Ron Eglash: The fractals at the heart of African designs

135,653 views ・ 2007-12-07

TED


請雙擊下方英文字幕播放視頻。

譯者: Joan Liu 審譯者: Nova Upinel Altesse
00:13
I want to start my story in Germany, in 1877,
0
13160
3000
我的故事要從1877年在德國
00:16
with a mathematician named Georg Cantor.
1
16160
2000
一位名叫Georg Cantor的數學家說起。
00:18
And Cantor decided he was going to take a line and erase the middle third of the line,
2
18160
5000
Cantor決定要把一個線段的中間三分之一擦掉,
00:23
and then take those two resulting lines and bring them back into the same process, a recursive process.
3
23160
5000
將頭尾兩端接起來再重複,如此週而復始。
00:28
So he starts out with one line, and then two,
4
28160
2000
所以他一開始有一條線段,然後有兩條,
00:30
and then four, and then 16, and so on.
5
30160
3000
接著有四條,然後有十六條,這樣繼續下去。
00:33
And if he does this an infinite number of times, which you can do in mathematics,
6
33160
3000
如果他做這個無限多次,在數學上是可以做到的,
00:36
he ends up with an infinite number of lines,
7
36160
2000
他就會有無限多條線段,
00:38
each of which has an infinite number of points in it.
8
38160
3000
其中每一條線段都有無限多點。
00:41
So he realized he had a set whose number of elements was larger than infinity.
9
41160
4000
所以他發現他會有一個比無限多還大的集合。
00:45
And this blew his mind. Literally. He checked into a sanitarium. (Laughter)
10
45160
3000
他為之瘋狂。真的。他進了療養院。(笑聲)
00:48
And when he came out of the sanitarium,
11
48160
2000
當他離開療養院時,
00:50
he was convinced that he had been put on earth to found transfinite set theory
12
50160
6000
他認為他來到地球是為了理解超限理論,
00:56
because the largest set of infinity would be God Himself.
13
56160
3000
因為最大的無限就是神。
00:59
He was a very religious man.
14
59160
1000
他是個非常虔誠的人。
01:00
He was a mathematician on a mission.
15
60160
2000
他是個有使命的數學家。
01:02
And other mathematicians did the same sort of thing.
16
62160
2000
而且其他數學家也做了類似的事情。
01:04
A Swedish mathematician, von Koch,
17
64160
2000
van Koch是個瑞典的數學家,
01:06
decided that instead of subtracting lines, he would add them.
18
66160
4000
他做了類似的事情,但是不用減法而改用加法。
01:10
And so he came up with this beautiful curve.
19
70160
2000
所以他得到了這漂亮的弧線。
01:12
And there's no particular reason why we have to start with this seed shape;
20
72160
3000
並沒有什麼特定的原因讓我們必須從這樣的種子圖形開始,
01:15
we can use any seed shape we like.
21
75160
4000
我們可以用任何的圖形作起始。
01:19
And I'll rearrange this and I'll stick this somewhere -- down there, OK --
22
79160
4000
我來重新整理一下,把這個放在某個地方--放到這裡,好--
01:23
and now upon iteration, that seed shape sort of unfolds into a very different looking structure.
23
83160
7000
經過無數重複後,種子圖形展開成一個非常不同的結構。
01:30
So these all have the property of self-similarity:
24
90160
2000
所以這些都有自體相似的特質:
01:32
the part looks like the whole.
25
92160
2000
各個部份跟整體相似。
01:34
It's the same pattern at many different scales.
26
94160
2000
在不同尺度上都是同一個圖形。
01:37
Now, mathematicians thought this was very strange
27
97160
2000
好,數學家覺得這很奇怪。
01:39
because as you shrink a ruler down, you measure a longer and longer length.
28
99160
5000
因為如果你把一把尺縮小,你量到的數據會越來越長。
01:44
And since they went through the iterations an infinite number of times,
29
104160
2000
然後因為重複了無限多次,
01:46
as the ruler shrinks down to infinity, the length goes to infinity.
30
106160
6000
量尺變成無限小,長度變成無限長。
01:52
This made no sense at all,
31
112160
1000
這不合理,
01:53
so they consigned these curves to the back of the math books.
32
113160
3000
所以他們把這個放在數學書籍最後面。
01:56
They said these are pathological curves, and we don't have to discuss them.
33
116160
4000
他們說這是有問題的曲線,所以我們不討論。
02:00
(Laughter)
34
120160
1000
(笑聲)
02:01
And that worked for a hundred years.
35
121160
2000
且成功的這麼做了一百年。
02:04
And then in 1977, Benoit Mandelbrot, a French mathematician,
36
124160
5000
然後在1977年,一個法國數學家Benoit Mandelbrot
02:09
realized that if you do computer graphics and used these shapes he called fractals,
37
129160
5000
發現如果利用電腦繪圖繪出這些他叫做碎形的圖樣,
02:14
you get the shapes of nature.
38
134160
2000
你可以得到自然界的圖形。
02:16
You get the human lungs, you get acacia trees, you get ferns,
39
136160
4000
你可以得到人類的肺圖形、刺槐、蕨類,
02:20
you get these beautiful natural forms.
40
140160
2000
你可以得到這些美麗的大自然形狀。
02:22
If you take your thumb and your index finger and look right where they meet --
41
142160
4000
如果你看你大拇指和食指交界的地方--
02:26
go ahead and do that now --
42
146160
2000
拿起來看看--
02:28
-- and relax your hand, you'll see a crinkle,
43
148160
3000
手放鬆,你會看到波紋,
02:31
and then a wrinkle within the crinkle, and a crinkle within the wrinkle. Right?
44
151160
3000
波紋中有皺紋,皺紋中有波紋。對吧?
02:34
Your body is covered with fractals.
45
154160
2000
你們全身都被碎形包覆著。
02:36
The mathematicians who were saying these were pathologically useless shapes?
46
156160
3000
而這些數學家竟然說這些是有問題且無意義的圖形?
02:39
They were breathing those words with fractal lungs.
47
159160
2000
他們正在用碎形組成的肺說這些話。
02:41
It's very ironic. And I'll show you a little natural recursion here.
48
161160
4000
這是非常諷刺的。我可以給你們看一些自然的循環。
02:45
Again, we just take these lines and recursively replace them with the whole shape.
49
165160
5000
再次的,我們將這些線段作重複。
02:50
So here's the second iteration, and the third, fourth and so on.
50
170160
5000
這是第二次重複、第三次、第四次...
02:55
So nature has this self-similar structure.
51
175160
2000
大自然有這樣的自體相似結構。
02:57
Nature uses self-organizing systems.
52
177160
2000
大自然利用自體組織系統。
02:59
Now in the 1980s, I happened to notice
53
179160
3000
在1980年代我發現
03:02
that if you look at an aerial photograph of an African village, you see fractals.
54
182160
4000
如果看這個非洲村落的空照圖,你會看到碎形。
03:06
And I thought, "This is fabulous! I wonder why?"
55
186160
4000
我就想:「這太好了!我想要知道為什麼?」
03:10
And of course I had to go to Africa and ask folks why.
56
190160
2000
所以當然我要去非洲問那些人為什麼。
03:12
So I got a Fulbright scholarship to just travel around Africa for a year
57
192160
6000
所以我拿了Fulbright獎學金去非洲旅行一年
03:18
asking people why they were building fractals,
58
198160
2000
問當地人為什麼要建造碎形。
03:20
which is a great job if you can get it.
59
200160
2000
其實是個很不錯的工作如果你可以拿到這個工作。
03:22
(Laughter)
60
202160
1000
(笑聲)
03:23
And so I finally got to this city, and I'd done a little fractal model for the city
61
203160
7000
所以我終於到達了這個城市。我做了一個這個城市的小型碎形模型,
03:30
just to see how it would sort of unfold --
62
210160
3000
讓我可以更瞭解如何展開的--
03:33
but when I got there, I got to the palace of the chief,
63
213160
3000
我到了那裡,找到酋長的宮殿,
03:36
and my French is not very good; I said something like,
64
216160
3000
我的法文不大好,我說了像是這樣的話:「
03:39
"I am a mathematician and I would like to stand on your roof."
65
219160
3000
我是個數學家,我想要站到你的屋頂上。」
03:42
But he was really cool about it, and he took me up there,
66
222160
3000
但他覺得沒問題,然後帶我上去,
03:45
and we talked about fractals.
67
225160
1000
然後我們聊了一下碎形。
03:46
And he said, "Oh yeah, yeah! We knew about a rectangle within a rectangle,
68
226160
3000
他說:「喔對對,我們知道這個長方形裡面的長方形,
03:49
we know all about that."
69
229160
2000
我們知道那個。」
03:51
And it turns out the royal insignia has a rectangle within a rectangle within a rectangle,
70
231160
4000
而且事實上皇家徽章就是長方形裡面有長方形有長方形,
03:55
and the path through that palace is actually this spiral here.
71
235160
4000
且皇宮中的走廊也是這樣迴旋著的。
03:59
And as you go through the path, you have to get more and more polite.
72
239160
4000
而且順著這些走廊走下去,你必須越來越有禮貌。
04:03
So they're mapping the social scaling onto the geometric scaling;
73
243160
3000
所以他們是用這樣幾何縮放的方式來建立社會地位,
04:06
it's a conscious pattern. It is not unconscious like a termite mound fractal.
74
246160
5000
是故意這麼做的,並不是像飛蟻丘那樣無意識的。
04:11
This is a village in southern Zambia.
75
251160
2000
這是在南尚比亞的一個村莊。
04:13
The Ba-ila built this village about 400 meters in diameter.
76
253160
4000
Ba-Ila人建造了一個直徑約400公尺的村莊。
04:17
You have a huge ring.
77
257160
2000
首先你有一個很大的圈圈。
04:19
The rings that represent the family enclosures get larger and larger as you go towards the back,
78
259160
6000
這些代表家族的圈圈越往後面越大,
04:26
and then you have the chief's ring here towards the back
79
266160
4000
在後面這邊有酋長的圈圈,
04:30
and then the chief's immediate family in that ring.
80
270160
3000
圈圈旁邊是酋長的家人圈。
04:33
So here's a little fractal model for it.
81
273160
1000
所以這是個小型的碎形模型。
04:34
Here's one house with the sacred altar,
82
274160
3000
這裡是一棟擁有神檀的屋子。
04:37
here's the house of houses, the family enclosure,
83
277160
3000
這裡是房子的房子,家庭圈圈,
04:40
with the humans here where the sacred altar would be,
84
280160
3000
這邊神壇的位置有人在,
04:43
and then here's the village as a whole --
85
283160
2000
這是整個村莊--
04:45
a ring of ring of rings with the chief's extended family here, the chief's immediate family here,
86
285160
5000
一圈一圈地在這裡,這是酋長的遠親,這裡是酋長的近親--
04:50
and here there's a tiny village only this big.
87
290160
3000
而這裡是一個非常小只有這麼大的村莊。
04:53
Now you might wonder, how can people fit in a tiny village only this big?
88
293160
4000
你們可能會問,這麼小的村莊怎麼住得下人?
04:57
That's because they're spirit people. It's the ancestors.
89
297160
3000
那是因為這些是神魂人物,是祖先們。
05:00
And of course the spirit people have a little miniature village in their village, right?
90
300160
5000
而且當然的這迷你的村落裡有另一個更小的村落,對吧?
05:05
So it's just like Georg Cantor said, the recursion continues forever.
91
305160
3000
所以就像Georg Cantor說的,一再地重複著。
05:08
This is in the Mandara mountains, near the Nigerian border in Cameroon, Mokoulek.
92
308160
4000
這是在奈吉利亞邊界Mokoulek地區Cameroon的Mandara山中的景象。
05:12
I saw this diagram drawn by a French architect,
93
312160
3000
我看到這幅法國建築家畫的圖,
05:15
and I thought, "Wow! What a beautiful fractal!"
94
315160
2000
然後我想:「哇!真是漂亮的碎形阿!」
05:17
So I tried to come up with a seed shape, which, upon iteration, would unfold into this thing.
95
317160
6000
所以我試著找出一個種子圖形在經過重複後可以展開成這樣的東西。
05:23
I came up with this structure here.
96
323160
2000
我想到這樣的一個結構。
05:25
Let's see, first iteration, second, third, fourth.
97
325160
4000
讓我們看看,第一次重複、第二次、第三次、第四次。
05:29
Now, after I did the simulation,
98
329160
2000
經過模擬後,
05:31
I realized the whole village kind of spirals around, just like this,
99
331160
3000
我發現整個村莊像螺旋般環繞著,就像這樣,
05:34
and here's that replicating line -- a self-replicating line that unfolds into the fractal.
100
334160
6000
且這邊是重複線:一條融入到碎形裡的自我複製線。
05:40
Well, I noticed that line is about where the only square building in the village is at.
101
340160
5000
我發現這也是整個村莊唯一一棟正方形建築物所在地。
05:45
So, when I got to the village,
102
345160
2000
所以我到了這個村莊,
05:47
I said, "Can you take me to the square building?
103
347160
2000
我問:「你可以帶我到這棟正方形建築那裡嗎?
05:49
I think something's going on there."
104
349160
2000
我覺得那裡有些什麼東西。」
05:51
And they said, "Well, we can take you there, but you can't go inside
105
351160
3000
他們說:「恩,我們可以帶你去那裡,但你不能進去,
05:54
because that's the sacred altar, where we do sacrifices every year
106
354160
3000
因為那是聖壇也就是我們每年為了
05:57
to keep up those annual cycles of fertility for the fields."
107
357160
3000
保持土地肥沃做祭祀的地方。」
06:00
And I started to realize that the cycles of fertility
108
360160
2000
我開始瞭解到這肥沃土壤的循環
06:02
were just like the recursive cycles in the geometric algorithm that builds this.
109
362160
4000
就跟建造這個的幾何算式循環一樣。
06:06
And the recursion in some of these villages continues down into very tiny scales.
110
366160
4000
且這樣的循環一直延續到非常小的尺度。
06:10
So here's a Nankani village in Mali.
111
370160
2000
這裡是Mali的一個Nankani村莊。
06:12
And you can see, you go inside the family enclosure --
112
372160
3000
你們可以看到,人們可以進到家庭圈圈中--
06:15
you go inside and here's pots in the fireplace, stacked recursively.
113
375160
4000
你可以進去然後這裡是壁爐中的鍋子,也是循環堆疊的。
06:19
Here's calabashes that Issa was just showing us,
114
379160
4000
這是Issa剛剛給我們看得葫蘆,
06:23
and they're stacked recursively.
115
383160
2000
它們也是循環堆疊的。
06:25
Now, the tiniest calabash in here keeps the woman's soul.
116
385160
2000
這裡,最小的葫蘆裡面保存著女人的靈魂。
06:27
And when she dies, they have a ceremony
117
387160
2000
她離開人世時,他們有一個儀式
06:29
where they break this stack called the zalanga and her soul goes off to eternity.
118
389160
5000
會打壞這個叫做zalanga的的堆疊讓她的靈魂可以達到永恆。
06:34
Once again, infinity is important.
119
394160
3000
再次的,無限是非常重要的。
06:38
Now, you might ask yourself three questions at this point.
120
398160
4000
到此,你們可能會問自己三個問題。
06:42
Aren't these scaling patterns just universal to all indigenous architecture?
121
402160
4000
這樣的不同尺度間呼應的圖形不是在每個原始建築中都存在嗎?
06:46
And that was actually my original hypothesis.
122
406160
2000
這事實上是我一開始的假設。
06:48
When I first saw those African fractals,
123
408160
2000
當我第一次看到非洲碎形時,
06:50
I thought, "Wow, so any indigenous group that doesn't have a state society,
124
410160
4000
我想:「哇,所以任何一個沒有制式的階層結構的的原始族群
06:54
that sort of hierarchy, must have a kind of bottom-up architecture."
125
414160
3000
都應該有類似的自下而上的建築形態。」
06:57
But that turns out not to be true.
126
417160
2000
但後來發現這是不正確的。
06:59
I started collecting aerial photographs of Native American and South Pacific architecture;
127
419160
4000
我開始蒐集美國原住民和南太平洋建築的空照圖,
07:03
only the African ones were fractal.
128
423160
2000
只有非洲的有碎形。
07:05
And if you think about it, all these different societies have different geometric design themes that they use.
129
425160
6000
而且如果你仔細想,這些不同的文民都有不同的幾何設計主題。
07:11
So Native Americans use a combination of circular symmetry and fourfold symmetry.
130
431160
6000
美國原住民用了圓形對稱和四方對稱的組合。
07:17
You can see on the pottery and the baskets.
131
437160
2000
你可以在陶器和籃子上看出來。
07:19
Here's an aerial photograph of one of the Anasazi ruins;
132
439160
3000
這是Anasazi殘骸的空照圖。
07:22
you can see it's circular at the largest scale, but it's rectangular at the smaller scale, right?
133
442160
5000
你們可以看到在大尺度上是圓環的,但在較小的尺度上是長方形的,對吧?
07:27
It is not the same pattern at two different scales.
134
447160
4000
在這兩個尺度上不是一樣的圖形。
07:31
Second, you might ask,
135
451160
1000
第二,你可能會問:
07:32
"Well, Dr. Eglash, aren't you ignoring the diversity of African cultures?"
136
452160
3000
「恩,Eglash博士,你是不是忽略了非洲文化的多樣性?」
07:36
And three times, the answer is no.
137
456160
2000
第三次的,答案是否定的。
07:38
First of all, I agree with Mudimbe's wonderful book, "The Invention of Africa,"
138
458160
4000
首先,我完全贊同Mudimbe在他很棒的書《非洲創立》中寫到
07:42
that Africa is an artificial invention of first colonialism,
139
462160
3000
非洲是個是個人類殖明主義的開始,
07:45
and then oppositional movements.
140
465160
2000
接著是對抗性運動。
07:47
No, because a widely shared design practice doesn't necessarily give you a unity of culture --
141
467160
5000
不,因為一個廣泛被使用的設計並不代表文化上是統一的,
07:52
and it definitely is not "in the DNA."
142
472160
3000
亦不代表是包含在DNA中的。
07:55
And finally, the fractals have self-similarity --
143
475160
2000
而且這些碎形是自體相似的,
07:57
so they're similar to themselves, but they're not necessarily similar to each other --
144
477160
4000
也就是說他們跟自己像而跟其它的碎形不像,
08:01
you see very different uses for fractals.
145
481160
2000
你可以看到非常不同的碎形使用方式。
08:03
It's a shared technology in Africa.
146
483160
2000
這是在非洲的一個共同的科技。
08:06
And finally, well, isn't this just intuition?
147
486160
3000
最後,恩,會不會這只是直覺?
08:09
It's not really mathematical knowledge.
148
489160
2000
事實上跟數學知識一點關係都沒有?
08:11
Africans can't possibly really be using fractal geometry, right?
149
491160
3000
非洲人不可能真的使用碎形幾何對吧?
08:14
It wasn't invented until the 1970s.
150
494160
2000
碎形幾何一直到1970年代才發明的。
08:17
Well, it's true that some African fractals are, as far as I'm concerned, just pure intuition.
151
497160
5000
是的,我認為非洲碎形有很大一部份是直覺。
08:22
So some of these things, I'd wander around the streets of Dakar
152
502160
3000
有時候我會在Dakar的街上遊蕩
08:25
asking people, "What's the algorithm? What's the rule for making this?"
153
505160
3000
問當地人:「這背後的算式是什麼?規則是什麼?」
08:28
and they'd say,
154
508160
1000
他們會說:「
08:29
"Well, we just make it that way because it looks pretty, stupid." (Laughter)
155
509160
3000
我們把它建造成這樣所以好看阿!你這個笨蛋。」(笑聲)
08:32
But sometimes, that's not the case.
156
512160
3000
但有些時候不是這樣的。
08:35
In some cases, there would actually be algorithms, and very sophisticated algorithms.
157
515160
5000
有些時候,背後真的有算式,且是非常複雜的算式。
08:40
So in Manghetu sculpture, you'd see this recursive geometry.
158
520160
3000
你可以在Manghetu的雕像上看到重複的幾何圖形。
08:43
In Ethiopian crosses, you see this wonderful unfolding of the shape.
159
523160
5000
在Ehiopian的十字架上也可以看到這些無限展開的形狀。
08:48
In Angola, the Chokwe people draw lines in the sand,
160
528160
4000
在Angola,Chokwe人會在沙上畫線,
08:52
and it's what the German mathematician Euler called a graph;
161
532160
3000
也就是德國數學家Euler叫做圖像的東西。
08:55
we now call it an Eulerian path --
162
535160
2000
我們把它叫做Eulerian道路--
08:57
you can never lift your stylus from the surface
163
537160
2000
你永遠不可以將你的筆從表面上提起,
08:59
and you can never go over the same line twice.
164
539160
3000
也不可以重複同一條線段。
09:02
But they do it recursively, and they do it with an age-grade system,
165
542160
3000
但他們可以重複地這個做,且以一個年紀劃分的方式這麼做,
09:05
so the little kids learn this one, and then the older kids learn this one,
166
545160
3000
所以小朋友會學這個,大一點的學這個,
09:08
then the next age-grade initiation, you learn this one.
167
548160
3000
在大一點的學這個。
09:11
And with each iteration of that algorithm,
168
551160
3000
而且在每一次重複這些算式時
09:14
you learn the iterations of the myth.
169
554160
2000
他們會學這些重複背後的意義。
09:16
You learn the next level of knowledge.
170
556160
2000
他們會學到下一層的知識。
09:19
And finally, all over Africa, you see this board game.
171
559160
2000
最後,在整個非洲你都可以看到這樣的棋盤遊戲。
09:21
It's called Owari in Ghana, where I studied it;
172
561160
3000
這遊戲在我研究的加那叫作Owari,
09:24
it's called Mancala here on the East Coast, Bao in Kenya, Sogo elsewhere.
173
564160
5000
在東岸叫做Mancaia,在肯亞叫做Bao,在其他地方叫做Sogo。
09:29
Well, you see self-organizing patterns that spontaneously occur in this board game.
174
569160
5000
你可以在這些棋盤遊戲中看到自體重複的圖形。
09:34
And the folks in Ghana knew about these self-organizing patterns
175
574160
3000
在加那的人知道這些圖形,
09:37
and would use them strategically.
176
577160
2000
且會有策略地運用它們。
09:39
So this is very conscious knowledge.
177
579160
2000
所以是個有意識的知識。
09:41
Here's a wonderful fractal.
178
581160
2000
這是個很棒的碎形。
09:43
Anywhere you go in the Sahel, you'll see this windscreen.
179
583160
4000
在Sahel的各個地方,你都可以看到這樣的擋風玻璃。
09:47
And of course fences around the world are all Cartesian, all strictly linear.
180
587160
4000
當然的世界上任何籬笆都是笛卡爾式的,都是直線的。
09:51
But here in Africa, you've got these nonlinear scaling fences.
181
591160
4000
但在非洲,你也可以看到這些不是直線的籬笆。
09:55
So I tracked down one of the folks who makes these things,
182
595160
2000
所以我找到設計這些籬笆的人,
09:57
this guy in Mali just outside of Bamako, and I asked him,
183
597160
4000
他是一個住在Bamako外面的Mali的人,我問他:
10:01
"How come you're making fractal fences? Because nobody else is."
184
601160
2000
「為什麼你用碎形法製造籬笆?因為沒有其他人這麼做。」
10:03
And his answer was very interesting.
185
603160
2000
他的答覆非常有趣。
10:05
He said, "Well, if I lived in the jungle, I would only use the long rows of straw
186
605160
5000
他說:「恩,當我走在叢林中時,我只會用長條的稻草,
10:10
because they're very quick and they're very cheap.
187
610160
2000
因為使用它們既快又便宜。
10:12
It doesn't take much time, doesn't take much straw."
188
612160
3000
不需要花太多時間且不需要太多稻草。」
10:15
He said, "but wind and dust goes through pretty easily.
189
615160
2000
他說:「但風和塵土很容易穿過。
10:17
Now, the tight rows up at the very top, they really hold out the wind and dust.
190
617160
4000
最上層很緊的那排可以擋住風和塵土。
10:21
But it takes a lot of time, and it takes a lot of straw because they're really tight."
191
621160
5000
但這需要花很多時間、很多稻草,因為他們需要非常緊。」
10:26
"Now," he said, "we know from experience
192
626160
2000
「現在」他說:「我們從經驗中得知,
10:28
that the farther up from the ground you go, the stronger the wind blows."
193
628160
5000
越高的地方風越強。」
10:33
Right? It's just like a cost-benefit analysis.
194
633160
3000
對吧?就有點像是成本效益分析。
10:36
And I measured out the lengths of straw,
195
636160
2000
我量了稻草的長度,
10:38
put it on a log-log plot, got the scaling exponent,
196
638160
2000
把它放進對數圖形,得到尺度指數,
10:40
and it almost exactly matches the scaling exponent for the relationship between wind speed and height
197
640160
5000
發現他幾乎完全和風速工程書上的
10:45
in the wind engineering handbook.
198
645160
1000
風速與高度的指數相同。
10:46
So these guys are right on target for a practical use of scaling technology.
199
646160
5000
這些人在利用尺度科技上正中目標。
10:51
The most complex example of an algorithmic approach to fractals that I found
200
651160
5000
我找到最復雜的算式碎形
10:56
was actually not in geometry, it was in a symbolic code,
201
656160
2000
並不是幾何圖形,而是符號象徵,
10:58
and this was Bamana sand divination.
202
658160
3000
而這是在Bamana的沙占卜。
11:01
And the same divination system is found all over Africa.
203
661160
3000
在整個非洲都有同樣的占卜系統。
11:04
You can find it on the East Coast as well as the West Coast,
204
664160
5000
你可以在東岸西岸都找得到這個占卜,
11:09
and often the symbols are very well preserved,
205
669160
2000
而且大部份的時候這些符號是保存得很好的。
11:11
so each of these symbols has four bits -- it's a four-bit binary word --
206
671160
6000
每一個符號有四個小部份:是四個二進法組成的字。
11:17
you draw these lines in the sand randomly, and then you count off,
207
677160
5000
你隨意畫這些線,然後數一下,
11:22
and if it's an odd number, you put down one stroke,
208
682160
2000
如果是奇數,就畫一條線;
11:24
and if it's an even number, you put down two strokes.
209
684160
2000
如果是偶數,就畫兩條線。
11:26
And they did this very rapidly,
210
686160
3000
且他們很迅速地這麼做,
11:29
and I couldn't understand where they were getting --
211
689160
2000
我無法瞭解他們怎麼做到的,
11:31
they only did the randomness four times --
212
691160
2000
他們在隨意的部份只做了四次,
11:33
I couldn't understand where they were getting the other 12 symbols.
213
693160
2000
我不懂他們另外十二個符號怎麼來的。
11:35
And they wouldn't tell me.
214
695160
2000
他們也不告訴我。
11:37
They said, "No, no, I can't tell you about this."
215
697160
2000
他們說:「不不,我不能告訴你這個。」
11:39
And I said, "Well look, I'll pay you, you can be my teacher,
216
699160
2000
然後我說:「恩,我可以付你錢,你可以當我的老師,
11:41
and I'll come each day and pay you."
217
701160
2000
然後我可以每天來付你學費。」
11:43
They said, "It's not a matter of money. This is a religious matter."
218
703160
3000
他們說:「這不是錢的問題。這是宗教問題。」
11:46
And finally, out of desperation, I said,
219
706160
1000
最後在絕望中我說:「
11:47
"Well, let me explain Georg Cantor in 1877."
220
707160
3000
恩,讓我來解釋一下1877年的Georg Cantor。」
11:50
And I started explaining why I was there in Africa,
221
710160
4000
所以我開始解釋我為什麼會在非洲,
11:54
and they got very excited when they saw the Cantor set.
222
714160
2000
他們看了Cantor組合後非常興奮。
11:56
And one of them said, "Come here. I think I can help you out here."
223
716160
4000
他們之中其中一個說:「過來,我想我可以幫你一些。」
12:00
And so he took me through the initiation ritual for a Bamana priest.
224
720160
5000
所以他代Bamana牧師帶我走過了一連串的起始儀式。
12:05
And of course, I was only interested in the math,
225
725160
2000
當然的,我只對數學的部份有興趣,
12:07
so the whole time, he kept shaking his head going,
226
727160
2000
所以整個過程,他一直搖頭說:
12:09
"You know, I didn't learn it this way."
227
729160
1000
「我不是這樣學的。」
12:10
But I had to sleep with a kola nut next to my bed, buried in sand,
228
730160
4000
但我必須在床邊放一顆埋在沙裡的可樂果,
12:14
and give seven coins to seven lepers and so on.
229
734160
3000
然後給七個痲瘋病人七個銅板之類的事情。
12:17
And finally, he revealed the truth of the matter.
230
737160
4000
最後,他終於告訴我這後面的祕密。
12:22
And it turns out it's a pseudo-random number generator using deterministic chaos.
231
742160
4000
事實上這是一個偽渾沌的產生數字的過程。
12:26
When you have a four-bit symbol, you then put it together with another one sideways.
232
746160
6000
當你有一個四位符號,你把它們並排排起來。
12:32
So even plus odd gives you odd.
233
752160
2000
所以偶數加奇數會得到奇數。
12:34
Odd plus even gives you odd.
234
754160
2000
奇數加偶數會得到奇數。
12:36
Even plus even gives you even. Odd plus odd gives you even.
235
756160
3000
偶數加偶數會得到偶數。奇數加奇數得到偶數。
12:39
It's addition modulo 2, just like in the parity bit check on your computer.
236
759160
4000
這是加法定理,就像是電腦裡的配對法一樣。
12:43
And then you take this symbol, and you put it back in
237
763160
4000
然後你拿所得到的符號,再放回去,
12:47
so it's a self-generating diversity of symbols.
238
767160
2000
就得到一個自我生成的多樣性符號。
12:49
They're truly using a kind of deterministic chaos in doing this.
239
769160
4000
他們真的在使用決定性混度來產生這些符號。
12:53
Now, because it's a binary code,
240
773160
2000
好,因為是二進位符號,
12:55
you can actually implement this in hardware --
241
775160
2000
事實上你可以將這個置入到硬體裡面--
12:57
what a fantastic teaching tool that should be in African engineering schools.
242
777160
5000
多麼適合給非洲工程學校的教材阿!
13:02
And the most interesting thing I found out about it was historical.
243
782160
3000
我發現最有趣的是它的歷史。
13:05
In the 12th century, Hugo of Santalla brought it from Islamic mystics into Spain.
244
785160
6000
在十二世紀,Santalla的Hugu將這個從西班牙的回教傳統中引進的。
13:11
And there it entered into the alchemy community as geomancy:
245
791160
6000
在那裡,碎形以看風水的身分
13:17
divination through the earth.
246
797160
2000
進入了煉金術的世界。
13:19
This is a geomantic chart drawn for King Richard II in 1390.
247
799160
5000
這是1390年理查國王二世所畫的幾何圖表。
13:24
Leibniz, the German mathematician,
248
804160
3000
德國數學家Leibniz在他的論文中
13:27
talked about geomancy in his dissertation called "De Combinatoria."
249
807160
4000
提到「De Combinatoria」的幾何性。
13:31
And he said, "Well, instead of using one stroke and two strokes,
250
811160
4000
他說:「恩,讓我們用零和一取代
13:35
let's use a one and a zero, and we can count by powers of two."
251
815160
4000
一條線和兩條線,這樣我們可以以二的指數數下去。」
13:39
Right? Ones and zeros, the binary code.
252
819160
2000
對吧?零和一,二進位法。
13:41
George Boole took Leibniz's binary code and created Boolean algebra,
253
821160
3000
George Boole拿了Leibniz的二進位法而創造了Boolean算式,
13:44
and John von Neumann took Boolean algebra and created the digital computer.
254
824160
3000
然後John von Neumann拿了Boolean算式而創造了數位電腦。
13:47
So all these little PDAs and laptops --
255
827160
3000
所以這些掌上型電腦和筆記型電腦--
13:50
every digital circuit in the world -- started in Africa.
256
830160
3000
所有利用數位迴路的東西--都是從非洲開始的。
13:53
And I know Brian Eno says there's not enough Africa in computers,
257
833160
5000
我知道Brian Eno說非洲的電腦不夠,
13:58
but you know, I don't think there's enough African history in Brian Eno.
258
838160
5000
但你知道嗎?我覺得Brian Eno的非洲歷史知識不夠。
14:03
(Laughter) (Applause)
259
843160
3000
(掌聲)
14:06
So let me end with just a few words about applications that we've found for this.
260
846160
4000
所以讓我在結束前談談我們做的一些程式。
14:10
And you can go to our website,
261
850160
2000
你們可以到我們的網站,
14:12
the applets are all free; they just run in the browser.
262
852160
2000
使用免費在瀏覽器中始用的程式。
14:14
Anybody in the world can use them.
263
854160
2000
世界上任何人都可以使用它。
14:16
The National Science Foundation's Broadening Participation in Computing program
264
856160
5000
美國國家科學基金會的擴大計算機計畫
14:21
recently awarded us a grant to make a programmable version of these design tools,
265
861160
7000
最近給我們一筆經費來設計一個可編輯的設計工具,
14:28
so hopefully in three years, anybody'll be able to go on the Web
266
868160
2000
希望在三年內,任何人都可以上網
14:30
and create their own simulations and their own artifacts.
267
870160
3000
去作自己的模擬和設計自己的藝品。
14:33
We've focused in the U.S. on African-American students as well as Native American and Latino.
268
873160
5000
我們把重點放在美國和非裔美國學生和美國原住民和西班牙裔。
14:38
We've found statistically significant improvement with children using this software in a mathematics class
269
878160
6000
相較於沒有使用這些程式的控制組,
14:44
in comparison with a control group that did not have the software.
270
884160
3000
我們發現有使用的孩子在數學課尚有顯著地進步。
14:47
So it's really very successful teaching children that they have a heritage that's about mathematics,
271
887160
6000
所以教孩子們他們有數學的傳統是非常有效的,
14:53
that it's not just about singing and dancing.
272
893160
4000
讓他們知道他們的傳統不只是唱歌與跳舞而已。
14:57
We've started a pilot program in Ghana.
273
897160
3000
我們也在加納開始了一個前驅計畫,
15:00
We got a small seed grant, just to see if folks would be willing to work with us on this;
274
900160
5000
我們拿到一小筆經費,只為了知道當地的人們有沒有興趣跟我們合作,
15:05
we're very excited about the future possibilities for that.
275
905160
3000
我們對於這個計畫的未來性感到興奮。
15:08
We've also been working in design.
276
908160
2000
我們也在設計上下工夫。
15:10
I didn't put his name up here -- my colleague, Kerry, in Kenya, has come up with this great idea
277
910160
5000
我沒有把他的名字放上去--我的同事Kerry在肯亞想到一個很棒的點子,
15:15
for using fractal structure for postal address in villages that have fractal structure,
278
915160
5000
就是用碎形結構在碎形村莊中作郵遞區號,
15:20
because if you try to impose a grid structure postal system on a fractal village,
279
920160
4000
因為如果你想要將格子式的郵遞區號放入碎形的村莊中
15:24
it doesn't quite fit.
280
924160
2000
是不大適合的。
15:26
Bernard Tschumi at Columbia University has finished using this in a design for a museum of African art.
281
926160
5000
哥倫比亞大學的Bernard Tschumi已經成功的利用碎形設計了一個非洲藝術博物館。
15:31
David Hughes at Ohio State University has written a primer on Afrocentric architecture
282
931160
8000
Ohio州立大學的David Hughes也寫了一本關於非洲中心建築的入門書籍,
15:39
in which he's used some of these fractal structures.
283
939160
2000
裡面包括了一些碎形結構。
15:41
And finally, I just wanted to point out that this idea of self-organization,
284
941160
5000
最後,我想要指出這個自體組織的想法,
15:46
as we heard earlier, it's in the brain.
285
946160
2000
就像我們早些兒聽到的,是在腦裡面的。
15:48
It's in the -- it's in Google's search engine.
286
948160
5000
這是在,有在Google的搜尋引擎中。
15:53
Actually, the reason that Google was such a success
287
953160
2000
事實上,Google之所以這麼成功就是
15:55
is because they were the first ones to take advantage of the self-organizing properties of the web.
288
955160
4000
因為他是前幾個使用自體組織的優點建構的。
15:59
It's in ecological sustainability.
289
959160
2000
這是存在於生態持續性的。
16:01
It's in the developmental power of entrepreneurship,
290
961160
2000
這也是創業精神中發展的動力,
16:03
the ethical power of democracy.
291
963160
2000
民主的道德力量。
16:06
It's also in some bad things.
292
966160
2000
它也存在於一些不大好的東西當中。
16:08
Self-organization is why the AIDS virus is spreading so fast.
293
968160
3000
自體組織是為什麼愛滋病可以如此迅速的擴散。
16:11
And if you don't think that capitalism, which is self-organizing, can have destructive effects,
294
971160
4000
而且如果你覺得資本主義,也是一種自體組織,不會有破壞性的影響的話,
16:15
you haven't opened your eyes enough.
295
975160
2000
你看得還不夠多。
16:17
So we need to think about, as was spoken earlier,
296
977160
4000
所以我們需要想想,就像我們之前說的,
16:21
the traditional African methods for doing self-organization.
297
981160
2000
這個非洲的自體組織的方式。
16:23
These are robust algorithms.
298
983160
2000
這是非常有力的計算方法。
16:26
These are ways of doing self-organization -- of doing entrepreneurship --
299
986160
3000
自體組織有很多種方式--就像創業一樣--
16:29
that are gentle, that are egalitarian.
300
989160
2000
可以是溫柔的,可以是平均的。
16:31
So if we want to find a better way of doing that kind of work,
301
991160
4000
所以如果我們想要找到一個更好的方式來做這件事情,
16:35
we need look only no farther than Africa to find these robust self-organizing algorithms.
302
995160
5000
我們只需要找到非洲這些強而有力的自體組織算式就夠了。
16:40
Thank you.
303
1000160
1000
謝謝。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog