The accelerating power of technology | Ray Kurzweil

312,157 views ・ 2007-01-12

TED


請雙擊下方英文字幕播放視頻。

譯者: wentzu chen 審譯者: Wang-Ju Tsai
00:25
Well, it's great to be here.
0
25000
1000
很高興能來到這裡。我們聽過一些
00:26
We've heard a lot about the promise of technology, and the peril.
1
26000
5000
關於科技可以讓生活更美好的承諾,也有人說它會引發災難
00:31
I've been quite interested in both.
2
31000
2000
我個人對這兩種觀點都深感興趣
00:33
If we could convert 0.03 percent
3
33000
4000
如果到達地球的太陽光的百分之0.03
00:37
of the sunlight that falls on the earth into energy,
4
37000
2000
可以被轉換成能源
00:39
we could meet all of our projected needs for 2030.
5
39000
5000
這些能源將可以滿足人類在2030 年的能源需求
00:44
We can't do that today because solar panels are heavy,
6
44000
3000
然而,這個想法目前無法達成,理由是太陽能板既重
00:47
expensive and very inefficient.
7
47000
2000
又昂貴,而且效率很低
00:49
There are nano-engineered designs,
8
49000
3000
雖然還是在理論分析階段,
00:52
which at least have been analyzed theoretically,
9
52000
2000
但是奈米工程已經設計出
00:54
that show the potential to be very lightweight,
10
54000
2000
可以讓太陽能板變輕
00:56
very inexpensive, very efficient,
11
56000
2000
便宜又有效率的方法
00:58
and we'd be able to actually provide all of our energy needs in this renewable way.
12
58000
4000
這種再生能源將可以滿足人們所有的能源需求
01:02
Nano-engineered fuel cells
13
62000
2000
而奈米燃料電池
01:04
could provide the energy where it's needed.
14
64000
3000
也可以在任何地方提供能源
01:07
That's a key trend, which is decentralization,
15
67000
2000
這些分散式的能源供給將成為關鍵的趨勢
01:09
moving from centralized nuclear power plants and
16
69000
3000
從集中式的核能電廠
01:12
liquid natural gas tankers
17
72000
2000
和液態天然瓦斯槽
01:14
to decentralized resources that are environmentally more friendly,
18
74000
4000
轉變成分散式的天然資源。它們不僅更環保、
01:18
a lot more efficient
19
78000
3000
效能佳
01:21
and capable and safe from disruption.
20
81000
4000
而且能避免能源系統中斷的隱憂
01:25
Bono spoke very eloquently,
21
85000
2000
Bono 曾明確地表示
01:27
that we have the tools, for the first time,
22
87000
4000
疾病和貧窮的問題存在已久
01:31
to address age-old problems of disease and poverty.
23
91000
4000
這是第一次,我們人類掌握了解決這些問題的工具
01:35
Most regions of the world are moving in that direction.
24
95000
4000
在世界上大部分的地區也顯示出這樣的趨勢
01:39
In 1990, in East Asia and the Pacific region,
25
99000
4000
在1990 年時,東亞及太平洋地區
01:43
there were 500 million people living in poverty --
26
103000
2000
有五億的人口處於貧窮狀態
01:45
that number now is under 200 million.
27
105000
3000
如今已經降至二億人以下
01:48
The World Bank projects by 2011, it will be under 20 million,
28
108000
3000
世界銀行預期2011 年這些貧窮人口將低於二千萬
01:51
which is a reduction of 95 percent.
29
111000
3000
也就是降低了 95%
01:54
I did enjoy Bono's comment
30
114000
3000
我很喜歡Bono 的說法
01:57
linking Haight-Ashbury to Silicon Valley.
31
117000
4000
他將舊金山嬉皮區 Haight-Ashbury 和加州的矽谷相比
02:01
Being from the Massachusetts high-tech community myself,
32
121000
3000
我來自麻州的高科技園區
02:04
I'd point out that we were hippies also in the 1960s,
33
124000
4000
我要指出我們在 1960 年代也曾經是嬉皮
02:09
although we hung around Harvard Square.
34
129000
3000
差別只是我們是在哈佛廣場閒蕩
02:12
But we do have the potential to overcome disease and poverty,
35
132000
5000
我們確實有能力去對抗疾病與貧窮
02:17
and I'm going to talk about those issues, if we have the will.
36
137000
3000
只要我們有決心。這些是我將討論的主題
02:20
Kevin Kelly talked about the acceleration of technology.
37
140000
3000
Kevin Kelly 曾探討科技的加速進展過程
02:23
That's been a strong interest of mine,
38
143000
3000
我對這個主題有強烈的興趣
02:26
and a theme that I've developed for some 30 years.
39
146000
3000
也研究了三十年
02:29
I realized that my technologies had to make sense when I finished a project.
40
149000
5000
我體認到研究的成果必須有所貢獻
02:34
That invariably, the world was a different place
41
154000
3000
然而,每當我要導入新科技時
02:37
when I would introduce a technology.
42
157000
2000
卻發現世界已經不一樣了
02:39
And, I noticed that most inventions fail,
43
159000
2000
我發現大部份的發明都是失敗的
02:41
not because the R&D department can't get it to work --
44
161000
3000
並非是因為研發部門沒有達成目標
02:44
if you look at most business plans, they will actually succeed
45
164000
3000
如果你去分析,會看到大部份的商業計畫實際上能達成目標
02:47
if given the opportunity to build what they say they're going to build --
46
167000
4000
但前提是計畫要有機會依照原先設定的目標時去執行
02:51
and 90 percent of those projects or more will fail, because the timing is wrong --
47
171000
3000
但90%甚至更多的計畫都失敗了,原因就是時機錯誤
02:54
not all the enabling factors will be in place when they're needed.
48
174000
3000
在需要時總會欠缺一些關鍵性的成功因素
02:57
So I began to be an ardent student of technology trends,
49
177000
4000
我像個熱切的學生,研究起科技的趨勢
03:01
and track where technology would be at different points in time,
50
181000
3000
我追蹤在什麼時間點,科技會呈現什麼面貌
03:04
and began to build the mathematical models of that.
51
184000
3000
並建立起它的數學模型,
03:07
It's kind of taken on a life of its own.
52
187000
2000
把整個科技發展的過程呈現出來
03:09
I've got a group of 10 people that work with me to gather data
53
189000
3000
我的團隊有十個人,我們蒐集資料
03:12
on key measures of technology in many different areas, and we build models.
54
192000
5000
看一些關鍵的科技如何運在各個領域,然後建立模型
03:17
And you'll hear people say, well, we can't predict the future.
55
197000
3000
你會聽到人們說,”我們是不可能預測未來的”
03:20
And if you ask me,
56
200000
2000
如果你問我
03:22
will the price of Google be higher or lower than it is today three years from now,
57
202000
3000
三年後Google 的股價會上升還是下跌?
03:25
that's very hard to say.
58
205000
2000
那真的很難預測
03:27
Will WiMax CDMA G3
59
207000
3000
WiMax CDMA G3
03:30
be the wireless standard three years from now? That's hard to say.
60
210000
2000
會成為無線協定嗎?這也很難說
03:32
But if you ask me, what will it cost
61
212000
2000
但是,如果你問我
03:34
for one MIPS of computing in 2010,
62
214000
3000
2010年時,一個計算用的MIPS 會值多少錢?
03:37
or the cost to sequence a base pair of DNA in 2012,
63
217000
3000
或是在2012年,DNA一基本對的序列的成本是多少?
03:40
or the cost of sending a megabyte of data wirelessly in 2014,
64
220000
4000
或是無線傳送百萬位元在2014 年要花費多少?
03:44
it turns out that those are very predictable.
65
224000
3000
這些問題就很容易預測了
03:47
There are remarkably smooth exponential curves
66
227000
2000
性能價格比,處理容量與頻寬間
03:49
that govern price performance, capacity, bandwidth.
67
229000
3000
呈現非常平滑的指數曲線關係
03:52
And I'm going to show you a small sample of this,
68
232000
2000
我給你們看一個小範例
03:54
but there's really a theoretical reason
69
234000
2000
它顯示出理論上
03:56
why technology develops in an exponential fashion.
70
236000
5000
科技是以指數模式在發展
04:01
And a lot of people, when they think about the future, think about it linearly.
71
241000
2000
但多數人卻是用線性的模式在預測未來
04:03
They think they're going to continue
72
243000
2000
他們以為
04:05
to develop a problem
73
245000
2000
處理或解決一個難題
04:07
or address a problem using today's tools,
74
247000
3000
只能用現有的工具
04:10
at today's pace of progress,
75
250000
2000
和現有的步調
04:12
and fail to take into consideration this exponential growth.
76
252000
4000
卻忽略到了指數型成長的因素
04:16
The Genome Project was a controversial project in 1990.
77
256000
3000
基因組計畫在 1990 年時是個很受爭議的計畫
04:19
We had our best Ph.D. students,
78
259000
2000
雖然擁有最好的博士班學生、
04:21
our most advanced equipment around the world,
79
261000
2000
世界上最先進的儀器
04:23
we got 1/10,000th of the project done,
80
263000
2000
卻只完成了計畫的萬分之一
04:25
so how're we going to get this done in 15 years?
81
265000
2000
那怎麼可能在15 年內完成這個計畫?
04:27
And 10 years into the project,
82
267000
3000
十年過去了
04:31
the skeptics were still going strong -- says, "You're two-thirds through this project,
83
271000
2000
人們的質疑依舊強烈。他們說:計畫已經過了 2/3
04:33
and you've managed to only sequence
84
273000
2000
但只勉強地完成了
04:35
a very tiny percentage of the whole genome."
85
275000
3000
很少部份的基因組序列
04:38
But it's the nature of exponential growth
86
278000
2000
然而,這正是指數型成長的特性
04:40
that once it reaches the knee of the curve, it explodes.
87
280000
2000
一但到達曲線彎曲點,它就一躍而上
04:42
Most of the project was done in the last
88
282000
2000
計畫的大部份都在是在最後幾年才完成的
04:44
few years of the project.
89
284000
2000
幾年才完成的
04:46
It took us 15 years to sequence HIV --
90
286000
2000
HIV 愛滋病毒的序列耗費了15 年
04:48
we sequenced SARS in 31 days.
91
288000
2000
但我們在31 天內就完成 SARS 的序列
04:50
So we are gaining the potential to overcome these problems.
92
290000
4000
所以,我們是有能力去克服這些問題的
04:54
I'm going to show you just a few examples
93
294000
2000
我給你看一些例子
04:56
of how pervasive this phenomena is.
94
296000
3000
來證明這樣的現象是很普遍的。根據我們的模型,
04:59
The actual paradigm-shift rate, the rate of adopting new ideas,
95
299000
4000
實際的典範轉移率 - 採用新觀念的比例
05:03
is doubling every decade, according to our models.
96
303000
3000
每十年就呈倍數成長
05:06
These are all logarithmic graphs,
97
306000
3000
這些都是對數的圖形
05:09
so as you go up the levels it represents, generally multiplying by factor of 10 or 100.
98
309000
3000
在達到相對的程度後,通常會以十倍速或百倍的速度變化
05:12
It took us half a century to adopt the telephone,
99
312000
3000
第一個虛擬實境技術-電話
05:15
the first virtual-reality technology.
100
315000
3000
花了半個世紀的時間,才開始普及
05:18
Cell phones were adopted in about eight years.
101
318000
2000
但是手機只花了八年就被普遍使用
05:20
If you put different communication technologies
102
320000
3000
將不同的通訊科技
05:23
on this logarithmic graph,
103
323000
2000
放在這個對數圖表上
05:25
television, radio, telephone
104
325000
2000
會發現電視、收音機跟電話的普及過程
05:27
were adopted in decades.
105
327000
2000
都要花上數十年的時間
05:29
Recent technologies -- like the PC, the web, cell phones --
106
329000
3000
而新科技,像是電腦,網路跟手機
05:32
were under a decade.
107
332000
2000
在十年內就被廣泛接納了
05:34
Now this is an interesting chart,
108
334000
2000
這個圖表很有意思
05:36
and this really gets at the fundamental reason why
109
336000
2000
他說明了演化過程的基本原理
05:38
an evolutionary process -- and both biology and technology are evolutionary processes --
110
338000
4000
無論是生物演化或是科技演化
05:42
accelerate.
111
342000
2000
都是以加速度進行的
05:44
They work through interaction -- they create a capability,
112
344000
3000
透過交互作用,他們創造能力
05:47
and then it uses that capability to bring on the next stage.
113
347000
3000
再用這個能力來改變下個階段
05:50
So the first step in biological evolution,
114
350000
3000
生物演化的第一步
05:53
the evolution of DNA -- actually it was RNA came first --
115
353000
2000
就是DNA 的演化,實際上是從 RNA開始的
05:55
took billions of years,
116
355000
2000
這個歷程歷經數十億年
05:57
but then evolution used that information-processing backbone
117
357000
3000
在這個已形成的資訊處理的架構下
06:00
to bring on the next stage.
118
360000
2000
演化持續推展至下一個階段
06:02
So the Cambrian Explosion, when all the body plans of the animals were evolved,
119
362000
3000
所以在寒武紀大爆發時,動物的身體結構
06:05
took only 10 million years. It was 200 times faster.
120
365000
4000
在一千萬年之間就建構完成。足足快了兩百倍
06:09
And then evolution used those body plans
121
369000
2000
接著,演化在這已身體架構上
06:11
to evolve higher cognitive functions,
122
371000
2000
建構出更高階的認知功能
06:13
and biological evolution kept accelerating.
123
373000
2000
生物的演化持續地加速進行
06:15
It's an inherent nature of an evolutionary process.
124
375000
3000
這就是演化與生俱來的天性
06:18
So Homo sapiens, the first technology-creating species,
125
378000
3000
第一個具備創造科技能力的物種-智人
06:21
the species that combined a cognitive function
126
381000
2000
已經結合了認知的功能
06:23
with an opposable appendage --
127
383000
2000
以及可以與四指相對的拇指
06:25
and by the way, chimpanzees don't really have a very good opposable thumb --
128
385000
4000
順便一提,大猩猩的拇指無法很好的與其他四指相對
06:29
so we could actually manipulate our environment with a power grip
129
389000
2000
我們因為具備很強的握力和細緻的操控力
06:31
and fine motor coordination,
130
391000
2000
所以才能對抗環境
06:33
and use our mental models to actually change the world
131
393000
2000
同時運用我們的心智來改變世界
06:35
and bring on technology.
132
395000
2000
並發展科技
06:37
But anyway, the evolution of our species took hundreds of thousands of years,
133
397000
3000
總而言之,物種的演化花了數十萬年
06:40
and then working through interaction,
134
400000
2000
然後透過交互影響和演化的作用
06:42
evolution used, essentially,
135
402000
2000
和演化的作用
06:44
the technology-creating species to bring on the next stage,
136
404000
3000
這個能創造科技的物種已經可以帶來新階段的發展了
06:47
which were the first steps in technological evolution.
137
407000
3000
這個階段就是科技演化的第一步
06:50
And the first step took tens of thousands of years --
138
410000
3000
而這一步僅花了數千年
06:53
stone tools, fire, the wheel -- kept accelerating.
139
413000
3000
從石製工具到輪軸,變化持續加速著
06:56
We always used then the latest generation of technology
140
416000
2000
我們總是用上一階段的科技
06:58
to create the next generation.
141
418000
2000
來創造下一階段
07:00
Printing press took a century to be adopted;
142
420000
2000
印刷科技花了一個世紀才普及
07:02
the first computers were designed pen-on-paper -- now we use computers.
143
422000
4000
第一台電腦是靠筆和紙設計出來的。而現今電腦變成我們的工具
07:06
And we've had a continual acceleration of this process.
144
426000
3000
我們正在持續加速這樣的過程,順便一提
07:09
Now by the way, if you look at this on a linear graph, it looks like everything has just happened,
145
429000
3000
你觀察這個線性圖形,似乎是每件事情都才剛剛發生
07:12
but some observer says, "Well, Kurzweil just put points on this graph
146
432000
6000
於是有些觀察家說” 喔 Kurzweil 只不過是把一些點放在圖表上
07:18
that fall on that straight line."
147
438000
2000
然後,剛好變成一條直線而已
07:20
So, I took 15 different lists from key thinkers,
148
440000
3000
所以,我列出十五份重要思想家的名單
07:23
like the Encyclopedia Britannica, the Museum of Natural History, Carl Sagan's Cosmic Calendar
149
443000
4000
名單選自大英百科全書、自然歷史博物館,卡爾沙根的宇宙日曆
07:27
on the same -- and these people were not trying to make my point;
150
447000
3000
這些人並沒有要為我的觀點背書
07:30
these were just lists in reference works,
151
450000
2000
他們都選自參考文獻中的作者列表
07:32
and I think that's what they thought the key events were
152
452000
3000
我想他們也會認同重要的關鍵在
07:35
in biological evolution and technological evolution.
153
455000
3000
生物演化和科技演化
07:38
And again, it forms the same straight line. You have a little bit of thickening in the line
154
458000
3000
再一次地,這些都形成了直線。你看到一些
07:41
because people do have disagreements, what the key points are,
155
461000
3000
較粗的直線,是因為人們對於關鍵點有些疑義
07:44
there's differences of opinion when agriculture started,
156
464000
2000
像是農業開始發展的時間點
07:46
or how long the Cambrian Explosion took.
157
466000
3000
或是寒武紀到底持續多久
07:49
But you see a very clear trend.
158
469000
2000
然而,這個趨勢卻是相當顯著的
07:51
There's a basic, profound acceleration of this evolutionary process.
159
471000
5000
這個演化的加速過程是根本且深遠的
07:56
Information technologies double their capacity, price performance, bandwidth,
160
476000
5000
在資訊科技界,容量、性能價格比和頻寬
08:01
every year.
161
481000
2000
每年都加倍成長
08:03
And that's a very profound explosion of exponential growth.
162
483000
4000
這就指數型態的爆炸性成長
08:07
A personal experience, when I was at MIT --
163
487000
2000
以我個人的經驗,當年我在麻省理工時
08:09
computer taking up about the size of this room,
164
489000
2000
電腦大約是一個房間的大小
08:11
less powerful than the computer in your cell phone.
165
491000
5000
性能也比不上你們現在的手機
08:16
But Moore's Law, which is very often identified with this exponential growth,
166
496000
4000
摩爾定律的概念和這個指數成長的概念非常相似
08:20
is just one example of many, because it's basically
167
500000
2000
但也只是眾多例子中的一個
08:22
a property of the evolutionary process of technology.
168
502000
5000
基本上,它只是科技演化發展的基本特性之一
08:27
I put 49 famous computers on this logarithmic graph --
169
507000
3000
如果我們將49 台著名的電腦放到這個對數圖表上
08:30
by the way, a straight line on a logarithmic graph is exponential growth --
170
510000
4000
順便一提,這個對數圖表上的線是指數成長的
08:34
that's another exponential.
171
514000
2000
這是另一個指數型的範例
08:36
It took us three years to double our price performance of computing in 1900,
172
516000
3000
在1900年,電腦的性能價格比花了三年才提升一倍
08:39
two years in the middle; we're now doubling it every one year.
173
519000
3000
中間的兩年,現在我們每年都可以提升一倍
08:43
And that's exponential growth through five different paradigms.
174
523000
3000
這五個不同的範例都顯示了指數型態的增長
08:46
Moore's Law was just the last part of that,
175
526000
2000
摩爾的定律只說明了這個定律的後半部
08:48
where we were shrinking transistors on an integrated circuit,
176
528000
3000
也就是說在積體電路的發展中,電晶體的尺寸不斷地縮減
08:51
but we had electro-mechanical calculators,
177
531000
3000
但我們是在經歷過電子機械式的計算機
08:54
relay-based computers that cracked the German Enigma Code,
178
534000
2000
取代德國密碼機的繼電器型電腦
08:56
vacuum tubes in the 1950s predicted the election of Eisenhower,
179
536000
4000
1950 年代就能預測艾森豪選舉的真空管電腦
09:00
discreet transistors used in the first space flights
180
540000
3000
用於首次太空飛行的分立電晶體之後
09:03
and then Moore's Law.
181
543000
2000
才有了摩爾定律
09:05
Every time one paradigm ran out of steam,
182
545000
2000
每當一個範例的發展到了限度
09:07
another paradigm came out of left field to continue the exponential growth.
183
547000
3000
另一個範例就接著進入指數成長期
09:10
They were shrinking vacuum tubes, making them smaller and smaller.
184
550000
3000
真空管尺寸被縮小,更小還要再小
09:13
That hit a wall. They couldn't shrink them and keep the vacuum.
185
553000
3000
到達一個瓶頸後,當真空管不能再更小了,我們就放棄真空管
09:16
Whole different paradigm -- transistors came out of the woodwork.
186
556000
2000
全新型態的電晶體開始崛起
09:18
In fact, when we see the end of the line for a particular paradigm,
187
558000
3000
事實上,每當一種例子到達發展的頂端時
09:21
it creates research pressure to create the next paradigm.
188
561000
4000
就是新產品的研發的壓力
09:25
And because we've been predicting the end of Moore's Law
189
565000
3000
長期以來,我們一直在預測後摩爾定律時代的降臨
09:28
for quite a long time -- the first prediction said 2002, until now it says 2022.
190
568000
3000
一開始預測是2002 年,現在又說是2012 年
09:31
But by the teen years,
191
571000
3000
在10 年內
09:34
the features of transistors will be a few atoms in width,
192
574000
3000
電晶體的寬度就會變得跟幾個原子的寬度一樣
09:37
and we won't be able to shrink them any more.
193
577000
2000
已經沒有辦法再被縮小
09:39
That'll be the end of Moore's Law, but it won't be the end of
194
579000
3000
這是摩爾定律的結束
09:42
the exponential growth of computing, because chips are flat.
195
582000
2000
但不是運算指數型態成長的結束。因為晶片是平的
09:44
We live in a three-dimensional world; we might as well use the third dimension.
196
584000
3000
而我們處在三度的立體空間,我們可以利用第三度空間
09:47
We will go into the third dimension
197
587000
2000
我們將會走入第三度空間
09:49
and there's been tremendous progress, just in the last few years,
198
589000
3000
並獲得極大的進展,就像我們過去幾年一樣
09:52
of getting three-dimensional, self-organizing molecular circuits to work.
199
592000
4000
我們將完成在三度空間的自組式的分子電路。
09:56
We'll have those ready well before Moore's Law runs out of steam.
200
596000
7000
在摩爾定律到達極限前,這些科技就會準備好
10:03
Supercomputers -- same thing.
201
603000
2000
同樣的事情也曾發生在超級電腦上
10:06
Processor performance on Intel chips,
202
606000
3000
英代爾的處理器上
10:09
the average price of a transistor --
203
609000
3000
電晶體的平均價格
10:12
1968, you could buy one transistor for a dollar.
204
612000
3000
在1968 年是一美金一個電晶體
10:15
You could buy 10 million in 2002.
205
615000
3000
在 2002 年時,同樣的價格可以買到一千萬個
10:18
It's pretty remarkable how smooth
206
618000
3000
這個指數發展的過程
10:21
an exponential process that is.
207
621000
2000
顯得如此平順
10:23
I mean, you'd think this is the result of some tabletop experiment,
208
623000
3000
以至於被認為這只是實驗桌上做出來的實驗數據
10:27
but this is the result of worldwide chaotic behavior --
209
627000
3000
但這分析的資料其實來自發生在世界各地的各種混沌行為
10:30
countries accusing each other of dumping products,
210
630000
2000
包括國際間互相指責傾銷
10:32
IPOs, bankruptcies, marketing programs.
211
632000
2000
公開募股、破產及行銷策略
10:34
You would think it would be a very erratic process,
212
634000
3000
這些通常被認為是沒有章法的過程
10:37
and you have a very smooth
213
637000
2000
然而這混亂的過程卻形成了
10:39
outcome of this chaotic process.
214
639000
2000
一個相當平順的結果
10:41
Just as we can't predict
215
641000
2000
就像,我們也許無法預測
10:43
what one molecule in a gas will do --
216
643000
2000
一個氣體內的分子的行為
10:45
it's hopeless to predict a single molecule --
217
645000
3000
預測單一分子是不可能的
10:48
yet we can predict the properties of the whole gas,
218
648000
2000
然而,我們卻可以用熱電學
10:50
using thermodynamics, very accurately.
219
650000
3000
非常準確地預測氣體的整體特性
10:53
It's the same thing here. We can't predict any particular project,
220
653000
3000
同樣地,我們無法預測單一特定的計畫
10:56
but the result of this whole worldwide,
221
656000
2000
然而這整個世界
10:58
chaotic, unpredictable activity of competition
222
658000
5000
這些混亂又無法預測的競爭行為
11:03
and the evolutionary process of technology is very predictable.
223
663000
3000
還有這個科技演化的過程卻都是可以預期的
11:06
And we can predict these trends far into the future.
224
666000
3000
而且,我們得到的這個趨勢也適用於未來
11:11
Unlike Gertrude Stein's roses,
225
671000
2000
和格特鲁德•斯泰因的玫瑰不同,
11:13
it's not the case that a transistor is a transistor.
226
673000
2000
電晶體不僅僅只是一個電晶體
11:15
As we make them smaller and less expensive,
227
675000
2000
當我們讓它變小變便宜之後
11:17
the electrons have less distance to travel.
228
677000
2000
電子間移動的距離變小了
11:19
They're faster, so you've got exponential growth in the speed of transistors,
229
679000
4000
它們變的更快,所以在電晶體的速度上就呈現了指數型進展。
11:23
so the cost of a cycle of one transistor
230
683000
4000
電晶體的周期成本
11:27
has been coming down with a halving rate of 1.1 years.
231
687000
3000
在1.1年內下降到一半
11:30
You add other forms of innovation and processor design,
232
690000
3000
加上其他形式的發明跟處理器設計
11:33
you get a doubling of price performance of computing every one year.
233
693000
4000
電腦產品的性能價格比每年都提升一倍
11:37
And that's basically deflation --
234
697000
3000
這是最基本的通貨緊縮
11:40
50 percent deflation.
235
700000
2000
- 50百分比的通貨緊縮
11:42
And it's not just computers. I mean, it's true of DNA sequencing;
236
702000
3000
這不僅僅是發生在電腦產業。也發生在DNA序列上
11:45
it's true of brain scanning;
237
705000
2000
在大腦掃描上
11:47
it's true of the World Wide Web. I mean, anything that we can quantify,
238
707000
2000
在網際網路上也都有同樣的情形。任何可以被量化的東西
11:49
we have hundreds of different measurements
239
709000
3000
數百種的指標
11:52
of different, information-related measurements --
240
712000
3000
和資訊相關的指標
11:55
capacity, adoption rates --
241
715000
2000
無論容量或是採用率
11:57
and they basically double every 12, 13, 15 months,
242
717000
3000
依照項目的相異,它們分別以每隔12,13,15 個月
12:00
depending on what you're looking at.
243
720000
2000
就加倍的速度成長
12:02
In terms of price performance, that's a 40 to 50 percent deflation rate.
244
722000
4000
至於性能價格比,則是呈現50- 約40-50 的緊縮幅度
12:07
And economists have actually started worrying about that.
245
727000
2000
經濟學家已經開始擔心這個現象
12:09
We had deflation during the Depression,
246
729000
2000
大蕭條時期我們曾經歷過經濟緊縮
12:11
but that was collapse of the money supply,
247
731000
2000
但是那是導因於貨幣供給系統的崩潰
12:13
collapse of consumer confidence, a completely different phenomena.
248
733000
3000
它也摧毀了消費者信心,是截然不同的現象
12:16
This is due to greater productivity,
249
736000
2000
這次則是因為生產力大增所致
12:19
but the economist says, "But there's no way you're going to be able to keep up with that.
250
739000
2000
但是經濟學家依舊認為:”我們不可能跟得上這個變化的腳步
12:21
If you have 50 percent deflation, people may increase their volume
251
741000
3000
當物價有50% 的通貨緊縮
12:24
30, 40 percent, but they won't keep up with it."
252
744000
2000
人們就會增加 30%-40% 的消費,人們不可能一直跟得上這個變化”
12:26
But what we're actually seeing is that
253
746000
2000
可是,事實顯示
12:28
we actually more than keep up with it.
254
748000
2000
我們不僅跟上這個變化
12:30
We've had 28 percent per year compounded growth in dollars
255
750000
3000
在過去50 年,花在資訊科技上的消費
12:33
in information technology over the last 50 years.
256
753000
3000
還呈現了28%的複合性成長
12:36
I mean, people didn't build iPods for 10,000 dollars 10 years ago.
257
756000
4000
我的意思是,10 年前,沒有人會花一萬美金去買ipod
12:40
As the price performance makes new applications feasible,
258
760000
3000
但是當性能價格提升到某種程度
12:43
new applications come to the market.
259
763000
2000
新發明的應用就會很合理而進入市場
12:45
And this is a very widespread phenomena.
260
765000
3000
這現象非常廣泛
12:48
Magnetic data storage --
261
768000
2000
雖然不適用摩爾定律
12:50
that's not Moore's Law, it's shrinking magnetic spots,
262
770000
3000
但是在磁記錄媒體方面,磁點的尺寸也正持續縮減中
12:53
different engineers, different companies, same exponential process.
263
773000
4000
相異的工程師與相異的公司,都依循相同的指數模式在進展
12:57
A key revolution is that we're understanding our own biology
264
777000
4000
另一個關鍵性的變革是我們開始運用資訊科技
13:01
in these information terms.
265
781000
2000
來解讀生物學
13:03
We're understanding the software programs
266
783000
2000
我們正在學習
13:05
that make our body run.
267
785000
2000
讓我們身體運作的軟體
13:07
These were evolved in very different times --
268
787000
2000
這些軟體是在不同的時期逐漸發展起來的
13:09
we'd like to actually change those programs.
269
789000
2000
我們卻想要改變身體運作的程式
13:11
One little software program, called the fat insulin receptor gene,
270
791000
2000
有個小軟體程式叫做脂肪胰島素受體基因
13:13
basically says, "Hold onto every calorie,
271
793000
2000
基本上,它發出的訊息是:”維持住卡洛里
13:15
because the next hunting season may not work out so well."
272
795000
4000
因為下一個狩獵季可能什麼都獵不到”
13:19
That was in the interests of the species tens of thousands of years ago.
273
799000
3000
在數萬年前,這個機能上是對物種有益的
13:22
We'd like to actually turn that program off.
274
802000
3000
現在,我們想關掉這個機能
13:25
They tried that in animals, and these mice ate ravenously
275
805000
3000
我們在動物上實驗,讓老鼠們大口大口的吃,
13:28
and remained slim and got the health benefits of being slim.
276
808000
2000
卻能保持苗條。因為體態輕盈而老鼠還保持了健康
13:30
They didn't get diabetes; they didn't get heart disease;
277
810000
3000
沒有糖尿病,沒有心臟病
13:33
they lived 20 percent longer; they got the health benefits of caloric restriction
278
813000
3000
牠們甚至延長了20% 的年紀。要限制熱量攝取才能得到的健康
13:36
without the restriction.
279
816000
2000
這些老鼠無需限制熱量也依舊保有
13:38
Four or five pharmaceutical companies have noticed this,
280
818000
3000
四到五家的製藥公司注意到這一點
13:41
felt that would be
281
821000
3000
他們覺得
13:44
interesting drug for the human market,
282
824000
3000
這對人類的市場將會是個有趣的藥品
13:47
and that's just one of the 30,000 genes
283
827000
2000
而這只不過是影響我們生物化學的3萬個基因
13:49
that affect our biochemistry.
284
829000
3000
其中的一個
13:52
We were evolved in an era where it wasn't in the interests of people
285
832000
3000
我們所處的世代,並不是為了
13:55
at the age of most people at this conference, like myself,
286
835000
3000
讓那些與參加這會議的大多數人相似年紀的人,例如我本人
13:58
to live much longer, because we were using up the precious resources
287
838000
4000
活得更長久而考量。因為我們正在耗盡人類的珍貴資源
14:02
which were better deployed towards the children
288
842000
1000
這些資源原本是預留給我們的下一代的兒童
14:03
and those caring for them.
289
843000
2000
和那些珍惜資源的人
14:05
So, life -- long lifespans --
290
845000
2000
超過三十歲
14:07
like, that is to say, much more than 30 --
291
847000
2000
的長壽生命
14:09
weren't selected for,
292
849000
3000
並不是自然界物競天擇的結果
14:12
but we are learning to actually manipulate
293
852000
3000
而是由於我們在生物科技革命中
14:15
and change these software programs
294
855000
2000
已經學到如何操縱
14:17
through the biotechnology revolution.
295
857000
2000
並改變這些軟體的技能
14:19
For example, we can inhibit genes now with RNA interference.
296
859000
4000
舉例來說,我們已經懂得用RNA干擾去抑制基因
14:23
There are exciting new forms of gene therapy
297
863000
2000
新型態的基因治療法令人雀躍,
14:25
that overcome the problem of placing the genetic material
298
865000
2000
它們已經能成功地
14:27
in the right place on the chromosome.
299
867000
2000
將遺傳物質置於正確的染色體位置
14:29
There's actually a -- for the first time now,
300
869000
3000
這是第一次,基因治療
14:32
something going to human trials, that actually cures pulmonary hypertension --
301
872000
3000
真的在人體試驗中治癒了肺動脈高血壓
14:35
a fatal disease -- using gene therapy.
302
875000
3000
這種致命的疾病
14:38
So we'll have not just designer babies, but designer baby boomers.
303
878000
3000
所以我們不僅有訂造的嬰兒,還會有訂造的嬰兒潮
14:41
And this technology is also accelerating.
304
881000
3000
目前這個科技也在加速中
14:44
It cost 10 dollars per base pair in 1990,
305
884000
3000
1990 年基因複製時鹼基的成本是10 美金
14:47
then a penny in 2000.
306
887000
2000
到2000年時只要一分錢
14:49
It's now under a 10th of a cent.
307
889000
2000
現在則是一分錢的十分之一
14:51
The amount of genetic data --
308
891000
2000
基因資料的數量
14:53
basically this shows that smooth exponential growth
309
893000
3000
也顯示出每年增加一倍
14:56
doubled every year,
310
896000
2000
的指數型成長
14:58
enabling the genome project to be completed.
311
898000
3000
促成基因組計畫的實現
15:01
Another major revolution: the communications revolution.
312
901000
3000
另一個重大的革命就是通訊革命
15:04
The price performance, bandwidth, capacity of communications measured many different ways;
313
904000
5000
用通訊的性能價格比、頻寬和容量可以顯示出不同層次的進展
15:09
wired, wireless is growing exponentially.
314
909000
3000
有線和無線通訊的數量都是以指數型式增長
15:12
The Internet has been doubling in power and continues to,
315
912000
3000
在耗用的電力和其他方面的數據
15:15
measured many different ways.
316
915000
2000
也都顯示網際網路的發展已經增加一倍
15:17
This is based on the number of hosts.
317
917000
2000
這圖表是以主機的數量為基準
15:19
Miniaturization -- we're shrinking the size of technology
318
919000
2000
微型化 - 科技產品的尺寸
15:21
at an exponential rate,
319
921000
2000
正以指數的倍率縮小
15:23
both wired and wireless.
320
923000
2000
無論是有線或無線。
15:25
These are some designs from Eric Drexler's book --
321
925000
4000
德萊思勒書中有一些設計
15:29
which we're now showing are feasible
322
929000
2000
經過超級電腦的模擬
15:31
with super-computing simulations,
323
931000
2000
已經證明是合理可行的
15:33
where actually there are scientists building
324
933000
2000
科學家們已經開始製造
15:35
molecule-scale robots.
325
935000
2000
分子機器人
15:37
One has one that actually walks with a surprisingly human-like gait,
326
937000
2000
其中一具分子機器人甚至可以用人類的步伐行走
15:39
that's built out of molecules.
327
939000
3000
甚至可以用人類的步伐行走
15:42
There are little machines doing things in experimental bases.
328
942000
4000
實驗室裡的小機器也有了實用的機能
15:46
The most exciting opportunity
329
946000
3000
最令人興奮的是
15:49
is actually to go inside the human body
330
949000
2000
機器人已經可以進入人體
15:51
and perform therapeutic and diagnostic functions.
331
951000
3000
進行治療跟診斷
15:54
And this is less futuristic than it may sound.
332
954000
2000
聽起來像是遙遠未來才能實現的功能其實並不遙遠
15:56
These things have already been done in animals.
333
956000
2000
有些已經運用在動物身上了
15:58
There's one nano-engineered device that cures type 1 diabetes. It's blood cell-sized.
334
958000
4000
有種奈米工程的裝置可以治療第一型糖尿病,大小和血球相近
16:02
They put tens of thousands of these
335
962000
2000
它已經在老鼠上進行實驗。數萬個這種裝置
16:04
in the blood cell -- they tried this in rats --
336
964000
2000
被放於血球中
16:06
it lets insulin out in a controlled fashion,
337
966000
2000
它們控制胰島素以適當的速度釋放
16:08
and actually cures type 1 diabetes.
338
968000
2000
以治療第一型的糖尿病
16:10
What you're watching is a design
339
970000
3000
這是人造紅血球
16:13
of a robotic red blood cell,
340
973000
2000
的其中一種
16:15
and it does bring up the issue that our biology
341
975000
2000
這類人造的紅血球引發新的議論
16:17
is actually very sub-optimal,
342
977000
2000
雖然生物的構造已錯綜複雜
16:19
even though it's remarkable in its intricacy.
343
979000
3000
但並非處在最佳狀態
16:22
Once we understand its principles of operation,
344
982000
3000
一旦我們了解這個準則
16:25
and the pace with which we are reverse-engineering biology is accelerating,
345
985000
3000
而生物學的逆向工程也加速進展
16:29
we can actually design these things to be
346
989000
2000
比現今功能強數千倍的能力
16:31
thousands of times more capable.
347
991000
2000
都可能達成
16:33
An analysis of this respirocyte, designed by Rob Freitas,
348
993000
4000
一個針對Freitas博士設計的人造红血球的分析指出
16:38
indicates if you replace 10 percent of your red blood cells with these robotic versions,
349
998000
2000
如果以人造紅血球取代人體血液中的紅血球的10%
16:41
you could do an Olympic sprint for 15 minutes without taking a breath.
350
1001000
3000
你可以在奧運比賽中可以連續衝刺15 分鐘而不用換上一口氣
16:44
You could sit at the bottom of your pool for four hours --
351
1004000
3000
或是在游泳池底連續坐四小時
16:47
so, "Honey, I'm in the pool," will take on a whole new meaning.
352
1007000
4000
當你說"親愛的,我現在在游泳池",可能表示了一種全新的意義
16:51
It will be interesting to see what we do in our Olympic trials.
353
1011000
2000
人們可以在奧運會的選拔賽做出什麼樣的表現呢,這將會變的很有趣
16:53
Presumably we'll ban them,
354
1013000
2000
可以預見地,這種人工紅血球會被禁止
16:55
but then we'll have the specter of teenagers in their high schools gyms
355
1015000
2000
但是,青少年怪傑將不斷地出現,他們在學校體育館中
16:57
routinely out-performing the Olympic athletes.
356
1017000
3000
就可以創下奧運紀錄
17:02
Freitas has a design for a robotic white blood cell.
357
1022000
3000
Freitas博士也設計了人造白血球
17:05
These are 2020-circa scenarios,
358
1025000
4000
以上是預計2020 年左右會發生的劇情
17:09
but they're not as futuristic as it may sound.
359
1029000
2000
雖然很像遙遠未來的故事,但事實並非如此
17:11
There are four major conferences on building blood cell-sized devices;
360
1031000
4000
已經有四場主要的會議在討論製造這類血球大小的裝置
17:15
there are many experiments in animals.
361
1035000
2000
也進行了許多動物試驗
17:17
There's actually one going into human trial,
362
1037000
2000
有一個已經進行人體試驗
17:19
so this is feasible technology.
363
1039000
3000
所以這種科技是非常可行的
17:23
If we come back to our exponential growth of computing,
364
1043000
2000
以計算能力的指數型成長來看
17:25
1,000 dollars of computing is now somewhere between an insect and a mouse brain.
365
1045000
3000
現今1000 美元計算機的功能大約介於昆蟲或是老鼠的大腦
17:28
It will intersect human intelligence
366
1048000
3000
以儲存容量來看
17:31
in terms of capacity in the 2020s,
367
1051000
3000
大約2020 年左右會接近人類的智慧
17:34
but that'll be the hardware side of the equation.
368
1054000
2000
但這裡指的是硬體方面的比較
17:36
Where will we get the software?
369
1056000
2000
那麼相近於人腦的軟體該從哪裡取得呢?
17:38
Well, it turns out we can see inside the human brain,
370
1058000
2000
我們必須先來分析人腦的內部
17:40
and in fact not surprisingly,
371
1060000
2000
事實並不太令人意外
17:42
the spatial and temporal resolution of brain scanning is doubling every year.
372
1062000
4000
目前我們在腦部掃描的空間分辨力和瞬時分辨力每年都提升一倍
17:46
And with the new generation of scanning tools,
373
1066000
2000
有了新一代的掃瞄儀器
17:48
for the first time we can actually see
374
1068000
2000
第一次我們看到了
17:50
individual inter-neural fibers
375
1070000
2000
個別的神經間的纖維
17:52
and see them processing and signaling in real time --
376
1072000
3000
還即時地看到它們是如何的處理和傳送訊息
17:55
but then the question is, OK, we can get this data now,
377
1075000
2000
是的,我們現在已經可以取得資料了
17:57
but can we understand it?
378
1077000
2000
但是問題是我們能理解這些資料嗎?
17:59
Doug Hofstadter wonders, well, maybe our intelligence
379
1079000
3000
Doug Hofstadter 曾經懷疑:也許以人類的智慧
18:02
just isn't great enough to understand our intelligence,
380
1082000
3000
是無法去了解人類的智慧的
18:05
and if we were smarter, well, then our brains would be that much more complicated,
381
1085000
3000
因為當我們更聰明後,大腦的構造也會變得更複雜
18:08
and we'd never catch up to it.
382
1088000
2000
所以,我們永遠追不上大腦的進展
18:11
It turns out that we can understand it.
383
1091000
3000
但結果證明,我們已經能了解大腦了
18:14
This is a block diagram of
384
1094000
3000
這個方塊圖是個模型
18:17
a model and simulation of the human auditory cortex
385
1097000
4000
它在模擬人類大腦聽覺皮質上
18:21
that actually works quite well --
386
1101000
2000
有很好的表現
18:23
in applying psychoacoustic tests, gets very similar results to human auditory perception.
387
1103000
2000
在聽覺心理學測驗中,它和人類聽覺的結果非常類似
18:27
There's another simulation of the cerebellum --
388
1107000
3000
另外,也有個小腦的模擬圖
18:30
that's more than half the neurons in the brain --
389
1110000
2000
小腦涵蓋了人腦半數以上的神經元
18:32
again, works very similarly to human skill formation.
390
1112000
3000
它和人類在技能構成的運作非常類似
18:36
This is at an early stage, but you can show
391
1116000
3000
雖然現在是在發展的初期階段
18:39
with the exponential growth of the amount of information about the brain
392
1119000
3000
但在與大腦的相關的資訊量已經呈現指數成長
18:42
and the exponential improvement
393
1122000
2000
腦部掃描的分辨力上
18:44
in the resolution of brain scanning,
394
1124000
2000
也有指數型的改進
18:46
we will succeed in reverse-engineering the human brain
395
1126000
3000
在2020 年代以前
18:49
by the 2020s.
396
1129000
2000
人類大腦的逆向工程會有所成果
18:51
We've already had very good models and simulation of about 15 regions
397
1131000
3000
在腦部的數百個區域中,其中15個
18:54
out of the several hundred.
398
1134000
3000
已經有了非常好的模型和模擬
18:57
All of this is driving
399
1137000
2000
所有這些都會導向
18:59
exponentially growing economic progress.
400
1139000
2000
指數型的經濟成長
19:01
We've had productivity go from 30 dollars to 150 dollars per hour
401
1141000
3000
過去50 年,在勞工產值上已經從每位勞工每小時30 美金
19:06
of labor in the last 50 years.
402
1146000
2000
提升到150 美金
19:08
E-commerce has been growing exponentially. It's now a trillion dollars.
403
1148000
3000
電子商務也顯示指數型的成長。現在已經是上兆元的產業
19:11
You might wonder, well, wasn't there a boom and a bust?
404
1151000
2000
你也許會想問,它不是發生有過繁榮期跟泡沫化嗎?
19:13
That was strictly a capital-markets phenomena.
405
1153000
2000
這其實是資本市場的現象
19:15
Wall Street noticed that this was a revolutionary technology, which it was,
406
1155000
4000
當時華爾街察覺到這會是個革命性的科技,它確實是
19:19
but then six months later, when it hadn't revolutionized all business models,
407
1159000
3000
但是六個月後,它沒有讓所有的商業模式都產生革命性變革時
19:22
they figured, well, that was wrong,
408
1162000
2000
人們想,糟了
19:24
and then we had this bust.
409
1164000
2000
然後,泡沫化就發生了
19:27
All right, this is a technology
410
1167000
2000
好的。在這種科技裡
19:29
that we put together using some of the technologies we're involved in.
411
1169000
3000
融合運用了目前正在發展中的科技
19:32
This will be a routine feature in a cell phone.
412
1172000
4000
這會成為手機的標準功能
19:36
It would be able to translate from one language to another.
413
1176000
2000
它能將一種語言翻譯成另一種語言
19:48
So let me just end with a couple of scenarios.
414
1188000
2000
我將以一些遠景做為結尾
19:50
By 2010 computers will disappear.
415
1190000
3000
2010 年前,電腦即將消失
19:54
They'll be so small, they'll be embedded in our clothing, in our environment.
416
1194000
3000
它們變得非常微小,以致於它們被植入在衣服和環境當中
19:57
Images will be written directly to our retina,
417
1197000
2000
影像被直接寫在我們的視網膜上
19:59
providing full-immersion virtual reality,
418
1199000
2000
提供沉浸式的虛擬實境
20:01
augmented real reality. We'll be interacting with virtual personalities.
419
1201000
3000
真實感增加。我們也可以和虛擬人物互動
20:05
But if we go to 2029, we really have the full maturity of these trends,
420
1205000
4000
如果前往 2029 年,到那時,這些趨勢已臻成熟
20:09
and you have to appreciate how many turns of the screw
421
1209000
3000
你感念這些科技產生的過程,它們都曾歷經數次大轉折
20:12
in terms of generations of technology, which are getting faster and faster, we'll have at that point.
422
1212000
4000
而且愈變愈快的轉折終究才成功的
20:16
I mean, we will have two-to-the-25th-power
423
1216000
2000
性能比、容量和頻寬
20:18
greater price performance, capacity and bandwidth
424
1218000
3000
是現在的2 到25 倍
20:21
of these technologies, which is pretty phenomenal.
425
1221000
2000
這是相當驚人的成就
20:23
It'll be millions of times more powerful than it is today.
426
1223000
2000
它比目前的科技強大百萬倍
20:25
We'll have completed the reverse-engineering of the human brain,
427
1225000
2000
我們將完成人類大腦的逆向工程
20:28
1,000 dollars of computing will be far more powerful
428
1228000
3000
就一般的容量來比
20:31
than the human brain in terms of basic raw capacity.
429
1231000
4000
一千美金的計算機將比人腦的功能更加強大
20:35
Computers will combine
430
1235000
2000
電腦會結合
20:37
the subtle pan-recognition powers
431
1237000
2000
人類智慧所擁有的細微的全辨識功能
20:39
of human intelligence with ways in which machines are already superior,
432
1239000
3000
加上機器原本就優於人腦-的項目
20:42
in terms of doing analytic thinking,
433
1242000
2000
例如:處理分析思考
20:44
remembering billions of facts accurately.
434
1244000
2000
與正確地記憶數十億的論據的方面
20:46
Machines can share their knowledge very quickly.
435
1246000
2000
機器更可以快速的分享知識
20:48
But it's not just an alien invasion of intelligent machines.
436
1248000
5000
智慧型機器不只像是外星人入侵
20:53
We are going to merge with our technology.
437
1253000
2000
還會和我們的科技結合
20:55
These nano-bots I mentioned
438
1255000
2000
我提及的這些奈米機器人
20:57
will first be used for medical and health applications:
439
1257000
4000
將首次被用在醫藥和健康的應用上。
21:01
cleaning up the environment, providing powerful fuel cells
440
1261000
3000
清理環境,提供能源-像是強大的燃料電池
21:04
and widely distributed decentralized solar panels and so on in the environment.
441
1264000
5000
和分佈很廣的分散式的太陽能板,等諸如此類的應用
21:09
But they'll also go inside our brain,
442
1269000
2000
它們也會走入我們的大腦中
21:11
interact with our biological neurons.
443
1271000
2000
和我們的生物神經元產生交互作用
21:13
We've demonstrated the key principles of being able to do this.
444
1273000
3000
我們已經證明了可以達成這個目標的關鍵性原理
21:16
So, for example,
445
1276000
2000
舉例來說
21:18
full-immersion virtual reality from within the nervous system,
446
1278000
2000
在與神經系統結合的沉浸式虛擬實境中
21:20
the nano-bots shut down the signals coming from your real senses,
447
1280000
3000
奈米機器人會及阻斷我們真實感受到的訊息
21:23
replace them with the signals that your brain would be receiving
448
1283000
3000
取而代之的是假定你在虛擬的環境下所該收到的訊息
21:26
if you were in the virtual environment,
449
1286000
2000
所該收到的訊息
21:28
and then it'll feel like you're in that virtual environment.
450
1288000
2000
大腦收到這樣的訊息,所以它感覺你是真實地存在虛擬世界裡
21:30
You can go there with other people, have any kind of experience
451
1290000
2000
你可以和他人一同前往虛擬世界,所有這些感官產生的經驗
21:32
with anyone involving all of the senses.
452
1292000
2000
都可以和他人共享
21:35
"Experience beamers," I call them, will put their whole flow of sensory experiences
453
1295000
3000
我稱它為”經驗傳送器”`。情感對應的神經所產生的感官經驗
21:38
in the neurological correlates of their emotions out on the Internet.
454
1298000
3000
會被放在網際網路上
21:41
You can plug in and experience what it's like to be someone else.
455
1301000
3000
只要連上它們,就能體驗另一個人的感覺
21:44
But most importantly,
456
1304000
2000
但最重要的是
21:46
it'll be a tremendous expansion
457
1306000
2000
透過這種和科技的直接合併
21:48
of human intelligence through this direct merger with our technology,
458
1308000
4000
人類的智慧會急遽地擴展
21:52
which in some sense we're doing already.
459
1312000
2000
就某些層面而言,我們已經在進行了
21:54
We routinely do intellectual feats
460
1314000
2000
有了科技的協助
21:56
that would be impossible without our technology.
461
1316000
2000
人類才能不時地展現出智慧的成就
21:58
Human life expectancy is expanding. It was 37 in 1800,
462
1318000
3000
人類的預期壽命不斷地延長,在 1800 年時是37歲
22:01
and with this sort of biotechnology, nano-technology revolutions,
463
1321000
5000
隨著這類的生化科技與奈米科技革命的發展
22:06
this will move up very rapidly
464
1326000
2000
預期壽命會在未來幾年
22:08
in the years ahead.
465
1328000
2000
快速的增長
22:10
My main message is that progress in technology
466
1330000
4000
我要傳達的重點是科技的進步
22:14
is exponential, not linear.
467
1334000
3000
是指數型的,不是線型的
22:17
Many -- even scientists -- assume a linear model,
468
1337000
4000
很多人,甚至是科學家,常以線型模型來預期未來的發展
22:21
so they'll say, "Oh, it'll be hundreds of years
469
1341000
2000
所以,他們才會認為 “要花上數百年
22:23
before we have self-replicating nano-technology assembly
470
1343000
3000
我們才能發展出具備自我複製能力的奈米科技組裝
22:26
or artificial intelligence."
471
1346000
2000
或是人工智慧”
22:28
If you really look at the power of exponential growth,
472
1348000
3000
但如果你看到指數型成長的力量
22:31
you'll see that these things are pretty soon at hand.
473
1351000
3000
你會預期這些事將在不久後實現
22:34
And information technology is increasingly encompassing
474
1354000
3000
資訊科技會持續地擴展到
22:37
all of our lives, from our music to our manufacturing
475
1357000
4000
生活的各個層面,從音樂到生產製造
22:41
to our biology to our energy to materials.
476
1361000
4000
生物、能源以及材料
22:45
We'll be able to manufacture almost anything we need in the 2020s,
477
1365000
3000
在 2020 年代
22:48
from information, in very inexpensive raw materials,
478
1368000
2000
有了資訊科技,再加上便宜的原料
22:50
using nano-technology.
479
1370000
3000
以及奈米科技,我們幾乎能製造出所有的產品
22:53
These are very powerful technologies.
480
1373000
2000
這些有影響力的科技
22:55
They both empower our promise and our peril.
481
1375000
4000
不僅能帶來美好未來,也可能導致悲慘命運
22:59
So we have to have the will to apply them to the right problems.
482
1379000
3000
所以,我們必須有決心,確保它們只能用在正確的方向上
23:02
Thank you very much.
483
1382000
1000
非常感謝
23:03
(Applause)
484
1383000
1000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog