Stephen Lawler: Look! Up in the sky! It's Virtual Earth!

19,216 views ใƒป 2007-06-21

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Eunyoung Lim ๊ฒ€ํ† : Luke Sungho Ahn
00:25
What I want to talk to you about today is
0
25000
3000
์ œ๊ฐ€ ์˜ค๋Š˜ ์—ฌ๋Ÿฌ๋ถ„๋“ค๊ป˜ ๋ง์”€๋“œ๋ฆฌ๊ณ  ์‹ถ์€ ๊ฒƒ์€
00:28
virtual worlds, digital globes, the 3-D Web, the Metaverse.
1
28000
9000
๊ฐ€์ƒ ์„ธ๊ณ„, ๋””์ง€ํ„ธ ๊ธ€๋กœ๋ธŒ, 3์ฐจ์› ์›น, ๊ทธ๋ฆฌ๊ณ  ๋ฉ”ํƒ€๋ฒ„์Šค์ž…๋‹ˆ๋‹ค.
00:37
What does this all mean for us?
2
37000
2000
์ € ๋ชจ๋“ ๊ฒŒ ์šฐ๋ฆฌ์—๊ฒŒ ์–ด๋–ค ์˜๋ฏธ์ผ๊นŒ์š”?
00:39
What it means is the Web is going to become an exciting place again.
3
39000
5000
๊ทธ๊ฑด ๋ฐ”๋กœ ์›น์ด ๋‹ค์‹œ ํฅ๋ฏธ๋กœ์šด ๊ณต๊ฐ„์ด ๋˜๊ณ  ์žˆ๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.
00:44
It's going to become super exciting as we transform
4
44000
3000
์›น์€ ๋Œ€๋‹จํžˆ ํฅ๋ฏธ๋กœ์›Œ์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:47
to this highly immersive and interactive world.
5
47000
4000
๊ทธ๋ž˜ํ”ฝ, ์ปดํ“จํŒ… ํŒŒ์›Œ, ๋‚ฎ์€ ์ง€์—ฐ์œจ๋กœ
00:51
With graphics, computing power, low latencies,
6
51000
3000
์›น์ด ๋งค์šฐ ๋ชฐ์ž…์ ์ด๊ฑฐ๋‚˜ ์ธํ„ฐ๋ ‰ํ‹ฐ๋ธŒํ•œ ์„ธ๊ณ„๋กœ ๋ฐ”๋€Œ์–ด ๊ฐ€๋ฉด์„œ์š”.
00:54
these types of applications and possibilities
7
54000
3000
์ด๋Ÿฐ ์œ ํ˜•๋“ค์˜ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ๋“ค๊ณผ ๊ฐ€๋Šฅ์„ฑ๋“ค์„ ํ†ตํ•ด
00:57
are going to stream rich data into your lives.
8
57000
5000
ํ’๋ถ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์šฐ๋ฆฌ ์ƒํ™œ ์†์œผ๋กœ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:02
So the Virtual Earth initiative, and other types of these initiatives,
9
62000
5000
๋ฒ„์ธ„์–ผ ์–ด์“ฐ์— ๋Œ€ํ•œ ๊ณ„ํš, ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฐ ์œ ํ˜•์˜ ํ”„๋กœ๊ทธ๋žจ์— ๋Œ€ํ•œ ๊ณ„ํš๋“ค์€
01:07
are all about extending our current search metaphor.
10
67000
6000
ํ˜„์žฌ์˜ ๊ฒ€์ƒ‰ ๋ฉ”ํƒ€ํฌ๋ฅผ ํ™•์žฅ์‹œํ‚ค๋Š” ์ „๋ฐ˜์— ๊ฑธ์ณ ์žˆ์Šต๋‹ˆ๋‹ค.
01:13
When you think about it, we're so constrained by browsing the Web,
11
73000
3000
์ƒ๊ฐํ•ด๋ณด๋ฉด, ์šฐ๋ฆฌ๋Š” ์›น์„ ๊ฒ€์ƒ‰ํ•˜๊ฑฐ๋‚˜, ์ฃผ์†Œ๋ฅผ ๊ธฐ์–ตํ•˜๊ฑฐ๋‚˜,
01:16
remembering URLs, saving favorites.
12
76000
3000
์ฆ๊ฒจ์ฐพ๊ธฐ๋กœ ์ €์žฅํ•˜๋Š”๋ฐ ๋งŽ์€ ์ œ์•ฝ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
01:19
As we move to search, we rely on the relevance rankings,
13
79000
3000
๊ฒ€์ƒ‰์— ๋Œ€ํ•ด์„œ๋„, ๊ด€๋ จ๋„ ์ˆœ์œ„, ์›น ์ผ์น˜๋„,
01:22
the Web matching, the index crawling.
14
82000
3000
์ธ๋ฑ์Šค ํฌ๋ผ์šธ๋ง(index crawling)์— ์˜์กดํ•˜๊ณ  ์žˆ์ง€๋งŒ
01:25
But we want to use our brain!
15
85000
2000
์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ ๋‘๋‡Œ๋ฅผ ์ด์šฉํ•˜๊ธฐ๋ฅผ ์›ํ•ฉ๋‹ˆ๋‹ค!
01:27
We want to navigate, explore, discover information.
16
87000
3000
์šฐ๋ฆฌ๋Š” ์ •๋ณด๋ฅผ ํ•ญํ•ดํ•˜๊ณ , ํƒ์ƒ‰ํ•˜๊ณ , ๋ฐœ๊ฒฌํ•˜๊ธฐ๋ฅผ ์›ํ•˜์ฃ .
01:30
In order to do that, we have to put you as a user back in the driver's seat.
17
90000
5000
๊ทธ๋ ‡๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์—ฌ๋Ÿฌ๋ถ„์ด ์Šค์Šค๋กœ ๊ฒ€์ƒ‰์„ ์ฃผ๋„ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
01:35
We need cooperation between you and the computing network and the computer.
18
95000
4000
์—ฌ๋Ÿฌ๋ถ„, ๊ทธ๋ฆฌ๊ณ  ์ปดํ“จํŒ… ๋„คํŠธ์›Œํฌ์™€ ์ปดํ“จํ„ฐ๊ฐ„์˜ ํ˜‘๋ ฅ์ด ํ•„์š”ํ•œ ๊ฒƒ์ด์ฃ .
01:39
So what better way to put you back in the driver's seat
19
99000
4000
๊ฒ€์ƒ‰์„ ์ฃผ๋„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ• ์ค‘,
01:43
than to put you in the real world that you interact in every day?
20
103000
3000
๋งค์ผ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ์‹ค์ œ ์„ธ๊ณ„์—์„œ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ๋” ์ข‹์€ ๋ฐฉ๋ฒ•์ด ์žˆ์„๊นŒ์š”?
01:46
Why not leverage the learnings that you've been learning your entire life?
21
106000
4000
์ผ์ƒ๋™์•ˆ ํ•™์Šตํ•ด ์˜จ ์ง€์‹๋“ค์„ ํ™œ์šฉํ•ด๋ณด๋Š” ๊ฒƒ์€ ์–ด๋–จ๊นŒ์š”?
01:50
So Virtual Earth is about starting off
22
110000
3000
๊ทธ๋ฆฌํ•˜์—ฌ ๋ฒ„์ถ”์–ผ ์–ด์“ฐ๋Š”
01:53
creating the first digital representation, comprehensive, of the entire world.
23
113000
5000
์ตœ์ดˆ๋กœ ์˜จ ์„ธ๊ณ„๋ฅผ ๋””์ง€ํ„ธ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ ์‹œ์ž‘ํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค.
01:58
What we want to do is mix in all types of data.
24
118000
3000
์šฐ๋ฆฌ๊ฐ€ ํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์€ ๋ชจ๋“  ์ข…๋ฅ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์„ž๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:01
Tag it. Attribute it. Metadata. Get the community to add local depth,
25
121000
5000
ํƒœ๊ทธ๋ฅผ ๋‹ฌ๊ณ , ์†์„ฑ์„ ์ •์˜ํ•˜๊ณ , ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์— ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ํ†ตํ•ด ์ง€์—ญ์  ๊นŠ์ด๋ฅผ ๋”ํ•˜์ฃ .
02:06
global perspective, local knowledge.
26
126000
3000
-- ๋ฒ”์„ธ๊ณ„์  ์‹œ๊ฐ, ์ง€์—ญ์  ๊ด€์Šต์ด์š”.
02:09
So when you think about this problem,
27
129000
2000
์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์ƒ๊ฐํ•ด๋ณด๋ฉด,
02:11
what an enormous undertaking. Where do you begin?
28
131000
4000
์ •๋ง ์–ด๋งˆ์–ด๋งˆํ•œ ์ผ์ž…๋‹ˆ๋‹ค. ์–ด๋””์„œ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์•ผ ํ• ๊นŒ์š”?
02:15
Well, we collect data from satellites, from airplanes,
29
135000
4000
์ €ํฌ๋Š” ์œ„์„ฑ, ๋น„ํ–‰๊ธฐ, ์ž๋™์ฐจ,
02:19
from ground vehicles, from people.
30
139000
3000
๊ทธ๋ฆฌ๊ณ  ์‚ฌ๋žŒ๋“ค๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•ฉ๋‹ˆ๋‹ค.
02:22
This process is an engineering problem,
31
142000
5000
์ด๋Ÿฐ ๊ณผ์ •์€ ๊ณตํ•™์  ๋ฌธ์ œ,
02:27
a mechanical problem, a logistical problem, an operational problem.
32
147000
4000
๊ธฐ๊ณ„์  ๋ฌธ์ œ, ์ด๋™์ƒ์˜ ๋ฌธ์ œ, ๊ทธ๋ฆฌ๊ณ  ์šด์˜์ƒ์˜ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
02:31
Here is an example of our aerial camera.
33
151000
2000
์ด๊ฒŒ ์ €ํฌ ํ•ญ๊ณต ์นด๋ฉ”๋ผ ์ค‘ ํ•œ ๊ฐ€์ง€ ์œ ํ˜•์ž…๋‹ˆ๋‹ค.
02:33
This is panchromatic. It's actually four color cones.
34
153000
3000
์ด๊ฑด ์—ฌ๋Ÿฌ ์ƒ‰์„ ์‚ฌ์šฉํ•˜์ฃ . ์‚ฌ์‹ค 4 ๊ฐ€์ง€ ์ƒ‰์ƒ ์ˆ˜์šฉ๊ธฐ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
02:36
In addition, it's multi-spectral.
35
156000
2000
๊ฒŒ๋‹ค๊ฐ€ ๋ฉ€ํ‹ฐ์ŠคํŽ™ํŠธ๋Ÿผ์ž…๋‹ˆ๋‹ค.
02:38
We collect four gigabits per second of data,
36
158000
4000
์ €ํฌ๋Š” ์ดˆ๋‹น 4 GB์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•ฉ๋‹ˆ๋‹ค.
02:42
if you can imagine that kind of data stream coming down.
37
162000
2000
์ €๋Ÿฐ ์ข…๋ฅ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ŠคํŠธ๋ฆฌ๋ฐํ•ด์„œ ๋ณด๋‚ด๋ ค๋ฉด์š”.
02:44
That's equivalent to a constellation of 12 satellites at highest res capacity.
38
164000
6000
์ด๊ฑด ์ตœ๊ณ  ํ™”์งˆ ์„ฑ๋Šฅ์„ ๊ฐ€์ง„ 12๋Œ€์˜ ์œ„์„ฑ ๋ฌด๋ฆฌ์™€ ๋งž๋จน์Šต๋‹ˆ๋‹ค.
02:50
We fly these airplanes at 5,000 feet in the air.
39
170000
4000
์ €ํฌ๋Š” 5000ํ”ผํŠธ ์ƒ๊ณต์— ์ด๋Ÿฐ ๋น„ํ–‰๊ธฐ๋“ค์„ ๋„์›๋‹ˆ๋‹ค;
02:54
You can see the camera on the front. We collect multiple viewpoints,
40
174000
3000
์•ž์ชฝ์— ์นด๋ฉ”๋ผ๊ฐ€ ๋ณด์ด์‹œ์ฃ . ์ €ํฌ๋Š” ์—ฌ๋Ÿฌ ๊ด€์ ,
02:57
vantage points, angles, textures. We bring all that data back in.
41
177000
6000
์‹œ์ , ๊ฐ๋„, ์งˆ๊ฐ์„ ์ˆ˜์ง‘ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ๋“ค์—ฌ์˜ค์ฃ .
03:03
We sit here -- you know, think about the ground vehicles, the human scale --
42
183000
4000
์—ฌ๊ธฐ ์•‰์•„์„œ -- ์ž๋™์ฐจ๋‚˜ ํœด๋จผ์Šค์ผ€์ผ์— ๋Œ€ํ•œ ๊ฒƒ์ด์š” --
03:07
what do you see in person? We need to capture that up close
43
187000
2000
๋ฌด์—‡์ด ๋ณด์ด์‹œ๋‚˜์š”? ์ €ํฌ๋Š” ๊ทธ๋Ÿด ๋ฒ•ํ•œ ๊ฒฝํ—˜์„ ์™„์„ฑํ•˜๊ธฐ ์œ„ํ•ด
03:09
to establish that what it's like-type experience.
44
189000
4000
๊ทธ๋Ÿฐ ๊ฒƒ๋“ค์„ ๋ฐ”๋กœ ๊ฐ€๊นŒ์ด์„œ ์นด๋ฉ”๋ผ์— ๋‹ด์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:13
I bet many of you have seen the Apple commercials,
45
193000
4000
์—ฌ๋Ÿฌ๋ถ„ ์ค‘ ๋งŽ์€ ๋ถ„๋“ค์ด ์• ํ”Œ ๊ด‘๊ณ ๋ฅผ ๋ณด์‹  ์ ์ด ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
03:17
kind of poking at the PC for their brilliance and simplicity.
46
197000
6000
์ž์‹ ๋“ค์˜ ๋›ฐ์–ด๋‚จ์ด๋‚˜ ์‹ฌํ”Œํ•จ์„ ์„ ์ „ํ•˜๋ ค๊ณ  PC๋ฅผ ๋†€๋ฆฌ๋Š” ๊ด‘๊ณ ์š”.
03:23
So a little unknown secret is --
47
203000
2000
๊ทผ๋ฐ, ํ•œ ๊ฐ€์ง€ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ์ž‘์€ ๋น„๋ฐ€์ด ์žˆ์Šต๋‹ˆ๋‹ค. --
03:25
did you see the one with the guy, he's got the Web cam?
48
205000
4000
์›น์บ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋‚จ์ž๊ฐ€ ๋‚˜์˜ค๋Š” ๊ด‘๊ณ ๋„ ๋ณด์…จ๋‚˜์š”?
03:29
The poor PC guy. They're duct taping his head. They're just wrapping it on him.
49
209000
4000
๋ถˆ์Œํ•œ PC์ธ๋“ค์€, ๋จธ๋ฆฌ์— ๊ฐ•๋ ฅ ํ…Œ์ดํ”„๋ฅผ ๋‘๋ฅด๊ณ  ์žˆ๊ณ , ๊ทธ๋ƒฅ ์ž๊ธฐ ๋ชธ์— ๋‘๋ฅด๊ณ  ์žˆ์ฃ .
03:33
Well, a little unknown secret is his brother actually works on the Virtual Earth team.
50
213000
4000
์•Œ๋ ค์ง€์ง€ ์•Š์€ ๋น„๋ฐ€์ด๋ž€ ๊ฑด ๊ทธ์˜ ํ˜•์ œ๋“ค์ด ์‚ฌ์‹ค ๋ฒ„์ถ”์–ผ ์–ด์“ฐ ํŒ€์—์„œ ์ผํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
03:37
(Laughter). So they've got a little bit of a sibling rivalry thing going on here.
51
217000
5000
(์›ƒ์Œ) ์—ฌ๊ธฐ์—์„œ์ฒ˜๋Ÿผ ์•ฝ๊ฐ„์˜ ํ˜•์ œ๊ฐ„์˜ ๊ฒฝ์Ÿ์ด ์žˆ์—ˆ๋‚˜๋ด…๋‹ˆ๋‹ค.
03:42
But let me tell you -- it doesn't affect his day job.
52
222000
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ง์”€๋“œ๋ฆฌ์ฃ  -- ์ด๊ฑด ๊ทธ์˜ ๋ณธ์—…์— ์˜ํ–ฅ์„ ์ฃผ์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
03:44
We think a lot of good can come from this technology.
53
224000
3000
์ €ํฌ๋Š” ์ด๋Ÿฐ ๊ธฐ์ˆ ๋กœ๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ์ข‹์€ ๊ฒƒ๋“ค์ด ๋‚˜์˜จ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
03:47
This was after Katrina. We were the first commercial fleet of airplanes
54
227000
4000
์ด๊ฑด ํ—ˆ๋ฆฌ์ผ€์ธ ์นดํŠธ๋ฆฌ๋‚˜ ์ดํ›„์˜€์ฃ . ์ €ํฌ๊ฐ€ ์ฐธ์‚ฌ ์˜ํ–ฅ ์ง€์—ญ์œผ๋กœ ๋ณด๋‚ด์ง„
03:51
to be cleared into the disaster impact zone.
55
231000
3000
์ตœ์ดˆ์˜ ์ƒ์—…์šฉ ๋น„ํ–‰๊ธฐ ํŽธ๋Œ€์˜€์Šต๋‹ˆ๋‹ค
03:54
We flew the area. We imaged it. We sent in people. We took pictures of interiors,
56
234000
5000
๊ทธ ์ง€์—ญ์„ ๋‚ ์•„๋‹ค๋‹ˆ๋ฉด์„œ, ์ด๋ฏธ์ง€๋ฅผ ๋งŒ๋“ค์–ด, ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ๋ณด๋‚ด๊ณ , ์žฌ๋‚œ ์ง€์—ญ์˜ ๋‚ด๋ถ€
03:59
disaster areas. We helped with the first responders, the search and rescue.
57
239000
4000
์‚ฌ์ง„์„ ์ดฌ์˜ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ตฌ์กฐ๋Œ€์›์„ ๋„์™€ ์ˆ˜์ƒ‰๊ณผ ๊ตฌ์กฐ ํ™œ๋™์„ ํ–ˆ์ฃ .
04:03
Often the first time anyone saw what happened to their house was on Virtual Earth.
58
243000
5000
๋ฒ„์ถ”์–ผ ์–ด์“ฐ๋กœ ๋ˆ„๊ตฌ๋‚˜ ์ž์‹ ๋“ค ์ง‘์ด ์–ด๋–ป๊ฒŒ ๋˜์—ˆ๋‚˜๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
04:08
We made it all freely available on the Web, just to --
59
248000
2000
์ €ํฌ๋Š” ์ด ๋ชจ๋“  ๊ฒƒ์„ ๋ฌด๋ฃŒ๋กœ ์›น์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“ค์—ˆ์ฃ . --
04:10
it was obviously our chance of helping out with the cause.
60
250000
4000
ํ™•์‹คํžˆ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ์˜€๊ฑฐ๋“ ์š”.
04:14
When we think about how all this comes together,
61
254000
3000
์–ด๋–ป๊ฒŒ ์ด๋Ÿฐ ๋ชจ๋“  ๊ฒƒ๋“ค์ด ํ•ฉ์ณ์กŒ๋Š”์ง€๋ฅผ ์ƒ๊ฐํ•ด๋ณด๋ฉด,
04:17
it's all about software, algorithms and math.
62
257000
4000
์ด๊ฑด ๋ชจ๋‘ ์†Œํ”„ํŠธ์›จ์–ด, ์•Œ๊ณ ๋ฆฌ์ฆ˜, ๊ทธ๋ฆฌ๊ณ  ์ˆ˜ํ•™๊ณผ ๊ด€๋ จ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:21
You know, we capture this imagery but to build the 3-D models
63
261000
3000
์ด๋Ÿฐ ์˜์ƒ์„ ์ดฌ์˜ํ•˜๊ณ , 3์ฐจ์› ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ ,
04:24
we need to do geo-positioning. We need to do geo-registering of the images.
64
264000
5000
์ง€๋ฆฌ์  ์œ„์น˜๋ฅผ ํŒŒ์•…ํ•  ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜์ƒ์˜ ์ง€๋ฆฌ์  ์ •๋ณด ๋“ฑ๋ก์ด ํ•„์š”ํ•˜์ฃ .
04:29
We have to bundle adjust them. Find tie points.
65
269000
2000
์ด๋Ÿฐ ์˜์ƒ๋“ค์„ ์กฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋ฒˆ๋“ค๋งํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋ฌถ์„ ์ง€์ ์„ ํŒŒ์•…ํ•ด์•ผ์ฃ .
04:31
Extract geometry from the images.
66
271000
3000
์˜์ƒ์—์„œ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.
04:34
This process is a very calculated process.
67
274000
4000
์ด๋Ÿฌํ•œ ์ฒ˜๋ฆฌ๊ณผ์ •์€ ๋งค์šฐ ๊ณ„์‚ฐ๋œ ํ”„๋กœ์„ธ์Šค์ž…๋‹ˆ๋‹ค.
04:38
In fact, it was always done manual.
68
278000
1000
์‚ฌ์‹ค, ํ•ญ์ƒ ์ˆ˜๋™์œผ๋กœ ํ–ˆ์—ˆ์ฃ .
04:39
Hollywood would spend millions of dollars to do a small urban corridor
69
279000
4000
ํ—๋ฆฌ์šฐ๋“œ์—์„œ๋Š” ์˜ํ™”์— ํ•„์š”ํ•œ ์†Œ๊ทœ๋ชจ ๋„์‹œ์˜ ํ†ต๋กœ๋ฅผ ์ž‘์—…ํ•˜๋Š”๋ฐ
04:43
for a movie because they'd have to do it manually.
70
283000
3000
์ˆ˜๋ฐฑ๋งŒ ๋‹ฌ๋Ÿฌ์˜ ๋น„์šฉ์„ ์ง€๋ถˆํ•ฉ๋‹ˆ๋‹ค. ์ˆ˜์ž‘์—…์œผ๋กœ ํ•ด์™”๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
04:46
They'd drive the streets with lasers called LIDAR.
71
286000
2000
๋ผ์ด๋‹ค(LIDAR)๋ผ ๋ถˆ๋ฆฌ๋Š” ๋ ˆ์ด๋”๋ฅผ ๋‹ฌ๊ณ  ๊ฑฐ๋ฆฌ๋ฅผ ๋Œ์•„๋‹ค๋…”์Šต๋‹ˆ๋‹ค.
04:48
They'd collected information with photos. They'd manually build each building.
72
288000
4000
์‚ฌ์ง„์—์„œ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ–ˆ์ฃ ; ์ˆ˜์ž‘์—…์œผ๋กœ ๊ฐ ๊ฑด๋ฌผ๋“ค์„ ์Œ“์•„ ์˜ฌ๋ฆฝ๋‹ˆ๋‹ค.
04:52
We do this all through software, algorithms and math --
73
292000
2000
์ €ํฌ๋Š” ์ด๋Ÿฐ ์ž‘์—…์„ ๋ชจ๋‘ ์†Œํ”„ํŠธ์›จ์–ด, ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์ˆ˜ํ•™์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค.
04:54
a highly automated pipeline creating these cities.
74
294000
3000
์ด๋Ÿฐ ๋„์‹œ๋“ค์„ ๋งŒ๋“œ๋Š”๋ฐ ๋งค์šฐ ์ž๋™ํ™”๋œ ์ ˆ์ฐจ์ฃ .
04:57
We took a decimal point off what it cost to build these cities,
75
297000
3000
์ €ํฌ๋Š” ์ด๋Ÿฐ ๋„์‹œ๋ฅผ ๋งŒ๋“œ๋Š”๋ฐ ๋“œ๋Š” ๋น„์šฉ์„ ์–ด๋ฆผ์ง์ž‘์œผ๋กœ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ,
05:00
and that's how we're going to be able to scale this out and make this reality a dream.
76
300000
4000
์ด๊ฒƒ์ด ์ €ํฌ๊ฐ€ ์ด๋Ÿฐ ๊ฒƒ๋“ค์„ ์ฒ™๋„ํ™”ํ•˜๊ณ  ํ˜„์‹ค์„ ๊ฟˆ์œผ๋กœ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์ด์ฃ .
05:04
We think about the user interface.
77
304000
2000
์ €ํฌ๋Š” ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์— ๋Œ€ํ•ด์„œ๋„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค.
05:06
What does it mean to look at it from multiple perspectives?
78
306000
3000
์—ฌ๋Ÿฌ ๊ฐ๋„์—์„œ ์‚ฌ๋ฌผ์„ ๋ฐ”๋ผ๋ณด๊ฒŒ ๋œ๋‹ค๋ฉด ์–ด๋–ค ์˜ํ–ฅ์„ ๋ผ์น ๊นŒ์š”?
05:09
An ortho-view, a nadir-view. How do you keep the precision of the fidelity of the imagery
79
309000
5000
์ •๋ฉด์—์„œ, ์ €์ ์—์„œ. ์–ด๋–ป๊ฒŒ ์ •๋ฐ€ํ•œ ์˜์ƒ์„ ์ •ํ™•ํ•˜๊ฒŒ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
05:14
while maintaining the fluidity of the model?
80
314000
4000
๋ชจ๋ธ์˜ ์œ ๋™์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ์š”.
05:18
I'll wrap up by showing you the --
81
318000
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ์ด๊ฑธ ๋ณด์—ฌ๋“œ๋ฆฌ๋ฉด์„œ ๋งˆ๋ฌด๋ฆฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. --
05:20
this is a brand-new peek I haven't really shown into the lab area of Virtual Earth.
82
320000
4000
์ด๊ฑด ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ๊ฑด๋ฐ์š”, ์‚ฌ์‹ค ๋ฒ„์ถ”์–ผ ์–ด์“ฐ์˜ ์—ฐ๊ตฌ์†Œ ์ง€์—ญ์„ ๋ณด์—ฌ๋“œ๋ฆฐ ์ ์ด ์—†๋„ค์š”.
05:24
What we're doing is -- people like this a lot,
83
324000
3000
์ €ํฌ๊ฐ€ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์€ -- ์‚ฌ๋žŒ๋“ค์ด ์ด๊ฑธ ๋งŽ์ด ์ข‹์•„ํ•˜๋”๋ผ๊ตฌ์š” --
05:27
this bird's eye imagery we work with. It's this high resolution data.
84
327000
3000
์กฐ๊ฐ๋„ ์˜์ƒ์ž…๋‹ˆ๋‹ค. ๋งค์šฐ ๊ณ ํ™”์งˆ์˜ ๋ฐ์ดํ„ฐ์ฃ .
05:30
But what we've found is they like the fluidity of the 3-D model.
85
330000
4000
๊ทธ๋ ‡์ง€๋งŒ ์ €ํฌ๊ฐ€ ๋ฐœ๊ฒฌํ•œ ๊ฑด ์‚ฌ๋žŒ๋“ค์€ 3์ฐจ์› ๋ชจ๋ธ์˜ ์œ ๋™์„ฑ์„ ์ข‹์•„ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:34
A child can navigate with an Xbox controller or a game controller.
86
334000
4000
์–ด๋ฆฐ์ด๋“ค์ด ์—‘์Šค๋ฐ•์Šค(Xbox) ์ปจํŠธ๋กค๋Ÿฌ, ๋˜๋Š” ๊ฒŒ์ž„๊ธฐ ์ปจํŠธ๋กค๋Ÿฌ๋กœ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:38
So here what we're trying to do is we bring the picture and project it into the 3-D model space.
87
338000
5000
์ €ํฌ๊ฐ€ ํ•˜๋ ค๋Š” ๊ฒƒ์€ ์‚ฌ์ง„์„ ๋ถˆ๋Ÿฌ์™€์„œ 3์ฐจ์› ๋ชจ๋ธ ๊ณต๊ฐ„์œผ๋กœ ํˆฌ์‚ฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:43
You can see all types of resolution. From here, I can slowly pan the image over.
88
343000
6000
๋ชจ๋“  ์œ ํ˜•์˜ ํ•ด์ƒ๋„๋กœ ๋ณผ ์ˆ˜ ์žˆ์ฃ . ์˜์ƒ์„ ์ฒœ์ฒœํžˆ ์›€์ง์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:49
I can get the next image. I can blend and transition.
89
349000
3000
๋‹ค์Œ ์ด๋ฏธ์ง€๋ฅผ ๋ฐ›์„ ์ˆ˜๋„ ์žˆ๊ณ , ์กฐํ•ฉํ•˜๊ฑฐ๋‚˜ ๋ณ€ํ™˜ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
05:52
By doing this I don't lose the original detail. In fact, I might be recording history.
90
352000
5000
์ด๋ ‡๊ฒŒ ํ•œ๋‹ค๊ณ  ํ•ด์„œ ์›๋ณธ์„ ์žƒ์–ด๋ฒ„๋ฆฌ์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ๊ธฐ๋กํ•˜๊ณ  ์žˆ๊ฑฐ๋“ ์š”.
05:57
The freshness, the capacity. I can turn this image.
91
357000
3000
์„ ๋ช…ํ•จ, ์šฉ๋Ÿ‰. ์ด ์˜์ƒ์„ ํšŒ์ „์‹œํ‚ฌ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
06:00
I can look at it from multiple viewpoints and angles.
92
360000
3000
๋‹ค์–‘ํ•œ ์‹œ์ ๊ณผ ๊ฐ๋„์—์„œ ๋ณผ ์ˆ˜๋„ ์žˆ์ฃ .
06:03
What we're trying to do is build a virtual world.
93
363000
3000
์ €ํฌ๊ฐ€ ํ•˜๋ ค๋Š” ๊ฒƒ์€ ๊ฐ€์ƒ ์„ธ๊ณ„๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:06
We hope that we can make computing a user model you're familiar with,
94
366000
5000
์ €ํฌ๋Š” ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ์นœ์ˆ™ํ•œ ์‚ฌ์šฉ์ž ๋ชจ๋ธ์„ ๊ณ„์‚ฐํ•ด์„œ ๋งŒ๋“ค์–ด๋‚ด๊ณ ,
06:11
and really derive insights from you, from all different directions.
95
371000
4000
์—ฌ๋Ÿฌ๋ถ„์œผ๋กœ๋ถ€ํ„ฐ, ์—ฌ๋Ÿฌ ๋‹ค๋ฅธ ๋ฐฉํ–ฅ์œผ๋กœ๋ถ€ํ„ฐ ์‹ค์ œ๋กœ ํ†ต์ฐฐ๋ ฅ์„ ์–ป๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
06:15
I thank you very much for your time.
96
375000
2000
์‹œ๊ฐ„์„ ๋‚ด์ฃผ์…”์„œ ๋Œ€๋‹จํžˆ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
06:17
(Applause)
97
377000
1000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7