Ron Eglash: The fractals at the heart of African designs

132,973 views ・ 2007-12-07

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jiayi Li 校对人员: Weihua ZHANG
00:13
I want to start my story in Germany, in 1877,
0
13160
3000
我的故事发生在1877年,
00:16
with a mathematician named Georg Cantor.
1
16160
2000
当时有位德国数学家叫乔治·康托(Georg Cantor)。
00:18
And Cantor decided he was going to take a line and erase the middle third of the line,
2
18160
5000
有一天,他做了这样一件事:把一条线段分成三份,擦掉中间一份,
00:23
and then take those two resulting lines and bring them back into the same process, a recursive process.
3
23160
5000
然后对剩下的两条线段进行同样的操作,周而复始。
00:28
So he starts out with one line, and then two,
4
28160
2000
于是他从一条线段得到两条,
00:30
and then four, and then 16, and so on.
5
30160
3000
然后是四条,然后十六条,不断增加。
00:33
And if he does this an infinite number of times, which you can do in mathematics,
6
33160
3000
如果他这样重复操作无限次 (在数学中你可以做到),
00:36
he ends up with an infinite number of lines,
7
36160
2000
最终他就会得到无数条线,
00:38
each of which has an infinite number of points in it.
8
38160
3000
而每条线又由无数个点组成。
00:41
So he realized he had a set whose number of elements was larger than infinity.
9
41160
4000
于是他意识到,他拥有一个集合——这个集合的元素个数比无穷还要多。
00:45
And this blew his mind. Literally. He checked into a sanitarium. (Laughter)
10
45160
3000
这简直让他发疯了。我没有夸张,他为此进了疗养院。
00:48
And when he came out of the sanitarium,
11
48160
2000
当他从疗养院出来以后,
00:50
he was convinced that he had been put on earth to found transfinite set theory
12
50160
6000
他坚信自己是被上帝派来寻找超限集合论的,
00:56
because the largest set of infinity would be God Himself.
13
56160
3000
因为最大的无限集便是上帝本身。
00:59
He was a very religious man.
14
59160
1000
他是一个虔诚的教徒,
01:00
He was a mathematician on a mission.
15
60160
2000
并把成为一名数学家当做自己的使命。
01:02
And other mathematicians did the same sort of thing.
16
62160
2000
其他数学家也做过类似的事。
01:04
A Swedish mathematician, von Koch,
17
64160
2000
例如,一位名为von Koch的瑞典数学家
01:06
decided that instead of subtracting lines, he would add them.
18
66160
4000
有一天决定把线段相加,而不是想减。
01:10
And so he came up with this beautiful curve.
19
70160
2000
最终,他得到了这样一段美丽的曲线。
01:12
And there's no particular reason why we have to start with this seed shape;
20
72160
3000
其实我们选择这个图形作为起始形状没有什么特殊原因;
01:15
we can use any seed shape we like.
21
75160
4000
我们可以选择任何图形作为起始。
01:19
And I'll rearrange this and I'll stick this somewhere -- down there, OK --
22
79160
4000
让我把这把这个图形变一下,把这个放在--这下面,好--
01:23
and now upon iteration, that seed shape sort of unfolds into a very different looking structure.
23
83160
7000
现在经过反复的操作,这个形状就被延展成了一种看似不同的形状。
01:30
So these all have the property of self-similarity:
24
90160
2000
但这些图形都有自我相似的特点:
01:32
the part looks like the whole.
25
92160
2000
每一小部分都跟整体相似。
01:34
It's the same pattern at many different scales.
26
94160
2000
也可以说是同样的形状,只是大小不同。
01:37
Now, mathematicians thought this was very strange
27
97160
2000
数学家们觉得这个非常奇怪,
01:39
because as you shrink a ruler down, you measure a longer and longer length.
28
99160
5000
因为(勾勒图形的边缘)长度越来越长,而你的尺子看似越来越短。
01:44
And since they went through the iterations an infinite number of times,
29
104160
2000
这些图形经过无数次重复的变化,
01:46
as the ruler shrinks down to infinity, the length goes to infinity.
30
106160
6000
它们的长度趋向于无穷大,而相比之下,原先用于衡量他们边缘长度的尺子则趋向于无穷小了。
01:52
This made no sense at all,
31
112160
1000
这一点道理也没有,
01:53
so they consigned these curves to the back of the math books.
32
113160
3000
于是数学家们把这些曲线塞到数学书的背后,
01:56
They said these are pathological curves, and we don't have to discuss them.
33
116160
4000
然后说这些是不正常的曲线,我们不用讨论它们。
02:00
(Laughter)
34
120160
1000
(笑声)
02:01
And that worked for a hundred years.
35
121160
2000
就这样,一百年过去了,
02:04
And then in 1977, Benoit Mandelbrot, a French mathematician,
36
124160
5000
直到1977年,一位名为Benoit Mandelbrot的法国数学家
02:09
realized that if you do computer graphics and used these shapes he called fractals,
37
129160
5000
意识到如果人们通过计算机来生成这些他叫做“分形”的图形,
02:14
you get the shapes of nature.
38
134160
2000
便可以得到大自然的形状。
02:16
You get the human lungs, you get acacia trees, you get ferns,
39
136160
4000
人们可以得到肺,洋槐树,蕨类植物……
02:20
you get these beautiful natural forms.
40
140160
2000
各种美丽自然的形状。
02:22
If you take your thumb and your index finger and look right where they meet --
41
142160
4000
如果你们看一看你们的拇指与与食指之间的部分--
02:26
go ahead and do that now --
42
146160
2000
现在就可以看一下--
02:28
-- and relax your hand, you'll see a crinkle,
43
148160
3000
把手放松,你们可以看到一段皱纹,
02:31
and then a wrinkle within the crinkle, and a crinkle within the wrinkle. Right?
44
151160
3000
然后这皱纹扩展成更多的皱纹,然后更多,是吧?
02:34
Your body is covered with fractals.
45
154160
2000
你们全身都被“分形”包围着。
02:36
The mathematicians who were saying these were pathologically useless shapes?
46
156160
3000
那些认为“分形”不正常的数学家们,
02:39
They were breathing those words with fractal lungs.
47
159160
2000
他们用分形的肺部呼吸,却说着那样的话,
02:41
It's very ironic. And I'll show you a little natural recursion here.
48
161160
4000
多讽刺!现在我给大家演示一段自然的循环过程。
02:45
Again, we just take these lines and recursively replace them with the whole shape.
49
165160
5000
跟之前一样,我们用几条线,然后重复用整体代替它们。
02:50
So here's the second iteration, and the third, fourth and so on.
50
170160
5000
这是第二次循环,第三次,第四次……不断重复。
02:55
So nature has this self-similar structure.
51
175160
2000
可以看到,大自然也有这种自我相似性。
02:57
Nature uses self-organizing systems.
52
177160
2000
大自然是一个自组织系统。
02:59
Now in the 1980s, I happened to notice
53
179160
3000
到了20世纪80年代,我碰巧发现
03:02
that if you look at an aerial photograph of an African village, you see fractals.
54
182160
4000
在航拍的非洲部落照片中,存在着分形。
03:06
And I thought, "This is fabulous! I wonder why?"
55
186160
4000
我惊叹道:“这简直太不可思议了!究竟是为什么呢?!”
03:10
And of course I had to go to Africa and ask folks why.
56
190160
2000
于是我就去了非洲,去请教当地人这个问题。
03:12
So I got a Fulbright scholarship to just travel around Africa for a year
57
192160
6000
我拿到了Fulbright奖学金,去非洲旅行一年,
03:18
asking people why they were building fractals,
58
198160
2000
询问那儿的人为什么按照分形来盖房子。
03:20
which is a great job if you can get it.
59
200160
2000
这工作真的很棒,如果你能得到的话。
03:22
(Laughter)
60
202160
1000
(笑声)
03:23
And so I finally got to this city, and I'd done a little fractal model for the city
61
203160
7000
后来我终于来到这座城市,那时我对城市分形建筑已构建了一些模型,
03:30
just to see how it would sort of unfold --
62
210160
3000
想看看它与实际情况的符合情况--
03:33
but when I got there, I got to the palace of the chief,
63
213160
3000
当我到了那儿,我去了酋长的宫殿,
03:36
and my French is not very good; I said something like,
64
216160
3000
我的法语说得不太好,当时大概对他说:
03:39
"I am a mathematician and I would like to stand on your roof."
65
219160
3000
“我是一名数学家,我想到你的屋顶上看看。”
03:42
But he was really cool about it, and he took me up there,
66
222160
3000
对此他一点问题都没有,带我上到了屋顶,
03:45
and we talked about fractals.
67
225160
1000
与我讨论起有关分形的问题。
03:46
And he said, "Oh yeah, yeah! We knew about a rectangle within a rectangle,
68
226160
3000
他说:“对,对!我们知道一个方形可以嵌套一个方形,
03:49
we know all about that."
69
229160
2000
我们知道有关的一切。”
03:51
And it turns out the royal insignia has a rectangle within a rectangle within a rectangle,
70
231160
4000
后来我才知道,他们的皇家徽章图形就是由嵌套的方形构成的,
03:55
and the path through that palace is actually this spiral here.
71
235160
4000
而宫殿的走道也是类似的螺旋形状。
03:59
And as you go through the path, you have to get more and more polite.
72
239160
4000
当你沿着宫殿的走道往里走,你必须表现得越来越礼貌。
04:03
So they're mapping the social scaling onto the geometric scaling;
73
243160
3000
他们将社会的层级结构跟房屋的几何结构联系起来;
04:06
it's a conscious pattern. It is not unconscious like a termite mound fractal.
74
246160
5000
这些房屋的分形源自主动的构造,不像白蚁窝那样毫无意义。
04:11
This is a village in southern Zambia.
75
251160
2000
这是赞比亚南部的一个村落,
04:13
The Ba-ila built this village about 400 meters in diameter.
76
253160
4000
Ba-Ila人建造了这个直径约400米村子。
04:17
You have a huge ring.
77
257160
2000
首先我们有一个很大的环形。
04:19
The rings that represent the family enclosures get larger and larger as you go towards the back,
78
259160
6000
代表家族大小的环形,越往后走越大。
04:26
and then you have the chief's ring here towards the back
79
266160
4000
最终属于首领(家族)的环形就在大环形的尾端,
04:30
and then the chief's immediate family in that ring.
80
270160
3000
而首领的直系亲属在那个环形里。
04:33
So here's a little fractal model for it.
81
273160
1000
这就是这个村落的分形模型。
04:34
Here's one house with the sacred altar,
82
274160
3000
这是一幢拥有圣坛的房子,
04:37
here's the house of houses, the family enclosure,
83
277160
3000
这是房子集合而成的“房子”,家族意义上的,
04:40
with the humans here where the sacred altar would be,
84
280160
3000
原先圣坛所在的地方被人所占据,
04:43
and then here's the village as a whole --
85
283160
2000
而这就是由先前层层叠叠房屋最终形成的村庄---
04:45
a ring of ring of rings with the chief's extended family here, the chief's immediate family here,
86
285160
5000
一个由环形组成的环形组成的环形,首领的旁系亲属住这儿,直系亲属住这儿,
04:50
and here there's a tiny village only this big.
87
290160
3000
在这儿,有一个只有丁点儿大的村庄。
04:53
Now you might wonder, how can people fit in a tiny village only this big?
88
293160
4000
你也许会问,人怎么可能住进这么小的村子?
04:57
That's because they're spirit people. It's the ancestors.
89
297160
3000
原因呢,在于住在这儿的居民是一些灵魂。他们是村民们的祖先。
05:00
And of course the spirit people have a little miniature village in their village, right?
90
300160
5000
当然,这些灵魂居住的村子里也有一个更小的村子,对吧?
05:05
So it's just like Georg Cantor said, the recursion continues forever.
91
305160
3000
所以就像康托说的,这样的递推将不断循环下去。
05:08
This is in the Mandara mountains, near the Nigerian border in Cameroon, Mokoulek.
92
308160
4000
村庄Mokoulek坐落于曼达拉(Mandara)山脉中,接近尼日利亚与喀麦隆的交界处。
05:12
I saw this diagram drawn by a French architect,
93
312160
3000
我看到这幅出自一位法国建筑师之手的图时,
05:15
and I thought, "Wow! What a beautiful fractal!"
94
315160
2000
不禁惊叹:“哇!多么漂亮的分形!”
05:17
So I tried to come up with a seed shape, which, upon iteration, would unfold into this thing.
95
317160
6000
于是我就试着画出这幅图的初始图形,一个经过不断重复变换能够转变成现在图案的初始图形。
05:23
I came up with this structure here.
96
323160
2000
结果我画出了这个结构。
05:25
Let's see, first iteration, second, third, fourth.
97
325160
4000
让我们来看一下:(这是)第一次循环,第二次,第三次,第四次……
05:29
Now, after I did the simulation,
98
329160
2000
在我完成了这个模拟之后,
05:31
I realized the whole village kind of spirals around, just like this,
99
331160
3000
我意识到这整个村庄就像螺旋一般盘旋环绕,就像这样,
05:34
and here's that replicating line -- a self-replicating line that unfolds into the fractal.
100
334160
6000
而这就是那条不断复制的曲线--一条不断自我复制并最终延展成分形的螺旋。
05:40
Well, I noticed that line is about where the only square building in the village is at.
101
340160
5000
我也注意到在那条曲线所在的附近,有着全村唯一的方形建筑。
05:45
So, when I got to the village,
102
345160
2000
于是当我到达那个村子后,
05:47
I said, "Can you take me to the square building?
103
347160
2000
我就问:“你可以把我带到那个方形建筑所在的地方去吗?”
05:49
I think something's going on there."
104
349160
2000
“那儿一定有特别的故事。”
05:51
And they said, "Well, we can take you there, but you can't go inside
105
351160
3000
他们回答:“我们可以带你到建筑的外围,但你不能进去,”
05:54
because that's the sacred altar, where we do sacrifices every year
106
354160
3000
“因为那里面是圣坛,每年我们都举行祭祀,
05:57
to keep up those annual cycles of fertility for the fields."
107
357160
3000
以祈祷每年土地的耕种、丰收遵守它固有的规律。”
06:00
And I started to realize that the cycles of fertility
108
360160
2000
我开始意识到,土地耕种、收获的循环过程
06:02
were just like the recursive cycles in the geometric algorithm that builds this.
109
362160
4000
就像建立这个村落所运用的几何算法的循环过程一般。
06:06
And the recursion in some of these villages continues down into very tiny scales.
110
366160
4000
在一些村落中,这样的循环会始终持续直到很小的尺度上。
06:10
So here's a Nankani village in Mali.
111
370160
2000
这是一个位于马里的村庄,名叫Nankani。
06:12
And you can see, you go inside the family enclosure --
112
372160
3000
你可以看到,这些家族的层次结构,
06:15
you go inside and here's pots in the fireplace, stacked recursively.
113
375160
4000
以及这些壁炉中按照一定次序叠放的瓦罐。
06:19
Here's calabashes that Issa was just showing us,
114
379160
4000
这些是Issa展示给我们的葫芦,
06:23
and they're stacked recursively.
115
383160
2000
它们也被“循环”地叠放着。
06:25
Now, the tiniest calabash in here keeps the woman's soul.
116
385160
2000
在这最小的葫芦中,保存着一个女人的灵魂。
06:27
And when she dies, they have a ceremony
117
387160
2000
当她死去时,人们会给她举行一个仪式,
06:29
where they break this stack called the zalanga and her soul goes off to eternity.
118
389160
5000
仪式中人们打破这个叫做zalanga的葫芦堆,使她的灵魂走向永恒。
06:34
Once again, infinity is important.
119
394160
3000
这再次说明,无限(永恒)是非常重要的。
06:38
Now, you might ask yourself three questions at this point.
120
398160
4000
现在,有三个问题需待解决。
06:42
Aren't these scaling patterns just universal to all indigenous architecture?
121
402160
4000
第一,这些图案在原生态的建筑中是普遍存在的吗?
06:46
And that was actually my original hypothesis.
122
406160
2000
在我的最初假设中答案是肯定的。
06:48
When I first saw those African fractals,
123
408160
2000
当我第一次看到那些非洲的分形建筑时,
06:50
I thought, "Wow, so any indigenous group that doesn't have a state society,
124
410160
4000
我想:“哇,那些没有形成正规国家社会与等级制度的土著族群,
06:54
that sort of hierarchy, must have a kind of bottom-up architecture."
125
414160
3000
一定都有那种‘自下而上’的建筑形式咯!”
06:57
But that turns out not to be true.
126
417160
2000
然而事实并非如此。
06:59
I started collecting aerial photographs of Native American and South Pacific architecture;
127
419160
4000
在我收集的美洲土著、南太平洋建筑的航拍照片中,
07:03
only the African ones were fractal.
128
423160
2000
只有非洲建筑具有分形结构。
07:05
And if you think about it, all these different societies have different geometric design themes that they use.
129
425160
6000
如果你仔细回想,会发现所有这些社会都具有不同的几何设计作为它们的主题。
07:11
So Native Americans use a combination of circular symmetry and fourfold symmetry.
130
431160
6000
就如美洲土著用的是一种圆形对称和四方对称的组合图案,
07:17
You can see on the pottery and the baskets.
131
437160
2000
你可以在陶器和篮子上看到它们。
07:19
Here's an aerial photograph of one of the Anasazi ruins;
132
439160
3000
这是部分Anasazi废墟(Anasazi ruins)的航拍照片,
07:22
you can see it's circular at the largest scale, but it's rectangular at the smaller scale, right?
133
442160
5000
你可以发现,粗略看时它呈圆形,而细看时它是方形的,对吧?
07:27
It is not the same pattern at two different scales.
134
447160
4000
对于这种图形,在不同的尺度上,它有着不同的结构形态。
07:31
Second, you might ask,
135
451160
1000
第二点,你也许会奇怪,
07:32
"Well, Dr. Eglash, aren't you ignoring the diversity of African cultures?"
136
452160
3000
“Eglash博士(演讲者),你是不是忽略了非洲文化的多样性呢?”
07:36
And three times, the answer is no.
137
456160
2000
我坚决地告诉你:不。
07:38
First of all, I agree with Mudimbe's wonderful book, "The Invention of Africa,"
138
458160
4000
首先,我同意Mudimbe《非洲的发明》一书的说法,
07:42
that Africa is an artificial invention of first colonialism,
139
462160
3000
即非洲是第一次殖民主义及殖民抗争的
07:45
and then oppositional movements.
140
465160
2000
非自然的产物。
07:47
No, because a widely shared design practice doesn't necessarily give you a unity of culture --
141
467160
5000
但分形建筑在非洲的普遍性却与此无太大关联。建筑形态的普遍性不代表文化的一致性---
07:52
and it definitely is not "in the DNA."
142
472160
3000
DNA绝没有决定人们的文化须是一致的。
07:55
And finally, the fractals have self-similarity --
143
475160
2000
最后一点,分形是具有自我相似性的---
07:57
so they're similar to themselves, but they're not necessarily similar to each other --
144
477160
4000
可是它们只需自我相似,互相之间却未必是相似的---
08:01
you see very different uses for fractals.
145
481160
2000
对于分形的不同应用有很多种,
08:03
It's a shared technology in Africa.
146
483160
2000
在非洲这是一种众人皆知的技术。
08:06
And finally, well, isn't this just intuition?
147
486160
3000
再回想一下,恩,难道这不是某种直觉产生的技术吗?
08:09
It's not really mathematical knowledge.
148
489160
2000
它恐怕没有运用到什么真正意义上的数学知识。
08:11
Africans can't possibly really be using fractal geometry, right?
149
491160
3000
非洲人不可能真的在运用“分形几何学”,对吧?
08:14
It wasn't invented until the 1970s.
150
494160
2000
因为分形几何学直到20世纪70年代才被发明出来。
08:17
Well, it's true that some African fractals are, as far as I'm concerned, just pure intuition.
151
497160
5000
的确,就我理解,一些非洲的分形不过来源于单纯的直觉罢了。
08:22
So some of these things, I'd wander around the streets of Dakar
152
502160
3000
对于这些东西,如果我在达喀尔(Dakar)的街上闲逛
08:25
asking people, "What's the algorithm? What's the rule for making this?"
153
505160
3000
并且问当地人“有什么算法吗?构造这些的规则是什么?”,
08:28
and they'd say,
154
508160
1000
他们会回答说:
08:29
"Well, we just make it that way because it looks pretty, stupid." (Laughter)
155
509160
3000
“嘿,我们这样做因为它们好看,傻瓜。”(笑声)
08:32
But sometimes, that's not the case.
156
512160
3000
但有些时候,情况则不尽相同。
08:35
In some cases, there would actually be algorithms, and very sophisticated algorithms.
157
515160
5000
对于一些图形的绘制,算法是必要的,而且是非常复杂的算法。
08:40
So in Manghetu sculpture, you'd see this recursive geometry.
158
520160
3000
在Manghetu雕塑中,你可以看到这样有重复结构的几何图形。
08:43
In Ethiopian crosses, you see this wonderful unfolding of the shape.
159
523160
5000
在Ethiopian十字中,有这样美妙的延展而成的图形。
08:48
In Angola, the Chokwe people draw lines in the sand,
160
528160
4000
在安哥拉,Chokwe人在沙中绘制图线,
08:52
and it's what the German mathematician Euler called a graph;
161
532160
3000
而这就是德国数学家欧拉(Euler)称作“图”(graph)的东西。
08:55
we now call it an Eulerian path --
162
535160
2000
现在,我们称之为欧拉路径(Eulerian path)---
08:57
you can never lift your stylus from the surface
163
537160
2000
你的笔尖始终不能离开纸平面,
08:59
and you can never go over the same line twice.
164
539160
3000
并且不能穿过同一条线两次。
09:02
But they do it recursively, and they do it with an age-grade system,
165
542160
3000
Chokwe人反复学习绘图,并根据年龄区分他们所学的内容:
09:05
so the little kids learn this one, and then the older kids learn this one,
166
545160
3000
因而幼龄的孩子学习这个,稍年长的学习这个,
09:08
then the next age-grade initiation, you learn this one.
167
548160
3000
再下一个年龄层的,学习这个。
09:11
And with each iteration of that algorithm,
168
551160
3000
随着算法的迭代,
09:14
you learn the iterations of the myth.
169
554160
2000
你将瞥见奇妙事物的发生发展,
09:16
You learn the next level of knowledge.
170
556160
2000
并习得更深层次的知识。
09:19
And finally, all over Africa, you see this board game.
171
559160
2000
再说一点,在整个非洲,你都可以看到这种棋牌游戏。
09:21
It's called Owari in Ghana, where I studied it;
172
561160
3000
在我研究它的地方,加纳(Ghana), 它被称作Owari.
09:24
it's called Mancala here on the East Coast, Bao in Kenya, Sogo elsewhere.
173
564160
5000
在东海岸它被称为Mancala,在肯尼亚叫Bao,在其他地方则是Sogo.
09:29
Well, you see self-organizing patterns that spontaneously occur in this board game.
174
569160
5000
在这个游戏中,你会发现自组织图案很自然的产生 。
09:34
And the folks in Ghana knew about these self-organizing patterns
175
574160
3000
加纳人知道并了解它们,
09:37
and would use them strategically.
176
577160
2000
并有策略地应用它们。
09:39
So this is very conscious knowledge.
177
579160
2000
对他们来说,这是一种有意义(而非不明不白获取)的知识。
09:41
Here's a wonderful fractal.
178
581160
2000
这儿有一个美丽的分形。
09:43
Anywhere you go in the Sahel, you'll see this windscreen.
179
583160
4000
在萨赫勒(Sahel)地区,你到哪儿都可看到这样的篱笆。
09:47
And of course fences around the world are all Cartesian, all strictly linear.
180
587160
4000
人们通常认为篱笆在全世界都是"笛卡尔"式的,严格的直线型排列。
09:51
But here in Africa, you've got these nonlinear scaling fences.
181
591160
4000
但在非洲,你会发现这些不笔直排列的篱笆。
09:55
So I tracked down one of the folks who makes these things,
182
595160
2000
我找到了一个做这种篱笆的人,
09:57
this guy in Mali just outside of Bamako, and I asked him,
183
597160
4000
他住在Bamako外的Mali(马里).我问他:
10:01
"How come you're making fractal fences? Because nobody else is."
184
601160
2000
“为什么你做分形的篱笆,而别人都没有?”
10:03
And his answer was very interesting.
185
603160
2000
他的回答相当有趣。
10:05
He said, "Well, if I lived in the jungle, I would only use the long rows of straw
186
605160
5000
他说:“如果我住在丛林里,我会只用那些长麦秆来做篱笆,
10:10
because they're very quick and they're very cheap.
187
610160
2000
因为它们易完成,并且很廉价。
10:12
It doesn't take much time, doesn't take much straw."
188
612160
3000
不需要花费太多时间,也不需要太多麦秆”
10:15
He said, "but wind and dust goes through pretty easily.
189
615160
2000
他继续道:“但是风沙和尘土很容易穿过那些篱笆。
10:17
Now, the tight rows up at the very top, they really hold out the wind and dust.
190
617160
4000
而如果篱笆顶部(的麦秆)排列比较紧密,防风尘的效 果会非常好。
10:21
But it takes a lot of time, and it takes a lot of straw because they're really tight."
191
621160
5000
但制作它们花费很多时间,也需要很多麦秆,因为它们排列真的很紧密。
10:26
"Now," he said, "we know from experience
192
626160
2000
从经验中我们也知道,
10:28
that the farther up from the ground you go, the stronger the wind blows."
193
628160
5000
从地面往上越靠近篱笆顶部,风力越强劲。”
10:33
Right? It's just like a cost-benefit analysis.
194
633160
3000
他说的很正确,是吧?这就像是成本效益分析。
10:36
And I measured out the lengths of straw,
195
636160
2000
于是我测量了篱笆麦秆的长度,
10:38
put it on a log-log plot, got the scaling exponent,
196
638160
2000
把数据放到重对数坐标中,得到了一个标度指数,
10:40
and it almost exactly matches the scaling exponent for the relationship between wind speed and height
197
640160
5000
这个标度指数几乎跟风力工程手册中
10:45
in the wind engineering handbook.
198
645160
1000
风速与高度的标度指数完全匹配。
10:46
So these guys are right on target for a practical use of scaling technology.
199
646160
5000
所以,这些当地人把分形很好地应用在了实际中。
10:51
The most complex example of an algorithmic approach to fractals that I found
200
651160
5000
在众多形成分形的算法中,我所发现的最为复杂的
10:56
was actually not in geometry, it was in a symbolic code,
201
656160
2000
并不是几何图形的算法,而是这个符号代码的,
10:58
and this was Bamana sand divination.
202
658160
3000
用于Bamana沙地占卜。
11:01
And the same divination system is found all over Africa.
203
661160
3000
类似的占卜系统在整个非洲都可见到,
11:04
You can find it on the East Coast as well as the West Coast,
204
664160
5000
东、西海岸都有。
11:09
and often the symbols are very well preserved,
205
669160
2000
这些符号通常都被良好的保存下来,
11:11
so each of these symbols has four bits -- it's a four-bit binary word --
206
671160
6000
每个符号分为四部分,可看做四个二进制位组成的单元---
11:17
you draw these lines in the sand randomly, and then you count off,
207
677160
5000
你在沙地里随意画下这样的线段,然后数一下,
11:22
and if it's an odd number, you put down one stroke,
208
682160
2000
(一行中)如果有奇数条线段,划下一条线,
11:24
and if it's an even number, you put down two strokes.
209
684160
2000
而如果有偶数条,划两条线。
11:26
And they did this very rapidly,
210
686160
3000
他们非常快速的完成这工作,
11:29
and I couldn't understand where they were getting --
211
689160
2000
可我不明白他们究竟做了些什么---
11:31
they only did the randomness four times --
212
691160
2000
他们仅仅随意画四行线段---
11:33
I couldn't understand where they were getting the other 12 symbols.
213
693160
2000
我不知道剩下的十二个(占卜)符号他们是怎样得来的,
11:35
And they wouldn't tell me.
214
695160
2000
而他们也不愿意告诉我。
11:37
They said, "No, no, I can't tell you about this."
215
697160
2000
他们说:“不,不,我们不能告诉你这些。”
11:39
And I said, "Well look, I'll pay you, you can be my teacher,
216
699160
2000
我回答说:“这样吧,你们可以做我的老师,我付你们工钱,
11:41
and I'll come each day and pay you."
217
701160
2000
我每天都上你们这儿来,并每日付薪水。”
11:43
They said, "It's not a matter of money. This is a religious matter."
218
703160
3000
他们说:“这不是钱的问题。这涉及到宗教与信仰。”
11:46
And finally, out of desperation, I said,
219
706160
1000
最终,我绝望地说道:
11:47
"Well, let me explain Georg Cantor in 1877."
220
707160
3000
“好吧,那最后请让我向你们介绍一下康托。(Georg Cantor)”
11:50
And I started explaining why I was there in Africa,
221
710160
4000
于是我开始向他们解释我来非洲的原因。
11:54
and they got very excited when they saw the Cantor set.
222
714160
2000
当他们听说康托集时,显得异常兴奋。
11:56
And one of them said, "Come here. I think I can help you out here."
223
716160
4000
他们中的一个说道:“来吧,我想我能解决你的问题。”
12:00
And so he took me through the initiation ritual for a Bamana priest.
224
720160
5000
于是他带我完成了Bamana教的入会仪式。
12:05
And of course, I was only interested in the math,
225
725160
2000
当然,我只对其中的数学问题感兴趣。
12:07
so the whole time, he kept shaking his head going,
226
727160
2000
整个过程中,他始终摇头晃脑,说着
12:09
"You know, I didn't learn it this way."
227
729160
1000
“你知道吗,我原来可不知道这其中的奥秘。”
12:10
But I had to sleep with a kola nut next to my bed, buried in sand,
228
730160
4000
而我得和埋在床边沙子中的可乐树果子(kola nut)睡一块儿,
12:14
and give seven coins to seven lepers and so on.
229
734160
3000
将七枚硬币给予七个麻风病人,等等。
12:17
And finally, he revealed the truth of the matter.
230
737160
4000
最终,他向我揭示了那些符号的奥秘。
12:22
And it turns out it's a pseudo-random number generator using deterministic chaos.
231
742160
4000
事实是,那些符号产生自确定性混沌---一个伪随机过程。
12:26
When you have a four-bit symbol, you then put it together with another one sideways.
232
746160
6000
你将一个已有的4位(four-bit)的符号与另一个放在一起。
12:32
So even plus odd gives you odd.
233
752160
2000
于是偶数加奇数得奇数;
12:34
Odd plus even gives you odd.
234
754160
2000
奇数加偶数得奇;
12:36
Even plus even gives you even. Odd plus odd gives you even.
235
756160
3000
偶数加偶数得偶;奇数加奇数得偶。
12:39
It's addition modulo 2, just like in the parity bit check on your computer.
236
759160
4000
这是一位加和的二进制数,就像计算机奇偶校验中的一位加和编码一样。
12:43
And then you take this symbol, and you put it back in
237
763160
4000
然后你用新得到的符号替换原有的,
12:47
so it's a self-generating diversity of symbols.
238
767160
2000
于是你就“自我繁衍”出一系列的符号。
12:49
They're truly using a kind of deterministic chaos in doing this.
239
769160
4000
他们真真确确在运用确定性混沌的理论。
12:53
Now, because it's a binary code,
240
773160
2000
由于这些是二值码,
12:55
you can actually implement this in hardware --
241
775160
2000
事实上你可以将他们运用到硬件中---
12:57
what a fantastic teaching tool that should be in African engineering schools.
242
777160
5000
多么有趣的案例,真该运用到非洲的工程学校的教学中。
13:02
And the most interesting thing I found out about it was historical.
243
782160
3000
对于这些符号,我发现的最有趣的事还是关于它们的历史。
13:05
In the 12th century, Hugo of Santalla brought it from Islamic mystics into Spain.
244
785160
6000
在十二世纪,桑塔拉的休(Hugo of Santalla)将来源于伊斯兰神话的它们带到西班牙。
13:11
And there it entered into the alchemy community as geomancy:
245
791160
6000
在那儿,它进入炼金术士的团体,用于看风水:
13:17
divination through the earth.
246
797160
2000
通过泥土来占卜(抓沙散地,按其所成像以断吉凶)。
13:19
This is a geomantic chart drawn for King Richard II in 1390.
247
799160
5000
这是一幅在1390年为理查二世(King Richard II)绘制的占卜图。
13:24
Leibniz, the German mathematician,
248
804160
3000
德国数学家莱布尼兹(Leibniz)
13:27
talked about geomancy in his dissertation called "De Combinatoria."
249
807160
4000
在他名为"De Combinatoria"的论文中谈论到了泥土占卜。
13:31
And he said, "Well, instead of using one stroke and two strokes,
250
811160
4000
在文章中他说:“我们不使用一条或两条的划线
13:35
let's use a one and a zero, and we can count by powers of two."
251
815160
4000
而是使用数字0和1,于是我们可以把它们作二进制数来对待。”
13:39
Right? Ones and zeros, the binary code.
252
819160
2000
这不就是吗?由很多0和1组成了二进制码。
13:41
George Boole took Leibniz's binary code and created Boolean algebra,
253
821160
3000
布尔(George Boole)运用莱布尼兹的二进制码创造了布尔代数(Boolean algebra),
13:44
and John von Neumann took Boolean algebra and created the digital computer.
254
824160
3000
约翰.冯.诺依曼(John von Neumann)则利用布尔代数创造了电脑.
13:47
So all these little PDAs and laptops --
255
827160
3000
因而所有这些小器件---PDA,便携式电脑---
13:50
every digital circuit in the world -- started in Africa.
256
830160
3000
所有世间的数字电路---都起源于非洲。
13:53
And I know Brian Eno says there's not enough Africa in computers,
257
833160
5000
据我所知布莱恩·伊诺(Brian Eno)说非洲在数字化进程中没有多大贡献;
13:58
but you know, I don't think there's enough African history in Brian Eno.
258
838160
5000
而我认为事实是Brian Eno脑中没有足够的非洲历史。
14:03
(Laughter) (Applause)
259
843160
3000
(掌声)
14:06
So let me end with just a few words about applications that we've found for this.
260
846160
4000
请让我简单地用这些分形的实际应用结束这场演讲。
14:10
And you can go to our website,
261
850160
2000
你也可以浏览我们的网站,
14:12
the applets are all free; they just run in the browser.
262
852160
2000
程序都是免费的,可以直接运行,
14:14
Anybody in the world can use them.
263
854160
2000
世界上的任何人都可以使用它们。
14:16
The National Science Foundation's Broadening Participation in Computing program
264
856160
5000
The National Science Foundation's Broadening Participation in Computing program(某基金会)
14:21
recently awarded us a grant to make a programmable version of these design tools,
265
861160
7000
近日授予我们一笔资金,来将这些图形设计工具制作成可编辑版本,
14:28
so hopefully in three years, anybody'll be able to go on the Web
266
868160
2000
顺利的话,在三年内,所有人都能在网上
14:30
and create their own simulations and their own artifacts.
267
870160
3000
创造出属于自己的分形与艺术品。
14:33
We've focused in the U.S. on African-American students as well as Native American and Latino.
268
873160
5000
在美国,我们特别关注了非洲裔美国学生、美国土著居民和拉丁美洲人,
14:38
We've found statistically significant improvement with children using this software in a mathematics class
269
878160
6000
并通过统计发现在数学课中使用这款软件的孩子与一批作为对照组、
14:44
in comparison with a control group that did not have the software.
270
884160
3000
不使用该软件的孩子相比,学术表现有了极大提高。
14:47
So it's really very successful teaching children that they have a heritage that's about mathematics,
271
887160
6000
因而教授学生,告知他们自己所具有的数学传统,是非常有意义的,
14:53
that it's not just about singing and dancing.
272
893160
4000
而不仅仅教他们唱歌、跳舞。
14:57
We've started a pilot program in Ghana.
273
897160
3000
我们在加纳启动了一个试验项目。
15:00
We got a small seed grant, just to see if folks would be willing to work with us on this;
274
900160
5000
我们先提供一小笔种子资金,看人们是否愿意与我们合作;
15:05
we're very excited about the future possibilities for that.
275
905160
3000
对于未来(更大规模)的合作,我们都充满期待。
15:08
We've also been working in design.
276
908160
2000
我们也在设计方面不断努力。
15:10
I didn't put his name up here -- my colleague, Kerry, in Kenya, has come up with this great idea
277
910160
5000
我没把我这位同事的名字放上来---肯尼亚的Kerry,是他想出了这个绝妙的点子:
15:15
for using fractal structure for postal address in villages that have fractal structure,
278
915160
5000
在具有分形结构的村落中应用具有分形结构的邮政网络,
15:20
because if you try to impose a grid structure postal system on a fractal village,
279
920160
4000
因为一个方格状的邮递系统很难适应
15:24
it doesn't quite fit.
280
924160
2000
分形的村落结构。
15:26
Bernard Tschumi at Columbia University has finished using this in a design for a museum of African art.
281
926160
5000
哥伦比亚大学的Bernard Tschumi运用分形(及其衍生品)完成了对非洲艺术博物馆的设计。
15:31
David Hughes at Ohio State University has written a primer on Afrocentric architecture
282
931160
8000
俄亥俄州立大学的David Hughes完成了一本有关非洲中心架构(Afrocentric architecture)的入门读物,
15:39
in which he's used some of these fractal structures.
283
939160
2000
在其中他运用到了一些分形结构。
15:41
And finally, I just wanted to point out that this idea of self-organization,
284
941160
5000
最后,我想指出这种自组织(self-organization)的思想---
15:46
as we heard earlier, it's in the brain.
285
946160
2000
我之前也提到过---是牢固存在大脑里的。
15:48
It's in the -- it's in Google's search engine.
286
948160
5000
它也存在于谷歌(Google)的搜索引擎中。
15:53
Actually, the reason that Google was such a success
287
953160
2000
事实上,谷歌能够获得如此巨大的成功,
15:55
is because they were the first ones to take advantage of the self-organizing properties of the web.
288
955160
4000
就在于它第一个利用了网络的这种自组织性质。
15:59
It's in ecological sustainability.
289
959160
2000
它体现于生态的可持续性,
16:01
It's in the developmental power of entrepreneurship,
290
961160
2000
体现于企业的发展力,
16:03
the ethical power of democracy.
291
963160
2000
也体现于民主思想的道德约束力。
16:06
It's also in some bad things.
292
966160
2000
它也体现在一些坏的事情当中。
16:08
Self-organization is why the AIDS virus is spreading so fast.
293
968160
3000
自我组织是艾滋病毒传播如此迅速的原因。
16:11
And if you don't think that capitalism, which is self-organizing, can have destructive effects,
294
971160
4000
此外,如果你不认为具有自组织性质的资本主义能产生毁灭性的影响,
16:15
you haven't opened your eyes enough.
295
975160
2000
那么你还没有真正看清这个世界。
16:17
So we need to think about, as was spoken earlier,
296
977160
4000
因而我们需要思考,如我之前所说的,
16:21
the traditional African methods for doing self-organization.
297
981160
2000
非洲传统的自组织的方式。
16:23
These are robust algorithms.
298
983160
2000
这些才是强健的算法(方法)。
16:26
These are ways of doing self-organization -- of doing entrepreneurship --
299
986160
3000
这些才是进行自组织的方式---发展企业的方式---
16:29
that are gentle, that are egalitarian.
300
989160
2000
它们温和、平缓。
16:31
So if we want to find a better way of doing that kind of work,
301
991160
4000
因此如果我们想寻找一个更好的涉及此类工作的方式,
16:35
we need look only no farther than Africa to find these robust self-organizing algorithms.
302
995160
5000
只需从非洲就能找寻到这些强健的自组织算法。
16:40
Thank you.
303
1000160
1000
谢谢大家。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7