Joe DeRisi: Hunting the next killer virus

30,273 views ใƒป 2009-01-30

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Shlomo Adam ืขืจื™ื›ื”: Shaike Katz
00:12
How can we investigate
0
12160
3000
ื›ื™ืฆื“ ื ื•ื›ืœ ืœื—ืงื•ืจ
00:15
this flora of viruses that surround us, and aid medicine?
1
15160
5000
ืืช ืฉืคืข ื”ื•ื•ื™ืจื•ืกื™ื ืฉืกื‘ื™ื‘ื ื• ื›ื“ื™ ืœืกื™ื™ืข ืœืจืคื•ืื”?
00:20
How can we turn our cumulative knowledge of virology
2
20160
4000
ื›ื™ืฆื“ ื ื•ื›ืœ ืœื”ืคื•ืš ืืช ืกืš ื›ืœ ื”ื™ื“ืข ื”ื•ื•ื™ืจื•ืœื•ื’ื™ ืฉืœื ื•
00:24
into a simple, hand-held, single diagnostic assay?
3
24160
4000
ืœื™ื—ื™ื“ื” ืื‘ื—ื•ื ื™ืช ืคืฉื•ื˜ื” ื•ื ื™ื™ื“ืช?
00:28
I want to turn everything we know right now about detecting viruses
4
28160
3000
ื‘ืจืฆื•ื ื™ ืœื”ืคื•ืš ืืช ื›ืœ ืžื” ืฉื™ื“ื•ืข ืœื ื• ื”ื™ื•ื ืขืœ ื–ื™ื”ื•ื™ ื•ื™ืจื•ืกื™ื
00:31
and the spectrum of viruses that are out there
5
31160
2000
ื•ืขืœ ืžื’ื•ื•ืŸ ื”ื•ื•ื™ืจื•ืกื™ื ื”ืงื™ื™ืžื™ื
00:33
into, let's say, a small chip.
6
33160
3000
ืœืžืฉืœ, ืœืฉื‘ื‘ ืงื˜ืŸ.
00:36
When we started thinking about this project --
7
36160
2000
ื›ืฉื”ืชื—ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ื”ืคืจื•ื™ื™ืงื˜ ื”ื–ื” -
00:38
how we would make a single diagnostic assay
8
38160
3000
ืื™ืš ืœื™ืฆื•ืจ ืžื™ื‘ื“ืง ืื‘ื—ื•ื ื™ ื™ื—ื™ื“
00:41
to screen for all pathogens simultaneously --
9
41160
3000
ืฉื™ืกืจื•ืง ื•ื™ื—ืคืฉ ื‘ื•-ื–ืžื ื™ืช ืืช ื›ืœ ื’ื•ืจืžื™ ื”ืžื—ืœื•ืช -
00:44
well, there's some problems with this idea.
10
44160
2000
ื•ื‘ื›ืŸ, ื™ืฉ ื›ืžื” ื‘ืขื™ื•ืช ืขื ื”ืจืขื™ื•ืŸ ื”ื–ื”.
00:46
First of all, viruses are pretty complex,
11
46160
4000
ืจืืฉื™ืช ื›ืœ, ื”ื•ื•ื™ืจื•ืกื™ื ืžื•ืจื›ื‘ื™ื ืœืžื“ื™,
00:50
but they're also evolving very fast.
12
50160
4000
ืืš ื’ื ืžืชืคืชื—ื™ื ืžื”ืจ ืžืื“.
00:54
This is a picornavirus.
13
54160
1000
ื–ื”ื• ืคื™ืงื•ืจื ื” ื•ื™ืจื•ืก.
00:55
Picornaviruses -- these are things that include
14
55160
2000
ืžื“ื•ื‘ืจ ื‘ื•ื•ื™ืจื•ืกื™ื ืฉื›ื•ืœืœื™ื
00:57
the common cold and polio, things like this.
15
57160
3000
ื”ืฆื˜ื ื ื•ืช ื•ืคื•ืœื™ื•, ื“ื‘ืจื™ื ื›ืืœื”.
01:00
You're looking at the outside shell of the virus,
16
60160
2000
ืืชื ืžืชื‘ื•ื ื ื™ื ื‘ืžืขื˜ืคืช ื”ื—ื™ืฆื•ื ื™ืช ืฉืœ ื”ื•ื•ื™ืจื•ืก,
01:02
and the yellow color here are those parts of the virus
17
62160
3000
ื•ื”ืฆื‘ืข ื”ืฆื”ื•ื‘ ื›ืืŸ ื”ื ืื•ืชื ื—ืœืงื™ื ื‘ื•ื•ื™ืจื•ืก
01:05
that are evolving very, very fast,
18
65160
2000
ืฉืžืชืคืชื—ื™ื ืžืื“ ืžืื“ ืžื”ืจ,
01:07
and the blue parts are not evolving very fast.
19
67160
2000
ื‘ืขื•ื“ ืฉื”ื—ืœืงื™ื ื”ื›ื—ื•ืœื™ื ืื™ื ื ืžืชืคืชื—ื™ื ืžืื“ ืžื”ืจ.
01:09
When people think about making pan-viral detection reagents,
20
69160
3000
ื›ืฉื—ื•ืฉื‘ื™ื ืขืœ ื™ืฆื™ืจืช ื—ื•ืžืจ ืžื’ื™ื‘ ืœืื™ืชื•ืจ ื›ืœืœ-ื•ื™ืจืืœื™,
01:12
usually it's the fast-evolving problem that's an issue,
21
72160
4000
ื‘ื“"ื› ื”ื‘ืขื™ื” ื”ื™ื ืžื”ื™ืจื•ืช ื”ืชืคืชื—ื•ืช ื”ืžื—ืœื”,
01:16
because how can we detect things if they're always changing?
22
76160
2000
ืื—ืจืช, ืื™ืš ื ื•ื›ืœ ืœืืชืจ ื“ื‘ืจื™ื ืื ื”ื ืžืฉืชื ื™ื ืชื“ื™ืจ?
01:18
But evolution is a balance:
23
78160
2000
ืืš ื”ืชืคืชื—ื•ืช ื”ื™ื ื” ืื™ื–ื•ืŸ:
01:20
where you have fast change, you also have ultra-conservation --
24
80160
4000
ื›ืฉืงื™ื™ื ืฉื™ื ื•ื™ ืžื”ื™ืจ, ืงื™ื™ื ื’ื ืฉื™ืžื•ืจ-ืขืœ...
01:24
things that almost never change.
25
84160
2000
ื“ื‘ืจื™ื ืฉื›ืžืขื˜ ื•ืœื ืžืฉืชื ื™ื ืœืขื•ืœื.
01:26
And so we looked into this a little more carefully,
26
86160
3000
ื›ืš ืฉื‘ื‘ื“ืงื ื• ื–ืืช ื‘ื™ืชืจ ืงืคื™ื“ื”,
01:29
and I'm going to show you data now.
27
89160
1000
ื•ื›ืขืช ืืฆื™ื’ ืœื›ื ื ืชื•ื ื™ื.
01:30
This is just some stuff you can do on the computer from the desktop.
28
90160
3000
ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช ืžืฉื•ืœื—ืŸ-ื”ืขื‘ื•ื“ื” ื‘ืžื—ืฉื‘ ืฉืœื›ื.
01:33
I took a bunch of these small picornaviruses,
29
93160
2000
ืœืงื—ืชื™ ืงื‘ื•ืฆืช ื•ื™ืจื•ืกื™ื ื›ื–ื•,
01:35
like the common cold, like polio and so on,
30
95160
2000
ื›ืžื• ื”ืฆื˜ื ื ื•ืช, ืคื•ืœื™ื• ื•ื›ื“ื•ืžื”,
01:37
and I just broke them down into small segments.
31
97160
4000
ื•ื—ืชื›ืชื™ ืื•ืชื ืœืžืงื˜ืขื™ื ืงื˜ื ื™ื,
01:41
And so took this first example, which is called coxsackievirus,
32
101160
3000
ืœืงื—ืชื™ ืืช ื”ื“ื•ื’ืžื” ื”ืจืืฉื•ื ื” ื”ื–ื•, ื”ืงืจื•ื™ื” ืงื•ืงืกืืงื™ ื•ื™ืจื•ืก,
01:44
and just break it into small windows.
33
104160
2000
ื•ืงื˜ืขืชื™ ืื•ืชื” ืœื—ืœื•ื ื•ืช ืงื˜ื ื™ื.
01:46
And I'm coloring these small windows blue
34
106160
2000
ื•ืื ื™ ืฆื•ื‘ืข ืืช ื”ื—ืœื•ื ื•ืช ื”ืงื˜ื ื™ื ื”ืืœื” ื‘ื›ื—ื•ืœ
01:48
if another virus shares an identical sequence in its genome
35
108160
5000
ืื ืœื•ื•ื™ืจื•ืก ืื—ืจ ื™ืฉ ืจืฆืฃ ื–ื”ื” ื‘ื’ื ื•ื ืฉืœื•
01:53
to that virus.
36
113160
1000
ื›ืžื• ืœื•ื•ื™ืจื•ืก ื”ื–ื”.
01:54
These sequences right up here --
37
114160
2000
ื”ืจืฆืคื™ื ื›ืืŸ ืœืžืขืœื” -
01:56
which don't even code for protein, by the way --
38
116160
2000
ืฉืืคื™ืœื• ืื™ื ื ืžืชืงื•ื“ื“ื™ื ืœื—ืœื‘ื•ืŸ, ืื’ื‘ -
01:58
are almost absolutely identical across all of these,
39
118160
3000
ื›ื•ืœื ื–ื”ื™ื ื›ืžืขื˜ ืœื’ืžืจื™ ืžื‘ื—ื™ื ื” ื–ื•,
02:01
so I could use this sequence as a marker
40
121160
4000
ื›ืš ืฉื™ื›ื•ืœืชื™ ืœื ืฆืœ ืจืฆืฃ ื–ื” ื›ืกืžืŸ
02:05
to detect a wide spectrum of viruses,
41
125160
2000
ืœืื™ืชื•ืจ ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ื•ื™ืจื•ืกื™ื,
02:07
without having to make something individual.
42
127160
3000
ืžื‘ืœื™ ืœืขืฉื•ืช ืžืฉื”ื• ืคืจื˜ื ื™.
02:10
Now, over here there's great diversity:
43
130160
2000
ื•ื›ืืŸ ื™ืฉ ืœื ื• ืžื’ื•ื•ืŸ ืจื‘:
02:12
that's where things are evolving fast.
44
132160
2000
ื›ืืŸ ื”ื“ื‘ืจื™ื ืžืชืคืชื—ื™ื ืžื”ืจ.
02:14
Down here you can see slower evolution: less diversity.
45
134160
4000
ื›ืืŸ ืœืžื˜ื” ืจื•ืื™ื ื”ืชืคืชื—ื•ืช ืื™ื˜ื™ืช ื™ื•ืชืจ: ืคื—ื•ืช ื’ื™ื•ื•ืŸ.
02:18
Now, by the time we get out here to, let's say,
46
138160
2000
ื‘ื–ืžืŸ ืฉื ื’ื™ืข ืœื›ืืŸ, ื ื ื™ื—,
02:20
acute bee paralysis virus --
47
140160
2000
ืœื•ื•ื™ืจื•ืก ืฉื™ืชื•ืง ื“ื‘ื•ืจื™ื ื—ืžื•ืจ -
02:22
probably a bad one to have if you're a bee ---
48
142160
2000
ืœืœื ืกืคืง, ื’ืจื•ืข ืœืœืงื•ืช ื‘ื• ืื ืืชื ื“ื‘ื•ืจื™ื--
02:24
this virus shares almost no similarity to coxsackievirus,
49
144160
5000
ืœื•ื•ื™ืจื•ืก ื–ื” ืื™ืŸ ื›ืœ ื“ืžื™ื•ืŸ ืœืงื•ืงืกืืงื™,
02:29
but I can guarantee you that the sequences that are most conserved
50
149160
4000
ืืš ื‘ื™ื›ื•ืœืชื™ ืœื”ื‘ื˜ื™ื— ืœื›ื ืฉื”ืจืฆืคื™ื ื”ืฉืžื•ืจื™ื ื‘ื™ื•ืชืจ
02:33
among these viruses on the right-hand of the screen
51
153160
2000
ื‘ื™ืŸ ื”ื•ื•ื™ืจื•ืกื™ื ืฉื‘ืฆื“ ื™ืžื™ืŸ ืฉืœ ื”ืžืกืš
02:35
are in identical regions right up here.
52
155160
3000
ื ืžืฆืื™ื ื‘ืื–ื•ืจื™ื ื–ื”ื™ื ื›ืืŸ ืœืžืขืœื”.
02:38
And so we can encapsulate these regions of ultra-conservation
53
158160
3000
ื›ืš ืฉืื ื• ื™ื›ื•ืœื™ื ืœืชื—ื•ื ืื–ื•ืจื™ื ืืœื” ืฉืœ ืฉื™ืžื•ืจ-ืขืœ
02:41
through evolution -- how these viruses evolved --
54
161160
3000
ื‘ื–ืžืŸ ื”ื”ืชืคืชื—ื•ืช-- ื”ืชืคืชื—ื•ืช ื”ื•ื•ื™ืจื•ืกื™ื ื”ืืœื” -
02:44
by just choosing DNA elements or RNA elements
55
164160
3000
ืคืฉื•ื˜ ืข"ื™ ื‘ื—ื™ืจืช ืจื›ื™ื‘ื™ ื“ื "ื ืื• ืจื "ื
02:47
in these regions to represent on our chip as detection reagents.
56
167160
4000
ื‘ืื–ื•ืจื™ื ืืœื”, ื›ืžื™ื™ืฆื’ื™ ืื™ืชื•ืจ ื›ื™ืžื™ ื‘ืฉื‘ื‘ ืฉืœื ื•.
02:51
OK, so that's what we did, but how are we going to do that?
57
171160
3000
ื‘ืกื“ืจ, ื–ื” ืžื” ืฉืขืฉื™ื ื•, ืื‘ืœ ืื™ืš ื ื‘ืฆืข ื–ืืช?
02:54
Well, for a long time, since I was in graduate school,
58
174160
2000
ื•ื‘ื›ืŸ, ื‘ืžืฉืš ื–ืžืŸ ืจื‘, ืžืื– ืœืžื“ืชื™ ืœืชื•ืืจ ืฉื ื™,
02:56
I've been messing around making DNA chips --
59
176160
3000
ื”ืชืขืกืงืชื™ ื‘ื‘ื ื™ื™ืช ืฉื‘ื‘ื™ ื“ื "ื -
02:59
that is, printing DNA on glass.
60
179160
2000
ื›ืœื•ืžืจ, ื”ื“ืคืกืช ื“ื "ื ืขืœ ื–ื›ื•ื›ื™ืช.
03:01
And that's what you see here:
61
181160
1000
ื•ื–ื” ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ:
03:02
These little salt spots are just DNA tacked onto glass,
62
182160
3000
ืคื™ืจื•ืจื™ ื”ืžืœื— ื”ืืœื” ื”ื ืคืฉื•ื˜ ื“ื "ื ืฉืžื•ื“ื‘ืง ืขืœ ื–ื›ื•ื›ื™ืช.
03:05
and so I can put thousands of these on our glass chip
63
185160
3000
ืื– ืื ื™ ื™ื›ื•ืœ ืœืฉื™ื ืืœืคื™ื ืžืืœื” ืขืœ ืฉื‘ื‘ ื”ื–ื›ื•ื›ื™ืช ืฉืœื ื•
03:08
and use them as a detection reagent.
64
188160
2000
ื•ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ืžืืชืจื™ื ื›ื™ืžื™ื™ื.
03:10
We took our chip over to Hewlett-Packard
65
190160
2000
ืœืงื—ื ื• ืืช ื”ืฉื‘ื‘ ืฉืœื ื• ืœ"ื”ื™ื•ืœื˜-ืคืงืจื“"
03:12
and used their atomic force microscope on one of these spots,
66
192160
2000
ื•ืฆืคื™ื ื• ื‘ืžื™ืงืจื•ืกืงื•ืค ื”ืื˜ื•ืžื™ ืฉืœื”ื ื‘ืื—ืช ื”ื ืงื•ื“ื•ืช ื”ืืœื”,
03:14
and this is what you see:
67
194160
2000
ื•ื–ื” ืžื” ืฉืืชื ืจื•ืื™ื:
03:16
you can actually see the strands of DNA lying flat on the glass here.
68
196160
3000
ืืชื ืจื•ืื™ื ืืช ืจืฆื•ืขื•ืช ื”ื“ื "ื ืžืฉื•ื˜ื—ื•ืช ื›ืืŸ ืขืœ ื”ื–ื›ื•ื›ื™ืช.
03:19
So, what we're doing is just printing DNA on glass --
69
199160
3000
ืื– ืžื” ืฉืื ื• ืขื•ืฉื™ื ื”ื•ื ืคืฉื•ื˜ ืœื”ื“ืคื™ืก ื“ื "ื ืขืœ ื–ื›ื•ื›ื™ืช -
03:22
little flat things -- and these are going to be markers for pathogens.
70
202160
4000
ื“ื‘ืจื™ื ืฉื˜ื•ื—ื™ื ืงื˜ื ื™ื-- ื•ืืœื” ื™ื”ื™ื• ืกืžื ื™ ื’ื•ืจืžื™-ื”ืžื—ืœื•ืช
03:26
OK, I make little robots in lab to make these chips,
71
206160
3000
ืื ื™ ื™ื•ืฆืจ ืจื•ื‘ื•ื˜ื™ื ืงื˜ื ื™ื ื‘ืžืขื‘ื“ื” ื›ื“ื™ ืœื™ืฆื•ืจ ืฉื‘ื‘ื™ื ืืœื”,
03:29
and I'm really big on disseminating technology.
72
209160
3000
ื•ืื ื™ ืื•ื”ื‘ ืžืื“ ื”ืคืฆืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช.
03:32
If you've got enough money to buy just a Camry,
73
212160
3000
ืื ื™ืฉ ืœื›ื ื“ื™ ื›ืกืฃ ืœืงื ื•ืช ืžื›ื•ื ื™ืช ืงืืžืจื™,
03:35
you can build one of these too,
74
215160
2000
ืืชื ื™ื›ื•ืœื™ื ื’ื ืœื‘ื ื•ืช ืื—ื“ ื›ื–ื”,
03:37
and so we put a deep how-to guide on the Web, totally free,
75
217160
4000
ืื– ืคืจืกืžื ื• ื‘ืื™ื ื˜ืจื ื˜ ื‘ื—ื™ื ื ื—ื•ื‘ืจืช ื”ื“ืจื›ื”,
03:41
with basically order-off-the-shelf parts.
76
221160
2000
ืœื‘ื ื™ื™ื” ืžืžื•ืฆืจื™-ืžื“ืฃ--
03:43
You can build a DNA array machine in your garage.
77
223160
3000
ื‘ื™ื›ื•ืœืชื›ื ืœื‘ื ื•ืช ืžื›ื•ื ืช ืžืขืจืš ื“ื "ื ื‘ืžื—ืกืŸ ืฉืœื›ื.
03:46
Here's the section on the all-important emergency stop switch.
78
226160
3000
ื”ื ื” ื”ืงื˜ืข ืขืœ ืžืคืกืง ื›ื™ื‘ื•ื™-ื”ื—ื™ืจื•ื ื”ื—ืฉื•ื‘ ืžื›ืœ.
03:49
(Laughter)
79
229160
2000
(ืฆื—ื•ืง)
03:51
Every important machine's got to have a big red button.
80
231160
3000
ื‘ื›ืœ ืžื›ื•ื ื” ื—ืฉื•ื‘ื” ืฆืจื™ืš ืœื”ื™ื•ืช ื›ืคืชื•ืจ ืื“ื•ื ื’ื“ื•ืœ.
03:54
But really, it's pretty robust.
81
234160
2000
ืืš ืœืžืขืฉื” ื–ื” ื™ืฆื™ื‘ ืœืžื“ื™.
03:56
You can actually be making DNA chips in your garage
82
236160
3000
ืืชื ื™ื›ื•ืœื™ื ืžืžืฉ ืœื™ื™ืฆืจ ืฉื‘ื‘ื™ ื“ื "ื ื‘ืžื—ืกืŸ ืฉืœื›ื,
03:59
and decoding some genetic programs pretty rapidly. It's a lot of fun.
83
239160
4000
ื•ืœืงื•ื“ื“ ื›ืžื” ืชื›ื ื™ื•ืช ื’ื ื˜ื™ื•ืช ื“ื™ ืžื”ืจ. ื–ื” ื›ื™ืฃ ื’ื“ื•ืœ.
04:03
(Laughter)
84
243160
1000
(ืฆื—ื•ืง)
04:04
And so what we did -- and this is a really cool project --
85
244160
4000
ืื– ืžื” ืฉืขืฉื™ื ื•-- ื•ื–ื” ืคืจื•ื™ื™ืงื˜ ืžืžืฉ ืžื’ื ื™ื‘--
04:08
we just started by making a respiratory virus chip.
86
248160
2000
ื”ืชื—ืœื ื• ืคืฉื•ื˜ ืžื™ืฆื™ืจืช ืฉื‘ื‘ ืฉืœ ื•ื™ืจื•ืก ื“ืจื›ื™-ื”ื ืฉื™ืžื”.
04:10
I talked about that --
87
250160
2000
ื“ื™ื‘ืจืชื™ ืขืœ ื–ื” -
04:12
you know, that situation where you go into the clinic
88
252160
2000
ืืชื ื™ื•ื“ืขื™ื, ื”ืžืฆื‘ ื”ื–ื” ืฉื‘ื• ืืชื ื”ื•ืœื›ื™ื ืœืžืจืคืื”
04:14
and you don't get diagnosed?
89
254160
2000
ื•ืœื ืžืฆืœื™ื—ื™ื ืœืื‘ื—ืŸ ืžื” ื™ืฉ ืœื›ื?
04:16
Well, we just put basically all the human respiratory viruses
90
256160
2000
ืื– ื‘ืขืฆื ืฆื™ืจืคื ื• ืืช ื›ืœ ื•ื™ืจื•ืกื™ ื“ืจื›ื™-ื”ื ืฉื™ืžื” ื”ืื ื•ืฉื™ื™ื
04:18
on one chip, and we threw in herpes virus for good measure --
91
258160
3000
ื‘ืฉื‘ื‘ ืื—ื“, ื•ื”ื•ืกืคื ื• ื’ื ื•ื™ืจื•ืก ื”ืจืคืก ื‘ืื•ืชื• ืžื—ื™ืจ -
04:21
I mean, why not?
92
261160
1000
ืœืžื” ืœื?
04:22
The first thing you do as a scientist is,
93
262160
2000
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืืชื” ืขื•ืฉื” ื›ืžื“ืขืŸ ื”ื•ื,
04:24
you make sure stuff works.
94
264160
1000
ืœื•ื•ื“ื ืฉื”ืขืกืง ืขื•ื‘ื“.
04:25
And so what we did is, we take tissue culture cells
95
265160
3000
ืื– ืคืฉื•ื˜ ืœืงื—ื ื• ืชืื™ ืชืจื‘ื™ืช ืจืงืžื•ืช
04:28
and infect them with various viruses,
96
268160
2000
ื•ื”ื“ื‘ืงื ื• ืื•ืชื ื‘ื›ืœ ืžื™ื ื™ ื•ื™ืจื•ืกื™ื,
04:30
and we take the stuff and fluorescently label the nucleic acid,
97
270160
4000
ื•ืœืงื—ื ื• ืืช ื”ื›ืœ ื•ืชื™ื™ื’ื ื• ื‘ืขืœ-ืกื’ื•ืœ ืืช ื—ื•ืžืฆื•ืช ื”ื’ืจืขื™ืŸ,
04:34
the genetic material that comes out of these tissue culture cells --
98
274160
3000
ื”ื—ื•ืžืจ ื”ื’ื ื˜ื™ ืฉื‘ื ืžืชืื™ ืชืจื‘ื™ืช ื”ืจืงืžื•ืช ื”ืืœื” -
04:37
mostly viral stuff -- and stick it on the array to see where it sticks.
99
277160
4000
ื‘ืขื™ืงืจ ื—ื•ืžืจ ื•ื™ืจืืœื™-- ื•ื”ืฆืžื“ื ื• ืœื’ืฉืฉ, ืœืจืื•ืช ื”ื™ื›ืŸ ื”ื•ื ื ื“ื‘ืง.
04:41
Now, if the DNA sequences match, they'll stick together,
100
281160
2000
ืื ืจืฆืคื™ ื”ื“ื "ื ืชื•ืืžื™ื, ื”ื ื™ื™ื“ื‘ืงื• ื–ื” ืœื–ื”,
04:43
and so we can look at spots.
101
283160
2000
ื›ืš ืฉืื ื• ื™ื›ื•ืœื™ื ืœื‘ื“ื•ืง ื ืงื•ื“ื•ืช.
04:45
And if spots light up, we know there's a certain virus in there.
102
285160
2000
ื•ื”ื™ื›ืŸ ืฉื”ื ืงื•ื“ื•ืช ื ื“ืœืงื•ืช ืื ื• ื™ื•ื“ืขื™ื ืฉื™ืฉ ื•ื™ืจื•ืก ื•ื“ืื™.
04:47
That's what one of these chips really looks like,
103
287160
2000
ื›ืš ื ืจืื” ืื—ื“ ื”ืฉื‘ื‘ื™ื ื”ืืœื”,
04:49
and these red spots are, in fact, signals coming from the virus.
104
289160
3000
ื•ื”ื ืงื•ื“ื•ืช ื”ืื“ื•ืžื•ืช ื”ืืœื” ื”ืŸ ืœืžืขืฉื” ืื•ืช ืฉืžืชืงื‘ืœ ืžื”ื•ื•ื™ืจื•ืก.
04:52
And each spot represents a different family of virus
105
292160
3000
ื•ื›ืœ ื ืงื•ื“ื” ืžื™ื™ืฆื’ืช ืžืฉืคื—ืช ืฉื•ื ื” ืฉืœ ื•ื™ืจื•ืกื™ื
04:55
or species of virus.
106
295160
1000
ืื• ื–ื ื™ ื•ื™ืจื•ืกื™ื.
04:56
And so, that's a hard way to look at things,
107
296160
2000
ืื– ื–ื•ื”ื™ ืฉื™ื˜ื” ืงืฉื” ืœื‘ื“ื•ืง ื“ื‘ืจื™ื,
04:58
so I'm just going to encode things as a little barcode,
108
298160
2000
ืื– ืื ื™ ืคืฉื•ื˜ ืžืงื•ื“ื“ ื“ื‘ืจื™ื ื‘ื‘ืจืงื•ื“ ืงื˜ืŸ,
05:00
grouped by family, so you can see the results in a very intuitive way.
109
300160
4000
ื‘ื—ืœื•ืงื” ืœืžืฉืคื—ื•ืช, ื›ืš ืฉืจื•ืื™ื ืืช ื”ืชื•ืฆืื•ืช ื‘ืฆื•ืจื” ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ืช ืžืื“.
05:04
What we did is, we took tissue culture cells
110
304160
2000
ืžื” ืฉืขืฉื™ื ื• ื”ื•ื ืœืงื—ืช ืชืื™ ืชืจื‘ื™ืช ืจืงืžื•ืช
05:06
and infected them with adenovirus,
111
306160
2000
ื•ืœื”ื“ื‘ื™ืง ืื•ืชื ื‘ืื“ื ื•-ื•ื™ืจื•ืก,
05:08
and you can see this little yellow barcode next to adenovirus.
112
308160
4000
ื•ืืชื ืจื•ืื™ื ืืช ื”ื‘ืจืงื•ื“ ื”ืฆื”ื•ื‘ ื”ืงื˜ืŸ ื”ื–ื” ืœื™ื“ ื”ืื“ื ื•-ื•ื™ืจื•ืก.
05:12
And, likewise, we infected them with parainfluenza-3 --
113
312160
3000
ื•ื‘ื“ื•ืžื” ืœื›ืš ื”ื“ื‘ืงื ื• ื‘ืฉืคืขืช-ืคืืจื 3--
05:15
that's a paramyxovirus -- and you see a little barcode here.
114
315160
2000
ืฉื–ื” ืคืืจื-ืžื™ืงืกื•-ื•ื™ืจื•ืก-- ื•ืืชื ืจื•ืื™ื ื›ืืŸ ื‘ืจืงื•ื“ ืงื˜ืŸ.
05:17
And then we did respiratory syncytial virus.
115
317160
3000
ื•ืื—ืจ ืขืฉื™ื ื• ื•ื™ืจื•ืก ืกื™ื ืกื™ืฆื™ืืœื™ ืฉืœ ื“ืจื›ื™-ื”ื ืฉื™ืžื”.
05:20
That's the scourge of daycare centers everywhere --
116
320160
2000
ืื™ืžืช ืžืขื•ื ื•ืช-ื”ื™ื•ื ื‘ื›ืœ ื”ืขื•ืœื--
05:22
it's like boogeremia, basically.
117
322160
2000
ื–ื” ื‘ืขืฆื ื›ืžื• ื ื–ืœืช.
05:24
(Laughter)
118
324160
1000
(ืฆื—ื•ืง)
05:25
You can see that this barcode is the same family,
119
325160
4000
ืืชื ืจื•ืื™ื ืฉื‘ืจืงื•ื“ ื–ื” ื”ื•ื ืžืื•ืชื” ืžืฉืคื—ื”,
05:29
but it's distinct from parainfluenza-3,
120
329160
2000
ืืš ื”ื•ื ืฉื•ื ื” ืžืฉืคืขืช-ืคืืจื-3,
05:31
which gives you a very bad cold.
121
331160
2000
ืฉื’ื•ืจืžืช ืœื›ื ื”ืฆื˜ื ื ื•ืช ืงืฉื” ืžืื“.
05:33
And so we're getting unique signatures, a fingerprint for each virus.
122
333160
3000
ืื– ืื ื• ืžืงื‘ืœื™ื ื—ืชื™ืžื•ืช ื™ื™ื—ื•ื“ื™ื•ืช, ื˜ื‘ื™ืขืช-ืืฆื‘ืข ืœื›ืœ ื•ื™ืจื•ืก.
05:36
Polio and rhino: they're in the same family, very close to each other.
123
336160
3000
ืคื•ืœื™ื• ื•ืจื™ื™ื ื•-ื•ื™ืจื•ืก: ืื•ืชื” ืžืฉืคื—ื”, ืžืื“ ืงืจื•ื‘ื™ื ื–ื” ืœื–ื”.
05:39
Rhino's the common cold, and you all know what polio is,
124
339160
2000
ืจื™ื™ื ื• ื”ื•ื ื”ื”ืฆื˜ื ื ื•ืช, ื•ื›ื•ืœื›ื ื™ื•ื“ืขื™ื ืžื”ื• ื”ืคื•ืœื™ื•,
05:41
and you can see that these signatures are distinct.
125
341160
3000
ื•ืืชื ืจื•ืื™ื ืฉื—ืชื™ืžื•ืช ืืœื” ื”ืŸ ื™ื™ื—ื•ื“ื™ื•ืช.
05:44
And Kaposi's sarcoma-associated herpes virus
126
344160
3000
ื•ื•ื™ืจื•ืก ื”ื”ืจืคืก ื”ืงืฉื•ืจ ื‘ืกืจืงื•ืžื” ืข"ืฉ ืงืคื•ืฉื™
05:47
gives a nice signature down here.
127
347160
2000
ืžืคื™ืง ื—ืชื™ืžื” ื ืื”, ื›ืืŸ ืœืžื˜ื”.
05:49
And so it is not any one stripe or something
128
349160
2000
ื›ืš ืฉืœื ืžื“ื•ื‘ืจ ื‘ืจืฆื•ืขื” ืื—ืช ืื• ืžืฉื”ื• ื‘ื•ื“ื“
05:51
that tells me I have a virus of a particular type here;
129
351160
2000
ืฉืื•ืžืจ ืฉื™ืฉ ืœื™ ื•ื™ืจื•ืก ืžืกื•ื’ ืžืกื•ื™ื;
05:53
it's the barcode that in bulk represents the whole thing.
130
353160
4000
ื–ื”ื• ื‘ืจืงื•ื“ ืฉืžื™ื™ืฆื’ ื‘ื’ื•ืฉ ืื—ื“ ืืช ื›ืœ ื”ืขืกืง.
05:57
All right, I can see a rhinovirus --
131
357160
2000
ื‘ืกื“ืจ, ืื ื™ ืจื•ืื” ืจื™ื™ื ื•-ื•ื™ืจื•ืก -
05:59
and here's the blow-up of the rhinovirus's little barcode --
132
359160
2000
ื•ื”ื ื” ื”ื’ื“ืœื” ืฉืœ ื”ื‘ืจืงื•ื“ ื”ืงื˜ืŸ ืฉืœ ื”ืจื™ื™ื ื•-ื•ื™ืจื•ืก -
06:01
but what about different rhinoviruses?
133
361160
2000
ืื‘ืœ ืžื” ืขื ืจื™ื™ื ื•-ื•ื™ืจื•ืกื™ื ืฉื•ื ื™ื?
06:03
How do I know which rhinovirus I have?
134
363160
2000
ืื™ืš ืื ื™ ื™ื•ื“ืข ืื™ื–ื” ืจื™ื™ื ื•-ื•ื™ืจื•ืก ื™ืฉ ืœื™?
06:05
There're 102 known variants of the common cold,
135
365160
3000
ื™ืฉ 102 ืกื•ื’ื™ื ืฉืœ ื”ืฆื˜ื ื ื•ืช,
06:08
and there're only 102 because people got bored collecting them:
136
368160
3000
ื•ื™ืฉ 102 ืจืง ืžืคื ื™ ืฉื ืžืืก ืœืืกื•ืฃ ืื•ืชื:
06:11
there are just new ones every year.
137
371160
2000
ืžื•ืคื™ืขื™ื ืกื•ื’ื™ื ื—ื“ืฉื™ื ื›ืœ ืฉื ื”.
06:13
And so, here are four different rhinoviruses,
138
373160
2000
ื•ืœื›ืŸ, ื”ื ื” ืืจื‘ืขื” ืจื™ื™ื ื•-ื•ื™ืจื•ืกื™ื ืฉื•ื ื™ื,
06:15
and you can see, even with your eye,
139
375160
2000
ื•ื‘ื™ื›ื•ืœืชื›ื ืœืจืื•ืช, ื‘ืžื‘ื˜ ืžื™ื™ื“ื™,
06:17
without any fancy computer pattern-matching
140
377160
2000
ื‘ืœื™ ืฉื•ื ื”ืชืืžืช-ืžื—ืฉื‘ ืžืคื•ื ืคื ืช
06:19
recognition software algorithms,
141
379160
2000
ื‘ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ืชื•ื›ื ืช-ื–ื™ื”ื•ื™,
06:21
that you can distinguish each one of these barcodes from each other.
142
381160
3000
ืฉื ื™ืชืŸ ืœื”ื‘ื—ื™ืŸ ื‘ื›ืœ ื‘ืจืงื•ื“ ื›ื–ื” ืœืขื•ืžืช ื”ื™ืชืจ.
06:24
Now, this is kind of a cheap shot,
143
384160
2000
ืื– ื ื›ื•ืŸ ืฉื–ื• ืœื ื—ื•ื›ืžื”,
06:26
because I know what the genetic sequence of all these rhinoviruses is,
144
386160
3000
ื›ื™ ืื ื™ ื™ื•ื“ืข ืืช ื”ืจืฆืฃ ื”ื’ื ื˜ื™ ืฉืœ ื›ืœ ื”ืจื™ื™ื ื•-ื•ื™ืจื•ืกื™ื ื”ืืœื”,
06:29
and I in fact designed the chip
145
389160
1000
ื•ื‘ืขืฆื ืื ื™ ืชื›ื ื ืชื™ ืืช ื”ืฉื‘ื‘
06:30
expressly to be able to tell them apart,
146
390160
2000
ื‘ืžืคื•ืจืฉ ื›ื“ื™ ืœืืคืฉืจ ื”ื‘ื—ื ื” ื‘ื™ื ื™ื”ื,
06:32
but what about rhinoviruses that have never seen a genetic sequencer?
147
392160
4000
ืืš ืžื” ืขื ืจื™ื™ื ื•-ื•ื™ืจื•ืกื™ื ืฉื›ืœืœ ืœื ืคื’ืฉื• ืžื›ืฉื™ืจ ืจื™ืฆื•ืฃ ื’ื ื˜ื™?
06:36
We don't know what the sequence is; just pull them out of the field.
148
396160
2000
ืื™ื ื ืŸ ื™ื•ื“ืขื™ื ืžื”ื• ื”ืจืฆืฃ ื”ื’ื ื˜ื™; ืคืฉื•ื˜ ื ื‘ื™ื ืื•ืชื ืžื”ืฉื˜ื—.
06:38
So, here are four rhinoviruses
149
398160
2000
ืื– ื”ื ื” ืืจื‘ืขื” ืจื™ื™ื ื•-ื•ื™ืจื•ืกื™ื
06:40
we never knew anything about --
150
400160
2000
ืฉืื™ื ื ื• ื™ื•ื“ืขื™ื ืขืœื™ื”ื ื›ืœื•ื -
06:42
no one's ever sequenced them -- and you can also see
151
402160
3000
ืื™ืฉ ืœื ืจื™ืฆืฃ ืื•ืชื-- ื•ื’ื ื›ืืŸ ืืชื ืจื•ืื™ื
06:45
that you get unique and distinguishable patterns.
152
405160
2000
ืฉืืชื ืžืงื‘ืœื™ื ื“ืคื•ืกื™ื ื™ื™ื—ื•ื“ื™ื™ื ื•ื‘ืจื™-ื–ื™ื”ื•ื™.
06:47
You can imagine building up some library, whether real or virtual,
153
407160
3000
ืืคืฉืจ ืœื“ืžื™ื™ืŸ ื‘ื ื™ื™ืช ืกืคืจื™ื”, ืืžื™ืชื™ืช ืื• ื•ื™ืจื˜ื•ืืœื™ืช,
06:50
of fingerprints of essentially every virus.
154
410160
2000
ืฉืœ ื˜ื‘ื™ืขืช-ื”ืืฆื‘ืข ืฉืœ ื›ืœ ื•ื™ืจื•ืก, ืœืžืขืฉื”.
06:52
But that's, again, shooting fish in a barrel, you know, right?
155
412160
3000
ืื‘ืœ ืฉื•ื‘, ื–ื” ืœื ื›ื•ื—ื•ืช, ื ื›ื•ืŸ?
06:55
You have tissue culture cells. There are a ton of viruses.
156
415160
2000
ื™ืฉ ืœื ื• ืชืื™ ืชืจื‘ื™ืช ืจืงืžื•ืช: ื–ื” ื”ืžื•ืŸ ื•ื™ืจื•ืกื™ื.
06:57
What about real people?
157
417160
2000
ืžื” ืขื ื‘ื ื™-ืื“ื ืืžื™ืชื™ื™ื?
06:59
You can't control real people, as you probably know.
158
419160
2000
ืื™-ืืคืฉืจ ืœืฉืœื•ื˜ ื‘ืื ืฉื™ื ืืžื™ืชื™ื™ื, ื›ืžื• ืฉืืชื ื‘ื˜ื— ื™ื•ื“ืขื™ื.
07:01
You have no idea what someone's going to cough into a cup,
159
421160
4000
ืื™ืŸ ืœื›ื ืžื•ืฉื’ ืžื” ืžื™ืฉื”ื• ืขื•ืžื“ ืœืคืœื•ื˜ ื‘ืฉื™ืขื•ืœ ืœืชื•ืš ืกืคืœ,
07:05
and it's probably really complex, right?
160
425160
3000
ื•ื–ื” ื›ื ืจืื” ื‘ืืžืช ืžื•ืจื›ื‘, ื ื›ื•ืŸ?
07:08
It could have lots of bacteria, it could have more than one virus,
161
428160
3000
ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืฉื ื”ืžื•ืŸ ื—ื™ื™ื“ืงื™ื, ื•ื™ื•ืชืจ ืžื•ื•ื™ืจื•ืก ืื—ื“,
07:11
and it certainly has host genetic material.
162
431160
2000
ื•ืื™ืŸ ืกืคืง ืฉื™ืฉ ื‘ื–ื” ื’ื ื—ื•ืžืจ ื’ื ื˜ื™ ืžืืจื—,
07:13
So how do we deal with this?
163
433160
1000
ืื– ืื™ืš ืžืชืžื•ื“ื“ื™ื ืขื ื–ื”?
07:14
And how do we do the positive control here?
164
434160
2000
ืื™ืš ืฉื•ืžืจื™ื ืขืœ ืฉืœื™ื˜ื” ื›ืืŸ?
07:16
Well, it's pretty simple.
165
436160
2000
ื•ื‘ื›ืŸ, ื–ื” ื“ื™ ืคืฉื•ื˜.
07:18
That's me, getting a nasal lavage.
166
438160
2000
ื–ื” ืื ื™, ืžืงื‘ืœ ืฉื˜ื™ืคืช-ืืฃ.
07:20
And the idea is, let's experimentally inoculate people with virus.
167
440160
5000
ื•ื”ืจืขื™ื•ืŸ ื”ื•ื ืœื”ืจื›ื™ื‘ ืื ืฉื™ื ื‘ื•ื•ื™ืจื•ืก ื‘ืฆื•ืจื” ื ืกื™ื•ื ื™ืช
07:25
This is all IRB-approved, by the way; they got paid.
168
445160
5000
ื•ืื ื•-- ื›ืœ ื–ื” ืื•ืฉืจ ืข"ื™ ื•ืขื“ืช ื”ืืชื™ืงื”, ืื’ื‘. ืฉื™ืœืžื• ืœื”ื.
07:30
And basically we experimentally inoculate people
169
450160
3000
ื•ื‘ืขืฆื ื‘ื™ืฆืขื ื• ืชืจื›ื™ื‘ ื ืกื™ื•ื ื™ ืขืœ ืื ืฉื™ื
07:33
with the common cold virus.
170
453160
1000
ืขื ื•ื™ืจื•ืก ื”ื”ืฆื˜ื ื ื•ืช.
07:34
Or, even better, let's just take people
171
454160
2000
ืื•, ื˜ื•ื‘ ื™ื•ืชืจ, ื‘ื•ืื• ื•ื ื™ืงื— ืื ืฉื™ื
07:36
right out of the emergency room --
172
456160
1000
ื™ืฉืจ ืžื—ื“ืจ ื”ืžื™ื•ืŸ--
07:37
undefined, community-acquired respiratory tract infections.
173
457160
4000
ืœื-ืžื•ื’ื“ืจื™ื. ื–ื™ื”ื•ืžื™ ื“ืจื›ื™-ื”ื ืฉื™ืžื” ื™ืฉืจ ืžื”ืจื—ื•ื‘.
07:41
You have no idea what walks in through the door.
174
461160
2000
ืื™ืŸ ืœืš ืฉื•ื ืžื•ืฉื’ ืžื” ื™ื™ื›ื ืก ื‘ื“ืœืช.
07:43
So, let's start off with the positive control first,
175
463160
3000
ืื– ื‘ื•ืื• ื ืชื—ื™ืœ ืขื ื”ื‘ืงืจื” ื”ื—ื™ื•ื‘ื™ืช,
07:46
where we know the person was healthy.
176
466160
2000
ื›ืฉืื ื• ื™ื•ื“ืขื™ื ืฉื”ืื“ื ื‘ืจื™ื.
07:48
They got a shot of virus up the nose,
177
468160
2000
ื”ื•ื ืžืงื‘ืœ ืจื™ืกื•ืก ืฉืœ ื•ื™ืจื•ืก ืœืชื•ืš ื”ืืฃ,
07:50
let's see what happens.
178
470160
1000
ื•ื ืจืื” ืžื” ืงื•ืจื”.
07:51
Day zero: nothing happening.
179
471160
2000
ื™ื•ื 0: ืœื ืงื•ืจื” ื“ื‘ืจ.
07:53
They're healthy; they're clean -- it's amazing.
180
473160
2000
ื”ื•ื ื‘ืจื™ื; ื”ื•ื ื ืงื™ - ื–ื” ืžื“ื”ื™ื.
07:55
Actually, we thought the nasal tract might be full of viruses
181
475160
2000
ืœืžืขืฉื” ื—ืฉื‘ื ื• ืฉืžืฉื˜ื— ื”ืืฃ ื™ื”ื™ื” ืžืœื ื•ื™ืจื•ืกื™ื
07:57
even when you're walking around healthy.
182
477160
1000
ืืคื™ืœื• ื›ืฉืืชื” ืžืกืชื•ื‘ื‘ ืœืš ื‘ืจื™ื.
07:58
It's pretty clean. If you're healthy, you're pretty healthy.
183
478160
2000
ื–ื” ื ืงื™ ืœืžื“ื™. ืื ืืชื” ื‘ืจื™ื, ืืชื” ื“ื™ ื‘ืจื™ื.
08:00
Day two: we get a very robust rhinovirus pattern,
184
480160
4000
ื™ื•ื 2: ืื ื• ืžืงื‘ืœื™ื ื“ืคื•ืก ื˜ื•ื‘ ืฉืœ ืจื™ื™ื ื•-ื•ื™ืจื•ืก,
08:04
and it's very similar to what we get in the lab
185
484160
2000
ืื‘ืœ ื–ื” ื“ื•ืžื” ืžืื“ ืœืžื” ืฉืžืชืงื‘ืœ ื‘ืžืขื‘ื“ื”
08:06
doing our tissue culture experiment.
186
486160
1000
ื‘ื ื™ืกื•ื™ ืชืจื‘ื™ืช ื”ืจืงืžื•ืช.
08:07
So that's great, but again, cheap shot, right?
187
487160
3000
ืื– ื–ื” ื ื”ื“ืจ, ืื‘ืœ ืฉื•ื‘, ืงืœ ืžื“ื™, ื ื›ื•ืŸ?
08:10
We put a ton of virus up this guy's nose. So --
188
490160
2000
ื”ื›ื ืกื ื• ื˜ื•ื ื” ื•ื™ืจื•ืกื™ื ืœืืฃ ืฉืœ ื”ื‘ื—ื•ืจ ื”ื–ื”. ืื–-
08:12
(Laughter)
189
492160
1000
(ืฆื—ื•ืง)
08:13
-- I mean, we wanted it to work. He really had a cold.
190
493160
4000
- ื›ืœื•ืžืจ, ืจืฆื™ื ื• ืฉื–ื” ื™ืขื‘ื•ื“, ื•ื”ื•ื ื‘ืืžืช ื”ืฆื˜ื ืŸ.
08:17
So, how about the people who walk in off the street?
191
497160
4000
ืื– ืžื” ืขื ืื ืฉื™ื ืฉื‘ืื™ื ื™ืฉืจ ืžื”ืจื—ื•ื‘?
08:21
Here are two individuals represented by their anonymous ID codes.
192
501160
2000
ืื– ืืœื” ืฉื ื™ ืคืจื˜ื™ื ื”ืžื™ื•ืฆื’ื™ื ื‘ืงื•ื“ื™ ื–ื™ื”ื•ื™ ืืœืžื•ื ื™ื™ื.
08:23
They both have rhinoviruses; we've never seen this pattern in lab.
193
503160
4000
ืœืฉื ื™ื”ื ื™ืฉ ืจื™ื™ื ื•-ื•ื™ืจื•ืก; ืขื•ื“ ืœื ืจืื™ื ื• ื“ืคื•ืก ื–ื” ื‘ืžืขื‘ื“ื”.
08:27
We sequenced part of their viruses;
194
507160
2000
ืจื™ืฆืคื ื• ื—ืœืง ืžื”ื•ื•ื™ืจื•ืกื™ื ืฉืœื”ื;
08:29
they're new rhinoviruses no one's actually even seen.
195
509160
3000
ืืœื” ืจื™ื™ื ื•-ื•ื™ืจื•ืกื™ื ื—ื“ืฉื™ื, ืฉืื™ืฉ ืขื•ื“ ืœื ืคื’ืฉ.
08:32
Remember, our evolutionary-conserved sequences
196
512160
2000
ื–ื™ื›ืจื• ืฉืจืฆืคื™ ื”ืฉื™ืžื•ืจ ื”ืื‘ืœื•ืฆื™ื•ื ื™ ืฉืœื ื•
08:34
we're using on this array allow us to detect
197
514160
2000
ืฉื‘ื”ื ืื ื• ืžืฉืชืžืฉื™ื ื‘ื’ืฉืฉ, ืžืืคืฉืจื™ื ืœื ื• ืœืืชืจ
08:36
even novel or uncharacterized viruses,
198
516160
2000
ืืคื™ืœื• ื•ื™ืจื•ืกื™ื ื—ื“ืฉื™ื ื•ื‘ืœืชื™-ืžืื•ืคื™ื™ื ื™ื,
08:38
because we pick what is conserved throughout evolution.
199
518160
4000
ื›ื™ ืื ื• ืžื—ืคืฉื™ื ืืช ืžื” ืฉื ืฉืชืžืจ ื‘ืžื”ืœืš ื”ื”ืชืคืชื—ื•ืช.
08:42
Here's another guy. You can play the diagnosis game yourself here.
200
522160
3000
ื”ื ื” ื‘ื—ื•ืจ ื ื•ืกืฃ. ืชื•ื›ืœื• ืœืฉื—ืง ืืช ืžืฉื—ืง ื”ืื™ื‘ื—ื•ืŸ ื‘ืขืฆืžื›ื.
08:45
These different blocks represent
201
525160
2000
ื”ืœื‘ื ื™ื ื”ืฉื•ื ื•ืช ื”ืืœื” ืžื™ื™ืฆื’ื•ืช
08:47
the different viruses in this paramyxovirus family,
202
527160
2000
ืืช ื”ื•ื•ื™ืจื•ืกื™ื ื”ืฉื•ื ื™ื ื‘ืžืฉืคื—ืช ื”ืคืจืžื™ืงืกื•-ื•ื™ืจื•ืก,
08:49
so you can kind of go down the blocks
203
529160
1000
ื›ืš ืฉื ื™ืชืŸ ืœืขื‘ื•ืจ ืขืœ ื”ืœื‘ื ื™ื
08:50
and see where the signal is.
204
530160
2000
ื•ืœืจืื•ืช ืžื”ื™ื›ืŸ ืžื’ื™ืข ื”ืื•ืช.
08:52
Well, doesn't have canine distemper; that's probably good.
205
532160
3000
ืื– ืื™ืŸ ืœื• ื›ืœื‘ืช; ื›ื ืจืื” ืฉื–ื” ื˜ื•ื‘.
08:55
(Laughter)
206
535160
2000
(ืฆื—ื•ืง)
08:57
But by the time you get to block nine,
207
537160
2000
ืืš ื›ืฉืžื’ื™ืขื™ื ืœืœื‘ื ื” ืชืฉืข,
08:59
you see that respiratory syncytial virus.
208
539160
2000
ืจื•ืื™ื ืืช ื”ื•ื•ื™ืจื•ืก ื”ืกื™ื ืกื™ืฆื™ืืœื™ ืฉืœ ื“ืจื›ื™-ื”ื ืฉื™ืžื”.
09:01
Maybe they have kids. And then you can see, also,
209
541160
3000
ืื•ืœื™ ื™ืฉ ืœื• ืฆืืฆืื™ื. ื•ืื– ื’ื ืจื•ืื™ื
09:04
the family member that's related: RSVB is showing up here.
210
544160
2000
ืืช ื”ื—ื‘ืจ ื‘ืื•ืชื” ืžืฉืคื—ื”: ื›ืืŸ ืœืžืขืœื” ืจื•ืื™ื RSVB.
09:06
So, that's great.
211
546160
1000
ื›ืš ืฉื–ื” ื’ื“ื•ืœ.
09:07
Here's another individual, sampled on two separate days --
212
547160
3000
ื”ื ื” ืขื•ื“ ืคืจื˜ ืฉื ื“ื’ื ื‘ืฉื ื™ ื™ืžื™ื ืฉื•ื ื™ื -
09:10
repeat visits to the clinic.
213
550160
2000
ื‘ื™ืงื•ืจื™ื ื—ื•ื–ืจื™ื ื‘ืžืจืคืื”.
09:12
This individual has parainfluenza-1,
214
552160
3000
ื™ืฉ ืœื• ืฉืคืขืช-ืคืืจื-1.
09:15
and you can see that there's a little stripe over here
215
555160
2000
ืืชื ืจื•ืื™ื ื›ืืŸ ืจืฆื•ืขื” ืงื˜ื ื”
09:17
for Sendai virus: that's mouse parainfluenza.
216
557160
3000
ืฉืœ ื•ื™ืจื•ืก ืกื ื“ืื™ื™: ื–ื•ื”ื™ ืฉืคืขืช-ืคืืจื ืฉืœ ืขื›ื‘ืจื™ื.
09:20
The genetic relationships are very close there. That's a lot of fun.
217
560160
4000
ื”ื™ื™ื—ื•ืก ื”ื’ื ื˜ื™ ื›ืืŸ ื”ื•ื ืžืื“ ืงืจื•ื‘. ื–ื” ื›ื™ืฃ ื’ื“ื•ืœ.
09:24
So, we built out the chip.
218
564160
1000
ืื– ื‘ื ื™ื ื• ืืช ื”ืฉื‘ื‘.
09:25
We made a chip that has every known virus ever discovered on it.
219
565160
4000
ืขืฉื™ื ื• ืฉื‘ื‘ ืฉื™ืฉ ืขืœื™ื• ื›ืœ ื•ื™ืจื•ืก ืžื•ื›ืจ ืฉืื™-ืคืขื ื ืชื’ืœื”.
09:29
Why not? Every plant virus, every insect virus, every marine virus.
220
569160
3000
ืœืžื” ืœื? ื›ืœ ื•ื™ืจื•ืกื™ ื”ืฆืžื—ื™ื, ื”ื—ืจืงื™ื, ื”ื™ืžื™ื™ื.
09:32
Everything that we could get out of GenBank --
221
572160
2000
ื›ืœ ืžื” ืฉื™ื›ื•ืœื ื• ืœืžืฆื•ื ื‘ื‘ื ืง ื”ื’ื ื™ื -
09:34
that is, the national repository of sequences.
222
574160
2000
ืฉื”ื•ื ื”ืžืื’ืจ ื”ืœืื•ืžื™ ืฉืœ ืจืฆืคื™-ื’ื ื™ื.
09:36
Now we're using this chip. And what are we using it for?
223
576160
3000
ื•ื›ืขืช ืื ื• ืžืฉืชืžืฉื™ื ื‘ืฉื‘ื‘ ื–ื”. ื•ื‘ืฉื‘ื™ืœ ืžื”?
09:39
Well, first of all, when you have a big chip like this,
224
579160
2000
ืงื•ื“ื ื›ืœ, ื›ืฉื™ืฉ ืœื›ื ืฉื‘ื‘ ื‘ื’ื•ื“ืœ ื›ื–ื”,
09:41
you need a little bit more informatics,
225
581160
2000
ื™ืฉ ืฆื•ืจืš ื‘ืงืฆืช ื™ื•ืชืจ ืžื™ื—ืฉื•ื‘,
09:43
so we designed the system to do automatic diagnosis.
226
583160
2000
ืื– ืขื™ืฆื‘ื ื• ืžืขืจื›ืช ืฉืชื‘ืฆืข ืื™ื‘ื—ื•ืŸ ืื•ื˜ื•ืžื˜ื™.
09:45
And the idea is that we simply have virtual patterns,
227
585160
3000
ื•ื”ืจืขื™ื•ืŸ ื”ื•ื, ืฉื™ืฉ ืœื ื• ืคืฉื•ื˜ ื“ืคื•ืกื™ื ื•ื™ืจื˜ื•ืืœื™ื™ื--
09:48
because we're never going to get samples of every virus --
228
588160
2000
ื›ื™ ืœืขื•ืœื ืœื ื ืฆืœื™ื— ืœื”ืฉื™ื’ ื“ื’ื™ืžื•ืช ืฉืœ ื›ืœ ื”ื•ื•ื™ืจื•ืกื™ื;
09:50
it would be virtually impossible. But we can get virtual patterns,
229
590160
3000
ื–ื” ื‘ืœืชื™-ืืคืฉืจื™. ืืš ื‘ื™ื›ื•ืœืชื ื• ืœืงื‘ืœ ื“ืคื•ืกื™ื ื•ื™ืจื˜ื•ืืœื™ื™ื.
09:53
and compare them to our observed result --
230
593160
2000
ื•ืœื”ืฉื•ื•ืชื ืœืชื•ืฆืื” ื”ื ืฆืคื™ืช ืฉืœื ื•,
09:55
which is a very complex mixture -- and come up with some sort of score
231
595160
4000
ืฉื”ื™ื ืชืขืจื•ื‘ืช ืžื•ืจื›ื‘ืช ืžืื“, ื•ืœื”ื’ื™ืข ืœื ื™ืงื•ื“ ื›ืœืฉื”ื•
09:59
of how likely it is this is a rhinovirus or something.
232
599160
3000
ืœื’ื‘ื™ ื”ืกื‘ื™ืจื•ืช ืฉื–ื”ื• ืจื™ื™ื ื•-ื•ื™ืจื•ืก ืื• ืžืฉื”ื• ื“ื•ืžื”.
10:02
And this is what this looks like.
233
602160
2000
ื•ื›ืš ื–ื” ื ืจืื”.
10:04
If, for example, you used a cell culture
234
604160
2000
ืื ืœืžืฉืœ ืืชื ืžืฉืชืžืฉื™ื ื‘ืชืจื‘ื™ืช ืชืื™ื
10:06
that's chronically infected with papilloma,
235
606160
2000
ืฉื–ื•ื”ืžื” ื‘ืฆื•ืจื” ื›ืจื•ื ื™ืช ื‘ื’ื™ื“ื•ืœื™-ืขื•ืจ,
10:08
you get a little computer readout here,
236
608160
2000
ืžืงื‘ืœื™ื ื›ืืŸ ืคืœื˜ ืžื—ืฉื‘ ืงื˜ืŸ,
10:10
and our algorithm says it's probably papilloma type 18.
237
610160
4000
ื•ื”ืืœื’ื•ืจื™ืชื ืฉืœื ื• ืื•ืžืจ ืฉื–ื• ื›ื ืจืื” ืคืคื™ืœื•ืžื” ืกื•ื’ 18.
10:14
And that is, in fact, what these particular cell cultures
238
614160
2000
ื•ื–ื”ื• ื‘ืืžืช ืžื” ืฉืชืจื‘ื™ืช ื”ืชืื™ื ื”ื–ื•
10:16
are chronically infected with.
239
616160
2000
ื–ื•ื”ืžื” ื‘ื•.
10:18
So let's do something a little bit harder.
240
618160
2000
ืื– ื‘ื•ืื• ื ืขืฉื” ืžืฉื”ื• ื™ื•ืชืจ ืงืฉื”.
10:20
We put the beeper in the clinic.
241
620160
1000
ืฉืžื ื• ืื™ืชื•ืจื™ืช ื‘ืžืจืคืื”.
10:21
When somebody shows up, and the hospital doesn't know what to do
242
621160
3000
ื›ืฉืžื•ืคื™ืข ืžื™ืฉื”ื• ืฉื‘ื™ื”"ื— ืœื ื™ื•ื“ืข ืžื” ืœืขืฉื•ืช ืื™ืชื•
10:24
because they can't diagnose it, they call us.
243
624160
2000
ื›ื™ ืื™ื ื ืžืกื•ื’ืœื™ื ืœืื‘ื—ืŸ ืื•ืชื•, ื”ื ืงื•ืจืื™ื ืœื ื•.
10:26
That's the idea, and we're setting this up in the Bay Area.
244
626160
2000
ื–ื”ื• ื”ืจืขื™ื•ืŸ, ื•ืื ื• ืคืจืฉื ื• ืžืขืจื›ืช ื–ื• ื‘ืื–ื•ืจ ื”ืžืคืจืฅ.
10:28
And so, this case report happened three weeks ago.
245
628160
2000
ื•ื”ืžืงืจื” ื”ื–ื” ื”ื’ื™ืข ืœืคื ื™ ืฉืœื•ืฉื” ืฉื‘ื•ืขื•ืช.
10:30
We have a 28-year-old healthy woman, no travel history,
246
630160
3000
ื™ืฉ ืœื ื• ืื™ืฉื” ื‘ืจื™ืื” ื‘ืช 28, ืœืœื ืขื‘ืจ ืฉืœ ื˜ื™ื•ืœื™ื,
10:33
[unclear], doesn't smoke, doesn't drink.
247
633160
3000
ืื™ื ื” ืžืขืฉื ืช, ืื™ื ื” ืฉื•ืชื”.
10:36
10-day history of fevers, night sweats, bloody sputum --
248
636160
4000
ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืขืฉืจื” ื™ืžื™ ื—ื•ื, ื”ื–ืขื•ืช ืœื™ืœื”, ืœื™ื—ื” ื“ืžื™ืช -
10:40
she's coughing up blood -- muscle pain.
249
640160
2000
ื™ืฉ ืœื” ื“ื ื‘ืฉื™ืขื•ืœ - ื›ืื‘ื™ ืฉืจื™ืจื™ื.
10:42
She went to the clinic, and they gave her antibiotics
250
642160
4000
ื”ืœื›ื” ืœืžืจืคืื”, ื ืชื ื• ืœื” ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”, ื™ื•ืคื™,
10:46
and then sent her home.
251
646160
1000
ื•ืฉืœื—ื• ืื•ืชื” ื”ื‘ื™ืชื”.
10:47
She came back after ten days of fever, right? Still has the fever,
252
647160
4000
ื—ื–ืจื” ืื—ืจื™ 10 ื™ืžื™ ื—ื•ื - ืขื“ื™ื™ืŸ ืขื ื—ื•ื -
10:51
and she's hypoxic -- she doesn't have much oxygen in her lungs.
253
651160
3000
ื•ื”ื™ื ื”ื™ืคื•ืงืกื™ืช: ืื™ืŸ ืœื” ืžืกืคื™ืง ื—ืžืฆืŸ ื‘ืจื™ืื•ืช.
10:54
They did a CT scan.
254
654160
1000
ืขืฉื• ืœื” ืกืจื™ืงื” ื˜ื•ืžื•ื’ืจืคื™ืช.
10:55
A normal lung is all sort of dark and black here.
255
655160
4000
ื‘ืจื™ืื” ืชืงื™ื ื” ืจื•ืื™ื ื›ืืŸ ื”ืจื‘ื” ืฆื‘ืขื™ื ื›ื”ื™ื ื•ืฉื—ื•ืจื™ื.
10:59
All this white stuff -- it's not good.
256
659160
2000
ื›ืœ ื–ื” ืœื‘ืŸ - ืœื ื˜ื•ื‘.
11:01
This sort of tree and bud formation indicates there's inflammation;
257
661160
3000
ืฆื•ืจืช ื”ืขืฅ ื•ื”ื ื™ืฆื ื™ื ืžืฆื‘ื™ืขื” ืขืœ ื“ืœืงืช;
11:04
there's likely to be infection.
258
664160
2000
ืกื‘ื™ืจ ืฉื™ืฉ ืฉื ื–ื™ื”ื•ื.
11:06
OK. So, the patient was treated then
259
666160
3000
ื‘ืกื“ืจ. ืื– ื”ื—ื•ืœื” ื˜ื•ืคืœื”
11:09
with a third-generation cephalosporin antibiotic and doxycycline,
260
669160
4000
ื‘ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”, ืฆืคืœื•ืกืคื•ืจื™ืŸ ื“ื•ืจ 3 ื•ื“ื•ืงืกื™ืฆื™ืงืœื™ืŸ,
11:13
and on day three, it didn't help: she had progressed to acute failure.
261
673160
4000
ื•ื‘ื™ื•ื ื”ืฉืœื™ืฉื™ ื–ื” ืœื ืขื–ืจ. ื”ื™ื ื”ื’ื™ืขื” ืœื›ืฉืœ ื—ืžื•ืจ.
11:17
They had to intubate her, so they put a tube down her throat
262
677160
3000
ื”ื ื ืืœืฆื• ืœืฆื ืจืจ ืื•ืชื”, ืื– ื”ื›ื ื™ืกื• ืฆื™ื ื•ืจ ืœื’ืจื•ื ื”
11:20
and they began to mechanically ventilate her.
263
680160
1000
ื•ื”ื—ืœื• ืœืกืคืง ืœื” ืื•ื•ื™ืจ ื‘ืื•ืคืŸ ืžื›ื ื™.
11:21
She could no longer breathe for herself.
264
681160
2000
ื”ื™ื ื›ื‘ืจ ืœื ื™ื›ืœื” ืœื ืฉื•ื ื‘ืขืฆืžื”.
11:23
What to do next? Don't know.
265
683160
2000
ืžื” ืขื•ืฉื™ื ื”ืœืื”? ืœื ื™ื•ื“ืขื™ื.
11:25
Switch antibiotics: so they switched to another antibiotic,
266
685160
3000
ืžื—ืœื™ืคื™ื ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”. ืื– ื”ื ื”ื—ืœื™ืคื• ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”,
11:28
Tamiflu.
267
688160
2000
ื•ื˜ืืžื™ืคืœื•, ืฉ --
11:30
It's not clear why they thought she had the flu,
268
690160
2000
ืœื ื‘ืจื•ืจ ืžื“ื•ืข ื”ื ื—ืฉื‘ื• ืฉื™ืฉ ืœื” ืฉืคืขืช -
11:32
but they switched to Tamiflu.
269
692160
2000
ืื‘ืœ ื”ื ืขื‘ืจื• ืœื˜ืืžื™ืคืœื•.
11:34
And on day six, they basically threw in the towel.
270
694160
2000
ื•ื‘ื™ื•ื ื”ืฉืฉื™ ื”ื ื‘ืขืฆื ื•ื™ืชืจื•.
11:36
You do an open lung biopsy when you've got no other options.
271
696160
4000
ืขื•ืฉื™ื ื‘ื™ื•ืคืกื™ื” ื‘ืจื™ืื” ืคืชื•ื—ื” ื›ืฉืื™ืŸ ื›ืœ ื‘ืจื™ืจื” ืื—ืจืช.
11:40
There's an eight percent mortality rate with just doing this procedure,
272
700160
2000
ื™ืฉ ืฉื™ืขื•ืจ ืชืžื•ืชื” ืฉืœ 8% ืจืง ืžืขืฆื ื‘ื™ืฆื•ืข ืชื”ืœื™ืš ื–ื”,
11:42
and so basically -- and what do they learn from it?
273
702160
3000
ืื– ื‘ืขืฆื... ื•ืžื” ื”ื ืœืžื“ื• ืžื›ืš?
11:45
You're looking at her open lung biopsy.
274
705160
2000
ืืชื ืจื•ืื™ื ืืช ื‘ื™ื•ืคืกื™ื™ืช ื”ืจื™ืื” ื”ืคืชื•ื—ื” ืฉืœื”.
11:47
And I'm no pathologist, but you can't tell much from this.
275
707160
2000
ืื ื™ ืœื ืคืชื•ืœื•ื’, ืืš ืื™-ืืคืฉืจ ืœืœืžื•ื“ ืžื–ื” ื”ืจื‘ื”.
11:49
All you can tell is, there's a lot of swelling: bronchiolitis.
276
709160
3000
ืืœื ืจืง ืฉื™ืฉ ื ืคื™ื—ื•ืช ืจื‘ื”: ื“ืœืงืช ื”ืกื™ืžืคื•ื ื•ืช.
11:52
It was "unrevealing": that's the pathologist's report.
277
712160
3000
ืื™ืŸ ื›ืืŸ ืฉื•ื ื“ื‘ืจ ื—ื“ืฉ: ื–ื”ื• ื“ื•ื— ื”ืคืชื•ืœื•ื’.
11:55
And so, what did they test her for?
278
715160
3000
ืื– ืžื” ื”ื ืฆื™ืคื• ืœืžืฆื•ื ื‘ื‘ื“ื™ืงื•ืช ืฉืœื”?
11:58
They have their own tests, of course,
279
718160
1000
ื™ืฉ ืœื”ื ื›ืžื•ื‘ืŸ ื”ื‘ื“ื™ืงื•ืช ืฉืœื”ื,
11:59
and so they tested her for over 70 different assays,
280
719160
3000
ืื– ื”ื ื‘ื“ืงื• ืื•ืชื” ื‘ื™ื•ืชืจ ืž-70 ืืžืฆืขื™ ืื™ื‘ื—ื•ืŸ ืฉื•ื ื™ื,
12:02
for every sort of bacteria and fungus and viral assay
281
722160
3000
ื‘ื›ืœ ืกื•ื’ ืฉืœ ื‘ื“ื™ืงื” ื—ื™ื™ื“ืงื™ืช, ืคื˜ืจื™ื™ืชื™ืช ื•ื•ื™ืจืืœื™ืช
12:05
you can buy off the shelf:
282
725160
2000
ืฉืืคืฉืจ ืœืงื ื•ืช ื‘ื™ืžื™ื ื•:
12:07
SARS, metapneumovirus, HIV, RSV -- all these.
283
727160
3000
ืกืืจืก, ืžื˜ืคื ื•ืžื•-ื•ื™ืจื•ืก, ืื™ื™ื“ืก, ื•ื™ืจื•ืก ืกื™ื ืกื™ืฆื™ืืœื™ - ื›ืœ ืืœื”.
12:10
Everything came back negative, over 100,000 dollars worth of tests.
284
730160
4000
ื›ืœ ื”ืชื•ืฆืื•ืช ื”ื™ื• ืฉืœื™ืœื™ื•ืช. ื‘ื“ื™ืงื•ืช ื‘ื™ื•ืชืจ ืž-100,000 ื“ื•ืœืจ.
12:14
I mean, they went to the max for this woman.
285
734160
3000
ื›ืœื•ืžืจ, ื”ื ื”ืœื›ื• ืขื“ ื”ื–ื•ืฃ ืขื ื”ืื™ืฉื” ื”ื–ื•.
12:17
And basically on hospital day eight, that's when they called us.
286
737160
3000
ื•ื‘ืขืฆื ื‘ื™ื•ื ื”ืื™ืฉืคื•ื– ื”ืฉืžื™ื ื™ ื”ื ืงืจืื• ืœื ื•.
12:20
They gave us endotracheal aspirate --
287
740160
2000
ื”ื ื ืชื ื• ืœื ื• ืจื™ืจ ืชื•ืš-ืงื ื™ --
12:22
you know, a little fluid from the throat,
288
742160
2000
ืืชื ื™ื•ื“ืขื™ื, ืžืขื˜ ื ื•ื–ืœ ืžืชื•ืš ื”ื’ืจื•ืŸ,
12:24
from this tube that they got down there -- and they gave us this.
289
744160
2000
ืžืฉืคื•ืคืจืช ืฉื”ื›ื ื™ืกื• ืœืฉื-- ื•ื ืชื ื• ืœื ื• ืืช ื–ื”.
12:26
We put it on the chip; what do we see? Well, we saw parainfluenza-4.
290
746160
5000
ืฉืžื ื• ื–ืืช ืขืœ ื”ืฉื‘ื‘, ื•ืžื” ืื ื• ืจื•ืื™ื? ืฉืคืขืช-ืคืืจื-4.
12:31
Well, what the hell's parainfluenza-4?
291
751160
2000
ืื– ืžื” ืœืขื–ืื–ืœ ื–ื” ืฉืคืขืช-ืคืืจื-4?
12:33
No one tests for parainfluenza-4. No one cares about it.
292
753160
3000
ืื™ืฉ ืœื ื‘ื“ืง ืฉืคืขืช-ืคืืจื-4. ืื™ืฉ ืœื ื—ืฉื‘ ืขืœ ื–ื”.
12:36
In fact, it's not even really sequenced that much.
293
756160
3000
ืœืžืขืฉื”, ื–ื” ืืคื™ืœื• ืœื ืจื•ืฆืฃ ื”ืจื‘ื”.
12:39
There's just a little bit of it sequenced.
294
759160
2000
ื™ืฉ ืจืง ืจืฆืคื™ื ืžื•ืขื˜ื™ื ืฉืœ ื–ื”.
12:41
There's almost no epidemiology or studies on it.
295
761160
2000
ืื™ืŸ ืฉื•ื ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื” ืื• ืžื—ืงืจื™ื ืขืœ ื›ืš.
12:43
No one would even consider it,
296
763160
2000
ืื™ืฉ ืœื ื”ื™ื” ืžืขืœื” ื–ืืช ื‘ื“ืขืชื•,
12:45
because no one had a clue that it could cause respiratory failure.
297
765160
3000
ื›ื™ ืœืื™ืฉ ืœื ื”ื™ื” ืžื•ืฉื’ ืฉื–ื” ืขืœื•ืœ ืœื’ืจื•ื ืœื›ืฉืœ ื ืฉื™ืžืชื™.
12:48
And why is that? Just lore. There's no data --
298
768160
3000
ื•ืžื“ื•ืข ื–ื”? ืจืง ืขื ื™ื™ืŸ ืฉืœ ื™ื“ืข. ืื™ืŸ ื“ื™ ื ืชื•ื ื™ื--
12:51
no data to support whether it causes severe or mild disease.
299
771160
4000
ืื™ืŸ ื ืชื•ื ื™ื ืื ื–ื” ื’ื•ืจื ืœื—ื•ืœื™ ื—ืžื•ืจ ืื• ืงืœ.
12:55
Clearly, we have a case of a healthy person that's going down.
300
775160
3000
ื‘ืจื•ืจ ืฉื™ืฉ ืœื ื• ืžืงืจื” ืฉืœ ืื“ื ื‘ืจื™ื ืฉืžื™ื“ืจื“ืจ.
12:58
OK, that's one case report.
301
778160
3000
ืื– ื–ื”ื• ื“ื•ื—-ืžืงืจื” ืื—ื“.
13:01
I'm going to tell you one last thing in the last two minutes
302
781160
2000
ืืกืคืจ ืœื›ื ืขื•ื“ ื“ื‘ืจ ืื—ื“ ื‘ืฉืชื™ ื”ื“ืงื•ืช ื”ืื—ืจื•ื ื•ืช
13:03
that's unpublished -- it's going to come out tomorrow --
303
783160
3000
ืฉืœื ืคื•ืจืกื-- ื–ื” ื™ืชืคืจืกื ืžื—ืจ--
13:06
and it's an interesting case of how you might use this chip
304
786160
3000
ื•ื–ื” ืžืงืจื” ืžืขื ื™ื™ืŸ ืฉืžืจืื” ืื™ืš ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ืฉื‘ื‘ ื”ื–ื”
13:09
to find something new and open a new door.
305
789160
2000
ืœืžืฆื•ื ืžืฉื”ื• ื—ื“ืฉ ื•ืœืคืชื•ื— ื“ืœืช ื—ื“ืฉื”.
13:11
Prostate cancer. I don't need to give you many statistics
306
791160
4000
ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช. ืื™ื ื™ ืฆืจื™ืš ืœืชืช ืœื›ื ื”ืจื‘ื” ืกื˜ื˜ื™ืกื˜ื™ืงื”
13:15
about prostate cancer. Most of you already know it:
307
795160
3000
ืขืœ ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช. ืžืจื‘ื™ืชื›ื ื›ื‘ืจ ืžื›ื™ืจื™ื ืืช ื–ื”:
13:18
third leading cause of cancer deaths in the U.S.
308
798160
2000
ื”ื’ื•ืจื ื”ืฉืœื™ืฉื™ ื‘ืžืขืœื” ืœืžื•ื•ืช ืžืกืจื˜ืŸ ื‘ืืจื”"ื‘.
13:20
Lots of risk factors,
309
800160
2000
ื”ืžื•ืŸ ื’ื•ืจืžื™ ืกื™ื›ื•ืŸ,
13:22
but there is a genetic predisposition to prostate cancer.
310
802160
4000
ืืš ืงื™ื™ืžืช ื ื˜ื™ื™ื” ื’ื ื˜ื™ืช ืœืœืงื•ืช ื‘ืกืจื˜ืŸ ืขืจืžื•ื ื™ืช.
13:26
For maybe about 10 percent of prostate cancer,
311
806160
2000
ื›-10% ืžืžืงืจื™ ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช
13:28
there are folks that are predisposed to it.
312
808160
2000
ื”ื ืื ืฉื™ื ืขื ื ื˜ื™ื” ืžื•ืœื“ืช ืœืœืงื•ืช ื‘ื•.
13:30
And the first gene that was mapped in association studies
313
810160
4000
ื•ื”ื’ืŸ ื”ืจืืฉื•ืŸ ืฉืžื•ืคื” ื‘ืžื—ืงืจื™ ื–ื™ืงื” ื’ื ื˜ื™ืช
13:34
for this, early-onset prostate cancer, was this gene called RNASEL.
314
814160
4000
ืœื›ืš, ื‘ืฉืœื‘ ืžื•ืงื“ื ืฉืœ ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช, ื”ื™ื” ื”ื’ืŸ RNASEL.
13:38
What is that? It's an antiviral defense enzyme.
315
818160
3000
ื•ืžื” ื”ื•ื? ื–ื”ื• ืื ื–ื™ื ื”ื’ื ื” ืื ื˜ื™-ื•ื™ืจืืœื™.
13:41
So, we're sitting around and thinking,
316
821160
2000
ืื– ืื ื• ื™ื•ืฉื‘ื™ื ืœื ื• ื•ื—ื•ืฉื‘ื™ื,
13:43
"Why would men who have the mutation --
317
823160
2000
ืœืžื” ืฉื’ื‘ืจื™ื ืฉื™ืฉ ืœื”ื ื”ืžื•ื˜ืฆื™ื” ื”ื–ื•,
13:45
a defect in an antiviral defense system -- get prostate cancer?
318
825160
5000
ืคื’ื ื‘ืžืขืจื›ืช ื”ื”ื’ื ื” ื‘ืคื ื™ ื•ื™ืจื•ืกื™ื, ื™ืœืงื• ื‘ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช?
13:50
It doesn't make sense -- unless, maybe, there's a virus?"
319
830160
3000
ื–ื” ืœื ื”ื’ื™ื•ื ื™ - ืืœื ืื ื›ืŸ ื™ืฉ ืฉื ื•ื™ืจื•ืก.
13:53
So, we put tumors --- and now we have over 100 tumors -- on our array.
320
833160
6000
ืื– ืฉืžื ื• ื’ื™ื“ื•ืœื™ื-- ื™ืฉ ืœื ื• ืžืขืœ 100-- ืขืœ ื”ื’ืฉืฉ ืฉืœื ื•.
13:59
And we know who's got defects in RNASEL and who doesn't.
321
839160
3000
ื•ืื ื• ื™ื•ื“ืขื™ื ืœืžื™ ื™ืฉ ืคื’ืžื™ื ื‘-RNASEL ื•ืœืžื™ ืœื.
14:02
And I'm showing you the signal from the chip here,
322
842160
3000
ื•ืื ื™ ืžืจืื” ืœื›ื ืืช ื”ืื•ืช ื”ื–ื” ืžื”ืฉื‘ื‘,
14:05
and I'm showing you for the block of retroviral oligos.
323
845160
4000
ื•ืื ื™ ืžืจืื” ื–ืืช ืขื‘ื•ืจ ื’ื•ืฉ ืจืฆืคื™ ื”ืจื˜ืจื•-ื•ื™ืจื•ืกื™ื.
14:09
And what I'm telling you here from the signal, is
324
849160
2000
ื•ืžื” ืฉืื ื™ ืื•ืžืจ ืœื›ื ืœืคื™ ื”ืื•ืช ื”ื•ื,
14:11
that men who have a mutation in this antiviral defense enzyme,
325
851160
4000
ืฉื’ื‘ืจื™ื ื‘ืขืœื™ ืžื•ื˜ืฆื™ื” ื‘ืื ื–ื™ื ื”ื’ื ื” ืื ื˜ื™-ื•ื™ืจืืœื™ ื–ื”,
14:15
and have a tumor, often have -- 40 percent of the time --
326
855160
4000
ื•ืฉื™ืฉ ืœื”ื ื’ื™ื“ื•ืœ, ืœืขืชื™ื ืงืจื•ื‘ื•ืช - 40% ืžื”ื–ืžืŸ -
14:19
a signature which reveals a new retrovirus.
327
859160
4000
ื™ืฉ ืœื”ื ื—ืชื™ืžื” ืฉืชื—ืฉื•ืฃ ืกื•ื’ ื—ื“ืฉ ืฉืœ ืจื˜ืจื•-ื•ื™ืจื•ืก.
14:23
OK, that's pretty wild. What is it?
328
863160
3000
ื‘ืกื“ืจ, ื–ื” ืคืจื•ืข ืœืžื“ื™. ืžื” ื–ื”?
14:26
So, we clone the whole virus.
329
866160
1000
ืื– ืฉื™ื›ืคืœื ื• ืืช ื›ืœ ื”ื•ื•ื™ืจื•ืก.
14:27
First of all, I'll tell you that a little automated prediction told us
330
867160
4000
ืจืืฉื™ืช, ืื’ืœื” ืœื›ื ืฉืชื—ื–ื™ืช ืื•ื˜ื•ืžื˜ื™ืช ืงื˜ื ื” ืืžืจื” ืœื ื•
14:31
it was very similar to a mouse virus.
331
871160
2000
ืฉื–ื” ื“ื•ืžื” ืžืื“ ืœื•ื•ื™ืจื•ืก ืขื›ื‘ืจื™ื.
14:33
But that doesn't tell us too much,
332
873160
1000
ืืš ื–ื” ืœื ืื•ืžืจ ืœื ื• ื”ืจื‘ื”,
14:34
so we actually clone the whole thing.
333
874160
2000
ืื– ื‘ืขืฆื ืฉื™ื›ืคืœื ื• ืืช ื”ื›ืœ.
14:36
And the viral genome I'm showing you right here?
334
876160
2000
ื•ื”ื’ื ื•ื ื”ื•ื™ืจืืœื™ ืฉืื ื™ ืžืจืื” ืœื›ื ื‘ื“ื™ื•ืง ื›ืืŸ?
14:38
It's a classic gamma retrovirus, but it's totally new;
335
878160
3000
ื–ื”ื• ืจื˜ืจื•-ื•ื™ืจื•ืก ืงืœืกื™, ืื‘ืœ ื”ื•ื ื—ื“ืฉ ืœื’ืžืจื™;
14:41
no one's ever seen it before.
336
881160
1000
ืื™ืฉ ืœื ืจืื” ืื•ืชื• ืขื“ ื›ื”.
14:42
Its closest relative is, in fact, from mice,
337
882160
3000
ืงืจื•ื‘-ื”ืžืฉืคื—ื” ื”ืงืจื•ื‘ ื‘ื™ื•ืชืจ ืฉืœื• ื”ื•ื ื‘ืขืฆื ืขื›ื‘ืจื™,
14:45
and so we would call this a xenotropic retrovirus,
338
885160
4000
ื›ืš ืฉื™ื›ื•ืœื ื• ืœื›ื ื•ืช ื–ืืช "ืจื˜ืจื•-ื•ื™ืจื•ืก ืงืกื ื•ื˜ืจื•ืคื™",
14:49
because it's infecting a species other than mice.
339
889160
3000
ื›ื™ ื”ื•ื ืžื“ื‘ื™ืง ืžื™ื ื™ื ืื—ืจื™ื ืžืœื‘ื“ ืขื›ื‘ืจื™ื.
14:52
And this is a little phylogenetic tree
340
892160
2000
ื•ื–ื”ื• ืขืฅ-ืžืฉืคื—ื” ื’ื ื˜ื™ ืงื˜ืŸ
14:54
to see how it's related to other viruses.
341
894160
2000
ืฉืžืจืื” ืื™ืš ื”ื•ื ืงืฉื•ืจ ืœื™ืชืจ ื”ื•ื•ื™ืจื•ืกื™ื.
14:56
We've done it for many patients now,
342
896160
3000
ืขืฉื™ื ื• ื–ืืช ื›ื‘ืจ ืขื‘ื•ืจ ื—ื•ืœื™ื ืจื‘ื™ื,
14:59
and we can say that they're all independent infections.
343
899160
3000
ื•ื‘ื™ื›ื•ืœืชื ื• ืœืงื‘ื•ืข ืฉื›ื•ืœื ื–ื™ื”ื•ืžื™ื ืขืฆืžืื™ื™ื.
15:02
They all have the same virus,
344
902160
1000
ืœื›ื•ืœื ื™ืฉ ืื•ืชื• ื”ื•ื•ื™ืจื•ืก,
15:03
but they're different enough that there's reason to believe
345
903160
3000
ืืš ื”ื ืžืกืคื™ืง ืฉื•ื ื™ื ื›ื“ื™ ืฉื ืืžื™ืŸ
15:06
that they've been independently acquired.
346
906160
2000
ืฉื”ื ื ืจื›ืฉื• ื‘ื–ื™ื”ื•ื ืขืฆืžืื™.
15:08
Is it really in the tissue? And I'll end up with this: yes.
347
908160
2000
ื”ืื ื–ื” ื‘ืืžืช ื ืžืฆื ื‘ืจืงืžื•ืช? ื•ื‘ื›ืš ืืกื™ื™ื. ื›ืŸ.
15:10
We take slices of these biopsies of tumor tissue
348
910160
3000
ืื ื• ื ื•ื˜ืœื™ื ืคืจื•ืกื•ืช ืžื‘ื™ื•ืคืกื™ื•ืช ืฉืœ ืจืงืžื•ืช ื’ื™ื“ื•ืœ
15:13
and use material to actually locate the virus,
349
913160
2000
ื•ืžืฉืชืžืฉื™ื ื‘ื—ื•ืžืจื™ื ื›ื“ื™ ืœืืชืจ ื‘ื“ื™ื•ืง ืืช ื”ื•ื•ื™ืจื•ืก,
15:15
and we find cells here with viral particles in them.
350
915160
4000
ื•ืื ื• ืžื•ืฆืื™ื ื›ืืŸ ืชืื™ื ืฉื‘ื”ื ื—ืœืงื™ืงื™ื ื•ื™ืจืืœื™ื™ื.
15:19
These guys really do have this virus.
351
919160
2000
ื”ื—ื‘ืจ'ื” ื”ืืœื” ื‘ืืžืช ื ื’ื•ืขื™ื ื‘ื•ื•ื™ืจื•ืก ื”ื–ื”.
15:21
Does this virus cause prostate cancer?
352
921160
2000
ื”ืื ื•ื™ืจื•ืก ื–ื” ื’ื•ืจื ืœืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช?
15:23
Nothing I'm saying here implies causality. I don't know.
353
923160
4000
ื“ื‘ืจ ืžืžื” ืฉืื ื™ ืื•ืžืจ ื›ืืŸ ืœื ืžื•ืจื” ืขืœ ืกื™ื‘ืชื™ื•ืช. ืื™ื ื™ ื™ื•ื“ืข.
15:27
Is it a link to oncogenesis? I don't know.
354
927160
2000
ื”ืื ื–ื” ืงืฉื•ืจ ืœื”ืชืคืชื—ื•ืช ื’ื™ื“ื•ืœื™ื? ืื™ื ื ื™ ื™ื•ื“ืข.
15:29
Is it the case that these guys are just more susceptible to viruses?
355
929160
4000
ื”ืื ื”ื—ื‘ืจ'ื” ื”ืืœื” ื ื•ื˜ื™ื ื‘ืžืงืจื” ื™ื•ืชืจ ืœืœืงื•ืช ื‘ื•ื•ื™ืจื•ืกื™ื?
15:33
Could be. And it might have nothing to do with cancer.
356
933160
3000
ื™ื™ืชื›ืŸ. ื•ืื•ืœื™ ืื™ืŸ ืœื–ื” ื›ืœ ืงืฉืจ ืœืกืจื˜ืŸ.
15:36
But now it's a door.
357
936160
1000
ืื‘ืœ ืขื›ืฉื™ื• ื–ื”ื• ืคืชื—.
15:37
We have a strong association between the presence of this virus
358
937160
3000
ื™ืฉ ืœื ื• ื–ื™ืงื” ื—ื–ืงื” ื‘ื™ืŸ ื ื•ื›ื—ื•ืช ื”ื•ื•ื™ืจื•ืก ื”ื–ื”
15:40
and a genetic mutation that's been linked to cancer.
359
940160
3000
ื•ืžื•ื˜ืฆื™ื” ื’ื ื˜ื™ืช ืฉื‘ืขื‘ืจ ืงื•ืฉืจื” ืœืกืจื˜ืŸ.
15:43
That's where we're at.
360
943160
1000
ื›ืืŸ ืื ื• ืขื•ืžื“ื™ื.
15:44
So, it opens up more questions than it answers, I'm afraid,
361
944160
4000
ื—ื•ืฉืฉื ื™ ืฉื–ื” ืžืขืœื” ื™ื•ืชืจ ืฉืืœื•ืช ืžืืฉืจ ืชืฉื•ื‘ื•ืช,
15:48
but that's what, you know, science is really good at.
362
948160
2000
ืืš ื–ื” ืžื” ืฉื”ืžื“ืข ื‘ืืžืช ื˜ื•ื‘ ื‘ื•.
15:50
This was all done by folks in the lab --
363
950160
2000
ื›ืœ ื–ื” ื ืขืฉื” ืข"ื™ ื—ื‘ืจ'ื” ื‘ืžืขื‘ื“ื”;
15:52
I cannot take credit for most of this.
364
952160
1000
ืืช ืจื•ื‘ ื”ื“ื‘ืจื™ื ืื™ื ื ื™ ื™ื›ื•ืœ ืœื–ืงื•ืฃ ืœื–ื›ื•ืชื™.
15:53
This is a collaboration between myself and Don.
365
953160
1000
ื™ืฉ ืฉื™ืชื•ืฃ ืคืขื•ืœื” ื‘ื™ื ื™ ืœื‘ื™ืŸ ื“ื•ืŸ.
15:54
This is the guy who started the project in my lab,
366
954160
3000
ื–ื” ื”ื‘ื—ื•ืจ ืฉื”ืชื—ื™ืœ ืืช ื”ืคืจื•ื™ื™ืงื˜ ื‘ืžืขื‘ื“ื” ืฉืœื™,
15:57
and this is the guy who's been doing prostate stuff.
367
957160
2000
ื•ื–ื” ื”ื‘ื—ื•ืจ ืฉืžืชืขืกืง ื‘ืขื ื™ื™ื ื™ ื”ืขืจืžื•ื ื™ืช.
15:59
Thank you very much. (Applause)
368
959160
3000
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7