Joe DeRisi: Hunting the next killer virus

30,273 views ・ 2009-01-30

TED


请双击下面的英文字幕来播放视频。

翻译人员: xiaomei he 校对人员: Xu Jiang
00:12
How can we investigate
0
12160
3000
怎么说呢?我们应该如何来研究
00:15
this flora of viruses that surround us, and aid medicine?
1
15160
5000
那些围绕在我们身边,又同时帮助医学发展的病毒?
00:20
How can we turn our cumulative knowledge of virology
2
20160
4000
我们怎样才能把我们积累的有关病毒的知识
00:24
into a simple, hand-held, single diagnostic assay?
3
24160
4000
变成简单、可行的方法运用到诊断中去?
00:28
I want to turn everything we know right now about detecting viruses
4
28160
3000
我想将所有我们现在已知的有关检测病毒
00:31
and the spectrum of viruses that are out there
5
31160
2000
和病毒图谱的方法
00:33
into, let's say, a small chip.
6
33160
3000
变成,比如说,一块小小的芯片。
00:36
When we started thinking about this project --
7
36160
2000
当我们开始思考这个计划时 -
00:38
how we would make a single diagnostic assay
8
38160
3000
我就在想我们如何通过一个简单的诊断
00:41
to screen for all pathogens simultaneously --
9
41160
3000
将所有的病原体同时检测出来 -
00:44
well, there's some problems with this idea.
10
44160
2000
其实这个想法实施起来有一些困难。
00:46
First of all, viruses are pretty complex,
11
46160
4000
首先,病毒是相当复杂的,
00:50
but they're also evolving very fast.
12
50160
4000
同时它们的进化速度相当快。
00:54
This is a picornavirus.
13
54160
1000
这是一种小核糖核酸病毒
00:55
Picornaviruses -- these are things that include
14
55160
2000
小核糖核酸病毒包括了
00:57
the common cold and polio, things like this.
15
57160
3000
普通感冒和小儿麻痹症之类的病症。
01:00
You're looking at the outside shell of the virus,
16
60160
2000
你们仔细看病毒的外壳
01:02
and the yellow color here are those parts of the virus
17
62160
3000
这些黄色的部分
01:05
that are evolving very, very fast,
18
65160
2000
进化得很快,非常快,
01:07
and the blue parts are not evolving very fast.
19
67160
2000
而那些蓝色的部分则进化得相对缓慢。
01:09
When people think about making pan-viral detection reagents,
20
69160
3000
当人们想到制造泛用型病毒检测剂时
01:12
usually it's the fast-evolving problem that's an issue,
21
72160
4000
病毒的快速演变是个问题,
01:16
because how can we detect things if they're always changing?
22
76160
2000
因为我们如何能够对一直变化着的病毒进行检测呢?
01:18
But evolution is a balance:
23
78160
2000
但是进化是一种平衡:
01:20
where you have fast change, you also have ultra-conservation --
24
80160
4000
哪里有快速变化,哪里也会有超级保守 -
01:24
things that almost never change.
25
84160
2000
有些东西几乎是不变的。
01:26
And so we looked into this a little more carefully,
26
86160
3000
所以我们要再看仔细些,
01:29
and I'm going to show you data now.
27
89160
1000
现在我要向你们展示一些数据。
01:30
This is just some stuff you can do on the computer from the desktop.
28
90160
3000
这些东西你在桌子的电脑上就可以完成。
01:33
I took a bunch of these small picornaviruses,
29
93160
2000
我将一些小核糖核酸病毒
01:35
like the common cold, like polio and so on,
30
95160
2000
如普通感冒和小儿麻痹症等
01:37
and I just broke them down into small segments.
31
97160
4000
分割成小的片段,
01:41
And so took this first example, which is called coxsackievirus,
32
101160
3000
第一个例子是柯萨奇病毒,
01:44
and just break it into small windows.
33
104160
2000
我将它们放到小玻璃片上,
01:46
And I'm coloring these small windows blue
34
106160
2000
然后我将这些小玻璃染成蓝色
01:48
if another virus shares an identical sequence in its genome
35
108160
5000
如果有另一个病毒有着和那个病毒相同的
01:53
to that virus.
36
113160
1000
基因序列.
01:54
These sequences right up here --
37
114160
2000
这里的序列——
01:56
which don't even code for protein, by the way --
38
116160
2000
顺便说一句,这些序列甚至没有同蛋白质编码-
01:58
are almost absolutely identical across all of these,
39
118160
3000
几乎完全与所有这些相同,
02:01
so I could use this sequence as a marker
40
121160
4000
所以我将这个序列做为一个标记物
02:05
to detect a wide spectrum of viruses,
41
125160
2000
来检测更多的病毒,
02:07
without having to make something individual.
42
127160
3000
不需要再进行个别实验。
02:10
Now, over here there's great diversity:
43
130160
2000
在那些进化迅速的地方
02:12
that's where things are evolving fast.
44
132160
2000
你会看到很大的差异,
02:14
Down here you can see slower evolution: less diversity.
45
134160
4000
在这里你可以看到缓慢的变化和较小的差异。
02:18
Now, by the time we get out here to, let's say,
46
138160
2000
现在我们再看看别的,比如说
02:20
acute bee paralysis virus --
47
140160
2000
蜜蜂急性肠道病毒
02:22
probably a bad one to have if you're a bee ---
48
142160
2000
这应该是蜜蜂界中最严重病毒-
02:24
this virus shares almost no similarity to coxsackievirus,
49
144160
5000
这种病毒和柯萨奇病毒几乎没有任何相似之处,
02:29
but I can guarantee you that the sequences that are most conserved
50
149160
4000
但是我可以向你保证在右侧屏幕中的病毒中的
02:33
among these viruses on the right-hand of the screen
51
153160
2000
最保守的基因序列
02:35
are in identical regions right up here.
52
155160
3000
都在相同的区域里。
02:38
And so we can encapsulate these regions of ultra-conservation
53
158160
3000
因此我们可以简述这些进化中的超保守区域 -
02:41
through evolution -- how these viruses evolved --
54
161160
3000
这些病毒如何进化的——
02:44
by just choosing DNA elements or RNA elements
55
164160
3000
仅通过选择这些区域的DNA或RNA片段
02:47
in these regions to represent on our chip as detection reagents.
56
167160
4000
作为检测试剂在我们的芯片上表现出来。
02:51
OK, so that's what we did, but how are we going to do that?
57
171160
3000
那是我们所做的,但我们如何去做呢?
02:54
Well, for a long time, since I was in graduate school,
58
174160
2000
很长时间以来,自从我读研究生
02:56
I've been messing around making DNA chips --
59
176160
3000
我一直在试验DNA芯片 -
02:59
that is, printing DNA on glass.
60
179160
2000
即在玻璃上打印DNA。
03:01
And that's what you see here:
61
181160
1000
你们看,就是这个:
03:02
These little salt spots are just DNA tacked onto glass,
62
182160
3000
这些小的盐点是DNA留在玻璃上的印记,
03:05
and so I can put thousands of these on our glass chip
63
185160
3000
同样我可以在玻璃芯片上放上千个盐点
03:08
and use them as a detection reagent.
64
188160
2000
然后把它们作为检测试剂。
03:10
We took our chip over to Hewlett-Packard
65
190160
2000
我们把芯片带到惠普公司,
03:12
and used their atomic force microscope on one of these spots,
66
192160
2000
用他们的原子显微镜来观察其中的一个点,
03:14
and this is what you see:
67
194160
2000
你们看到的就是这个:
03:16
you can actually see the strands of DNA lying flat on the glass here.
68
196160
3000
你们能很清楚地看到在玻璃上的DNA链,
03:19
So, what we're doing is just printing DNA on glass --
69
199160
3000
所以我们现在所做的就是将DNA打印在玻璃上,
03:22
little flat things -- and these are going to be markers for pathogens.
70
202160
4000
那些又小又平的东西是要作为病原体的标记物。
03:26
OK, I make little robots in lab to make these chips,
71
206160
3000
我在实验室里用小机器人来制造这些芯片,
03:29
and I'm really big on disseminating technology.
72
209160
3000
我真的非常热衷于传播科技。
03:32
If you've got enough money to buy just a Camry,
73
212160
3000
如果你刚好有钱去买一辆凯美瑞汽车,
03:35
you can build one of these too,
74
215160
2000
那你也可以制造一个这个,
03:37
and so we put a deep how-to guide on the Web, totally free,
75
217160
4000
我们在网站上有个免费的如何做的指南,
03:41
with basically order-off-the-shelf parts.
76
221160
2000
附带基本的组件订购部分 -
03:43
You can build a DNA array machine in your garage.
77
223160
3000
你可以在你的车库里生产一个DNA芯片机器。
03:46
Here's the section on the all-important emergency stop switch.
78
226160
3000
这部分是所有重要的紧急开关。
03:49
(Laughter)
79
229160
2000
(笑声)
03:51
Every important machine's got to have a big red button.
80
231160
3000
每个重要的机器都有一个大的红色按钮。
03:54
But really, it's pretty robust.
81
234160
2000
但真的,非常坚固。
03:56
You can actually be making DNA chips in your garage
82
236160
3000
你可以在你的车库里制作DNA芯片,
03:59
and decoding some genetic programs pretty rapidly. It's a lot of fun.
83
239160
4000
快速解码一些遗传程序。非常有趣。
04:03
(Laughter)
84
243160
1000
(笑声)
04:04
And so what we did -- and this is a really cool project --
85
244160
4000
所以我们做的——是一个非常酷的项目——
04:08
we just started by making a respiratory virus chip.
86
248160
2000
我们是从制作呼吸道病毒芯片开始的。
04:10
I talked about that --
87
250160
2000
我讲的是
04:12
you know, that situation where you go into the clinic
88
252160
2000
你知道,那种情况,你进了诊所,
04:14
and you don't get diagnosed?
89
254160
2000
但没有得到诊断。
04:16
Well, we just put basically all the human respiratory viruses
90
256160
2000
好,我们刚好把所有人类呼吸道病毒
04:18
on one chip, and we threw in herpes virus for good measure --
91
258160
3000
放在一张芯片上,然后又加入疱疹病毒以更好的测定。
04:21
I mean, why not?
92
261160
1000
为什么不呢?
04:22
The first thing you do as a scientist is,
93
262160
2000
作为一个科学家第一件要做的事就是
04:24
you make sure stuff works.
94
264160
1000
确定你要做的工作。
04:25
And so what we did is, we take tissue culture cells
95
265160
3000
我们所做的就是提取组织培养细胞,
04:28
and infect them with various viruses,
96
268160
2000
用不同的病毒感染它们,
04:30
and we take the stuff and fluorescently label the nucleic acid,
97
270160
4000
用荧光标记核酸,
04:34
the genetic material that comes out of these tissue culture cells --
98
274160
3000
来自这些组织培养细胞的遗传物质——
04:37
mostly viral stuff -- and stick it on the array to see where it sticks.
99
277160
4000
大部分是病毒类的东西——把它粘在芯片上。
04:41
Now, if the DNA sequences match, they'll stick together,
100
281160
2000
如果DNA序列是匹配的,它们就会粘在一起,
04:43
and so we can look at spots.
101
283160
2000
我们来看这些点。
04:45
And if spots light up, we know there's a certain virus in there.
102
285160
2000
如果它们发亮了,我们就知道那有某种病毒。
04:47
That's what one of these chips really looks like,
103
287160
2000
那是其中一张芯片的样子,
04:49
and these red spots are, in fact, signals coming from the virus.
104
289160
3000
这些红点实际上是来自病毒的信号。
04:52
And each spot represents a different family of virus
105
292160
3000
每一个点代表不同的病毒家系
04:55
or species of virus.
106
295160
1000
或者病毒物种。
04:56
And so, that's a hard way to look at things,
107
296160
2000
要看清它们是很困难的,
04:58
so I'm just going to encode things as a little barcode,
108
298160
2000
所以我把它们编成小的条码,
05:00
grouped by family, so you can see the results in a very intuitive way.
109
300160
4000
按家系分组,这样你可以直接看到结果。
05:04
What we did is, we took tissue culture cells
110
304160
2000
我们所做的就是提取组织培养细胞,
05:06
and infected them with adenovirus,
111
306160
2000
用腺病毒感染,
05:08
and you can see this little yellow barcode next to adenovirus.
112
308160
4000
你可以在腺病毒旁边看到这个小的黄色条码。
05:12
And, likewise, we infected them with parainfluenza-3 --
113
312160
3000
同样我们用副流感病毒-3感染———
05:15
that's a paramyxovirus -- and you see a little barcode here.
114
315160
2000
它是副粘病毒——你在这看到小的条码。
05:17
And then we did respiratory syncytial virus.
115
317160
3000
然后我们又用呼吸道合胞病毒。
05:20
That's the scourge of daycare centers everywhere --
116
320160
2000
这是所有日托中心的灾难——
05:22
it's like boogeremia, basically.
117
322160
2000
大体上说就象是鼻粘膜病。
05:24
(Laughter)
118
324160
1000
(笑声)
05:25
You can see that this barcode is the same family,
119
325160
4000
你能看到这个条码是同一家系的,
05:29
but it's distinct from parainfluenza-3,
120
329160
2000
但它与副流感病毒-3不同,
05:31
which gives you a very bad cold.
121
331160
2000
它会使你患非常严重的感冒。
05:33
And so we're getting unique signatures, a fingerprint for each virus.
122
333160
3000
所以我们要有独特的标记,每一种病毒都有一种指纹。
05:36
Polio and rhino: they're in the same family, very close to each other.
123
336160
3000
小儿麻痹症病毒和鼻病毒:它们是同一家系的,相互非常接近。
05:39
Rhino's the common cold, and you all know what polio is,
124
339160
2000
鼻病毒是普通感冒,你们都知道小儿麻痹是什么,
05:41
and you can see that these signatures are distinct.
125
341160
3000
你们可以看到这些标记是不同的。
05:44
And Kaposi's sarcoma-associated herpes virus
126
344160
3000
和卡波济氏肉瘤相关的疱疹病毒
05:47
gives a nice signature down here.
127
347160
2000
底端有很好的标记。
05:49
And so it is not any one stripe or something
128
349160
2000
所以不是一条带或是什么东西
05:51
that tells me I have a virus of a particular type here;
129
351160
2000
来告诉我说这里有一个特殊的病毒;
05:53
it's the barcode that in bulk represents the whole thing.
130
353160
4000
是大量的条码代表整体。
05:57
All right, I can see a rhinovirus --
131
357160
2000
我能看到鼻病毒,
05:59
and here's the blow-up of the rhinovirus's little barcode --
132
359160
2000
这是放大的鼻病毒的小条码,
06:01
but what about different rhinoviruses?
133
361160
2000
那么不同的鼻病毒呢?
06:03
How do I know which rhinovirus I have?
134
363160
2000
我怎么知道我有哪种鼻病毒?
06:05
There're 102 known variants of the common cold,
135
365160
3000
已知普通感冒有102种变异,
06:08
and there're only 102 because people got bored collecting them:
136
368160
3000
仅仅只有102种是因为人们已经厌倦去收集它们了,
06:11
there are just new ones every year.
137
371160
2000
每年都有新的。
06:13
And so, here are four different rhinoviruses,
138
373160
2000
这里有4种不同的鼻病毒,
06:15
and you can see, even with your eye,
139
375160
2000
你可以看到,即使用你的眼睛就可以,
06:17
without any fancy computer pattern-matching
140
377160
2000
而不用任何计算机模式匹配
06:19
recognition software algorithms,
141
379160
2000
识别软件,
06:21
that you can distinguish each one of these barcodes from each other.
142
381160
3000
你就可以区分这些条码。
06:24
Now, this is kind of a cheap shot,
143
384160
2000
这是某种划算的作法,
06:26
because I know what the genetic sequence of all these rhinoviruses is,
144
386160
3000
因为我知道所有这些鼻病毒的遗传序列,
06:29
and I in fact designed the chip
145
389160
1000
并且实际上我设计了芯片
06:30
expressly to be able to tell them apart,
146
390160
2000
能够明确地区分它们,
06:32
but what about rhinoviruses that have never seen a genetic sequencer?
147
392160
4000
但对于还不知道遗传序列的鼻病毒怎么办呢?
06:36
We don't know what the sequence is; just pull them out of the field.
148
396160
2000
我们不知道它的序列,那就不要做它们。
06:38
So, here are four rhinoviruses
149
398160
2000
这是4个鼻病毒
06:40
we never knew anything about --
150
400160
2000
我们对此一无所知,
06:42
no one's ever sequenced them -- and you can also see
151
402160
3000
没有人对它们做过测序,你也能看到
06:45
that you get unique and distinguishable patterns.
152
405160
2000
你得到了独特的且可识别的格局。
06:47
You can imagine building up some library, whether real or virtual,
153
407160
3000
你可以想象建立一个资料室,无论是真实的或是虚拟的,
06:50
of fingerprints of essentially every virus.
154
410160
2000
收藏基本病毒的指纹。
06:52
But that's, again, shooting fish in a barrel, you know, right?
155
412160
3000
但这又是瓮中捉鳖,对吧?
06:55
You have tissue culture cells. There are a ton of viruses.
156
415160
2000
你有组织培养细胞:有大量的病毒。
06:57
What about real people?
157
417160
2000
那么人呢?
06:59
You can't control real people, as you probably know.
158
419160
2000
你控制不了人,就象你所知道的。
07:01
You have no idea what someone's going to cough into a cup,
159
421160
4000
你不知道某个人会往杯子里咳出什么东西,
07:05
and it's probably really complex, right?
160
425160
3000
它可能非常复杂,对不对?
07:08
It could have lots of bacteria, it could have more than one virus,
161
428160
3000
可能有许多细菌,可能有一种以上的病毒,
07:11
and it certainly has host genetic material.
162
431160
2000
它肯定有宿主遗传物质,
07:13
So how do we deal with this?
163
433160
1000
对此我们怎么办?
07:14
And how do we do the positive control here?
164
434160
2000
我们如何做阳性对照?
07:16
Well, it's pretty simple.
165
436160
2000
非常简单。
07:18
That's me, getting a nasal lavage.
166
438160
2000
要是我就做鼻灌洗。
07:20
And the idea is, let's experimentally inoculate people with virus.
167
440160
5000
这个想法就是我们实验性地用病毒给人们接种,
07:25
This is all IRB-approved, by the way; they got paid.
168
445160
5000
这是经人体实验委员会批准的,他们是拿薪水的。
07:30
And basically we experimentally inoculate people
169
450160
3000
简单讲我们用普通感冒病毒
07:33
with the common cold virus.
170
453160
1000
给人接种。
07:34
Or, even better, let's just take people
171
454160
2000
或者更好的是我们把人们
07:36
right out of the emergency room --
172
456160
1000
从急诊室解救出来,
07:37
undefined, community-acquired respiratory tract infections.
173
457160
4000
——未明确的群体获得性呼吸道感染。
07:41
You have no idea what walks in through the door.
174
461160
2000
你不知道什么会从那个门进来,
07:43
So, let's start off with the positive control first,
175
463160
3000
所以让我们以阳性对照开始,
07:46
where we know the person was healthy.
176
466160
2000
我们知道某人是健康的。
07:48
They got a shot of virus up the nose,
177
468160
2000
他们的鼻子受到病毒的袭击,
07:50
let's see what happens.
178
470160
1000
让我们看发生了什么。
07:51
Day zero: nothing happening.
179
471160
2000
当天:什么都没发生。
07:53
They're healthy; they're clean -- it's amazing.
180
473160
2000
他们仍然是健康的,清洁的——很奇怪。
07:55
Actually, we thought the nasal tract might be full of viruses
181
475160
2000
实际上我们认为他们的鼻道会充满病毒,
07:57
even when you're walking around healthy.
182
477160
1000
即使你是在健康人周围走动。
07:58
It's pretty clean. If you're healthy, you're pretty healthy.
183
478160
2000
它相当清洁,如果你是健康的,你是相当健康。
08:00
Day two: we get a very robust rhinovirus pattern,
184
480160
4000
第二天:我们得到了很强的鼻病毒模式,
08:04
and it's very similar to what we get in the lab
185
484160
2000
与我们在实验室做组织培养实验
08:06
doing our tissue culture experiment.
186
486160
1000
得到的非常相似。
08:07
So that's great, but again, cheap shot, right?
187
487160
3000
很好,这又是划算的作法,对吧?
08:10
We put a ton of virus up this guy's nose. So --
188
490160
2000
我们在这个人的鼻子里放大量的病毒,
08:12
(Laughter)
189
492160
1000
(笑声)
08:13
-- I mean, we wanted it to work. He really had a cold.
190
493160
4000
我指,我们希望能这样。他真的感冒了。
08:17
So, how about the people who walk in off the street?
191
497160
4000
走过这条街的人会怎么样?
08:21
Here are two individuals represented by their anonymous ID codes.
192
501160
2000
这里的两个人各自用他们的身份识别码代表,
08:23
They both have rhinoviruses; we've never seen this pattern in lab.
193
503160
4000
他们都有鼻病毒,我们在实验室从未见过这种类型。
08:27
We sequenced part of their viruses;
194
507160
2000
我们做了部分测序,
08:29
they're new rhinoviruses no one's actually even seen.
195
509160
3000
它们是新的鼻病毒,没人见过。
08:32
Remember, our evolutionary-conserved sequences
196
512160
2000
记住,我们在这个芯片上所用的
08:34
we're using on this array allow us to detect
197
514160
2000
进化—保守序列使我们能够检测出
08:36
even novel or uncharacterized viruses,
198
516160
2000
新的或无特征的病毒,
08:38
because we pick what is conserved throughout evolution.
199
518160
4000
因为我们是从整个进化中挑出的保守序列。
08:42
Here's another guy. You can play the diagnosis game yourself here.
200
522160
3000
这是另一个人。你可以自己在这玩诊断游戏。
08:45
These different blocks represent
201
525160
2000
这些不同的块代表
08:47
the different viruses in this paramyxovirus family,
202
527160
2000
副粘病毒系中不同的病毒,
08:49
so you can kind of go down the blocks
203
529160
1000
你可以在这些块下面
08:50
and see where the signal is.
204
530160
2000
看到信号在哪里。
08:52
Well, doesn't have canine distemper; that's probably good.
205
532160
3000
没有犬瘟热,那样可能不错。
08:55
(Laughter)
206
535160
2000
(笑声)
08:57
But by the time you get to block nine,
207
537160
2000
但当你看到第9块时,
08:59
you see that respiratory syncytial virus.
208
539160
2000
你可以看到呼吸合胞病毒。
09:01
Maybe they have kids. And then you can see, also,
209
541160
3000
也许它们有后代了。你也可以看到
09:04
the family member that's related: RSVB is showing up here.
210
544160
2000
与其相关的家系成员:RSVB在这里出现了。
09:06
So, that's great.
211
546160
1000
太好了。
09:07
Here's another individual, sampled on two separate days --
212
547160
3000
这是另外一个人,分2天抽取了血样,
09:10
repeat visits to the clinic.
213
550160
2000
他反复到诊所来。
09:12
This individual has parainfluenza-1,
214
552160
3000
这人有副流感病毒-1,
09:15
and you can see that there's a little stripe over here
215
555160
2000
你能看到这有一条带,
09:17
for Sendai virus: that's mouse parainfluenza.
216
557160
3000
这是仙台病毒:是小鼠副流感病毒。
09:20
The genetic relationships are very close there. That's a lot of fun.
217
560160
4000
有很强的遗传关联,非常有趣。
09:24
So, we built out the chip.
218
564160
1000
因此,我们制作了芯片,
09:25
We made a chip that has every known virus ever discovered on it.
219
565160
4000
芯片上有每一个发现的已知病毒。
09:29
Why not? Every plant virus, every insect virus, every marine virus.
220
569160
3000
每一种植物病毒,每一种昆虫病毒,每一种海产病毒。
09:32
Everything that we could get out of GenBank --
221
572160
2000
我们可以从基因库得到每样东西,
09:34
that is, the national repository of sequences.
222
574160
2000
也就是国家基因序列库。
09:36
Now we're using this chip. And what are we using it for?
223
576160
3000
现在我们来用这个芯片。我们用它做什么?
09:39
Well, first of all, when you have a big chip like this,
224
579160
2000
首先,你有一个大的象这样的芯片,
09:41
you need a little bit more informatics,
225
581160
2000
你需要一些信息,
09:43
so we designed the system to do automatic diagnosis.
226
583160
2000
我们设计的这个系统是自动诊断。
09:45
And the idea is that we simply have virtual patterns,
227
585160
3000
这个想法是我们仅有虚拟模式,
09:48
because we're never going to get samples of every virus --
228
588160
2000
因为我们不可能得到每一个病毒的样本,
09:50
it would be virtually impossible. But we can get virtual patterns,
229
590160
3000
它是完全不可能的。但是我们能得到虚拟模式,
09:53
and compare them to our observed result --
230
593160
2000
将它与我们观察到的结果进行比较,
09:55
which is a very complex mixture -- and come up with some sort of score
231
595160
4000
这是一个非常复杂的混合物,于是我们提出了某种记分法,
09:59
of how likely it is this is a rhinovirus or something.
232
599160
3000
即它是鼻病毒或什么东西的可能性有多大。
10:02
And this is what this looks like.
233
602160
2000
这就是它看起来的样子。
10:04
If, for example, you used a cell culture
234
604160
2000
例如,如果你的细胞培养
10:06
that's chronically infected with papilloma,
235
606160
2000
用乳突病毒慢慢感染,
10:08
you get a little computer readout here,
236
608160
2000
你得到一个计算机读出,
10:10
and our algorithm says it's probably papilloma type 18.
237
610160
4000
我们的算式表示它可能是乳突病毒18型。
10:14
And that is, in fact, what these particular cell cultures
238
614160
2000
实际上培养细胞的病毒就是
10:16
are chronically infected with.
239
616160
2000
慢性感染。
10:18
So let's do something a little bit harder.
240
618160
2000
让我们来做困难点的事吧。
10:20
We put the beeper in the clinic.
241
620160
1000
我们把蜂鸣器放在诊所里。
10:21
When somebody shows up, and the hospital doesn't know what to do
242
621160
3000
病人来了,而医院不知道做什么,
10:24
because they can't diagnose it, they call us.
243
624160
2000
因为医院无法诊断,他们就叫我们。
10:26
That's the idea, and we're setting this up in the Bay Area.
244
626160
2000
就是因为这个,我们在海湾地区装了这个东西。
10:28
And so, this case report happened three weeks ago.
245
628160
2000
这是三周前的一个病例。
10:30
We have a 28-year-old healthy woman, no travel history,
246
630160
3000
一个28岁健康女性,无旅行史,
10:33
[unclear], doesn't smoke, doesn't drink.
247
633160
3000
不抽烟喝酒,
10:36
10-day history of fevers, night sweats, bloody sputum --
248
636160
4000
发烧10天,盗汗,血痰,
10:40
she's coughing up blood -- muscle pain.
249
640160
2000
咳嗽带血,肌肉疼痛。
10:42
She went to the clinic, and they gave her antibiotics
250
642160
4000
她来到诊所,医生给她抗生素,
10:46
and then sent her home.
251
646160
1000
然后送她回家。
10:47
She came back after ten days of fever, right? Still has the fever,
252
647160
4000
10天以后她又来了,仍然发烧,
10:51
and she's hypoxic -- she doesn't have much oxygen in her lungs.
253
651160
3000
她还缺氧——肺部缺氧。
10:54
They did a CT scan.
254
654160
1000
医生给她做了CT扫描。
10:55
A normal lung is all sort of dark and black here.
255
655160
4000
正常的肺这都是暗的和黑的,
10:59
All this white stuff -- it's not good.
256
659160
2000
这些白的东西都不好。
11:01
This sort of tree and bud formation indicates there's inflammation;
257
661160
3000
这种分支和芽胞的形成显示病人有炎症,
11:04
there's likely to be infection.
258
664160
2000
她有可能是感染了。
11:06
OK. So, the patient was treated then
259
666160
3000
因此给病人用
11:09
with a third-generation cephalosporin antibiotic and doxycycline,
260
669160
4000
第三代抗生素头孢菌素和强力霉素进行治疗。
11:13
and on day three, it didn't help: she had progressed to acute failure.
261
673160
4000
第三天,没有任何作用:她发展为急性衰竭。
11:17
They had to intubate her, so they put a tube down her throat
262
677160
3000
医生不得不给她插管,把管子插到她的喉咙里,
11:20
and they began to mechanically ventilate her.
263
680160
1000
开始为她机械换气。
11:21
She could no longer breathe for herself.
264
681160
2000
她不能自主呼吸了。
11:23
What to do next? Don't know.
265
683160
2000
下一步做什么?不知道。
11:25
Switch antibiotics: so they switched to another antibiotic,
266
685160
3000
换抗生素,然后医生就换了另一种抗生素,
11:28
Tamiflu.
267
688160
2000
然后达菲,
11:30
It's not clear why they thought she had the flu,
268
690160
2000
不清楚为什么医生认为她患了感冒,
11:32
but they switched to Tamiflu.
269
692160
2000
但他们改用达菲。
11:34
And on day six, they basically threw in the towel.
270
694160
2000
第六天,他们基本放弃了。
11:36
You do an open lung biopsy when you've got no other options.
271
696160
4000
如果没有别的选择,就是打开肺部做活组织检查。
11:40
There's an eight percent mortality rate with just doing this procedure,
272
700160
2000
做这个的死亡率是8%。
11:42
and so basically -- and what do they learn from it?
273
702160
3000
但从这一步能得到什么?
11:45
You're looking at her open lung biopsy.
274
705160
2000
你看她的肺部组织,
11:47
And I'm no pathologist, but you can't tell much from this.
275
707160
2000
我不是病理学家,但你从这一步也讲不出什么。
11:49
All you can tell is, there's a lot of swelling: bronchiolitis.
276
709160
3000
你能说的也就是有许多肿胀:细支气管炎。
11:52
It was "unrevealing": that's the pathologist's report.
277
712160
3000
它没有结果:这是病理学家的报告。
11:55
And so, what did they test her for?
278
715160
3000
所以,为什么进行这些检测?
11:58
They have their own tests, of course,
279
718160
1000
当然,他们做了许多检测,
11:59
and so they tested her for over 70 different assays,
280
719160
3000
他们为她做了70多项检测,
12:02
for every sort of bacteria and fungus and viral assay
281
722160
3000
对每一种细菌、真菌和病毒都进行了测定。
12:05
you can buy off the shelf:
282
725160
2000
你从这看到的:
12:07
SARS, metapneumovirus, HIV, RSV -- all these.
283
727160
3000
SARS、间质性肺炎病毒、HIV、RSV——所有这些。
12:10
Everything came back negative, over 100,000 dollars worth of tests.
284
730160
4000
结果每项都是阴性。这些检测价值10万美元。
12:14
I mean, they went to the max for this woman.
285
734160
3000
我是指他们为这个妇女尽了最大的努力。
12:17
And basically on hospital day eight, that's when they called us.
286
737160
3000
在医院第8天,他们叫我们去了。
12:20
They gave us endotracheal aspirate --
287
740160
2000
他们给了我们气管内吸取物,
12:22
you know, a little fluid from the throat,
288
742160
2000
你知道,从喉咙取的一点液体,
12:24
from this tube that they got down there -- and they gave us this.
289
744160
2000
从这个管子里,他们下到这个部位。
12:26
We put it on the chip; what do we see? Well, we saw parainfluenza-4.
290
746160
5000
我们把它放在芯片上,我们看到了什么?副流感病毒-4.
12:31
Well, what the hell's parainfluenza-4?
291
751160
2000
副流感病毒-4到底是什么东西?
12:33
No one tests for parainfluenza-4. No one cares about it.
292
753160
3000
没人检测过副流感病毒-4,没人关注它。
12:36
In fact, it's not even really sequenced that much.
293
756160
3000
实际上都没有对它进行过大段测序,
12:39
There's just a little bit of it sequenced.
294
759160
2000
只测了一小段。
12:41
There's almost no epidemiology or studies on it.
295
761160
2000
对它几乎也没有流行病学的研究。
12:43
No one would even consider it,
296
763160
2000
没人考虑过它,
12:45
because no one had a clue that it could cause respiratory failure.
297
765160
3000
因为没人知道它会造成呼吸衰竭。
12:48
And why is that? Just lore. There's no data --
298
768160
3000
为什么会这样?只是传说,没有数据——
12:51
no data to support whether it causes severe or mild disease.
299
771160
4000
没有数据支持它是造成严重的疾患还是轻微疾病。
12:55
Clearly, we have a case of a healthy person that's going down.
300
775160
3000
但清楚的是我们有这样一个病例,一个健康人倒下了。
12:58
OK, that's one case report.
301
778160
3000
这是一例报道。
13:01
I'm going to tell you one last thing in the last two minutes
302
781160
2000
在最后两分钟,我要告诉你们最后一件事情,
13:03
that's unpublished -- it's going to come out tomorrow --
303
783160
3000
还没有公开——明天就会出来——
13:06
and it's an interesting case of how you might use this chip
304
786160
3000
是一个很有趣的例子,你如何用这个芯片
13:09
to find something new and open a new door.
305
789160
2000
发现新的东西,打开一扇新门。
13:11
Prostate cancer. I don't need to give you many statistics
306
791160
4000
前列腺癌。我不需要给你许多关于
13:15
about prostate cancer. Most of you already know it:
307
795160
3000
前列腺癌的统计数据,你们大多对它已经有所了解,
13:18
third leading cause of cancer deaths in the U.S.
308
798160
2000
美国癌症第三大死因。
13:20
Lots of risk factors,
309
800160
2000
它有许多危险因素,
13:22
but there is a genetic predisposition to prostate cancer.
310
802160
4000
其中一个是它的遗传倾向。
13:26
For maybe about 10 percent of prostate cancer,
311
806160
2000
大约10%的前列腺癌患者
13:28
there are folks that are predisposed to it.
312
808160
2000
亲属中有这种倾向。
13:30
And the first gene that was mapped in association studies
313
810160
4000
对早期发作的前列腺癌进行的关联性研究绘制了第一个基因图,
13:34
for this, early-onset prostate cancer, was this gene called RNASEL.
314
814160
4000
这个基因叫做RNASEL。
13:38
What is that? It's an antiviral defense enzyme.
315
818160
3000
它是什么?它是一种抗病毒防御酶。
13:41
So, we're sitting around and thinking,
316
821160
2000
我们坐在一起思考
13:43
"Why would men who have the mutation --
317
823160
2000
为什么有突变的、
13:45
a defect in an antiviral defense system -- get prostate cancer?
318
825160
5000
抗病毒防御系统有缺陷的男人患前列腺癌?
13:50
It doesn't make sense -- unless, maybe, there's a virus?"
319
830160
3000
这没什么意义——除非,也许是有一种病毒。
13:53
So, we put tumors --- and now we have over 100 tumors -- on our array.
320
833160
6000
我们把肿瘤——现在我们有100多种肿瘤——放到芯片上,
13:59
And we know who's got defects in RNASEL and who doesn't.
321
839160
3000
我们知道谁RNASEL有缺陷,谁没有。
14:02
And I'm showing you the signal from the chip here,
322
842160
3000
我给你们看来自芯片的信号,
14:05
and I'm showing you for the block of retroviral oligos.
323
845160
4000
给你们看反转录病毒块。
14:09
And what I'm telling you here from the signal, is
324
849160
2000
从这个信号中我可以告诉你们
14:11
that men who have a mutation in this antiviral defense enzyme,
325
851160
4000
抗病毒防御酶有突变的男人
14:15
and have a tumor, often have -- 40 percent of the time --
326
855160
4000
有肿瘤的机会是40%,
14:19
a signature which reveals a new retrovirus.
327
859160
4000
这个标志显示了一种新的逆转录病毒。
14:23
OK, that's pretty wild. What is it?
328
863160
3000
有点太疯狂了。它是什么?
14:26
So, we clone the whole virus.
329
866160
1000
所以我们克隆了整个病毒。
14:27
First of all, I'll tell you that a little automated prediction told us
330
867160
4000
首先,自动诊断告诉我们
14:31
it was very similar to a mouse virus.
331
871160
2000
它与小鼠病毒非常相似。
14:33
But that doesn't tell us too much,
332
873160
1000
但它没有告诉我们很多,
14:34
so we actually clone the whole thing.
333
874160
2000
所以实际上我们还是克隆了全部。
14:36
And the viral genome I'm showing you right here?
334
876160
2000
我在这里给你们显示这个病毒基因组?
14:38
It's a classic gamma retrovirus, but it's totally new;
335
878160
3000
这是一个典型的伽玛逆转录病毒,是个新的病毒,
14:41
no one's ever seen it before.
336
881160
1000
以前没人见过它。
14:42
Its closest relative is, in fact, from mice,
337
882160
3000
它最近的亲系,实际上是来自小鼠,
14:45
and so we would call this a xenotropic retrovirus,
338
885160
4000
我们把它叫做嗜异性逆转录病毒,
14:49
because it's infecting a species other than mice.
339
889160
3000
它除了感染小鼠,也感染其它物种。
14:52
And this is a little phylogenetic tree
340
892160
2000
这是个树形系统分类
14:54
to see how it's related to other viruses.
341
894160
2000
可以看到它与其它病毒的关系。
14:56
We've done it for many patients now,
342
896160
3000
我们对许多病人都是这样做的,
14:59
and we can say that they're all independent infections.
343
899160
3000
我们认为他们都是独立感染的。
15:02
They all have the same virus,
344
902160
1000
他们都有同一种病毒,
15:03
but they're different enough that there's reason to believe
345
903160
3000
但又有很大的不同,而且有理由相信
15:06
that they've been independently acquired.
346
906160
2000
都是独立获得的。
15:08
Is it really in the tissue? And I'll end up with this: yes.
347
908160
2000
它真的在组织里吗?我将以这个结束我的演讲。是的。
15:10
We take slices of these biopsies of tumor tissue
348
910160
3000
我们利用肿瘤组织切片,
15:13
and use material to actually locate the virus,
349
913160
2000
放置这个病毒,
15:15
and we find cells here with viral particles in them.
350
915160
4000
我们发现细胞里有病毒颗粒,
15:19
These guys really do have this virus.
351
919160
2000
这些人的确都有这个病毒。
15:21
Does this virus cause prostate cancer?
352
921160
2000
这种病毒导致前列腺癌吗?
15:23
Nothing I'm saying here implies causality. I don't know.
353
923160
4000
我在这所说的一切都没有这个因果关系,我不知道。
15:27
Is it a link to oncogenesis? I don't know.
354
927160
2000
它与肿瘤的发生有关吗?我不知道。
15:29
Is it the case that these guys are just more susceptible to viruses?
355
929160
4000
是因为这些人对病毒敏感吗?
15:33
Could be. And it might have nothing to do with cancer.
356
933160
3000
可能是吧。对于癌症它可能什么也做不了,
15:36
But now it's a door.
357
936160
1000
但它是一扇门。
15:37
We have a strong association between the presence of this virus
358
937160
3000
这个病毒与肿瘤遗传变异之间
15:40
and a genetic mutation that's been linked to cancer.
359
940160
3000
有很强的关联。
15:43
That's where we're at.
360
943160
1000
这就是现在我们所知道的。
15:44
So, it opens up more questions than it answers, I'm afraid,
361
944160
4000
所以我想它提出了更多的没有答案的问题,
15:48
but that's what, you know, science is really good at.
362
948160
2000
但这就是科学所在。
15:50
This was all done by folks in the lab --
363
950160
2000
这都是我们实验室做的,
15:52
I cannot take credit for most of this.
364
952160
1000
大多数的成果我都不能居功。
15:53
This is a collaboration between myself and Don.
365
953160
1000
这是我和Don的合作。
15:54
This is the guy who started the project in my lab,
366
954160
3000
这个人在我的实验室开始这个项目,
15:57
and this is the guy who's been doing prostate stuff.
367
957160
2000
这个人是做前列腺研究的。
15:59
Thank you very much. (Applause)
368
959160
3000
非常感谢。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7