請雙擊下方英文字幕播放視頻。
譯者: wentzu chen
審譯者: Wang-Ju Tsai
00:25
Well, it's great to be here.
0
25000
1000
很高興能來到這裡。我們聽過一些
00:26
We've heard a lot about the promise of technology, and the peril.
1
26000
5000
關於科技可以讓生活更美好的承諾,也有人說它會引發災難
00:31
I've been quite interested in both.
2
31000
2000
我個人對這兩種觀點都深感興趣
00:33
If we could convert 0.03 percent
3
33000
4000
如果到達地球的太陽光的百分之0.03
00:37
of the sunlight that falls on the earth into energy,
4
37000
2000
可以被轉換成能源
00:39
we could meet all of our projected needs for 2030.
5
39000
5000
這些能源將可以滿足人類在2030 年的能源需求
00:44
We can't do that today because solar panels are heavy,
6
44000
3000
然而,這個想法目前無法達成,理由是太陽能板既重
00:47
expensive and very inefficient.
7
47000
2000
又昂貴,而且效率很低
00:49
There are nano-engineered designs,
8
49000
3000
雖然還是在理論分析階段,
00:52
which at least have been analyzed theoretically,
9
52000
2000
但是奈米工程已經設計出
00:54
that show the potential to be very lightweight,
10
54000
2000
可以讓太陽能板變輕
00:56
very inexpensive, very efficient,
11
56000
2000
便宜又有效率的方法
00:58
and we'd be able to actually provide all of our energy needs in this renewable way.
12
58000
4000
這種再生能源將可以滿足人們所有的能源需求
01:02
Nano-engineered fuel cells
13
62000
2000
而奈米燃料電池
01:04
could provide the energy where it's needed.
14
64000
3000
也可以在任何地方提供能源
01:07
That's a key trend, which is decentralization,
15
67000
2000
這些分散式的能源供給將成為關鍵的趨勢
01:09
moving from centralized nuclear power plants and
16
69000
3000
從集中式的核能電廠
01:12
liquid natural gas tankers
17
72000
2000
和液態天然瓦斯槽
01:14
to decentralized resources that are environmentally more friendly,
18
74000
4000
轉變成分散式的天然資源。它們不僅更環保、
01:18
a lot more efficient
19
78000
3000
效能佳
01:21
and capable and safe from disruption.
20
81000
4000
而且能避免能源系統中斷的隱憂
01:25
Bono spoke very eloquently,
21
85000
2000
Bono 曾明確地表示
01:27
that we have the tools, for the first time,
22
87000
4000
疾病和貧窮的問題存在已久
01:31
to address age-old problems of disease and poverty.
23
91000
4000
這是第一次,我們人類掌握了解決這些問題的工具
01:35
Most regions of the world are moving in that direction.
24
95000
4000
在世界上大部分的地區也顯示出這樣的趨勢
01:39
In 1990, in East Asia and the Pacific region,
25
99000
4000
在1990 年時,東亞及太平洋地區
01:43
there were 500 million people living in poverty --
26
103000
2000
有五億的人口處於貧窮狀態
01:45
that number now is under 200 million.
27
105000
3000
如今已經降至二億人以下
01:48
The World Bank projects by 2011, it will be under 20 million,
28
108000
3000
世界銀行預期2011 年這些貧窮人口將低於二千萬
01:51
which is a reduction of 95 percent.
29
111000
3000
也就是降低了 95%
01:54
I did enjoy Bono's comment
30
114000
3000
我很喜歡Bono 的說法
01:57
linking Haight-Ashbury to Silicon Valley.
31
117000
4000
他將舊金山嬉皮區 Haight-Ashbury 和加州的矽谷相比
02:01
Being from the Massachusetts high-tech community myself,
32
121000
3000
我來自麻州的高科技園區
02:04
I'd point out that we were hippies also in the 1960s,
33
124000
4000
我要指出我們在 1960 年代也曾經是嬉皮
02:09
although we hung around Harvard Square.
34
129000
3000
差別只是我們是在哈佛廣場閒蕩
02:12
But we do have the potential to overcome disease and poverty,
35
132000
5000
我們確實有能力去對抗疾病與貧窮
02:17
and I'm going to talk about those issues, if we have the will.
36
137000
3000
只要我們有決心。這些是我將討論的主題
02:20
Kevin Kelly talked about the acceleration of technology.
37
140000
3000
Kevin Kelly 曾探討科技的加速進展過程
02:23
That's been a strong interest of mine,
38
143000
3000
我對這個主題有強烈的興趣
02:26
and a theme that I've developed for some 30 years.
39
146000
3000
也研究了三十年
02:29
I realized that my technologies had to make sense when I finished a project.
40
149000
5000
我體認到研究的成果必須有所貢獻
02:34
That invariably, the world was a different place
41
154000
3000
然而,每當我要導入新科技時
02:37
when I would introduce a technology.
42
157000
2000
卻發現世界已經不一樣了
02:39
And, I noticed that most inventions fail,
43
159000
2000
我發現大部份的發明都是失敗的
02:41
not because the R&D department can't get it to work --
44
161000
3000
並非是因為研發部門沒有達成目標
02:44
if you look at most business plans, they will actually succeed
45
164000
3000
如果你去分析,會看到大部份的商業計畫實際上能達成目標
02:47
if given the opportunity to build what they say they're going to build --
46
167000
4000
但前提是計畫要有機會依照原先設定的目標時去執行
02:51
and 90 percent of those projects or more will fail, because the timing is wrong --
47
171000
3000
但90%甚至更多的計畫都失敗了,原因就是時機錯誤
02:54
not all the enabling factors will be in place when they're needed.
48
174000
3000
在需要時總會欠缺一些關鍵性的成功因素
02:57
So I began to be an ardent student of technology trends,
49
177000
4000
我像個熱切的學生,研究起科技的趨勢
03:01
and track where technology would be at different points in time,
50
181000
3000
我追蹤在什麼時間點,科技會呈現什麼面貌
03:04
and began to build the mathematical models of that.
51
184000
3000
並建立起它的數學模型,
03:07
It's kind of taken on a life of its own.
52
187000
2000
把整個科技發展的過程呈現出來
03:09
I've got a group of 10 people that work with me to gather data
53
189000
3000
我的團隊有十個人,我們蒐集資料
03:12
on key measures of technology in many different areas, and we build models.
54
192000
5000
看一些關鍵的科技如何運在各個領域,然後建立模型
03:17
And you'll hear people say, well, we can't predict the future.
55
197000
3000
你會聽到人們說,”我們是不可能預測未來的”
03:20
And if you ask me,
56
200000
2000
如果你問我
03:22
will the price of Google be higher or lower than it is today three years from now,
57
202000
3000
三年後Google 的股價會上升還是下跌?
03:25
that's very hard to say.
58
205000
2000
那真的很難預測
03:27
Will WiMax CDMA G3
59
207000
3000
WiMax CDMA G3
03:30
be the wireless standard three years from now? That's hard to say.
60
210000
2000
會成為無線協定嗎?這也很難說
03:32
But if you ask me, what will it cost
61
212000
2000
但是,如果你問我
03:34
for one MIPS of computing in 2010,
62
214000
3000
2010年時,一個計算用的MIPS 會值多少錢?
03:37
or the cost to sequence a base pair of DNA in 2012,
63
217000
3000
或是在2012年,DNA一基本對的序列的成本是多少?
03:40
or the cost of sending a megabyte of data wirelessly in 2014,
64
220000
4000
或是無線傳送百萬位元在2014 年要花費多少?
03:44
it turns out that those are very predictable.
65
224000
3000
這些問題就很容易預測了
03:47
There are remarkably smooth exponential curves
66
227000
2000
性能價格比,處理容量與頻寬間
03:49
that govern price performance, capacity, bandwidth.
67
229000
3000
呈現非常平滑的指數曲線關係
03:52
And I'm going to show you a small sample of this,
68
232000
2000
我給你們看一個小範例
03:54
but there's really a theoretical reason
69
234000
2000
它顯示出理論上
03:56
why technology develops in an exponential fashion.
70
236000
5000
科技是以指數模式在發展
04:01
And a lot of people, when they think about the future, think about it linearly.
71
241000
2000
但多數人卻是用線性的模式在預測未來
04:03
They think they're going to continue
72
243000
2000
他們以為
04:05
to develop a problem
73
245000
2000
處理或解決一個難題
04:07
or address a problem using today's tools,
74
247000
3000
只能用現有的工具
04:10
at today's pace of progress,
75
250000
2000
和現有的步調
04:12
and fail to take into consideration this exponential growth.
76
252000
4000
卻忽略到了指數型成長的因素
04:16
The Genome Project was a controversial project in 1990.
77
256000
3000
基因組計畫在 1990 年時是個很受爭議的計畫
04:19
We had our best Ph.D. students,
78
259000
2000
雖然擁有最好的博士班學生、
04:21
our most advanced equipment around the world,
79
261000
2000
世界上最先進的儀器
04:23
we got 1/10,000th of the project done,
80
263000
2000
卻只完成了計畫的萬分之一
04:25
so how're we going to get this done in 15 years?
81
265000
2000
那怎麼可能在15 年內完成這個計畫?
04:27
And 10 years into the project,
82
267000
3000
十年過去了
04:31
the skeptics were still going strong -- says, "You're two-thirds through this project,
83
271000
2000
人們的質疑依舊強烈。他們說:計畫已經過了 2/3
04:33
and you've managed to only sequence
84
273000
2000
但只勉強地完成了
04:35
a very tiny percentage of the whole genome."
85
275000
3000
很少部份的基因組序列
04:38
But it's the nature of exponential growth
86
278000
2000
然而,這正是指數型成長的特性
04:40
that once it reaches the knee of the curve, it explodes.
87
280000
2000
一但到達曲線彎曲點,它就一躍而上
04:42
Most of the project was done in the last
88
282000
2000
計畫的大部份都在是在最後幾年才完成的
04:44
few years of the project.
89
284000
2000
幾年才完成的
04:46
It took us 15 years to sequence HIV --
90
286000
2000
HIV 愛滋病毒的序列耗費了15 年
04:48
we sequenced SARS in 31 days.
91
288000
2000
但我們在31 天內就完成 SARS 的序列
04:50
So we are gaining the potential to overcome these problems.
92
290000
4000
所以,我們是有能力去克服這些問題的
04:54
I'm going to show you just a few examples
93
294000
2000
我給你看一些例子
04:56
of how pervasive this phenomena is.
94
296000
3000
來證明這樣的現象是很普遍的。根據我們的模型,
04:59
The actual paradigm-shift rate, the rate of adopting new ideas,
95
299000
4000
實際的典範轉移率 - 採用新觀念的比例
05:03
is doubling every decade, according to our models.
96
303000
3000
每十年就呈倍數成長
05:06
These are all logarithmic graphs,
97
306000
3000
這些都是對數的圖形
05:09
so as you go up the levels it represents, generally multiplying by factor of 10 or 100.
98
309000
3000
在達到相對的程度後,通常會以十倍速或百倍的速度變化
05:12
It took us half a century to adopt the telephone,
99
312000
3000
第一個虛擬實境技術-電話
05:15
the first virtual-reality technology.
100
315000
3000
花了半個世紀的時間,才開始普及
05:18
Cell phones were adopted in about eight years.
101
318000
2000
但是手機只花了八年就被普遍使用
05:20
If you put different communication technologies
102
320000
3000
將不同的通訊科技
05:23
on this logarithmic graph,
103
323000
2000
放在這個對數圖表上
05:25
television, radio, telephone
104
325000
2000
會發現電視、收音機跟電話的普及過程
05:27
were adopted in decades.
105
327000
2000
都要花上數十年的時間
05:29
Recent technologies -- like the PC, the web, cell phones --
106
329000
3000
而新科技,像是電腦,網路跟手機
05:32
were under a decade.
107
332000
2000
在十年內就被廣泛接納了
05:34
Now this is an interesting chart,
108
334000
2000
這個圖表很有意思
05:36
and this really gets at the fundamental reason why
109
336000
2000
他說明了演化過程的基本原理
05:38
an evolutionary process -- and both biology and technology are evolutionary processes --
110
338000
4000
無論是生物演化或是科技演化
05:42
accelerate.
111
342000
2000
都是以加速度進行的
05:44
They work through interaction -- they create a capability,
112
344000
3000
透過交互作用,他們創造能力
05:47
and then it uses that capability to bring on the next stage.
113
347000
3000
再用這個能力來改變下個階段
05:50
So the first step in biological evolution,
114
350000
3000
生物演化的第一步
05:53
the evolution of DNA -- actually it was RNA came first --
115
353000
2000
就是DNA 的演化,實際上是從 RNA開始的
05:55
took billions of years,
116
355000
2000
這個歷程歷經數十億年
05:57
but then evolution used that information-processing backbone
117
357000
3000
在這個已形成的資訊處理的架構下
06:00
to bring on the next stage.
118
360000
2000
演化持續推展至下一個階段
06:02
So the Cambrian Explosion, when all the body plans of the animals were evolved,
119
362000
3000
所以在寒武紀大爆發時,動物的身體結構
06:05
took only 10 million years. It was 200 times faster.
120
365000
4000
在一千萬年之間就建構完成。足足快了兩百倍
06:09
And then evolution used those body plans
121
369000
2000
接著,演化在這已身體架構上
06:11
to evolve higher cognitive functions,
122
371000
2000
建構出更高階的認知功能
06:13
and biological evolution kept accelerating.
123
373000
2000
生物的演化持續地加速進行
06:15
It's an inherent nature of an evolutionary process.
124
375000
3000
這就是演化與生俱來的天性
06:18
So Homo sapiens, the first technology-creating species,
125
378000
3000
第一個具備創造科技能力的物種-智人
06:21
the species that combined a cognitive function
126
381000
2000
已經結合了認知的功能
06:23
with an opposable appendage --
127
383000
2000
以及可以與四指相對的拇指
06:25
and by the way, chimpanzees don't really have a very good opposable thumb --
128
385000
4000
順便一提,大猩猩的拇指無法很好的與其他四指相對
06:29
so we could actually manipulate our environment with a power grip
129
389000
2000
我們因為具備很強的握力和細緻的操控力
06:31
and fine motor coordination,
130
391000
2000
所以才能對抗環境
06:33
and use our mental models to actually change the world
131
393000
2000
同時運用我們的心智來改變世界
06:35
and bring on technology.
132
395000
2000
並發展科技
06:37
But anyway, the evolution of our species took hundreds of thousands of years,
133
397000
3000
總而言之,物種的演化花了數十萬年
06:40
and then working through interaction,
134
400000
2000
然後透過交互影響和演化的作用
06:42
evolution used, essentially,
135
402000
2000
和演化的作用
06:44
the technology-creating species to bring on the next stage,
136
404000
3000
這個能創造科技的物種已經可以帶來新階段的發展了
06:47
which were the first steps in technological evolution.
137
407000
3000
這個階段就是科技演化的第一步
06:50
And the first step took tens of thousands of years --
138
410000
3000
而這一步僅花了數千年
06:53
stone tools, fire, the wheel -- kept accelerating.
139
413000
3000
從石製工具到輪軸,變化持續加速著
06:56
We always used then the latest generation of technology
140
416000
2000
我們總是用上一階段的科技
06:58
to create the next generation.
141
418000
2000
來創造下一階段
07:00
Printing press took a century to be adopted;
142
420000
2000
印刷科技花了一個世紀才普及
07:02
the first computers were designed pen-on-paper -- now we use computers.
143
422000
4000
第一台電腦是靠筆和紙設計出來的。而現今電腦變成我們的工具
07:06
And we've had a continual acceleration of this process.
144
426000
3000
我們正在持續加速這樣的過程,順便一提
07:09
Now by the way, if you look at this on a linear graph, it looks like everything has just happened,
145
429000
3000
你觀察這個線性圖形,似乎是每件事情都才剛剛發生
07:12
but some observer says, "Well, Kurzweil just put points on this graph
146
432000
6000
於是有些觀察家說” 喔 Kurzweil 只不過是把一些點放在圖表上
07:18
that fall on that straight line."
147
438000
2000
然後,剛好變成一條直線而已
07:20
So, I took 15 different lists from key thinkers,
148
440000
3000
所以,我列出十五份重要思想家的名單
07:23
like the Encyclopedia Britannica, the Museum of Natural History, Carl Sagan's Cosmic Calendar
149
443000
4000
名單選自大英百科全書、自然歷史博物館,卡爾沙根的宇宙日曆
07:27
on the same -- and these people were not trying to make my point;
150
447000
3000
這些人並沒有要為我的觀點背書
07:30
these were just lists in reference works,
151
450000
2000
他們都選自參考文獻中的作者列表
07:32
and I think that's what they thought the key events were
152
452000
3000
我想他們也會認同重要的關鍵在
07:35
in biological evolution and technological evolution.
153
455000
3000
生物演化和科技演化
07:38
And again, it forms the same straight line. You have a little bit of thickening in the line
154
458000
3000
再一次地,這些都形成了直線。你看到一些
07:41
because people do have disagreements, what the key points are,
155
461000
3000
較粗的直線,是因為人們對於關鍵點有些疑義
07:44
there's differences of opinion when agriculture started,
156
464000
2000
像是農業開始發展的時間點
07:46
or how long the Cambrian Explosion took.
157
466000
3000
或是寒武紀到底持續多久
07:49
But you see a very clear trend.
158
469000
2000
然而,這個趨勢卻是相當顯著的
07:51
There's a basic, profound acceleration of this evolutionary process.
159
471000
5000
這個演化的加速過程是根本且深遠的
07:56
Information technologies double their capacity, price performance, bandwidth,
160
476000
5000
在資訊科技界,容量、性能價格比和頻寬
08:01
every year.
161
481000
2000
每年都加倍成長
08:03
And that's a very profound explosion of exponential growth.
162
483000
4000
這就指數型態的爆炸性成長
08:07
A personal experience, when I was at MIT --
163
487000
2000
以我個人的經驗,當年我在麻省理工時
08:09
computer taking up about the size of this room,
164
489000
2000
電腦大約是一個房間的大小
08:11
less powerful than the computer in your cell phone.
165
491000
5000
性能也比不上你們現在的手機
08:16
But Moore's Law, which is very often identified with this exponential growth,
166
496000
4000
摩爾定律的概念和這個指數成長的概念非常相似
08:20
is just one example of many, because it's basically
167
500000
2000
但也只是眾多例子中的一個
08:22
a property of the evolutionary process of technology.
168
502000
5000
基本上,它只是科技演化發展的基本特性之一
08:27
I put 49 famous computers on this logarithmic graph --
169
507000
3000
如果我們將49 台著名的電腦放到這個對數圖表上
08:30
by the way, a straight line on a logarithmic graph is exponential growth --
170
510000
4000
順便一提,這個對數圖表上的線是指數成長的
08:34
that's another exponential.
171
514000
2000
這是另一個指數型的範例
08:36
It took us three years to double our price performance of computing in 1900,
172
516000
3000
在1900年,電腦的性能價格比花了三年才提升一倍
08:39
two years in the middle; we're now doubling it every one year.
173
519000
3000
中間的兩年,現在我們每年都可以提升一倍
08:43
And that's exponential growth through five different paradigms.
174
523000
3000
這五個不同的範例都顯示了指數型態的增長
08:46
Moore's Law was just the last part of that,
175
526000
2000
摩爾的定律只說明了這個定律的後半部
08:48
where we were shrinking transistors on an integrated circuit,
176
528000
3000
也就是說在積體電路的發展中,電晶體的尺寸不斷地縮減
08:51
but we had electro-mechanical calculators,
177
531000
3000
但我們是在經歷過電子機械式的計算機
08:54
relay-based computers that cracked the German Enigma Code,
178
534000
2000
取代德國密碼機的繼電器型電腦
08:56
vacuum tubes in the 1950s predicted the election of Eisenhower,
179
536000
4000
1950 年代就能預測艾森豪選舉的真空管電腦
09:00
discreet transistors used in the first space flights
180
540000
3000
用於首次太空飛行的分立電晶體之後
09:03
and then Moore's Law.
181
543000
2000
才有了摩爾定律
09:05
Every time one paradigm ran out of steam,
182
545000
2000
每當一個範例的發展到了限度
09:07
another paradigm came out of left field to continue the exponential growth.
183
547000
3000
另一個範例就接著進入指數成長期
09:10
They were shrinking vacuum tubes, making them smaller and smaller.
184
550000
3000
真空管尺寸被縮小,更小還要再小
09:13
That hit a wall. They couldn't shrink them and keep the vacuum.
185
553000
3000
到達一個瓶頸後,當真空管不能再更小了,我們就放棄真空管
09:16
Whole different paradigm -- transistors came out of the woodwork.
186
556000
2000
全新型態的電晶體開始崛起
09:18
In fact, when we see the end of the line for a particular paradigm,
187
558000
3000
事實上,每當一種例子到達發展的頂端時
09:21
it creates research pressure to create the next paradigm.
188
561000
4000
就是新產品的研發的壓力
09:25
And because we've been predicting the end of Moore's Law
189
565000
3000
長期以來,我們一直在預測後摩爾定律時代的降臨
09:28
for quite a long time -- the first prediction said 2002, until now it says 2022.
190
568000
3000
一開始預測是2002 年,現在又說是2012 年
09:31
But by the teen years,
191
571000
3000
在10 年內
09:34
the features of transistors will be a few atoms in width,
192
574000
3000
電晶體的寬度就會變得跟幾個原子的寬度一樣
09:37
and we won't be able to shrink them any more.
193
577000
2000
已經沒有辦法再被縮小
09:39
That'll be the end of Moore's Law, but it won't be the end of
194
579000
3000
這是摩爾定律的結束
09:42
the exponential growth of computing, because chips are flat.
195
582000
2000
但不是運算指數型態成長的結束。因為晶片是平的
09:44
We live in a three-dimensional world; we might as well use the third dimension.
196
584000
3000
而我們處在三度的立體空間,我們可以利用第三度空間
09:47
We will go into the third dimension
197
587000
2000
我們將會走入第三度空間
09:49
and there's been tremendous progress, just in the last few years,
198
589000
3000
並獲得極大的進展,就像我們過去幾年一樣
09:52
of getting three-dimensional, self-organizing molecular circuits to work.
199
592000
4000
我們將完成在三度空間的自組式的分子電路。
09:56
We'll have those ready well before Moore's Law runs out of steam.
200
596000
7000
在摩爾定律到達極限前,這些科技就會準備好
10:03
Supercomputers -- same thing.
201
603000
2000
同樣的事情也曾發生在超級電腦上
10:06
Processor performance on Intel chips,
202
606000
3000
英代爾的處理器上
10:09
the average price of a transistor --
203
609000
3000
電晶體的平均價格
10:12
1968, you could buy one transistor for a dollar.
204
612000
3000
在1968 年是一美金一個電晶體
10:15
You could buy 10 million in 2002.
205
615000
3000
在 2002 年時,同樣的價格可以買到一千萬個
10:18
It's pretty remarkable how smooth
206
618000
3000
這個指數發展的過程
10:21
an exponential process that is.
207
621000
2000
顯得如此平順
10:23
I mean, you'd think this is the result of some tabletop experiment,
208
623000
3000
以至於被認為這只是實驗桌上做出來的實驗數據
10:27
but this is the result of worldwide chaotic behavior --
209
627000
3000
但這分析的資料其實來自發生在世界各地的各種混沌行為
10:30
countries accusing each other of dumping products,
210
630000
2000
包括國際間互相指責傾銷
10:32
IPOs, bankruptcies, marketing programs.
211
632000
2000
公開募股、破產及行銷策略
10:34
You would think it would be a very erratic process,
212
634000
3000
這些通常被認為是沒有章法的過程
10:37
and you have a very smooth
213
637000
2000
然而這混亂的過程卻形成了
10:39
outcome of this chaotic process.
214
639000
2000
一個相當平順的結果
10:41
Just as we can't predict
215
641000
2000
就像,我們也許無法預測
10:43
what one molecule in a gas will do --
216
643000
2000
一個氣體內的分子的行為
10:45
it's hopeless to predict a single molecule --
217
645000
3000
預測單一分子是不可能的
10:48
yet we can predict the properties of the whole gas,
218
648000
2000
然而,我們卻可以用熱電學
10:50
using thermodynamics, very accurately.
219
650000
3000
非常準確地預測氣體的整體特性
10:53
It's the same thing here. We can't predict any particular project,
220
653000
3000
同樣地,我們無法預測單一特定的計畫
10:56
but the result of this whole worldwide,
221
656000
2000
然而這整個世界
10:58
chaotic, unpredictable activity of competition
222
658000
5000
這些混亂又無法預測的競爭行為
11:03
and the evolutionary process of technology is very predictable.
223
663000
3000
還有這個科技演化的過程卻都是可以預期的
11:06
And we can predict these trends far into the future.
224
666000
3000
而且,我們得到的這個趨勢也適用於未來
11:11
Unlike Gertrude Stein's roses,
225
671000
2000
和格特鲁德•斯泰因的玫瑰不同,
11:13
it's not the case that a transistor is a transistor.
226
673000
2000
電晶體不僅僅只是一個電晶體
11:15
As we make them smaller and less expensive,
227
675000
2000
當我們讓它變小變便宜之後
11:17
the electrons have less distance to travel.
228
677000
2000
電子間移動的距離變小了
11:19
They're faster, so you've got exponential growth in the speed of transistors,
229
679000
4000
它們變的更快,所以在電晶體的速度上就呈現了指數型進展。
11:23
so the cost of a cycle of one transistor
230
683000
4000
電晶體的周期成本
11:27
has been coming down with a halving rate of 1.1 years.
231
687000
3000
在1.1年內下降到一半
11:30
You add other forms of innovation and processor design,
232
690000
3000
加上其他形式的發明跟處理器設計
11:33
you get a doubling of price performance of computing every one year.
233
693000
4000
電腦產品的性能價格比每年都提升一倍
11:37
And that's basically deflation --
234
697000
3000
這是最基本的通貨緊縮
11:40
50 percent deflation.
235
700000
2000
- 50百分比的通貨緊縮
11:42
And it's not just computers. I mean, it's true of DNA sequencing;
236
702000
3000
這不僅僅是發生在電腦產業。也發生在DNA序列上
11:45
it's true of brain scanning;
237
705000
2000
在大腦掃描上
11:47
it's true of the World Wide Web. I mean, anything that we can quantify,
238
707000
2000
在網際網路上也都有同樣的情形。任何可以被量化的東西
11:49
we have hundreds of different measurements
239
709000
3000
數百種的指標
11:52
of different, information-related measurements --
240
712000
3000
和資訊相關的指標
11:55
capacity, adoption rates --
241
715000
2000
無論容量或是採用率
11:57
and they basically double every 12, 13, 15 months,
242
717000
3000
依照項目的相異,它們分別以每隔12,13,15 個月
12:00
depending on what you're looking at.
243
720000
2000
就加倍的速度成長
12:02
In terms of price performance, that's a 40 to 50 percent deflation rate.
244
722000
4000
至於性能價格比,則是呈現50- 約40-50 的緊縮幅度
12:07
And economists have actually started worrying about that.
245
727000
2000
經濟學家已經開始擔心這個現象
12:09
We had deflation during the Depression,
246
729000
2000
大蕭條時期我們曾經歷過經濟緊縮
12:11
but that was collapse of the money supply,
247
731000
2000
但是那是導因於貨幣供給系統的崩潰
12:13
collapse of consumer confidence, a completely different phenomena.
248
733000
3000
它也摧毀了消費者信心,是截然不同的現象
12:16
This is due to greater productivity,
249
736000
2000
這次則是因為生產力大增所致
12:19
but the economist says, "But there's no way you're going to be able to keep up with that.
250
739000
2000
但是經濟學家依舊認為:”我們不可能跟得上這個變化的腳步
12:21
If you have 50 percent deflation, people may increase their volume
251
741000
3000
當物價有50% 的通貨緊縮
12:24
30, 40 percent, but they won't keep up with it."
252
744000
2000
人們就會增加 30%-40% 的消費,人們不可能一直跟得上這個變化”
12:26
But what we're actually seeing is that
253
746000
2000
可是,事實顯示
12:28
we actually more than keep up with it.
254
748000
2000
我們不僅跟上這個變化
12:30
We've had 28 percent per year compounded growth in dollars
255
750000
3000
在過去50 年,花在資訊科技上的消費
12:33
in information technology over the last 50 years.
256
753000
3000
還呈現了28%的複合性成長
12:36
I mean, people didn't build iPods for 10,000 dollars 10 years ago.
257
756000
4000
我的意思是,10 年前,沒有人會花一萬美金去買ipod
12:40
As the price performance makes new applications feasible,
258
760000
3000
但是當性能價格提升到某種程度
12:43
new applications come to the market.
259
763000
2000
新發明的應用就會很合理而進入市場
12:45
And this is a very widespread phenomena.
260
765000
3000
這現象非常廣泛
12:48
Magnetic data storage --
261
768000
2000
雖然不適用摩爾定律
12:50
that's not Moore's Law, it's shrinking magnetic spots,
262
770000
3000
但是在磁記錄媒體方面,磁點的尺寸也正持續縮減中
12:53
different engineers, different companies, same exponential process.
263
773000
4000
相異的工程師與相異的公司,都依循相同的指數模式在進展
12:57
A key revolution is that we're understanding our own biology
264
777000
4000
另一個關鍵性的變革是我們開始運用資訊科技
13:01
in these information terms.
265
781000
2000
來解讀生物學
13:03
We're understanding the software programs
266
783000
2000
我們正在學習
13:05
that make our body run.
267
785000
2000
讓我們身體運作的軟體
13:07
These were evolved in very different times --
268
787000
2000
這些軟體是在不同的時期逐漸發展起來的
13:09
we'd like to actually change those programs.
269
789000
2000
我們卻想要改變身體運作的程式
13:11
One little software program, called the fat insulin receptor gene,
270
791000
2000
有個小軟體程式叫做脂肪胰島素受體基因
13:13
basically says, "Hold onto every calorie,
271
793000
2000
基本上,它發出的訊息是:”維持住卡洛里
13:15
because the next hunting season may not work out so well."
272
795000
4000
因為下一個狩獵季可能什麼都獵不到”
13:19
That was in the interests of the species tens of thousands of years ago.
273
799000
3000
在數萬年前,這個機能上是對物種有益的
13:22
We'd like to actually turn that program off.
274
802000
3000
現在,我們想關掉這個機能
13:25
They tried that in animals, and these mice ate ravenously
275
805000
3000
我們在動物上實驗,讓老鼠們大口大口的吃,
13:28
and remained slim and got the health benefits of being slim.
276
808000
2000
卻能保持苗條。因為體態輕盈而老鼠還保持了健康
13:30
They didn't get diabetes; they didn't get heart disease;
277
810000
3000
沒有糖尿病,沒有心臟病
13:33
they lived 20 percent longer; they got the health benefits of caloric restriction
278
813000
3000
牠們甚至延長了20% 的年紀。要限制熱量攝取才能得到的健康
13:36
without the restriction.
279
816000
2000
這些老鼠無需限制熱量也依舊保有
13:38
Four or five pharmaceutical companies have noticed this,
280
818000
3000
四到五家的製藥公司注意到這一點
13:41
felt that would be
281
821000
3000
他們覺得
13:44
interesting drug for the human market,
282
824000
3000
這對人類的市場將會是個有趣的藥品
13:47
and that's just one of the 30,000 genes
283
827000
2000
而這只不過是影響我們生物化學的3萬個基因
13:49
that affect our biochemistry.
284
829000
3000
其中的一個
13:52
We were evolved in an era where it wasn't in the interests of people
285
832000
3000
我們所處的世代,並不是為了
13:55
at the age of most people at this conference, like myself,
286
835000
3000
讓那些與參加這會議的大多數人相似年紀的人,例如我本人
13:58
to live much longer, because we were using up the precious resources
287
838000
4000
活得更長久而考量。因為我們正在耗盡人類的珍貴資源
14:02
which were better deployed towards the children
288
842000
1000
這些資源原本是預留給我們的下一代的兒童
14:03
and those caring for them.
289
843000
2000
和那些珍惜資源的人
14:05
So, life -- long lifespans --
290
845000
2000
超過三十歲
14:07
like, that is to say, much more than 30 --
291
847000
2000
的長壽生命
14:09
weren't selected for,
292
849000
3000
並不是自然界物競天擇的結果
14:12
but we are learning to actually manipulate
293
852000
3000
而是由於我們在生物科技革命中
14:15
and change these software programs
294
855000
2000
已經學到如何操縱
14:17
through the biotechnology revolution.
295
857000
2000
並改變這些軟體的技能
14:19
For example, we can inhibit genes now with RNA interference.
296
859000
4000
舉例來說,我們已經懂得用RNA干擾去抑制基因
14:23
There are exciting new forms of gene therapy
297
863000
2000
新型態的基因治療法令人雀躍,
14:25
that overcome the problem of placing the genetic material
298
865000
2000
它們已經能成功地
14:27
in the right place on the chromosome.
299
867000
2000
將遺傳物質置於正確的染色體位置
14:29
There's actually a -- for the first time now,
300
869000
3000
這是第一次,基因治療
14:32
something going to human trials, that actually cures pulmonary hypertension --
301
872000
3000
真的在人體試驗中治癒了肺動脈高血壓
14:35
a fatal disease -- using gene therapy.
302
875000
3000
這種致命的疾病
14:38
So we'll have not just designer babies, but designer baby boomers.
303
878000
3000
所以我們不僅有訂造的嬰兒,還會有訂造的嬰兒潮
14:41
And this technology is also accelerating.
304
881000
3000
目前這個科技也在加速中
14:44
It cost 10 dollars per base pair in 1990,
305
884000
3000
1990 年基因複製時鹼基的成本是10 美金
14:47
then a penny in 2000.
306
887000
2000
到2000年時只要一分錢
14:49
It's now under a 10th of a cent.
307
889000
2000
現在則是一分錢的十分之一
14:51
The amount of genetic data --
308
891000
2000
基因資料的數量
14:53
basically this shows that smooth exponential growth
309
893000
3000
也顯示出每年增加一倍
14:56
doubled every year,
310
896000
2000
的指數型成長
14:58
enabling the genome project to be completed.
311
898000
3000
促成基因組計畫的實現
15:01
Another major revolution: the communications revolution.
312
901000
3000
另一個重大的革命就是通訊革命
15:04
The price performance, bandwidth, capacity of communications measured many different ways;
313
904000
5000
用通訊的性能價格比、頻寬和容量可以顯示出不同層次的進展
15:09
wired, wireless is growing exponentially.
314
909000
3000
有線和無線通訊的數量都是以指數型式增長
15:12
The Internet has been doubling in power and continues to,
315
912000
3000
在耗用的電力和其他方面的數據
15:15
measured many different ways.
316
915000
2000
也都顯示網際網路的發展已經增加一倍
15:17
This is based on the number of hosts.
317
917000
2000
這圖表是以主機的數量為基準
15:19
Miniaturization -- we're shrinking the size of technology
318
919000
2000
微型化 - 科技產品的尺寸
15:21
at an exponential rate,
319
921000
2000
正以指數的倍率縮小
15:23
both wired and wireless.
320
923000
2000
無論是有線或無線。
15:25
These are some designs from Eric Drexler's book --
321
925000
4000
德萊思勒書中有一些設計
15:29
which we're now showing are feasible
322
929000
2000
經過超級電腦的模擬
15:31
with super-computing simulations,
323
931000
2000
已經證明是合理可行的
15:33
where actually there are scientists building
324
933000
2000
科學家們已經開始製造
15:35
molecule-scale robots.
325
935000
2000
分子機器人
15:37
One has one that actually walks with a surprisingly human-like gait,
326
937000
2000
其中一具分子機器人甚至可以用人類的步伐行走
15:39
that's built out of molecules.
327
939000
3000
甚至可以用人類的步伐行走
15:42
There are little machines doing things in experimental bases.
328
942000
4000
實驗室裡的小機器也有了實用的機能
15:46
The most exciting opportunity
329
946000
3000
最令人興奮的是
15:49
is actually to go inside the human body
330
949000
2000
機器人已經可以進入人體
15:51
and perform therapeutic and diagnostic functions.
331
951000
3000
進行治療跟診斷
15:54
And this is less futuristic than it may sound.
332
954000
2000
聽起來像是遙遠未來才能實現的功能其實並不遙遠
15:56
These things have already been done in animals.
333
956000
2000
有些已經運用在動物身上了
15:58
There's one nano-engineered device that cures type 1 diabetes. It's blood cell-sized.
334
958000
4000
有種奈米工程的裝置可以治療第一型糖尿病,大小和血球相近
16:02
They put tens of thousands of these
335
962000
2000
它已經在老鼠上進行實驗。數萬個這種裝置
16:04
in the blood cell -- they tried this in rats --
336
964000
2000
被放於血球中
16:06
it lets insulin out in a controlled fashion,
337
966000
2000
它們控制胰島素以適當的速度釋放
16:08
and actually cures type 1 diabetes.
338
968000
2000
以治療第一型的糖尿病
16:10
What you're watching is a design
339
970000
3000
這是人造紅血球
16:13
of a robotic red blood cell,
340
973000
2000
的其中一種
16:15
and it does bring up the issue that our biology
341
975000
2000
這類人造的紅血球引發新的議論
16:17
is actually very sub-optimal,
342
977000
2000
雖然生物的構造已錯綜複雜
16:19
even though it's remarkable in its intricacy.
343
979000
3000
但並非處在最佳狀態
16:22
Once we understand its principles of operation,
344
982000
3000
一旦我們了解這個準則
16:25
and the pace with which we are reverse-engineering biology is accelerating,
345
985000
3000
而生物學的逆向工程也加速進展
16:29
we can actually design these things to be
346
989000
2000
比現今功能強數千倍的能力
16:31
thousands of times more capable.
347
991000
2000
都可能達成
16:33
An analysis of this respirocyte, designed by Rob Freitas,
348
993000
4000
一個針對Freitas博士設計的人造红血球的分析指出
16:38
indicates if you replace 10 percent of your red blood cells with these robotic versions,
349
998000
2000
如果以人造紅血球取代人體血液中的紅血球的10%
16:41
you could do an Olympic sprint for 15 minutes without taking a breath.
350
1001000
3000
你可以在奧運比賽中可以連續衝刺15 分鐘而不用換上一口氣
16:44
You could sit at the bottom of your pool for four hours --
351
1004000
3000
或是在游泳池底連續坐四小時
16:47
so, "Honey, I'm in the pool," will take on a whole new meaning.
352
1007000
4000
當你說"親愛的,我現在在游泳池",可能表示了一種全新的意義
16:51
It will be interesting to see what we do in our Olympic trials.
353
1011000
2000
人們可以在奧運會的選拔賽做出什麼樣的表現呢,這將會變的很有趣
16:53
Presumably we'll ban them,
354
1013000
2000
可以預見地,這種人工紅血球會被禁止
16:55
but then we'll have the specter of teenagers in their high schools gyms
355
1015000
2000
但是,青少年怪傑將不斷地出現,他們在學校體育館中
16:57
routinely out-performing the Olympic athletes.
356
1017000
3000
就可以創下奧運紀錄
17:02
Freitas has a design for a robotic white blood cell.
357
1022000
3000
Freitas博士也設計了人造白血球
17:05
These are 2020-circa scenarios,
358
1025000
4000
以上是預計2020 年左右會發生的劇情
17:09
but they're not as futuristic as it may sound.
359
1029000
2000
雖然很像遙遠未來的故事,但事實並非如此
17:11
There are four major conferences on building blood cell-sized devices;
360
1031000
4000
已經有四場主要的會議在討論製造這類血球大小的裝置
17:15
there are many experiments in animals.
361
1035000
2000
也進行了許多動物試驗
17:17
There's actually one going into human trial,
362
1037000
2000
有一個已經進行人體試驗
17:19
so this is feasible technology.
363
1039000
3000
所以這種科技是非常可行的
17:23
If we come back to our exponential growth of computing,
364
1043000
2000
以計算能力的指數型成長來看
17:25
1,000 dollars of computing is now somewhere between an insect and a mouse brain.
365
1045000
3000
現今1000 美元計算機的功能大約介於昆蟲或是老鼠的大腦
17:28
It will intersect human intelligence
366
1048000
3000
以儲存容量來看
17:31
in terms of capacity in the 2020s,
367
1051000
3000
大約2020 年左右會接近人類的智慧
17:34
but that'll be the hardware side of the equation.
368
1054000
2000
但這裡指的是硬體方面的比較
17:36
Where will we get the software?
369
1056000
2000
那麼相近於人腦的軟體該從哪裡取得呢?
17:38
Well, it turns out we can see inside the human brain,
370
1058000
2000
我們必須先來分析人腦的內部
17:40
and in fact not surprisingly,
371
1060000
2000
事實並不太令人意外
17:42
the spatial and temporal resolution of brain scanning is doubling every year.
372
1062000
4000
目前我們在腦部掃描的空間分辨力和瞬時分辨力每年都提升一倍
17:46
And with the new generation of scanning tools,
373
1066000
2000
有了新一代的掃瞄儀器
17:48
for the first time we can actually see
374
1068000
2000
第一次我們看到了
17:50
individual inter-neural fibers
375
1070000
2000
個別的神經間的纖維
17:52
and see them processing and signaling in real time --
376
1072000
3000
還即時地看到它們是如何的處理和傳送訊息
17:55
but then the question is, OK, we can get this data now,
377
1075000
2000
是的,我們現在已經可以取得資料了
17:57
but can we understand it?
378
1077000
2000
但是問題是我們能理解這些資料嗎?
17:59
Doug Hofstadter wonders, well, maybe our intelligence
379
1079000
3000
Doug Hofstadter 曾經懷疑:也許以人類的智慧
18:02
just isn't great enough to understand our intelligence,
380
1082000
3000
是無法去了解人類的智慧的
18:05
and if we were smarter, well, then our brains would be that much more complicated,
381
1085000
3000
因為當我們更聰明後,大腦的構造也會變得更複雜
18:08
and we'd never catch up to it.
382
1088000
2000
所以,我們永遠追不上大腦的進展
18:11
It turns out that we can understand it.
383
1091000
3000
但結果證明,我們已經能了解大腦了
18:14
This is a block diagram of
384
1094000
3000
這個方塊圖是個模型
18:17
a model and simulation of the human auditory cortex
385
1097000
4000
它在模擬人類大腦聽覺皮質上
18:21
that actually works quite well --
386
1101000
2000
有很好的表現
18:23
in applying psychoacoustic tests, gets very similar results to human auditory perception.
387
1103000
2000
在聽覺心理學測驗中,它和人類聽覺的結果非常類似
18:27
There's another simulation of the cerebellum --
388
1107000
3000
另外,也有個小腦的模擬圖
18:30
that's more than half the neurons in the brain --
389
1110000
2000
小腦涵蓋了人腦半數以上的神經元
18:32
again, works very similarly to human skill formation.
390
1112000
3000
它和人類在技能構成的運作非常類似
18:36
This is at an early stage, but you can show
391
1116000
3000
雖然現在是在發展的初期階段
18:39
with the exponential growth of the amount of information about the brain
392
1119000
3000
但在與大腦的相關的資訊量已經呈現指數成長
18:42
and the exponential improvement
393
1122000
2000
腦部掃描的分辨力上
18:44
in the resolution of brain scanning,
394
1124000
2000
也有指數型的改進
18:46
we will succeed in reverse-engineering the human brain
395
1126000
3000
在2020 年代以前
18:49
by the 2020s.
396
1129000
2000
人類大腦的逆向工程會有所成果
18:51
We've already had very good models and simulation of about 15 regions
397
1131000
3000
在腦部的數百個區域中,其中15個
18:54
out of the several hundred.
398
1134000
3000
已經有了非常好的模型和模擬
18:57
All of this is driving
399
1137000
2000
所有這些都會導向
18:59
exponentially growing economic progress.
400
1139000
2000
指數型的經濟成長
19:01
We've had productivity go from 30 dollars to 150 dollars per hour
401
1141000
3000
過去50 年,在勞工產值上已經從每位勞工每小時30 美金
19:06
of labor in the last 50 years.
402
1146000
2000
提升到150 美金
19:08
E-commerce has been growing exponentially. It's now a trillion dollars.
403
1148000
3000
電子商務也顯示指數型的成長。現在已經是上兆元的產業
19:11
You might wonder, well, wasn't there a boom and a bust?
404
1151000
2000
你也許會想問,它不是發生有過繁榮期跟泡沫化嗎?
19:13
That was strictly a capital-markets phenomena.
405
1153000
2000
這其實是資本市場的現象
19:15
Wall Street noticed that this was a revolutionary technology, which it was,
406
1155000
4000
當時華爾街察覺到這會是個革命性的科技,它確實是
19:19
but then six months later, when it hadn't revolutionized all business models,
407
1159000
3000
但是六個月後,它沒有讓所有的商業模式都產生革命性變革時
19:22
they figured, well, that was wrong,
408
1162000
2000
人們想,糟了
19:24
and then we had this bust.
409
1164000
2000
然後,泡沫化就發生了
19:27
All right, this is a technology
410
1167000
2000
好的。在這種科技裡
19:29
that we put together using some of the technologies we're involved in.
411
1169000
3000
融合運用了目前正在發展中的科技
19:32
This will be a routine feature in a cell phone.
412
1172000
4000
這會成為手機的標準功能
19:36
It would be able to translate from one language to another.
413
1176000
2000
它能將一種語言翻譯成另一種語言
19:48
So let me just end with a couple of scenarios.
414
1188000
2000
我將以一些遠景做為結尾
19:50
By 2010 computers will disappear.
415
1190000
3000
2010 年前,電腦即將消失
19:54
They'll be so small, they'll be embedded in our clothing, in our environment.
416
1194000
3000
它們變得非常微小,以致於它們被植入在衣服和環境當中
19:57
Images will be written directly to our retina,
417
1197000
2000
影像被直接寫在我們的視網膜上
19:59
providing full-immersion virtual reality,
418
1199000
2000
提供沉浸式的虛擬實境
20:01
augmented real reality. We'll be interacting with virtual personalities.
419
1201000
3000
真實感增加。我們也可以和虛擬人物互動
20:05
But if we go to 2029, we really have the full maturity of these trends,
420
1205000
4000
如果前往 2029 年,到那時,這些趨勢已臻成熟
20:09
and you have to appreciate how many turns of the screw
421
1209000
3000
你感念這些科技產生的過程,它們都曾歷經數次大轉折
20:12
in terms of generations of technology, which are getting faster and faster, we'll have at that point.
422
1212000
4000
而且愈變愈快的轉折終究才成功的
20:16
I mean, we will have two-to-the-25th-power
423
1216000
2000
性能比、容量和頻寬
20:18
greater price performance, capacity and bandwidth
424
1218000
3000
是現在的2 到25 倍
20:21
of these technologies, which is pretty phenomenal.
425
1221000
2000
這是相當驚人的成就
20:23
It'll be millions of times more powerful than it is today.
426
1223000
2000
它比目前的科技強大百萬倍
20:25
We'll have completed the reverse-engineering of the human brain,
427
1225000
2000
我們將完成人類大腦的逆向工程
20:28
1,000 dollars of computing will be far more powerful
428
1228000
3000
就一般的容量來比
20:31
than the human brain in terms of basic raw capacity.
429
1231000
4000
一千美金的計算機將比人腦的功能更加強大
20:35
Computers will combine
430
1235000
2000
電腦會結合
20:37
the subtle pan-recognition powers
431
1237000
2000
人類智慧所擁有的細微的全辨識功能
20:39
of human intelligence with ways in which machines are already superior,
432
1239000
3000
加上機器原本就優於人腦-的項目
20:42
in terms of doing analytic thinking,
433
1242000
2000
例如:處理分析思考
20:44
remembering billions of facts accurately.
434
1244000
2000
與正確地記憶數十億的論據的方面
20:46
Machines can share their knowledge very quickly.
435
1246000
2000
機器更可以快速的分享知識
20:48
But it's not just an alien invasion of intelligent machines.
436
1248000
5000
智慧型機器不只像是外星人入侵
20:53
We are going to merge with our technology.
437
1253000
2000
還會和我們的科技結合
20:55
These nano-bots I mentioned
438
1255000
2000
我提及的這些奈米機器人
20:57
will first be used for medical and health applications:
439
1257000
4000
將首次被用在醫藥和健康的應用上。
21:01
cleaning up the environment, providing powerful fuel cells
440
1261000
3000
清理環境,提供能源-像是強大的燃料電池
21:04
and widely distributed decentralized solar panels and so on in the environment.
441
1264000
5000
和分佈很廣的分散式的太陽能板,等諸如此類的應用
21:09
But they'll also go inside our brain,
442
1269000
2000
它們也會走入我們的大腦中
21:11
interact with our biological neurons.
443
1271000
2000
和我們的生物神經元產生交互作用
21:13
We've demonstrated the key principles of being able to do this.
444
1273000
3000
我們已經證明了可以達成這個目標的關鍵性原理
21:16
So, for example,
445
1276000
2000
舉例來說
21:18
full-immersion virtual reality from within the nervous system,
446
1278000
2000
在與神經系統結合的沉浸式虛擬實境中
21:20
the nano-bots shut down the signals coming from your real senses,
447
1280000
3000
奈米機器人會及阻斷我們真實感受到的訊息
21:23
replace them with the signals that your brain would be receiving
448
1283000
3000
取而代之的是假定你在虛擬的環境下所該收到的訊息
21:26
if you were in the virtual environment,
449
1286000
2000
所該收到的訊息
21:28
and then it'll feel like you're in that virtual environment.
450
1288000
2000
大腦收到這樣的訊息,所以它感覺你是真實地存在虛擬世界裡
21:30
You can go there with other people, have any kind of experience
451
1290000
2000
你可以和他人一同前往虛擬世界,所有這些感官產生的經驗
21:32
with anyone involving all of the senses.
452
1292000
2000
都可以和他人共享
21:35
"Experience beamers," I call them, will put their whole flow of sensory experiences
453
1295000
3000
我稱它為”經驗傳送器”`。情感對應的神經所產生的感官經驗
21:38
in the neurological correlates of their emotions out on the Internet.
454
1298000
3000
會被放在網際網路上
21:41
You can plug in and experience what it's like to be someone else.
455
1301000
3000
只要連上它們,就能體驗另一個人的感覺
21:44
But most importantly,
456
1304000
2000
但最重要的是
21:46
it'll be a tremendous expansion
457
1306000
2000
透過這種和科技的直接合併
21:48
of human intelligence through this direct merger with our technology,
458
1308000
4000
人類的智慧會急遽地擴展
21:52
which in some sense we're doing already.
459
1312000
2000
就某些層面而言,我們已經在進行了
21:54
We routinely do intellectual feats
460
1314000
2000
有了科技的協助
21:56
that would be impossible without our technology.
461
1316000
2000
人類才能不時地展現出智慧的成就
21:58
Human life expectancy is expanding. It was 37 in 1800,
462
1318000
3000
人類的預期壽命不斷地延長,在 1800 年時是37歲
22:01
and with this sort of biotechnology, nano-technology revolutions,
463
1321000
5000
隨著這類的生化科技與奈米科技革命的發展
22:06
this will move up very rapidly
464
1326000
2000
預期壽命會在未來幾年
22:08
in the years ahead.
465
1328000
2000
快速的增長
22:10
My main message is that progress in technology
466
1330000
4000
我要傳達的重點是科技的進步
22:14
is exponential, not linear.
467
1334000
3000
是指數型的,不是線型的
22:17
Many -- even scientists -- assume a linear model,
468
1337000
4000
很多人,甚至是科學家,常以線型模型來預期未來的發展
22:21
so they'll say, "Oh, it'll be hundreds of years
469
1341000
2000
所以,他們才會認為 “要花上數百年
22:23
before we have self-replicating nano-technology assembly
470
1343000
3000
我們才能發展出具備自我複製能力的奈米科技組裝
22:26
or artificial intelligence."
471
1346000
2000
或是人工智慧”
22:28
If you really look at the power of exponential growth,
472
1348000
3000
但如果你看到指數型成長的力量
22:31
you'll see that these things are pretty soon at hand.
473
1351000
3000
你會預期這些事將在不久後實現
22:34
And information technology is increasingly encompassing
474
1354000
3000
資訊科技會持續地擴展到
22:37
all of our lives, from our music to our manufacturing
475
1357000
4000
生活的各個層面,從音樂到生產製造
22:41
to our biology to our energy to materials.
476
1361000
4000
生物、能源以及材料
22:45
We'll be able to manufacture almost anything we need in the 2020s,
477
1365000
3000
在 2020 年代
22:48
from information, in very inexpensive raw materials,
478
1368000
2000
有了資訊科技,再加上便宜的原料
22:50
using nano-technology.
479
1370000
3000
以及奈米科技,我們幾乎能製造出所有的產品
22:53
These are very powerful technologies.
480
1373000
2000
這些有影響力的科技
22:55
They both empower our promise and our peril.
481
1375000
4000
不僅能帶來美好未來,也可能導致悲慘命運
22:59
So we have to have the will to apply them to the right problems.
482
1379000
3000
所以,我們必須有決心,確保它們只能用在正確的方向上
23:02
Thank you very much.
483
1382000
1000
非常感謝
23:03
(Applause)
484
1383000
1000
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。