„ ์ˆ˜๋„ ์žˆ์œผ๋‹ˆ."
13:19
That was in the interests of the species tens of thousands of years ago.
273
799000
3000
๊ทธ๊ฒƒ์€ ์ˆ˜๋งŒ๋…„ ์ „์˜ ์ข…์„ ์œ„ํ•œ ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
13:22
We'd like to actually turn that program off.
274
802000
3000
์šฐ๋ฆฌ๋Š” ๊ทธ ํ”„๋กœ๊ทธ๋žจ์„ ๋„๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
13:25
They tried that in animals, and these mice ate ravenously
275
805000
3000
๋™๋ฌผ ์‹คํ—˜์„ ํ–ˆ๋Š”๋ฐ, ์‹คํ—˜์ฅ๋“ค์ด ์•„์ฃผ ๊ฒŒ๊ฑธ์Šค๋Ÿฝ๊ฒŒ ๋จน์—ˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ ,
13:28
and remained slim and got the health benefits of being slim.
276
808000
2000
์—ฌ์ „ํžˆ ์‚ด์ด์ฐŒ์ง€ ์•Š์•˜๊ณ , ๊ทธ์— ๋”ฐ๋ผ์„œ ๊ฑด๊ฐ•๋„ ์œ ์ง€๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
13:30
They didn't get diabetes; they didn't get heart disease;
277
810000
3000
๋‹น๋‡จ๋ณ‘์—๋„ ๊ฑธ๋ฆฌ์ง€ ์•Š์•˜๊ณ , ์‹ฌ์žฅ๋ณ‘๋„ ์–ป์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
13:33
they lived 20 percent longer; they got the health benefits of caloric restriction
278
813000
3000
20ํผ์„ผํŠธ ๋” ์žฅ์ˆ˜ํ–ˆ๊ณ , ์นผ๋กœ๋ฆฌ ์ œ์•ฝ์„ ํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„
13:36
without the restriction.
279
816000
2000
๊ทธ ์ด์ ์„ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
13:38
Four or five pharmaceutical companies have noticed this,
280
818000
3000
๋„ค ๋‹ค์„ฏ ๊ตฐ๋ฐ์˜ ์ œ์•ฝ ํšŒ์‚ฌ๊ฐ€ ์ด์ ์„ ์•Œ๊ฒŒ ๋˜์—ˆ๊ณ ,
13:41
felt that would be
281
821000
3000
์ด๋ฅผ ์ƒ์šฉํ™”ํ•˜๋ฉด
13:44
interesting drug for the human market,
282
824000
3000
์‚ฌ๋žŒ๋“ค ๋Œ€์ƒ์œผ๋กœ ํฅ๋ฏธ๋กœ์šด ์•ฝ์ด ๋  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
13:47
and that's just one of the 30,000 genes
283
827000
2000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ์šฐ๋ฆฌ์˜ ์ƒํ™”ํ•™์— ์˜ํ–ฅ์„ ์ฃผ๋Š” 3๋งŒ๊ฐœ ์œ ์ „์ž ๊ฐ€์šด๋ฐ,
13:49
that affect our biochemistry.
284
829000
3000
๋‹จ์ง€ ํ•˜๋‚˜์ผ ๋ฟ์ž…๋‹ˆ๋‹ค.
13:52
We were evolved in an era where it wasn't in the interests of people
285
832000
3000
์šฐ๋ฆฌ์˜ ์ง„ํ™”๋กœ ์ธํ•ด์„œ, ์ด์ œ ๋”์ด์ƒ ์‚ฌ๋žŒ๋“ค์˜ ๊ด€์‹ฌ์„,
13:55
at the age of most people at this conference, like myself,
286
835000
3000
์ €๋ฅผ ํฌํ•จํ•ด์„œ, ์ด ํšŒ์˜์žฅ์— ๊ณ„์‹  ๋Œ€๋ถ€๋ถ„์˜ ๋ถ„๋“ค์˜ ๋‚˜์ด๋Œ€์— ๋Œ€ํ•ด์„œ,
13:58
to live much longer, because we were using up the precious resources
287
838000
4000
ํ›จ์”ฌ ๋” ์˜ค๋ž˜ ์‚ฐ๋‹ค๋Š” ๊ฒƒ์ด ํฐ ์ด์ต์ด ์•„๋‹Œ๊ฒƒ์ด, ๊ท€์ค‘ํ•œ ์ž์›์„ ๋ชจ๋‘ ์†Œ๋ชจํ•ด ๋ฒ„๋ฆฌ๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
14:02
which were better deployed towards the children
288
842000
1000
์•„์ด๋“ค๊ณผ ์•„์ด๋“ค์„ ๋Œ๋ณด๋Š” ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์‚ฌ์šฉ๋˜๋Š” ๊ฒƒ์ด
14:03
and those caring for them.
289
843000
2000
ํ›จ์”ฌ ๋” ๋‚ซ๊ฑฐ๋“ ์š”.
14:05
So, life -- long lifespans --
290
845000
2000
๋”ฐ๋ผ์„œ, ์žฅ์ˆ˜ํ•œ๋‹ค๋Š” ๊ฒƒ์€,
14:07
like, that is to say, much more than 30 --
291
847000
2000
๋ญ ์˜ˆ๋ฅผ ๋“ค์–ด์„œ, 30๋…„๋ณด๋‹ค ํ›จ์”ฌ ๋” ๊ธธ๊ฒŒ ์‚ฌ๋Š” ๊ฒƒ์€,
14:09
weren't selected for,
292
849000
3000
์„ ํƒ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค๋งŒ,
14:12
but we are learning to actually manipulate
293
852000
3000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ์กฐ์ž‘ ๋ฐฉ๋ฒ•์„ ๋ฐฐ์šฐ๊ณ  ์žˆ์œผ๋ฉฐ,
14:15
and change these software programs
294
855000
2000
์ด ์†Œํ”„ํŠธ์›จ์–ด ํ”„๋กœ๊ทธ๋žจ๋“ค์„ ๋ฐ”๊พธ๋Š” ๊ฒƒ์ด,
14:17
through the biotechnology revolution.
295
857000
2000
์ƒ๋ฌผ ๊ณตํ•™์˜ ๋ฐœ์ „์„ ํ†ตํ•ด์„œ ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
14:19
For example, we can inhibit genes now with RNA interference.
296
859000
4000
์˜ˆ๋ฅผ ๋“ค์–ด์„œ, ์šฐ๋ฆฌ๋Š” RNA ๊ฐ„์„ญ์„ ํ†ตํ•ด์„œ ์œ ์ „์ž๋ฅผ ์–ต์ œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:23
There are exciting new forms of gene therapy
297
863000
2000
์•„์ฃผ ํฅ๋ฏธ๋กœ์šด ์œ ์ „์ž ์น˜๋ฃŒ์˜ ์ƒˆ๋กœ์šด ๋ฐฉ์‹๋“ค์ด ์žˆ๋Š”๋ฐ์š”,
14:25
that overcome the problem of placing the genetic material
298
865000
2000
์ด๋ฅผ ํ†ตํ•ด์„œ ์œ ์ „ ๋ฌผ์งˆ์˜ ๋ฐฐ์น˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:27
in the right place on the chromosome.
299
867000
2000
์—ผ์ƒ‰์ฒด ๋‚ด์˜ ์˜ฌ๋ฐ”๋ฅผ ์ž๋ฆฌ๋ฅผ ์ฐพ์•„์ฃผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
14:29
There's actually a -- for the first time now,
300
869000
3000
์ด์ œ ์ฒ˜์Œ์œผ๋กœ, ์ธ๊ฐ„ ๋Œ€์ƒ์œผ๋กœ, ์œ ์ „์ž ์น˜๋ฃŒ๋ฅผ ํ†ตํ•ด
14:32
something going to human trials, that actually cures pulmonary hypertension --
301
872000
3000
ํ ๊ณ ํ˜ˆ์••์„ ์น˜๋ฃŒํ•˜๋Š” ์ž„์ƒ ์‹คํ—˜์ด ์ง„ํ–‰๋˜๋Š”๋ฐ์š”,
14:35
a fatal disease -- using gene therapy.
302
875000
3000
์ด๋Š” ์•„์ฃผ ์น˜๋ช…์ ์ธ ์งˆ๋ณ‘์ด๊ฑฐ๋“ ์š”.
14:38
So we'll have not just designer babies, but designer baby boomers.
303
878000
3000
๋”ฐ๋ผ์„œ, ์šฐ๋ฆฌ๋Š” ์œ ์ „์ž ์กฐ์ž‘ ์•„๊ธฐ๋“ค์„ ๊ฐ–๋Š” ์ •๋„๊ฐ€ ์•„๋‹ˆ๋ผ, ์œ ์ „์ž ์กฐ์ž‘ ์„ธ๋Œ€๋ฅผ ๊ฐ–๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
14:41
And this technology is also accelerating.
304
881000
3000
๊ทธ๋ฆฌ๊ณ  ์ด ๊ธฐ์ˆ  ์—ญ์‹œ ๊ฐ€์†ํ™”ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
14:44
It cost 10 dollars per base pair in 1990,
305
884000
3000
1990๋…„์—๋Š” ์œ ์ „์ž ๊ธฐ๋ณธ์Œ์— 10๋ถˆ ์ •๋„ ํ–ˆ๋Š”๋ฐ,
14:47
then a penny in 2000.
306
887000
2000
2000๋…„์—๋Š” 1์„ผํŠธ์˜€๊ณ ,
14:49
It's now under a 10th of a cent.
307
889000
2000
์ด์ œ๋Š” 10๋ถ„์˜ 1์„ผํŠธ ์ดํ•˜์ž…๋‹ˆ๋‹ค.
14:51
The amount of genetic data --
308
891000
2000
์œ ์ „ ๋ฐ์ดํ„ฐ์˜ ์–‘์€,
14:53
basically this shows that smooth exponential growth
309
893000
3000
์—ญ์‹œ ๋ถ€๋“œ๋Ÿฌ์šด ์ง€์ˆ˜ ์„ฑ์žฅ์„ ๋ณด์ด๋Š”๋ฐ,
14:56
doubled every year,
310
896000
2000
๋งค๋…„ ๋‘๋ฐฐ์”ฉ ๋Š˜์–ด๋‚ฌ์Šต๋‹ˆ๋‹ค.
14:58
enabling the genome project to be completed.
311
898000
3000
๊ทธ๋ž˜์„œ ๊ฒŒ๋†ˆ ํ”„๋กœ์ ํŠธ๊ฐ€ ์™„๋ฃŒ๋  ์ˆ˜ ์žˆ์—ˆ์ฃ .
15:01
Another major revolution: the communications revolution.
312
901000
3000
๋˜๋‹ค๋ฅธ ์ฃผ์š” ํ˜์‹ ์€, ํ†ต์‹  ๋ถ„์•ผ์—์„œ ์ž…๋‹ˆ๋‹ค.
15:04
The price performance, bandwidth, capacity of communications measured many different ways;
313
904000
5000
๊ฐ€๊ฒฉ ์„ฑ๋Šฅ, ๋Œ€์—ญํญ ๋“ฑ ํ†ต์‹ ์˜ ์šฉ๋Ÿ‰์€ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ์ธก์ • ๋ฉ๋‹ˆ๋‹ค.
15:09
wired, wireless is growing exponentially.
314
909000
3000
์œ ์„ , ๋ฌด์„  ๋ชจ๋‘ ์ง€์ˆ˜์ ์œผ๋กœ ์„ฑ์žฅํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
15:12
The Internet has been doubling in power and continues to,
315
912000
3000
์ธํ„ฐ๋„ท์€ ๊ทธ ๊ธฐ๋Šฅ์ด ๋‘๋ฐฐ์”ฉ ์„ฑ์žฅํ•ด์™”๊ณ  ์ง€์†์ ์œผ๋กœ ์„ฑ์žฅํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
15:15
measured many different ways.
316
915000
2000
์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ฐฉ์‹์œผ๋กœ ์ธก์ •ํ–ˆ์„๋•Œ๋„์š”.
15:17
This is based on the number of hosts.
317
917000
2000
์ด๊ฑด ํ˜ธ์ŠคํŠธ ์ปดํ“จํ„ฐ์˜ ์ˆซ์ž์— ๊ทผ๊ฑฐํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:19
Miniaturization -- we're shrinking the size of technology
318
919000
2000
์ถ•์†Œํ™” - ์šฐ๋ฆฌ๋Š” ๊ธฐ์ˆ ์˜ ํฌ๊ธฐ๋ฅผ ์ค„์—ฌ๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
15:21
at an exponential rate,
319
921000
2000
์ง€์ˆ˜ ํ•จ์ˆ˜์ ์ธ ๋น„์œจ๋กœ ๋ง์ด์ฃ .
15:23
both wired and wireless.
320
923000
2000
์œ ์„ ๊ณผ ๋ฌด์„  ๋ชจ๋‘๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค.
15:25
These are some designs from Eric Drexler's book --
321
925000
4000
์ด๊ฒƒ๋“ค์€ ์—๋ฆญ ๋“œ๋ ‰์Šฌ๋Ÿฌ์˜ ์ฑ…์—์„œ ์˜จ ๋””์ž์ธ ๋“ค์ž…๋‹ˆ๋‹ค,
15:29
which we're now showing are feasible
322
929000
2000
๊ตฌํ˜„ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š”๊ฑฐ์ฃ ,
15:31
with super-computing simulations,
323
931000
2000
์ˆ˜ํผ ์ปดํ“จํ„ฐ๋ฅผ ํ†ตํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด์„œ์š”,
15:33
where actually there are scientists building
324
933000
2000
๊ณผํ•™์ž๋“ค์˜ ๋นŒ๋”ฉ์ด ์žˆ๋Š” ๊ณณ์ž…๋‹ˆ๋‹ค.
15:35
molecule-scale robots.
325
935000
2000
๋ถ„์ž ๊ทœ๋ชจ์˜ ๋กœ๋ด‡๋“ค์ด๊ตฌ์š”.
15:37
One has one that actually walks with a surprisingly human-like gait,
326
937000
2000
์–ด๋–ค ๊ฒƒ์€ ๋†€๋ผ์šธ ์ •๋„๋กœ ์ธ๊ฐ„๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๊ฑท๋Š” ๊ฒƒ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
15:39
that's built out of molecules.
327
939000
3000
๋ถ„์ž๋“ค์„ ์ด์šฉํ•ด์„œ ๋งŒ๋“ค์–ด์กŒ์ฃ .
15:42
There are little machines doing things in experimental bases.
328
942000
4000
์‹คํ—˜์ ์ธ ์ˆ˜์ค€์—์„œ ๋ญ”๊ฐ€๋ฅผ ํ•ด๋‚ด๋Š” ์ž‘์€ ๊ธฐ๊ณ„๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
15:46
The most exciting opportunity
329
946000
3000
๊ฐ€์žฅ ํฅ๋ฏธ๋กœ์šด ๊ธฐํšŒ๋Š”,
15:49
is actually to go inside the human body
330
949000
2000
์‹ค์ œ๋กœ ์‚ฌ๋žŒ์˜ ์ธ์ฒด๋‚ด์— ๋“ค์–ด๊ฐ€๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:51
and perform therapeutic and diagnostic functions.
331
951000
3000
๊ทธ๋ฆฌ๊ณ  ์น˜๋ฃŒ๋‚˜ ์ง„๋‹จ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
15:54
And this is less futuristic than it may sound.
332
954000
2000
์ด๋Š” ์ƒ๊ฐํ•˜์‹œ๋Š” ๊ฒƒ๋ณด๋‹ค ๊ทธ๋ฆฌ ๋ฏธ๋ž˜์ ์ธ ์ด์•ผ๊ธฐ๋งŒ์€ ์•„๋‹™๋‹ˆ๋‹ค.
15:56
These things have already been done in animals.
333
956000
2000
์ด๊ฒƒ๋“ค์€ ์ด๋ฏธ ๋™๋ฌผ ์‹คํ—˜์ด ์ง„ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
15:58
There's one nano-engineered device that cures type 1 diabetes. It's blood cell-sized.
334
958000
4000
ํƒ€์ž… 1 ๋‹น๋‡จ๋ณ‘์„ ์น˜๋ฃŒํ•˜๋Š” ๋‚˜๋…ธ ๊ณตํ•™ ์žฅ์น˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์žฅ์น˜๋Š” ํ˜ˆ๊ตฌ ํฌ๊ธฐ์ž…๋‹ˆ๋‹ค.
16:02
They put tens of thousands of these
335
962000
2000
์ด๋Ÿฐ ์žฅ์น˜๋“ค์„ ์ˆ˜๋งŒ๊ฐœ๋ฅผ ํ˜ˆ๊ตฌ๋“ค ์†์—
16:04
in the blood cell -- they tried this in rats --
336
964000
2000
๋„ฃ๋Š”๊ฒ๋‹ˆ๋‹ค, ์ฅ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜ํ–ˆ๋Š”๋ฐ์š”,
16:06
it lets insulin out in a controlled fashion,
337
966000
2000
ํ†ต์ œ๋œ ๋ฐฉ์‹์œผ๋กœ ์ธ์Š๋ฆฐ์„ ๋ฐฐ์ถœ ์‹œํ‚ต๋‹ˆ๋‹ค.
16:08
and actually cures type 1 diabetes.
338
968000
2000
๊ทธ๋ฆฌ๊ณ  ํƒ€์ž… 1 ๋‹น๋‡จ๋ณ‘์„ ์น˜๋ฃŒํ•˜์ฃ .
16:10
What you're watching is a design
339
970000
3000
์ง€๊ธˆ ๋ณด์‹œ๋Š” ๊ฒƒ์€
16:13
of a robotic red blood cell,
340
973000
2000
๋กœ๋ด‡ ์ ํ˜ˆ๊ตฌ์˜ ๋””์ž์ธ์ธ๋ฐ,
16:15
and it does bring up the issue that our biology
341
975000
2000
์šฐ๋ฆฌ์˜ ์ƒ๋ฌผํ•™์˜ ์ˆ˜์ค€์ด,
16:17
is actually very sub-optimal,
342
977000
2000
๊ทธ๋ฆฌ ์ตœ์ ํ™”๋˜์ง€๋Š” ์•Š์•˜๋‹ค๋Š” ๋…ผ๋ž€์„ ์•ผ๊ธฐํ•˜๋Š”๋ฐ์š”,
16:19
even though it's remarkable in its intricacy.
343
979000
3000
๊ทธ ๋ณต์žกํ•จ์ด ๋†€๋ž๊ธด ํ•˜์ง€๋งŒ,
16:22
Once we understand its principles of operation,
344
982000
3000
์ผ๋‹จ ์ด ๋™์ž‘์˜ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๊ฒŒ ๋˜๋ฉด,
16:25
and the pace with which we are reverse-engineering biology is accelerating,
345
985000
3000
๊ทธ๋ฆฌ๊ณ  ์ƒ๋ฌผํ•™์˜ ๋ฆฌ๋ฒ„์Šค ์—”์ง€๋‹ˆ์–ด๋ง์˜ ์†๋„๊ฐ€ ์ ์ฐจ ๋นจ๋ผ์ง€๊ฒŒ ๋˜๋ฉด,
16:29
we can actually design these things to be
346
989000
2000
์ด๋Ÿฐ ์žฅ์น˜๋“ค์„ ์ž˜ ์„ค๊ณ„ํ•ด์„œ,
16:31
thousands of times more capable.
347
991000
2000
์ˆ˜์ฒœ๋ฐฐ ๋” ๋งŽ์€ ์ผ์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
16:33
An analysis of this respirocyte, designed by Rob Freitas,
348
993000
4000
๋กœ๋ฒ„ํŠธ ํ”„๋ผ์ดํƒ€์Šค์— ์˜ํ•ด ์„ค๊ณ„๋œ ํ˜ธํก์„ธํฌ์˜ ๋ถ„์„์— ๋”ฐ๋ฅด๋ฉด,
16:38
indicates if you replace 10 percent of your red blood cells with these robotic versions,
349
998000
2000
์ด ๋กœ๋ด‡์œผ๋กœ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ ํ˜ˆ๊ตฌ์˜ 10ํผ์„ผํŠธ๋งŒ ๊ต์ฒดํ•ด๋„,
16:41
you could do an Olympic sprint for 15 minutes without taking a breath.
350
1001000
3000
์ˆจ์„ ํ•œ๋ฒˆ๋„ ์‰ฌ์ง€ ์•Š๊ณ  15๋ถ„๊ฐ„ ์˜ฌ๋ฆผํ”ฝ ์ˆ˜์ค€์˜ ๋‹ฌ๋ฆฌ๊ธฐ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
16:44
You could sit at the bottom of your pool for four hours --
351
1004000
3000
์ˆ˜์˜์žฅ ์•„๋ž˜ ๋ฐ”๋‹ฅ์— 4์‹œ๊ฐ„ ๋™์•ˆ ์•‰์•„ ์žˆ์„ ์ˆ˜๋„ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
16:47
so, "Honey, I'm in the pool," will take on a whole new meaning.
352
1007000
4000
๋”ฐ๋ผ์„œ, "์—ฌ๋ณด, ๋‚˜ ์ˆ˜์˜์žฅ์— ๊ฐ€ ์žˆ์„๊ฒŒ"๋ผ๋Š” ๊ฒƒ์€ ์ „ํ˜€ ๋‹ค๋ฅธ ์˜๋ฏธ๋ฅผ ๊ฐ–๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
16:51
It will be interesting to see what we do in our Olympic trials.
353
1011000
2000
์šฐ๋ฆฌ๊ฐ€ ์˜ฌ๋ฆผํ”ฝ ๊ฒฝ๊ธฐ์—์„œ ๋ญ˜ ํ•˜๊ฒŒ ๋ ์ง€ ์ƒ๊ฐํ•ด๋ด๋„ ์žฌ๋ฏธ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
16:53
Presumably we'll ban them,
354
1013000
2000
์•„๋งˆ๋„ ์šฐ๋ฆฌ๋Š” ์ด๋ฅผ ๊ธˆ์ง€ํ•˜๊ฒ ์ฃ ,
16:55
but then we'll have the specter of teenagers in their high schools gyms
355
1015000
2000
ํ•˜์ง€๋งŒ, ๊ทธ๋Ÿฌ๋ฉด ์•„๋งˆ๋„ ๊ณ ๋“ฑํ•™๊ต ์ฒด์œก๊ด€์— ์žˆ๋Š” ํ•™์ƒ๋“ค์ด,
16:57
routinely out-performing the Olympic athletes.
356
1017000
3000
์˜ฌ๋ฆผํ”ฝ ๋Œ€ํ‘œ์„ ์ˆ˜๋“ค๋ณด๋‹ค ๋” ๋›ฐ์–ด๋‚œ ๊ฒฐ๊ณผ๋ฅผ ์‰ฝ๊ฒŒ ๋‚ด๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
17:02
Freitas has a design for a robotic white blood cell.
357
1022000
3000
ํ”„๋ผ์ดํƒ€์Šค๋Š” ๋กœ๋ด‡ ๋ฐฑํ˜ˆ๊ตฌ์˜ ๋””์ž์ธ์„ ๊ฐ–๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
17:05
These are 2020-circa scenarios,
358
1025000
4000
์ด๋Š” 2020๋…„๋Œ€ ์ •๋„์˜ ์‹œ๋‚˜๋ฆฌ์˜ค์ž…๋‹ˆ๋‹ค.
17:09
but they're not as futuristic as it may sound.
359
1029000
2000
ํ•˜์ง€๋งŒ ๋“ค๋ฆฌ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๊ทธ๋ ‡๊ฒŒ ๋ฏธ๋ž˜์ ์ธ ์ด์•ผ๊ธฐ๋งŒ๋„ ์•„๋‹™๋‹ˆ๋‹ค.
17:11
There are four major conferences on building blood cell-sized devices;
360
1031000
4000
ํ˜ˆ๊ตฌ ํฌ๊ธฐ์˜ ์žฅ์น˜๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๋„ค๊ฐœ์˜ ์ฃผ์š” ์ปจํผ๋Ÿฐ์Šค๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค,
17:15
there are many experiments in animals.
361
1035000
2000
๋™๋ฌผ ์‹คํ—˜๋„ ํ™œ๋ฐœํ•˜๊ฒŒ ํ–‰ํ•ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
17:17
There's actually one going into human trial,
362
1037000
2000
์ธ๊ฐ„ ๋Œ€์ƒ์˜ ์‹คํ—˜๋„ ํ•œ๊ฑด ์ง„ํ–‰์ค‘์ž…๋‹ˆ๋‹ค.
17:19
so this is feasible technology.
363
1039000
3000
๋”ฐ๋ผ์„œ ์ด๊ฒƒ์€ ์‹คํ˜„ ๊ฐ€๋Šฅํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.
17:23
If we come back to our exponential growth of computing,
364
1043000
2000
๋‹ค์‹œ ์ปดํ“จํŒ…์˜ ์ง€์ˆ˜ํ•จ์ˆ˜์ ์ธ ์„ฑ์žฅ์„ ์‚ดํŽด๋ณด๋ฉด,
17:25
1,000 dollars of computing is now somewhere between an insect and a mouse brain.
365
1045000
3000
์ฒœ๋‹ฌ๋Ÿฌ ์ •๋„์˜ ์ปดํ“จํŒ… ๋Šฅ๋ ฅ์€ ํ˜„์žฌ ๊ณค์ถฉ๊ณผ ์ฅ์˜ ๋‡Œ ์‚ฌ์ด ์ •๋„์— ์žˆ์Šต๋‹ˆ๋‹ค.
17:28
It will intersect human intelligence
366
1048000
3000
์ด๊ฒƒ์€ ๊ณง ์ธ๊ฐ„์˜ ์ง€๋Šฅ ๋Œ€๋น„,
17:31
in terms of capacity in the 2020s,
367
1051000
3000
์šฉ๋Ÿ‰ ๋ฉด์—์„œ 2020๋…„๋Œ€ ์ •๋„์— ๋น„์Šทํ•ด ์งˆ๊ฒ๋‹ˆ๋‹ค,
17:34
but that'll be the hardware side of the equation.
368
1054000
2000
ํ•˜์ง€๋งŒ ๊ทธ๊ฑด ๊ณต์‹์˜ ํ•˜๋“œ์›จ์–ด์ ์ธ ์ธก๋ฉด์ผ๊ฒ๋‹ˆ๋‹ค.
17:36
Where will we get the software?
369
1056000
2000
์†Œํ”„ํŠธ์›จ์–ด๋Š” ์–ด๋””์—์„œ ๊ตฌํ•ด์•ผ ํ• ๊นŒ์š”?
17:38
Well, it turns out we can see inside the human brain,
370
1058000
2000
์šฐ๋ฆฌ๊ฐ€ ์ธ๊ฐ„์˜ ๋‘๋‡Œ์˜ ๋‚ด๋ถ€๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค,
17:40
and in fact not surprisingly,
371
1060000
2000
๊ทธ๋ฆฌ๊ณ , ์‚ฌ์‹ค ๊ทธ๋ฆฌ ๋†€๋ž์ง€๋„ ์•Š์ง€๋งŒ,
17:42
the spatial and temporal resolution of brain scanning is doubling every year.
372
1062000
4000
๋‡Œ ์Šค์บ๋‹์˜ ๊ณต๊ฐ„์ ์ธ ๊ทธ๋ฆฌ๊ณ  ์‹œ๊ฐ„์ ์ธ ํ•ด์ƒ๋„๋Š” ๋งค๋…„ ๋‘๋ฐฐ์”ฉ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
17:46
And with the new generation of scanning tools,
373
1066000
2000
์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ์Šค์บ๋‹ ๋„๊ตฌ๋ฅผ ์ด์šฉํ•˜๋ฉด,
17:48
for the first time we can actually see
374
1068000
2000
์‚ฌ์ƒ ์ฒ˜์Œ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ
17:50
individual inter-neural fibers
375
1070000
2000
๊ฐœ๋ณ„์ ์ธ ์‹ ๊ฒฝ ์„ฌ์œ ๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
17:52
and see them processing and signaling in real time --
376
1072000
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ๋“ค์ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‹ ํ˜ธ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
17:55
but then the question is, OK, we can get this data now,
377
1075000
2000
๊ทธ๋Ÿฌ๋ฉด ์ด์ œ ๋ฌธ์ œ๋Š”, ๋ฐ์ดํ„ฐ๋Š” ๊ตฌํ–ˆ๋‹ค ์น˜๊ณ ,
17:57
but can we understand it?
378
1077000
2000
์šฐ๋ฆฌ๊ฐ€ ๊ณผ์—ฐ ์ด๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋ƒ๋Š” ๊ฒ๋‹ˆ๋‹ค.
17:59
Doug Hofstadter wonders, well, maybe our intelligence
379
1079000
3000
๋”๊ทธ ํ˜ธํ”„์Šคํƒœํ„ฐ๋Š”, ์•„๋งˆ๋„ ์šฐ๋ฆฌ์˜ ์ง€์„ฑ์ด๋ผ๋Š” ๊ฒƒ์€
18:02
just isn't great enough to understand our intelligence,
380
1082000
3000
์šฐ๋ฆฌ์˜ ์ง€์„ฑ์„ ์ดํ•ดํ• ๋งŒํผ ํ›Œ๋ฅญํ•˜์ง€ ๋ชปํ•˜์ง€ ์•Š๋‚˜ ์˜์‹ฌํ•ฉ๋‹ˆ๋‹ค,
18:05
and if we were smarter, well, then our brains would be that much more complicated,
381
1085000
3000
๊ทธ๋ฆฌ๊ณ  ๋งŒ์•ฝ์— ์šฐ๋ฆฌ๊ฐ€ ๋” ๋˜‘๋˜‘ํ•˜๋‹ค๋ฉด, ์šฐ๋ฆฌ์˜ ๋‡Œ๋Š” ๊ทธ๋งŒํผ ๋” ๋ณต์žกํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค,
18:08
and we'd never catch up to it.
382
1088000
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๊ฒฐ์ฝ” ์ด๋ฅผ ๋”ฐ๋ผ์žก์ง€ ๋ชปํ•  ๊ฑฐ๋ผ๋Š” ๊ฑฐ์ฃ .
18:11
It turns out that we can understand it.
383
1091000
3000
๊ทธ๋Ÿฐ๋ฐ ์šฐ๋ฆฌ๊ฐ€ ์ด๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
18:14
This is a block diagram of
384
1094000
3000
์ด๊ฒƒ์€ ๋ธ”๋ก ๋‹ค์ด์–ด๊ทธ๋žจ์ธ๋ฐ์š”
18:17
a model and simulation of the human auditory cortex
385
1097000
4000
์ธ๊ฐ„์˜ ์ฒญ๊ฐ ํ”ผ์งˆ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค
18:21
that actually works quite well --
386
1101000
2000
์‹ค์ œ๋กœ๋„ ์ž˜ ๋™์ž‘ํ•˜๋Š”๋ฐ์š”,
18:23
in applying psychoacoustic tests, gets very similar results to human auditory perception.
387
1103000
2000
์‹ฌ๋ฆฌ์Œํ–ฅ ํ…Œ์ŠคํŠธ๋ฅผ ์ ์šฉํ•ด๋ณด๋ฉด, ์‚ฌ๋žŒ์˜ ์ฒญ๊ฐ๊ณผ ์•„์ฃผ ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
18:27
There's another simulation of the cerebellum --
388
1107000
3000
์†Œ๋‡Œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๋„ ์žˆ๋Š”๋ฐ์š”,
18:30
that's more than half the neurons in the brain --
389
1110000
2000
์ด๊ฒƒ์€ ๋‡Œ์— ์žˆ๋Š” ์‹ ๊ฒฝ์„ธํฌ์˜ ์ ˆ๋ฐ˜์ด ๋„˜๋Š” ์–‘์ž…๋‹ˆ๋‹ค๋งŒ,
18:32
again, works very similarly to human skill formation.
390
1112000
3000
์ด๊ฒƒ๋„, ์ธ๊ฐ„์˜ ๊ธฐ๋Šฅ์ด ๋งŒ๋“ค์–ด์ง€๋Š” ๊ฒƒ๊ณผ ์•„์ฃผ ์œ ์‚ฌํ•˜๊ฒŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.
18:36
This is at an early stage, but you can show
391
1116000
3000
์ด๊ฑด ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค๋งŒ, ์ด๋ฅผ ํ†ตํ•ด์„œ
18:39
with the exponential growth of the amount of information about the brain
392
1119000
3000
๋‡Œ์— ๋Œ€ํ•œ ์ •๋ณด์˜ ์–‘์ด ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ์„œ,
18:42
and the exponential improvement
393
1122000
2000
๊ทธ๋ฆฌ๊ณ  ๋‡Œ ์Šค์บ๋‹ ํ•ด์ƒ๋„์˜
18:44
in the resolution of brain scanning,
394
1124000
2000
์ง€์ˆ˜์ ์ธ ๋ฐœ์ „์— ๋”ฐ๋ผ,
18:46
we will succeed in reverse-engineering the human brain
395
1126000
3000
์ธ๊ฐ„์˜ ๋‡Œ๋ฅผ ๋ฆฌ๋ฒ„์Šค ์—”์ง€๋‹ˆ์–ด๋ง ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒ์ด๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
18:49
by the 2020s.
396
1129000
2000
2020๋…„๋Œ€ ๊นŒ์ง€๋Š”์š”.
18:51
We've already had very good models and simulation of about 15 regions
397
1131000
3000
๋‡Œ์˜ ์•ฝ 15๊ฐœ์˜ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ๊ฝค ์ •๊ตํ•œ ๋ชจ๋ธ๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ฐ–๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
18:54
out of the several hundred.
398
1134000
3000
์ „์ฒด ์ˆ˜๋ฐฑ ๊ตฐ๋ฐ ๊ฐ€์šด๋ฐ ๊ทธ์ •๋„์ฃ .
18:57
All of this is driving
399
1137000
2000
์ด ๋ชจ๋“  ๊ฒƒ์€ ์ง€์ˆ˜์ ์œผ๋กœ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค --
18:59
exponentially growing economic progress.
400
1139000
2000
์ง€์ˆ˜์ ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ๊ฒฝ์ œ์ ์ธ ๋ฐœ์ „์ด์ฃ .
19:01
We've had productivity go from 30 dollars to 150 dollars per hour
401
1141000
3000
์šฐ๋ฆฌ๋Š” ์‹œ๊ฐ„๋‹น ๋…ธ๋™ ์ƒ์‚ฐ์„ฑ์„ 30๋‹ฌ๋Ÿฌ์—์„œ 150๋‹ฌ๋Ÿฌ๋กœ ์˜ฌ๋ ธ์Šต๋‹ˆ๋‹ค.
19:06
of labor in the last 50 years.
402
1146000
2000
์ง€๋‚œ 50๋…„ ๋™์•ˆ์— ๋ง์ด์ฃ .
19:08
E-commerce has been growing exponentially. It's now a trillion dollars.
403
1148000
3000
์ „์ž ์ƒ๊ฑฐ๋ž˜๋Š” ์ง€์ˆ˜์ ์œผ๋กœ ์„ฑ์žฅํ•ด์™”์Šต๋‹ˆ๋‹ค. ํ˜„์žฌ๋Š” 1์กฐ ๋‹ฌ๋Ÿฌ ๊ทœ๋ชจ์ž…๋‹ˆ๋‹ค.
19:11
You might wonder, well, wasn't there a boom and a bust?
404
1151000
2000
๊ทธ๋Ÿฌ๋ฉด ๊ถ๊ธˆํ•ด ํ•˜์‹œ๊ฒ ์ฃ , ํ , ๊ฑฐํ’ˆ์ด ํ•œ๋ฒˆ ๊บผ์ง„์ ์ด ์žˆ์ง€ ์•Š์•˜์—ˆ๋‚˜?
19:13
That was strictly a capital-markets phenomena.
405
1153000
2000
๊ทธ๊ฒŒ ๋ฐ”๋กœ ์—„๊ฒฉํ•œ ์ž๋ณธ ์‹œ์žฅ์˜ ํ˜„์ƒ์ž…๋‹ˆ๋‹ค.
19:15
Wall Street noticed that this was a revolutionary technology, which it was,
406
1155000
4000
์›” ์ŠคํŠธ๋ฆฌํŠธ๋Š” ์ด๊ฒƒ์ด ์•„์ฃผ ํ˜๋ช…์ ์ธ ๊ธฐ์ˆ ์ด๋ผ๋Š” ๊ฒƒ์„ ์•Œ์•˜์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค์ด ๊ทธ๋žฌ๊ณ ์š”.
19:19
but then six months later, when it hadn't revolutionized all business models,
407
1159000
3000
ํ•˜์ง€๋งŒ 6๊ฐœ์›” ํ›„์—, ์ด๊ฒƒ์ด ๋ชจ๋“  ๋น„์ง€๋‹ˆ์Šค ๋ชจ๋ธ์„ ํ˜์‹ ์ ์œผ๋กœ ๋ฐ”๊พธ์ง€ ๋ชปํ•˜์ž,
19:22
they figured, well, that was wrong,
408
1162000
2000
์‚ฌ๋žŒ๋“ค์€, ์ž˜๋ชป ์ƒ๊ฐํ–ˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•˜์ฃ .
19:24
and then we had this bust.
409
1164000
2000
๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ ๊ฑฐํ’ˆ์˜ ๋ถ•๊ดด๊ฐ€ ์˜จ๊ฒ๋‹ˆ๋‹ค.
19:27
All right, this is a technology
410
1167000
2000
์ž, ์ด๊ฑด ํ•˜๋‚˜์˜ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.
19:29
that we put together using some of the technologies we're involved in.
411
1169000
3000
์šฐ๋ฆฌ๊ฐ€ ์ง„๋ณด์‹œํ‚จ ๊ธฐ์ˆ ์˜ ์ผ๋ถ€๋ฅผ ์ด์šฉํ•ด์„œ ๋งŒ๋“  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:32
This will be a routine feature in a cell phone.
412
1172000
4000
์ด๊ฑด ํœด๋Œ€ํฐ์˜ ์ผ์ƒ์ ์ธ ๊ธฐ๋Šฅ์ด ๋ ๊ฒ๋‹ˆ๋‹ค.
19:36
It would be able to translate from one language to another.
413
1176000
2000
ํ•˜๋‚˜์˜ ์–ธ์–ด์—์„œ ๋‹ค๋ฅธ ์–ธ์–ด๋กœ ๋ฒˆ์—ญ์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
19:48
So let me just end with a couple of scenarios.
414
1188000
2000
์ด์ œ ๋ช‡๊ฐ€์ง€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์„ค๋ช…ํ•˜๋ฉด์„œ ๋งˆ๋ฌด๋ฆฌ๋ฅผ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
19:50
By 2010 computers will disappear.
415
1190000
3000
2010๋…„๊นŒ์ง€๋Š”, ์ปดํ“จํ„ฐ๊ฐ€ ์‚ฌ๋ผ์งˆ ๊ฒ๋‹ˆ๋‹ค.
19:54
They'll be so small, they'll be embedded in our clothing, in our environment.
416
1194000
3000
๊ทธ๊ฒƒ๋“ค์€ ๋งค์šฐ ์ž‘์•„์ ธ์„œ, ์šฐ๋ฆฌ ์˜ท์ด๋‚˜ ํ™˜๊ฒฝ์— ์Šค๋ฉฐ๋“ค๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
19:57
Images will be written directly to our retina,
417
1197000
2000
ํ™”์ƒ์ด ์šฐ๋ฆฌ ๋ง๋ง‰์— ์ง์ ‘ ์“ฐ์—ฌ์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:59
providing full-immersion virtual reality,
418
1199000
2000
์™„์ „ํ•œ ๋ชฐ์ž…์ด ๊ฐ€๋Šฅํ•œ ๊ฐ€์ƒ ํ˜„์‹ค์ด๋‚˜,
20:01
augmented real reality. We'll be interacting with virtual personalities.
419
1201000
3000
์ฆ๊ฐ• ํ˜„์‹ค์ด ๊ฐ€๋Šฅํ•˜์ฃ . ์šฐ๋ฆฌ๋Š” ๊ฐ€์ƒ์˜ ์ธ๋ฌผ๋“ค๊ณผ ์–ด์šธ๋ฆฌ๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
20:05
But if we go to 2029, we really have the full maturity of these trends,
420
1205000
4000
ํ•˜์ง€๋งŒ 2029๋…„์—๋Š”, ์ด๋Ÿฐ ํŠธ๋ Œ๋“œ๊ฐ€ ์™„์ „ํžˆ ์„ฑ์ˆ™ํ•˜๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค,
20:09
and you have to appreciate how many turns of the screw
421
1209000
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์•Œ์•„์•ผ ํ•˜๋Š” ๊ฒƒ์€, ์ ์  ๋นจ๋ผ์ง€๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ์˜ ์„ธ๋Œ€๊ฐ€
20:12
in terms of generations of technology, which are getting faster and faster, we'll have at that point.
422
1212000
4000
๋ช‡์ฐจ๋ก€๋‚˜ ๋” ๋Œ์•„๊ฐ€์•ผ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ์ง€์ ์— ์ด๋ฅด๊ฒŒ ๋  ๊ฒƒ์ด๋ƒ๋Š” ๊ฒ๋‹ˆ๋‹ค.
20:16
I mean, we will have two-to-the-25th-power
423
1216000
2000
์ฆ‰, 2์˜ 25์Šน ๋งŒํผ ์ฆ๊ฐ€ํ•œ
20:18
greater price performance, capacity and bandwidth
424
1218000
3000
๊ฐ€๊ฒฉ ์„ฑ๋Šฅ์ด๋‚˜, ์šฉ๋Ÿ‰, ๋Œ€์—ญํญ๋“ฑ์ด
20:21
of these technologies, which is pretty phenomenal.
425
1221000
2000
์ด๋Ÿฐ ๊ธฐ์ˆ ๋“ค์— ์˜ˆ์ƒ๋˜๋Š”๋ฐ ์—„์ฒญ๋‚œ ๊ฒƒ์ด์ฃ .
20:23
It'll be millions of times more powerful than it is today.
426
1223000
2000
์˜ค๋Š˜๋‚ ์— ๋น„ํ•ด์„œ ์ˆ˜๋ฐฑ๋งŒ๋ฐฐ ๋” ๊ฐ•๋ ฅํ•˜๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
20:25
We'll have completed the reverse-engineering of the human brain,
427
1225000
2000
์ธ๊ฐ„์˜ ๋‡Œ์— ๋Œ€ํ•œ ๋ฆฌ๋ฒ„์Šค ์—”์ง€๋‹ˆ์–ด๋ง์ด ๋๋‚˜์žˆ์„ ๊ฒ๋‹ˆ๋‹ค,
20:28
1,000 dollars of computing will be far more powerful
428
1228000
3000
์ปดํ“จํ„ฐ์˜ ๊ฒฝ์šฐ, 1,000๋‹ฌ๋Ÿฌ์˜ ์ปดํ“จํŒ… ๋Šฅ๋ ฅ์ด,
20:31
than the human brain in terms of basic raw capacity.
429
1231000
4000
์ˆœ์ˆ˜ํ•˜๊ฒŒ ์šฉ๋Ÿ‰๋ฉด์—์„œ ๋ณด๋ฉด ์ธ๊ฐ„์˜ ๋‘๋‡Œ๋ณด๋‹ค ๋” ๊ฐ•๋ ฅํ•ด ์งˆ๊ฒ๋‹ˆ๋‹ค.
20:35
Computers will combine
430
1235000
2000
์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•˜๋ฉด
20:37
the subtle pan-recognition powers
431
1237000
2000
์ „์ฒด ์ƒํ™ฉ์„ ํŒŒ์•…ํ•˜๋Š” ์„ฌ์„ธํ•œ ์ธ๊ฐ„์˜ ์ง€์„ฑ๊ณผ,
20:39
of human intelligence with ways in which machines are already superior,
432
1239000
3000
์ด๋ฏธ ๊ธฐ๊ณ„๊ฐ€ ๋” ๋›ฐ์–ด๋‚œ ๋Šฅ๋ ฅ์„ ๋ณด์ด๋Š” ๋ถ€๋ถ„๋“ค,
20:42
in terms of doing analytic thinking,
433
1242000
2000
์˜ˆ๋ฅผ ๋“ค์–ด ๋ถ„์„์  ์‚ฌ๊ณ ๋‚˜,
20:44
remembering billions of facts accurately.
434
1244000
2000
์ˆ˜์‹ญ์–ต๊ฐ€์ง€ ์‚ฌ์‹ค์„ ์ •ํ™•ํ•˜๊ฒŒ ๊ธฐ์–ตํ•˜๋Š” ๋Šฅ๋ ฅ๊ณผ ๊ฒฐํ•ฉํ•˜๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
20:46
Machines can share their knowledge very quickly.
435
1246000
2000
๊ธฐ๊ณ„๋Š” ๊ทธ๋“ค์˜ ์ง€์‹์„ ๋งค์šฐ ์‹ ์†ํ•˜๊ฒŒ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
20:48
But it's not just an alien invasion of intelligent machines.
436
1248000
5000
ํ•˜์ง€๋งŒ, ์ด๊ฑด ๋‹จ์ˆœํžˆ ๋˜‘๋˜‘ํ•œ ๊ธฐ๊ณ„์˜ ์™ธ๋ถ€ ์นจ๋žต์ด ์•„๋‹™๋‹ˆ๋‹ค.
20:53
We are going to merge with our technology.
437
1253000
2000
์šฐ๋ฆฌ์˜ ๊ธฐ์ˆ ๊ณผ ๊ฒฐํ•ฉ์‹œํ‚ฌ ๊ฒ๋‹ˆ๋‹ค.
20:55
These nano-bots I mentioned
438
1255000
2000
์ œ๊ฐ€ ๋ง์”€ ๋“œ๋ ธ๋˜, ๋‚˜๋…ธ ๋กœ๋ด‡๋“ค์€,
20:57
will first be used for medical and health applications:
439
1257000
4000
์ฒ˜์Œ์— ์˜๋ฃŒ๋‚˜ ๊ฑด๊ฐ• ๋ถ„์•ผ์— ์‚ฌ์šฉ๋  ๊ฒ๋‹ˆ๋‹ค:
21:01
cleaning up the environment, providing powerful fuel cells
440
1261000
3000
ํ™˜๊ฒฝ์„ ์ •ํ™”ํ•œ๋‹ค๊ฑฐ๋‚˜, ๊ฐ•๋ ฅํ•œ ์—ฐ๋ฃŒ ์…€๋“ค์„ ์ œ๊ณตํ•œ๋‹ค๊ฑฐ๋‚˜.
21:04
and widely distributed decentralized solar panels and so on in the environment.
441
1264000
5000
ํ™˜๊ฒฝ ๋ถ„์•ผ์—์„œ, ๋„๋ฆฌ ๋ถ„ํฌ ๊ฐ€๋Šฅํ•œ ๋ถ„์‚ฐํ˜• ํƒœ์–‘ ์ „์ง€ ํŒจ๋„๊ณผ ๊ฐ™์€ ๊ฒƒ๋“ค์ด์ฃ .
21:09
But they'll also go inside our brain,
442
1269000
2000
์šฐ๋ฆฌ์˜ ๋‡Œ ์†์œผ๋กœ๋„ ๋“ค์–ด์˜ค๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค,
21:11
interact with our biological neurons.
443
1271000
2000
์šฐ๋ฆฌ์˜ ์ƒ๋ฌผํ•™์  ์‹ ๊ฒฝ์„ธํฌ์™€ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๋Š” ๊ฑฐ์ฃ .
21:13
We've demonstrated the key principles of being able to do this.
444
1273000
3000
์ด๋Ÿฐ ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ํ•ต์‹ฌ ์›๋ฆฌ๋ฅผ ์ด๋ฏธ ๋ณด์—ฌ๋“œ๋ฆฐ ๋ฐ” ์žˆ์Šต๋‹ˆ๋‹ค.
21:16
So, for example,
445
1276000
2000
๋”ฐ๋ผ์„œ, ์˜ˆ๋ฅผ ๋“ค์–ด,
21:18
full-immersion virtual reality from within the nervous system,
446
1278000
2000
์‹ ๊ฒฝ ์‹œ์Šคํ…œ ๋‚ด๋ถ€๋กœ๋ถ€ํ„ฐ์˜ ์™„์ „ ๋ชฐ์ž…ํ˜• ๊ฐ€์ƒ ํ˜„์‹ค์€,
21:20
the nano-bots shut down the signals coming from your real senses,
447
1280000
3000
๋‚˜๋…ธ ๋กœ๋ด‡์„ ์ด์šฉํ•ด์„œ ์‹ค์ œ ๊ฐ๊ฐ๊ธฐ๊ด€์œผ๋กœ๋ถ€ํ„ฐ์˜ ์‹ ํ˜ธ๋ฅผ ์ฐจ๋‹จํ•˜๊ณ ,
21:23
replace them with the signals that your brain would be receiving
448
1283000
3000
๊ฐ€์ƒ์˜ ํ™˜๊ฒฝ์—์„œ ๋‡Œ๊ฐ€ ๋ฐ›๊ฒŒ๋˜๋Š”,
21:26
if you were in the virtual environment,
449
1286000
2000
๊ทธ๋Ÿฐ ์‹ ํ˜ธ๋กœ ๋Œ€์ฒดํ•˜๊ฒŒ ๋˜๋Š” ๊ฑฐ์ฃ .
21:28
and then it'll feel like you're in that virtual environment.
450
1288000
2000
๊ทธ๋Ÿฌ๋ฉด ๊ทธ ๊ฐ€์ƒ ํ™˜๊ฒฝ์— ์žˆ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋Š๊ปด์ง€๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
21:30
You can go there with other people, have any kind of experience
451
1290000
2000
๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค๊ณผ ๊ฐ™์ด ๊ฐˆ ์ˆ˜๋„ ์žˆ๊ณ ์š”, ์–ด๋–ค ์ข…๋ฅ˜์˜ ๊ฒฝํ—˜๋„ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
21:32
with anyone involving all of the senses.
452
1292000
2000
๋ชจ๋“  ๊ฐ๊ฐ๊ณผ ๊ด€๋ จํ•ด์„œ ๋ˆ„๊ตฌ์™€๋„ ํ•จ๊ป˜ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
21:35
"Experience beamers," I call them, will put their whole flow of sensory experiences
453
1295000
3000
"๊ฒฝํ—˜ ๊ณต์œ ์ž๋“ค"์ด๋ผ๊ณ  ์ €๋Š” ๋ถ€๋ฆ…๋‹ˆ๋‹ค๋งŒ, ์ด๋“ค์€ ๊ทธ๋“ค์ด ๊ฒช์€
21:38
in the neurological correlates of their emotions out on the Internet.
454
1298000
3000
๊ฐ์ •์˜ ์‹ ๊ฒฝํ•™์  ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ๊ฐ๊ฐ ๊ฒฝํ—˜์„ ์ธํ„ฐ๋„ท์— ์˜ฌ๋ ค๋†“์„ ๊ฒ๋‹ˆ๋‹ค.
21:41
You can plug in and experience what it's like to be someone else.
455
1301000
3000
๊ฑฐ๊ธฐ์— ์ ‘์†ํ•˜๋ฉด, ๋‹ค๋ฅธ ์‚ฌ๋žŒ์ด ๋œ๋“ฏํ•œ ๊ฒฝํ—˜์„ ๋Š๋‚„ ์ˆ˜ ์žˆ๋Š” ๊ฑฐ์ฃ .
21:44
But most importantly,
456
1304000
2000
ํ•˜์ง€๋งŒ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€,
21:46
it'll be a tremendous expansion
457
1306000
2000
๊ฑฐ๋Œ€ํ•œ ํ™•์žฅ์ด ๋ ๊ฑฐ๋ผ๋Š” ์ ์ž…๋‹ˆ๋‹ค.
21:48
of human intelligence through this direct merger with our technology,
458
1308000
4000
์ด ๊ธฐ์ˆ ๊ณผ ์ธ๊ฐ„์˜ ์ง€์„ฑ์ด ํ•ฉ์ณ์ง€๊ฒŒ ๋จ์œผ๋กœ์จ์š”,
21:52
which in some sense we're doing already.
459
1312000
2000
์–ด๋–ค ๋ฉด์—์„œ ๋ณด๋ฉด ์ด๋ฏธ ๊ทธ๋ ‡๊ฒŒ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒ.
21:54
We routinely do intellectual feats
460
1314000
2000
์šฐ๋ฆฌ๊ฐ€ ๋Š˜์ƒ ์ด๋ฃจ๋Š” ์ง€์ ์ธ ์—…์ ๋“ค์€
21:56
that would be impossible without our technology.
461
1316000
2000
๊ธฐ์ˆ ์ด ์—†์ด๋Š” ๋ถˆ๊ฐ€๋Šฅ ํ–ˆ์„ ๊ฒ๋‹ˆ๋‹ค.
21:58
Human life expectancy is expanding. It was 37 in 1800,
462
1318000
3000
์ธ๊ฐ„์˜ ๊ธฐ๋Œ€ ์ˆ˜๋ช…์€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1800๋…„์—๋Š” 37์„ธ์˜€์ฃ ,
22:01
and with this sort of biotechnology, nano-technology revolutions,
463
1321000
5000
์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ์ƒ๋ฌผ๊ณตํ•™์ด๋‚˜ ๋‚˜๋…ธ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์— ๋”ฐ๋ผ,
22:06
this will move up very rapidly
464
1326000
2000
์•„์ฃผ ๊ธ‰๊ฒฉํžˆ ๋Š˜์–ด๋‚˜๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
22:08
in the years ahead.
465
1328000
2000
๋ฏธ๋ž˜์—๋Š”์š”.
22:10
My main message is that progress in technology
466
1330000
4000
์ œ๊ฐ€ ์ „ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€, ๊ธฐ์ˆ ์˜ ์ง„๋ณด๋Š”,
22:14
is exponential, not linear.
467
1334000
3000
์„ ํ˜•์ด ์•„๋‹ˆ๋ผ ์ง€์ˆ˜์ ์ด๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
22:17
Many -- even scientists -- assume a linear model,
468
1337000
4000
์‹ฌ์ง€์–ด๋Š” ๊ณผํ•™์ž๋“ค๊นŒ์ง€ ํฌํ•จํ•ด์„œ, ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์„ ํ˜• ๋ชจ๋ธ์„ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
22:21
so they'll say, "Oh, it'll be hundreds of years
469
1341000
2000
๊ทธ๋ž˜์„œ ์ด๋ ‡๊ฒŒ๋“ค ๋งํ•˜์ฃ , "๋ช‡๋ฐฑ๋…„์€ ๊ฑธ๋ ค์•ผ
22:23
before we have self-replicating nano-technology assembly
470
1343000
3000
์Šค์Šค๋กœ๋ฅผ ๋ณต์ œํ•˜๋Š” ๋‚˜๋…ธ ๊ธฐ์ˆ  ์กฐ๋ฆฝ๊ณผ์ •์ด๋‚˜
22:26
or artificial intelligence."
471
1346000
2000
์ธ๊ณต ์ง€๋Šฅ์ด ๋‚˜์˜ค๊ฒŒ ๋ ๊ฑฐ์•ผ." ๋ผ๊ตฌ์š”.
22:28
If you really look at the power of exponential growth,
472
1348000
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์ง„์ง€ํ•˜๊ฒŒ ์ง€์ˆ˜ ์„ฑ์žฅ์˜ ํž˜์„ ๋ณธ๋‹ค๋ฉด,
22:31
you'll see that these things are pretty soon at hand.
473
1351000
3000
์ด๋Ÿฐ ๊ฒƒ๋“ค์€ ๊ทธ๋ฆฌ ๋จผ ํ›—๋‚  ์ด์•ผ๊ธฐ๊ฐ€ ์•„๋‹ˆ๋ผ๋Š” ๊ฒƒ์„ ์•Œ๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
22:34
And information technology is increasingly encompassing
474
1354000
3000
๊ทธ๋ฆฌ๊ณ  ์ •๋ณด ๊ธฐ์ˆ ์˜ ์˜ํ–ฅ๋ ฅ์€ ์šฐ๋ฆฌ ์‚ถ์˜ ๋ชจ๋“  ๋ถ€๋ถ„์—์„œ ์ ์ฐจ ์ปค์ง€๊ณ  ์žˆ์–ด์„œ,
22:37
all of our lives, from our music to our manufacturing
475
1357000
4000
์Œ์•…์ด๋‚˜ ์ œํ’ˆ ์ƒ์‚ฐ์—์„œ,
22:41
to our biology to our energy to materials.
476
1361000
4000
์ƒ๋ฌผํ•™์ด๋‚˜ ์—๋„ˆ์ง€ ํ˜น์€ ์žฌ๋ฃŒ์— ์˜ํ–ฅ์„ ์ค๋‹ˆ๋‹ค.
22:45
We'll be able to manufacture almost anything we need in the 2020s,
477
1365000
3000
2020๋…„๋Œ€์—๋Š”, ์šฐ๋ฆฌ๊ฐ€ ํ•„์š”๋กœ ํ•˜๋Š” ๊ฑฐ์˜ ๋ชจ๋“  ๊ฒƒ์„ ์ƒ์‚ฐํ•ด๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
22:48
from information, in very inexpensive raw materials,
478
1368000
2000
์•„์ฃผ ์ €๋ ดํ•œ ์›์žฌ๋ฃŒ์— ์žˆ๋Š” ์ •๋ณด์™€
22:50
using nano-technology.
479
1370000
3000
๋‚˜๋…ธ ๊ธฐ์ˆ ์„ ์ด์šฉํ•ด์„œ์š”.
22:53
These are very powerful technologies.
480
1373000
2000
์ด๊ฒƒ๋“ค์€ ์•„์ฃผ ๊ฐ•๋ ฅํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.
22:55
They both empower our promise and our peril.
481
1375000
4000
๊ธฐํšŒ์™€ ์œ„๊ธฐ ๋ชจ๋‘์— ํž˜์„ ์‹ค์–ด์ค„ ์ˆ˜ ์žˆ์ฃ .
22:59
So we have to have the will to apply them to the right problems.
482
1379000
3000
๋”ฐ๋ผ์„œ ์˜ฌ๋ฐ”๋ฅธ ๋ฌธ์ œ์— ์ด๋“ค์„ ์ ์šฉํ•˜๊ณ ์ž ํ•˜๋Š” ์˜์ง€๊ฐ€ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
23:02
Thank you very much.
483
1382000
1000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
23:03
(Applause)
484
1383000
1000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7