Chris Domas: The 1s and 0s behind cyber warfare

162,008 views ใƒป 2014-06-30

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Ido Dekkers
00:12
This is a lot of ones and zeros.
0
12770
2262
ืืœื” ื”ืžื•ื ื™ ืื—ื“ื•ืช ื•ืืคืกื™ื.
00:15
It's what we call binary information.
1
15032
3099
ื–ื” ืžื” ืฉืžื›ื•ื ื” "ืžื™ื“ืข ื‘ื™ื ืืจื™".
00:18
This is how computers talk.
2
18131
1442
ื›ื›ื” ืžื—ืฉื‘ื™ื ืžื“ื‘ืจื™ื.
00:19
It's how they store information.
3
19573
1929
ื›ื›ื” ื”ื ืžืื—ืกื ื™ื ืžื™ื“ืข.
00:21
It's how computers think.
4
21502
1626
ื›ื›ื” ืžื—ืฉื‘ื™ื ื—ื•ืฉื‘ื™ื.
00:23
It's how computers do
5
23128
1619
ื›ื›ื” ืžื—ืฉื‘ื™ื ืขื•ืฉื™ื
00:24
everything it is that computers do.
6
24747
2382
ืืช ื›ืœ ืžื” ืฉืžื—ืฉื‘ื™ื ืขื•ืฉื™ื.
00:27
I'm a cybersecurity researcher,
7
27129
2047
ืื ื™ ื—ื•ืงืจ ื‘ืชื—ื•ื ื”ืกื™ื™ื‘ืจ (ืื‘ื˜ื—ืช ืžื—ืฉื‘ื™ื),
00:29
which means my job is to sit down with this information
8
29176
2070
ื›ืœื•ืžืจ, ื”ืขื‘ื•ื“ื” ืฉืœื™ ื”ื™ื ืœืฉื‘ืช ืขื ื”ืžื™ื“ืข ื”ื–ื”
00:31
and try to make sense of it,
9
31246
1684
ืœื ืกื•ืช ืœืžืฆื•ื ื‘ื• ื”ื’ื™ื•ืŸ
00:32
to try to understand what all the ones and zeroes mean.
10
32930
2753
ื•ืœื ืกื•ืช ืœื”ื‘ื™ืŸ ืžื” ืื•ืžืจื™ื ื›ืœ ื”ืื—ื“ื•ืช ื•ื”ืืคืกื™ื ื”ืืœื”.
00:35
Unfortunately for me, we're not just talking
11
35683
1843
ืœืจื•ืข ืžื–ืœื™, ืœื ืžื“ื•ื‘ืจ
00:37
about the ones and zeros I have on the screen here.
12
37526
2234
ืจืง ื‘ืื—ื“ื•ืช ื•ื‘ืืคืกื™ื ืฉืขืœ ื”ืžืกืš ื›ืืŸ,
00:39
We're not just talking about a few pages of ones and zeros.
13
39760
2683
ื•ืœื ืจืง ื‘ืขืžื•ื“ื™ื ืกืคื•ืจื™ื ืฉืœ ืื—ื“ื•ืช ื•ืืคืกื™ื.
00:42
We're talking about billions and billions
14
42443
2609
ืžื“ื•ื‘ืจ ื‘ืžื™ืœื™ืืจื“ื™ื ืจื‘ื™ื
00:45
of ones and zeros,
15
45052
1333
ืฉืœ ืื—ื“ื•ืช ื•ืืคืกื™ื,
00:46
more than anyone could possibly comprehend.
16
46385
2641
ื™ื•ืชืจ ืžื›ืคื™ ืฉืžื™ืฉื”ื• ืžืกื•ื’ืœ ืœืชืคื•ืฉ.
00:49
Now, as exciting as that sounds,
17
49026
1859
ืžืจื’ืฉ ื›ื›ืœ ืฉื–ื” ื ืฉืžืข,
00:50
when I first started doing cyber โ€”
18
50885
2492
ื›ืฉื”ืชื—ืœืชื™ ื‘ืชื—ื•ื ื”ืกื™ื™ื‘ืจ --
00:53
(Laughter) โ€”
19
53377
1743
[ืฆื—ื•ืง] --
00:55
when I first started doing cyber, I wasn't sure
20
55120
2003
ื›ืฉื”ืชื—ืœืชื™ ื‘ืชื—ื•ื ื”ืกื™ื™ื‘ืจ,
ืœื ื”ื™ื™ืชื™ ื‘ื˜ื•ื— ืื ื—ื™ื˜ื•ื˜ ื‘ืื—ื“ื•ืช ื•ื‘ืืคืกื™ื
00:57
that sifting through ones and zeros
21
57123
1473
00:58
was what I wanted to do with the rest of my life,
22
58596
2294
ื”ื•ื ืžื” ืฉืืจืฆื” ืœืขืฉื•ืช ื›ืœ ื—ื™ื™,
01:00
because in my mind, cyber
23
60890
2020
ื›ื™ ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื, ื›ืคื™ ืฉื“ืžื™ื™ื ืชื™ ืื•ืชื”,
01:02
was keeping viruses off of my grandma's computer,
24
62910
3681
ื”ื™ืชื” ืœืžื ื•ืข ืžื•ื•ื™ืจื•ืกื™ื ืœื—ื“ื•ืจ ืœืžื—ืฉื‘ ืฉืœ ืกื‘ืชื ืฉืœื™, [ืฆื—ื•ืง]
01:06
it was keeping people's Myspace pages from being hacked,
25
66591
3348
ืœืžื ื•ืข ืคืจื™ืฆื” ืœืืชืจื™ "ืžื™ื™ืกืคื™ื™ืก",
01:09
and maybe, maybe on my most glorious day,
26
69939
2185
ื•ืื•ืœื™, ืื•ืœื™ ื‘ืฉื™ื ื”ืฆืœื—ืชื™,
01:12
it was keeping someone's credit card information from being stolen.
27
72124
3751
ืœืžื ื•ืข ื’ื ื™ื‘ืช ืžื™ื“ืข ืฉืœ ื›ืจื˜ื™ืก ืืฉืจืื™.
01:15
Those are important things,
28
75875
1363
ืืœื” ื“ื‘ืจื™ื ื—ืฉื•ื‘ื™ื,
01:17
but that's not how I wanted to spend my life.
29
77238
2758
ืื‘ืœ ืœื ื›ืš ืจืฆื™ืชื™ ืœื‘ืœื•ืช ืืช ื—ื™ื™.
01:19
But after 30 minutes of work
30
79996
1934
ืื‘ืœ ืื—ืจื™ 30 ื“ืงื•ืช ืขื‘ื•ื“ื”
01:21
as a defense contractor,
31
81930
1353
ื›ืงื‘ืœืŸ ื”ื’ื ื”,
01:23
I soon found out that my idea of cyber
32
83283
2790
ื’ื™ืœื™ืชื™ ื‘ืžื”ืจื” ืฉื”ืžื•ืฉื’ ืฉืœื™ ืขืœ ืื‘ื˜ื—ืช ืžื—ืฉื‘ื™ื
01:26
was a little bit off.
33
86073
1869
ื”ื™ื” ืงืฆืช ืžื•ื˜ืขื”.
01:27
In fact, in terms of national security,
34
87942
1945
ืœืžืขืฉื”, ื‘ืขื™ื ื™ ื”ืื—ืจืื™ื ืขืœ ื”ื‘ื˜ื—ื•ืŸ ื”ืœืื•ืžื™,
01:29
keeping viruses off of my grandma's computer
35
89887
2071
ืžื ื™ืขืช ื—ื“ื™ืจื” ืฉืœ ื•ื™ืจื•ืกื™ื ืœืžื—ืฉื‘ ืฉืœ ืกื‘ืชื ืฉืœื™
01:31
was surprisingly low on their priority list.
36
91958
3186
ื”ื™ืชื” ื‘ืขื“ื™ืคื•ืช ื ืžื•ื›ื” ืœื”ืคืชื™ืข. [ืฆื—ื•ืง]
01:35
And the reason for that is cyber
37
95144
1301
ื•ื”ืกื™ื‘ื” ืœื›ืš ื”ื™ื ืฉืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื
01:36
is so much bigger than any one of those things.
38
96445
3793
ื”ื™ื ื”ืจื‘ื” ื™ื•ืชืจ ื’ื“ื•ืœื” ืžื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื”.
01:40
Cyber is an integral part of all of our lives,
39
100238
2825
ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื ื”ื™ื ื—ืœืง ื‘ืœืชื™-ื ืคืจื“ ืžื—ื™ื™ ื›ื•ืœื ื•,
01:43
because computers are an integral part of all of our lives,
40
103063
3060
ื›ื™ ื”ืžื—ืฉื‘ื™ื ื”ื ื—ืœืง ื‘ืœืชื™-ื ืคืจื“ ืžื—ื™ื™ ื›ื•ืœื ื•,
01:46
even if you don't own a computer.
41
106123
1952
ืืคื™ืœื• ืžื—ื™ื™ื• ืฉืœ ืžื™ ืฉืื™ืŸ ืœื• ืžื—ืฉื‘.
01:48
Computers control everything in your car,
42
108075
2646
ื”ืžื—ืฉื‘ื™ื ืฉื•ืœื˜ื™ื ื‘ื›ืœ ื“ื‘ืจ ื‘ืžื›ื•ื ื™ืช,
01:50
from your GPS to your airbags.
43
110721
1880
ื”ื—ืœ ืžื”ืื™ื›ื•ืŸ ื”ืœื•ื•ื™ื™ื ื™ ื•ืขื“ ื›ืจื™ื•ืช ื”ืื•ื•ื™ืจ.
01:52
They control your phone.
44
112601
1316
ื”ื ืฉื•ืœื˜ื™ื ื‘ื˜ืœืคื•ื ื™ื.
01:53
They're the reason you can call 911
45
113917
1171
ื”ื ื”ืกื™ื‘ื” ืœื›ืš ืฉืืชื ื™ื›ื•ืœื™ื ืœื—ื™ื™ื’ ืœืžื•ืงื“ ื”ื—ื™ืจื•ื
01:55
and get someone on the other line.
46
115088
1796
ื•ืœืฉืžื•ืข ืžื™ืฉื”ื• ื‘ืฆื“ ื”ืฉื ื™.
01:56
They control our nation's entire infrastructure.
47
116884
2794
ื”ื ืฉื•ืœื˜ื™ื ื‘ื›ืœ ื”ืชืฉืชื™ื•ืช ืฉืœ ื”ืืจืฅ ืฉืœื ื•.
01:59
They're the reason you have electricity,
48
119678
1676
ื”ื ื”ืกื™ื‘ื” ืœื›ืš ืฉื™ืฉ ืœื ื• ื—ืฉืžืœ,
02:01
heat, clean water, food.
49
121354
2338
ื—ื™ืžื•ื, ืžื™ื ื–ื›ื™ื, ืžื–ื•ืŸ.
02:03
Computers control our military equipment,
50
123692
1901
ื”ืžื—ืฉื‘ื™ื ืฉื•ืœื˜ื™ื ื‘ืฆื™ื•ื“ ื”ืฆื‘ืื™ ืฉืœื ื•,
02:05
everything from missile silos to satellites
51
125593
1677
ืžืคื™ืจื™ ื˜ื™ืœื™ื ื•ืœื•ื•ื™ื™ื ื™ื
02:07
to nuclear defense networks.
52
127270
3914
ื•ืขื“ ืจืฉืชื•ืช ื”ื’ื ื” ื’ืจืขื™ื ื™ืช.
02:11
All of these things are made possible
53
131184
1989
ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื” ืžืชืืคืฉืจื™ื
02:13
because of computers,
54
133173
1416
ื”ื•ื“ื•ืช ืœืžื—ืฉื‘ื™ื,
02:14
and therefore because of cyber,
55
134589
1983
ื•ืœื›ืŸ, ื”ื•ื“ื•ืช ืœืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื,
02:16
and when something goes wrong,
56
136572
1504
ื›ืฉื“ื‘ืจื™ื ืžืฉืชื‘ืฉื™ื,
02:18
cyber can make all of these things impossible.
57
138076
3118
ืคื’ื™ืขื” ื‘ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื ืขืœื•ืœื” ืœืžื ื•ืข ืืช ื›ืœ ืืœื”.
02:21
But that's where I step in.
58
141194
1585
ืื‘ืœ ื›ืืŸ ืื ื™ ื ื›ื ืก ืœืชืžื•ื ื”.
02:22
A big part of my job is defending all of these things,
59
142779
2940
ื—ืœืง ื’ื“ื•ืœ ืžืขื‘ื•ื“ืชื™ ื”ื•ื ืœื”ื’ืŸ ืขืœ ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื”
02:25
keeping them working,
60
145719
1662
ื•ืœื“ืื•ื’ ืฉื™ืžืฉื™ื›ื• ืœืคืขื•ืœ,
02:27
but once in a while, part of my job is to break one of these things,
61
147381
2328
ืื‘ืœ ืžื™ื“ื™ ืคืขื, ื—ืœืง ืžืขื‘ื•ื“ืชื™ ื”ื•ื ืœืคืจืง ืื—ื“ ืžื”ื“ื‘ืจื™ื ื”ืืœื”,
02:29
because cyber isn't just about defense,
62
149709
2396
ื›ื™ ืื‘ื˜ื—ืช ืžื—ืฉื‘ื™ื ืื™ื ื ื” ืจืง ื”ื’ื ื”,
02:32
it's also about offense.
63
152105
2273
ืืœื ื’ื ื”ืชืงืคื”.
02:34
We're entering an age where we talk about
64
154378
1576
ืื ื• ื ื›ื ืกื™ื ืœืขื™ื“ืŸ ืฉื‘ื• ืื ื• ื›ื‘ืจ ืžื“ื‘ืจื™ื
02:35
cyberweapons.
65
155954
1461
ืขืœ ื›ืœื™-ื ืฉืง ืžืžื•ื—ืฉื‘ื™ื.
02:37
In fact, so great is the potential for cyber offense
66
157415
3135
ืœืžืขืฉื”, ื”ืคื•ื˜ื ืฆื™ืืœ ื”ื˜ืžื•ืŸ ื‘ืžืชืงืคื” ืžืžื•ื—ืฉื‘ืช ื”ื•ื ื›ื” ื’ื“ื•ืœ,
02:40
that cyber is considered a new domain of warfare.
67
160550
3621
ืขื“ ื›ื™ ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื ื ื—ืฉื‘ืช ืœืชื—ื•ื ืœื—ื™ืžื” ื‘ืคื ื™ ืขืฆืžื•.
02:44
Warfare.
68
164171
1800
ืœื•ื—ืžื”
02:45
It's not necessarily a bad thing.
69
165971
1929
ืื™ื ื” ื“ื‘ืจ ืจืข ื›ืฉืœืขืฆืžื•.
02:47
On the one hand, it means we have whole new front
70
167900
2751
ืžืฆื“ ืื—ื“ ื–ื” ืื•ืžืจ ื—ื–ื™ืช ื—ื“ืฉื” ืœื’ืžืจื™
02:50
on which we need to defend ourselves,
71
170651
1743
ืฉื‘ื” ืขืœื™ื ื• ืœื”ื’ืŸ ืขืœ ืขืฆืžื ื•,
02:52
but on the other hand,
72
172394
1485
ืื‘ืœ ืžืฆื“ ืฉื ื™,
02:53
it means we have a whole new way to attack,
73
173879
1842
ื–ื” ืื•ืžืจ ื’ื ื“ืจืš ื—ื“ืฉื” ืœื’ืžืจื™ ืฉืœ ื”ืชืงืคื”,
02:55
a whole new way to stop evil people
74
175721
1859
ื“ืจืš ื—ื“ืฉื” ืœื’ืžืจื™ ืœืžื ื•ืข ืžืื ืฉื™ื ืจืขื™ื
02:57
from doing evil things.
75
177580
2227
ืœืขืฉื•ืช ื“ื‘ืจื™ื ืจืขื™ื.
02:59
So let's consider an example of this
76
179807
1811
ื”ื‘ื” ื ืจืื” ื“ื•ื’ืžื” ืœื›ืš,
03:01
that's completely theoretical.
77
181618
1689
ื“ื•ื’ืžื” ืชื™ืื•ืจื˜ื™ืช ืœื’ืžืจื™.
03:03
Suppose a terrorist wants to blow up a building,
78
183307
2258
ื ื ื™ื— ืฉืื™ื–ื” ืžื—ื‘ืœ ืจื•ืฆื” ืœืคื•ืฆืฅ ื‘ื ื™ื™ืŸ,
03:05
and he wants to do this again and again
79
185565
2068
ื•ื‘ืขืชื™ื“ ื”ื•ื ื™ืจืฆื” ืœืขืฉื•ืช ื–ืืช ืฉื•ื‘ ื•ืฉื•ื‘
03:07
in the future.
80
187633
1451
03:09
So he doesn't want to be in that building when it explodes.
81
189084
2840
ื”ื•ื ืœื ื—ื™ื™ื‘ ืœื”ื™ืžืฆื ื‘ืื•ืชื• ื‘ื ื™ื™ืŸ ื‘ืขืช ื”ืคื™ื’ื•ืข;
03:11
He's going to use a cell phone
82
191924
1518
ื”ื•ื ื™ืฉืชืžืฉ ื‘ื˜ืœืคื•ืŸ ื ื™ื™ื“ ื›ืฉืœื˜-ืจื—ื•ืง.
03:13
as a remote detonator.
83
193442
2335
03:15
Now, it used to be the only way we had
84
195777
1871
ืคืขื, ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืฉืขืžื“ื” ืœืจืฉื•ืชื ื•
03:17
to stop this terrorist
85
197648
1636
ื›ื“ื™ ืœืขืฆื•ืจ ืืช ื”ืžื—ื‘ืœ ื”ื–ื”
03:19
was with a hail of bullets and a car chase,
86
199284
2673
ื”ื™ืชื” ืžื˜ืจ ื›ื“ื•ืจื™ื ื•ืžืจื“ืฃ ืžื›ื•ื ื™ื•ืช,
03:21
but that's not necessarily true anymore.
87
201957
2332
ืื‘ืœ ื–ื” ื›ื‘ืจ ืœื ื‘ื”ื›ืจื— ื›ืš.
03:24
We're entering an age where we can stop him
88
204289
1563
ืื ื• ื ื›ื ืกื™ื ืœืขื™ื“ืŸ ืฉื‘ื• ื‘ื™ื›ื•ืœืชื ื• ืœืขืฆื•ืจ ื‘ืขื“ื•
03:25
with the press of a button
89
205852
1110
ื‘ืœื—ื™ืฆืช ื›ืคืชื•ืจ
03:26
from 1,000 miles away,
90
206962
2007
ืžืžืจื—ืง ืืœืคื™ ืงื™ืœื•ืžื˜ืจื™ื,
03:28
because whether he knew it or not,
91
208969
1589
ื›ื™ ื‘ื™ืŸ ืื ื”ื•ื ื™ื“ืข ืื• ืœื,
03:30
as soon as he decided to use his cell phone,
92
210558
1711
ื‘ืจื’ืข ื‘ื• ื”ื•ื ื”ื—ืœื™ื˜ ืœื”ืฉืชืžืฉ ื‘ื˜ืœืคื•ืŸ ื”ื ื™ื™ื“ ืฉืœื•
03:32
he stepped into the realm of cyber.
93
212269
3134
ื”ื•ื ื ื›ื ืก ืœืขื•ืœื ื”ืžืžื•ื—ืฉื‘.
03:35
A well-crafted cyber attack could break into his phone,
94
215403
3117
ื”ืชืงืคื” ืžืžื•ื—ืฉื‘ืช ืžื™ื•ืžื ืช ืžืกื•ื’ืœืช ืœืคืจื•ืฅ ืœื˜ืœืคื•ืŸ ืฉืœื•,
03:38
disable the overvoltage protections on his battery,
95
218520
2149
ืœื ื˜ืจืœ ืืช ื”ื’ื ื•ืช ื”ืกื•ืœืœื” ืฉืœื• ื ื’ื“ ืขื•ืžืก-ื™ืชืจ,
03:40
drastically overload the circuit,
96
220669
1755
ืœื—ื•ืœืœ ืขื•ืžืก-ื™ืชืจ ืงื™ืฆื•ื ื™ ื‘ืžืขื’ืœื™ื,
03:42
cause the battery to overheat, and explode.
97
222424
2357
ืœื’ืจื•ื ืœืกื•ืœืœื” ืœื”ืชื—ืžื ืžื“ื™ ื•ืœื”ืชืคื•ืฆืฅ.
03:44
No more phone, no more detonator,
98
224781
2446
ืื™ืŸ ื›ื‘ืจ ื˜ืœืคื•ืŸ, ืื™ืŸ ืฉืœื˜-ืจื—ื•ืง,
03:47
maybe no more terrorist,
99
227227
1923
ื•ืื•ืœื™ ื’ื ืื™ืŸ ืžื—ื‘ืœ
03:49
all with the press of a button
100
229150
1031
ื•ื”ื›ืœ ื‘ืœื—ื™ืฆืช ื›ืคืชื•ืจ
03:50
from a thousand miles away.
101
230181
2680
ืžืžืจื—ืง ืืœืคื™ ืงื™ืœื•ืžื˜ืจื™ื.
03:52
So how does this work?
102
232861
1751
ืื™ืš ื–ื” ืขื•ื‘ื“?
03:54
It all comes back to those ones and zeros.
103
234612
2268
ื”ื›ืœ ืžืชืžืฆื” ื‘ืื—ื“ื•ืช ื•ื‘ืืคืกื™ื ื”ืืœื”.
03:56
Binary information makes your phone work,
104
236880
3005
ื”ืžื™ื“ืข ื”ื‘ื™ื ืืจื™ ื”ื•ื ื–ื” ืฉื’ื•ืจื ืœื˜ืœืคื•ื ื™ื ืฉืœื›ื ืœืคืขื•ืœ,
03:59
and used correctly, it can make your phone explode.
105
239885
3584
ื•ื‘ืฉื™ืžื•ืฉ ื ื›ื•ืŸ, ื‘ื›ื•ื—ื• ื’ื ืœื’ืจื•ื ืœื”ื ืœื”ืชืคื•ืฆืฅ.
04:03
So when you start to look at cyber from this perspective,
106
243469
2472
ืื– ื›ืฉืžืกืชื›ืœื™ื ืขืœ ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื ืžื ืงื•ื“ืช-ื”ืฉืงืคื” ื–ื•,
04:05
spending your life sifting through binary information
107
245941
3163
ื‘ื™ืœื•ื™ ื”ื—ื™ื™ื ื‘ื—ื™ื˜ื•ื˜ ื‘ืžื™ื“ืข ื‘ื™ื ืืจื™
04:09
starts to seem kind of exciting.
108
249104
2417
ืžืชื—ื™ืœ ืœื”ื™ืจืื•ืช ืžืœื”ื™ื‘ ืœืžื“ื™.
04:11
But here's the catch: This is hard,
109
251521
2646
ืื‘ืœ ื”ื ื” ื”ืžื™ืœื›ื•ื“: ื–ื” ืงืฉื”,
04:14
really, really hard,
110
254167
1685
ืžืื“ ืžืื“ ืงืฉื”,
04:15
and here's why.
111
255852
1834
ื•ื–ื• ื”ืกื™ื‘ื”:
04:17
Think about everything you have on your cell phone.
112
257686
2766
ื—ื™ืฉื•ื‘ ืขืœ ื›ืœ ืžื” ืฉื™ืฉ ืœื›ื ื‘ื˜ืœืคื•ืŸ ื”ื ื™ื™ื“.
04:20
You've got the pictures you've taken.
113
260452
1963
ื”ืชืžื•ื ื•ืช ืฉืฆื™ืœืžืชื.
04:22
You've got the music you listen to.
114
262415
1786
ื”ืžื•ืกื™ืงื” ืฉืืชื ืžืื–ื™ื ื™ื ืœื”.
04:24
You've got your contacts list,
115
264201
1648
ืจืฉื™ืžืช ืื ืฉื™ ื”ืงืฉืจ,
04:25
your email, and probably 500 apps
116
265849
1625
ื”ื•ื“ืขื•ืช ื”ื“ื•ื"ืœ, ื•ื›ื ืจืื” ืื™ื–ื” 500 ื™ื™ืฉื•ืžื•ื ื™ื
04:27
you've never used in your entire life,
117
267474
3001
ืฉื‘ื—ื™ื™ื ืœื ื”ืฉืชืžืฉืชื ื‘ื”ื, [ืฆื—ื•ืง]
04:30
and behind all of this is the software, the code,
118
270475
3987
ื•ืžืื—ื•ืจื™ ื›ืœ ืืœื” - ื”ืชื•ื›ื ื”, ื”ืงื•ื“,
04:34
that controls your phone,
119
274462
1380
ืฉืฉื•ืœื˜ื™ื ื‘ื˜ืœืคื•ืŸ ืฉืœื›ื,
04:35
and somewhere, buried inside of that code,
120
275842
2656
ื•ื‘ืžืงื•ื ื›ืœืฉื”ื•, ืงื‘ื•ืจ ื‘ืขื•ืžืง ื”ืงื•ื“ ื”ื–ื”,
04:38
is a tiny piece that controls your battery,
121
278498
2548
ื™ืฉ ืงื˜ืข ื–ืขื™ืจ ืฉืฉื•ืœื˜ ื‘ืกื•ืœืœื” ืฉืœื›ื,
04:41
and that's what I'm really after,
122
281046
1871
ื•ืื•ืชื• ื‘ืขืฆื ืื ื™ ืžื—ืคืฉ,
04:42
but all of this, just a bunch of ones and zeros,
123
282917
3686
ืื‘ืœ ื›ืœ ื–ื” ื”ื•ื ืกืชื ืื•ืกืฃ ืฉืœ ืื—ื“ื•ืช ื•ืืคืกื™ื,
04:46
and it's all just mixed together.
124
286603
1531
ืฉื›ื•ืœื ืžืขื•ืจื‘ื‘ื™ื ื‘ื™ื—ื“.
04:48
In cyber, we call this finding a needle in a stack of needles,
125
288134
3545
ื‘ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื ืื ื• ืžื›ื ื™ื ื–ืืช "ืœืžืฆื•ื ืžื—ื˜ ื‘ืขืจื™ืžืช ืžื—ื˜ื™ื",
04:51
because everything pretty much looks alike.
126
291679
2349
ื›ื™ ื”ื›ืœ ื ืจืื” ื“ื™ ื“ื•ืžื”.
04:54
I'm looking for one key piece,
127
294028
1732
ืื ื™ ืžื—ืคืฉ ื™ื—ื™ื“ืช ืงื•ื“ ืžืจื›ื–ื™ืช ืื—ืช,
04:55
but it just blends in with everything else.
128
295760
3234
ืื‘ืœ ื”ื™ื ืžืชืžื–ื’ืช ืขื ื›ืœ ื™ืชืจ ื”ื“ื‘ืจื™ื.
04:58
So let's step back from this theoretical situation
129
298994
2252
ืื– ื‘ื•ืื• ื ืขื–ื•ื‘ ืืช ื”ืžืฆื‘ ื”ืชื™ืื•ืจื˜ื™
05:01
of making a terrorist's phone explode,
130
301246
2344
ืฉื‘ื• ืื ื• ื’ื•ืจืžื™ื ืœื˜ืœืคื•ืŸ ืฉืœ ื”ืžื—ื‘ืœ ืœื”ืชืคื•ืฆืฅ,
05:03
and look at something that actually happened to me.
131
303590
2816
ื•ื ืจืื” ืžืฉื”ื• ืฉืงืจื” ืœื™.
05:06
Pretty much no matter what I do,
132
306406
1343
ืœื ืžืฉื ื” ืžื” ืื ื™ ืขื•ืฉื”,
05:07
my job always starts with sitting down
133
307749
1442
ื”ืขื‘ื•ื“ื” ืฉืœื™ ืชืžื™ื“ ืžืชื—ื™ืœื” ื‘ื›ืœ ืฉืื ื™ ื™ื•ืฉื‘
05:09
with a whole bunch of binary information,
134
309191
2372
ืขื ืขืจื™ืžื” ืฉืœืžื” ืฉืœ ืžื™ื“ืข ื‘ื™ื ืืจื™,
05:11
and I'm always looking for one key piece
135
311563
1727
ื•ืื ื™ ืชืžื™ื“ ืžื—ืคืฉ ืคื™ืกืช ืงื•ื“ ืžืจื›ื–ื™ืช
05:13
to do something specific.
136
313290
1987
ื›ื“ื™ ืœื‘ืฆืข ืžืฉื”ื• ืกืคืฆื™ืคื™.
05:15
In this case, I was looking for a very advanced,
137
315277
2077
ื‘ืžืงืจื” ื–ื” ื—ื™ืคืฉืชื™
ืคื™ืกืช-ืงื•ื“ ืžืื“ ืžืชืงื“ืžืช ื•ืขืชื™ืจืช-ื™ื“ืข
05:17
very high-tech piece of code
138
317354
1518
05:18
that I knew I could hack,
139
318872
1215
ืฉื™ื“ืขืชื™ ืฉืื•ื›ืœ ืœืคืจื•ืฅ,
05:20
but it was somewhere buried
140
320087
1714
ืื‘ืœ ื”ื™ื ื”ื™ืชื” ืงื‘ื•ืจื”
05:21
inside of a billion ones and zeroes.
141
321801
2026
ื‘ืชื•ืš ืžื™ืœื™ืืจื“ื™ ืื—ื“ื•ืช ื•ืืคืกื™ื.
05:23
Unfortunately for me, I didn't know
142
323827
1578
ืœืžื–ืœื™ ื”ืจืข,
05:25
quite what I was looking for.
143
325405
1691
ืœื ื™ื“ืขืชื™ ืžื” ื‘ื“ื™ื•ืง ืœื—ืคืฉ.
05:27
I didn't know quite what it would look like,
144
327096
1196
ืœื ื™ื“ืขืชื™ ืื™ืš ื‘ื“ื™ื•ืง ื–ื” ื ืจืื”,
05:28
which makes finding it really, really hard.
145
328292
2918
ืžื” ืฉื”ืงืฉื” ืขืœื™ ืžืื“ ืœืžืฆื•ื ืืช ื–ื”.
05:31
When I have to do that, what I have to do
146
331210
2039
ื›ืฉืขืœื™ ืœืขืฉื•ืช ื“ื‘ืจ ื›ื–ื”, ืื ื™ ืฆืจื™ืš, ื‘ืขืงืจื•ืŸ,
05:33
is basically look at various pieces
147
333249
2342
ืœื‘ื—ื•ืŸ ื›ืœ ืžื™ื ื™ ืงื˜ืขื™ื
05:35
of this binary information,
148
335591
1723
ืฉืœ ืžื™ื“ืข ื‘ื™ื ืืจื™ ื›ื–ื”,
05:37
try to decipher each piece, and see if it might be
149
337314
2202
ืœื ืกื•ืช ืœืคืขื ื— ื›ืœ ืื—ืช ืžื”ืŸ ื•ืœืจืื•ืช ืื ื”ื™ื ื–ื•
05:39
what I'm after.
150
339516
1224
ืฉืื ื™ ืžื—ืคืฉ.
05:40
So after a while, I thought I had found the piece
151
340740
1625
ืื– ืื—ืจื™ ื–ืžืŸ-ืžื” ื—ืฉื‘ืชื™ ืฉืžืฆืืชื™ ืืช ื”ืงื˜ืข ืฉื—ื™ืคืฉืชื™.
05:42
I was looking for.
152
342365
1337
05:43
I thought maybe this was it.
153
343702
2104
ื—ืฉื‘ืชื™ ืฉืื•ืœื™ ื–ื” ื”ืงื˜ืข ื”ื ื›ื•ืŸ.
05:45
It seemed to be about right, but I couldn't quite tell.
154
345806
2032
ื”ื•ื ื“ื™ ื”ืชืื™ื, ืื‘ืœ ืœื ื”ื™ื™ืชื™ ืœื’ืžืจื™ ื‘ื˜ื•ื—.
05:47
I couldn't tell what those ones and zeros represented.
155
347838
2918
ืœื ื™ื›ื•ืœืชื™ ืœืงื‘ื•ืข ืžื” ื™ื™ืฆื’ื• ืื•ืชื ืื—ื“ื•ืช ื•ืืคืกื™ื.
05:50
So I spent some time trying to put this together,
156
350756
3374
ืื– ื”ืฉืงืขืชื™ ื–ืžืŸ ื‘ื ืกื™ื•ืŸ ืœื—ื‘ืจ ื‘ื™ื ื™ื”ื,
05:54
but wasn't having a whole lot of luck,
157
354130
1670
ืื‘ืœ ืœื ื”ืฆืœื—ืชื™ ืžื™ ื™ื•ื“ืข ืžื”
05:55
and finally I decided,
158
355800
1186
ื•ืœื‘ืกื•ืฃ ื”ื—ืœื˜ืชื™
05:56
I'm going to get through this,
159
356986
1609
ืฉืื ื™ ืžื•ื›ืจื— ืœื”ืฆืœื™ื— ื‘ื–ื”.
05:58
I'm going to come in on a weekend,
160
358595
1511
ืื ื™ ืื‘ื•ื ืœืขื‘ื•ื“ื” ื‘ืกื•ืฃ ื”ืฉื‘ื•ืข,
06:00
and I'm not going to leave
161
360106
1340
ื•ืœื ืืคืกื™ืง
06:01
until I figure out what this represents.
162
361446
1712
ืขื“ ืฉืื’ืœื” ืžื” ื–ื” ืžื™ื™ืฆื’.
06:03
So that's what I did. I came in on a Saturday morning,
163
363158
2166
ืื– ื–ื” ืžื” ืฉืขืฉื™ืชื™. ื”ื’ืขืชื™ ืœืขื‘ื•ื“ื” ื‘ื‘ื•ืงืจ ื™ื•ื ื',
06:05
and about 10 hours in, I sort of had all the pieces to the puzzle.
164
365324
3645
ื•ืื—ืจื™ ื›-10 ืฉืขื•ืช ื”ื™ื• ื‘ื™ื“ื™ ื›ืœ ืคื™ืกื•ืช ื”ืชืฆืจืฃ.
06:08
I just didn't know how they fit together.
165
368969
1392
ืืœื ืฉืœื ื™ื“ืขืชื™ ืื™ืš ื”ืŸ ืžืฉืชืœื‘ื•ืช.
06:10
I didn't know what these ones and zeros meant.
166
370361
2790
ืœื ื™ื“ืขืชื™ ืžื” ื”ืžืฉืžืขื•ืช ืฉืœ ื”ืื—ื“ื•ืช ื•ื”ืืคืกื™ื ื”ืืœื”.
06:13
At the 15-hour mark,
167
373151
2067
ื›ืฉื”ืฉืขื•ืŸ ืžื ื” 15 ืฉืขื•ืช,
06:15
I started to get a better picture of what was there,
168
375218
2602
ื”ืชื—ืœืชื™ ืœืงื‘ืœ ืชืžื•ื ื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืžื” ื”ื™ื” ืฉื,
06:17
but I had a creeping suspicion
169
377820
1772
ืื‘ืœ ื›ื™ืจืกื ื‘ื™ ื—ืฉื“
06:19
that what I was looking at
170
379592
1589
ืฉื”ื“ื‘ืจ ื‘ื• ืื ื™ ืžืชื‘ื•ื ืŸ
06:21
was not at all related to what I was looking for.
171
381181
2923
ื‘ื›ืœืœ ืœื ืงืฉื•ืจ ืœืžื” ืฉื—ื™ืคืฉืชื™.
06:24
By 20 hours, the pieces started to come together
172
384104
2487
ืื—ืจื™ 20 ืฉืขื•ืช ื”ืคื™ืกื•ืช ื”ื—ืœื• ืœื”ืฉืชืœื‘
06:26
very slowly โ€” (Laughter) โ€”
173
386591
3764
ืœืื˜ ืœืื˜ -- [ืฆื—ื•ืง]
06:30
and I was pretty sure I was going down
174
390355
1266
ื•ื›ืขืช ื”ื™ื™ืชื™ ื‘ื˜ื•ื— ืœืžื“ื™ ืฉืื ื™ ื‘ื›ื™ื•ื•ืŸ ื”ืœื-ื ื›ื•ืŸ.
06:31
the wrong path at this point,
175
391621
1939
06:33
but I wasn't going to give up.
176
393560
2251
ืื‘ืœ ืœื ื”ืชื›ื•ื•ื ืชื™ ืœื•ื•ืชืจ.
06:35
After 30 hours in the lab,
177
395811
2834
ืื—ืจื™ 30 ืฉืขื•ืช ื‘ืžืขื‘ื“ื”,
06:38
I figured out exactly what I was looking at,
178
398645
2261
ื”ื‘ื ืชื™ ื‘ื“ื™ื•ืง ื‘ืžื” ืื ื™ ืžืชื‘ื•ื ืŸ,
06:40
and I was right, it wasn't what I was looking for.
179
400906
2818
ื•ืฆื“ืงืชื™. ื–ื” ืœื ื”ื™ื” ืžื” ืฉื—ื™ืคืฉืชื™.
06:43
I spent 30 hours piecing together
180
403724
1699
ื”ืงื“ืฉืชื™ 30 ืฉืขื•ืช ืœืฉื™ืœื•ื‘
06:45
the ones and zeros that formed a picture of a kitten.
181
405423
2722
ืฉืœ ืื—ื“ื•ืช ื•ืืคืกื™ื ืฉื™ื•ืฆืจื™ื ืชืžื•ื ื” ืฉืœ ื—ืชืœืชื•ืœ.
06:48
(Laughter)
182
408145
1795
[ืฆื—ื•ืง]
06:49
I wasted 30 hours of my life searching for this kitten
183
409940
3806
ื‘ื–ื‘ื–ืชื™ 30 ืฉืขื•ืช ืžื—ื™ื™ ื‘ื—ื™ืคื•ืฉ ืื—ืจ ื”ื—ืชืœืชื•ืœ ื”ื–ื”
06:53
that had nothing at all to do
184
413746
1838
ืฉืœื ื”ื™ื” ืงืฉื•ืจ ื‘ืฉื•ื ืื•ืคืŸ
06:55
with what I was trying to accomplish.
185
415584
1987
ืœืžื” ืฉื ื™ืกื™ืชื™ ืœื”ืฉื™ื’.
06:57
So I was frustrated, I was exhausted.
186
417571
3863
ืื– ื”ื™ื™ืชื™ ืžืชื•ืกื›ืœ, ื”ื™ื™ืชื™ ืžื•ืชืฉ.
07:01
After 30 hours in the lab, I probably smelled horrible.
187
421434
3226
ืื—ืจื™ 30 ืฉืขื•ืช ื‘ืžืขื‘ื“ื” ื•ื“ืื™ ื’ื ื”ืกืจื—ืชื™,
07:04
But instead of just going home
188
424660
2230
ืื‘ืœ ื‘ืžืงื•ื ืœืœื›ืช ื”ื‘ื™ืชื”
07:06
and calling it quits, I took a step back
189
426890
2530
ื•ืœื”ื’ื™ื“ ืฉื ื›ืฉืœืชื™, ืขืฆืจืชื™
07:09
and asked myself, what went wrong here?
190
429420
2541
ื•ืฉืืœืชื™ ืืช ืขืฆืžื™ ืžื” ื”ืฉืชื‘ืฉ ื›ืืŸ.
07:11
How could I make such a stupid mistake?
191
431961
2212
ืื™ืš ื™ื›ื•ืœืชื™ ืœืขืฉื•ืช ื˜ืขื•ืช ื›ื” ืžื˜ื•ืคืฉืช?
07:14
I'm really pretty good at this.
192
434173
1398
ืื ื™ ืžืžืฉ ื˜ื•ื‘ ื‘ืขื‘ื•ื“ื” ื”ื–ืืช.
07:15
I do this for a living.
193
435571
1319
ืื ื™ ืžืชืคืจื ืก ืžื›ืš.
07:16
So what happened?
194
436890
2148
ืื– ืžื” ืงืจื”?
07:19
Well I thought, when you're looking at information at this level,
195
439038
2775
ื—ืฉื‘ืชื™ ืœืขืฆืžื™, ืฉื›ืืฉืจ ื‘ื•ื—ื ื™ื ืžื™ื“ืข ื‘ืจืžื” ื”ื–ืืช,
07:21
it's so easy to lose track of what you're doing.
196
441813
2827
ืงืœ ืžืื“ ืœืœื›ืช ืœืื™ื‘ื•ื“,
07:24
It's easy to not see the forest through the trees.
197
444640
1744
ืงืœ ืœื”ืคืกื™ืง ืœืจืื•ืช ืืช ื”ื™ืขืจ ืžืจื•ื‘ ืขืฆื™ื.
07:26
It's easy to go down the wrong rabbit hole
198
446384
2164
ืงืœ ืœืชืขื•ืช ื‘ืžื‘ื•ืš
07:28
and waste a tremendous amount of time
199
448548
1762
ื•ืœื‘ื–ื‘ื– ื›ืžื•ื™ื•ืช ืขืฆื•ืžื•ืช ืฉืœ ื–ืžืŸ
07:30
doing the wrong thing.
200
450310
1820
ืขืœ ื”ื“ื‘ืจ ื”ืœื-ื ื›ื•ืŸ.
07:32
But I had this epiphany.
201
452130
1600
ืื‘ืœ ืื– ื”ื™ืชื” ืœื™ ื”ืชื’ืœื•ืช.
07:33
We were looking at the data completely incorrectly
202
453730
2999
ืื ื• ื”ืกืชื›ืœื ื• ืขืœ ื”ืžื™ื“ืข ื‘ืฆื•ืจื” ืžื•ื˜ืขื™ืช ืœื’ืžืจื™
07:36
since day one.
203
456729
1490
ื›ื‘ืจ ืžื”ื”ืชื—ืœื”.
07:38
This is how computers think, ones and zeros.
204
458219
2103
ื›ื›ื” ืžื—ืฉื‘ื™ื ื—ื•ืฉื‘ื™ื: ื‘ืื—ื“ื•ืช ื•ืืคืกื™ื.
07:40
It's not how people think,
205
460322
1392
ืื‘ืœ ืื ืฉื™ื ืœื ื—ื•ืฉื‘ื™ื ื›ืš.
07:41
but we've been trying to adapt our minds
206
461714
2314
ืืœื ืฉืื ื• ื ื™ืกื™ื ื• ืœืืœืฅ ืืช ื”ืžื•ื— ืฉืœื ื•
07:44
to think more like computers
207
464028
1345
ืœื—ืฉื•ื‘ ื›ืžื• ื”ืžื—ืฉื‘
07:45
so that we can understand this information.
208
465373
2597
ื›ื“ื™ ืฉื ื•ื›ืœ ืœื”ื‘ื™ืŸ ืืช ื”ืžื™ื“ืข ื”ื–ื”.
07:47
Instead of trying to make our minds fit the problem,
209
467970
1950
ื‘ืžืงื•ื ืœื”ืชืื™ื ืืช ื”ืžื•ื— ืฉืœื ื• ืœื‘ืขื™ื”,
07:49
we should have been making the problem
210
469920
1648
ื”ื™ื” ืขืœื™ื ื• ืœื’ืจื•ื ืœื‘ืขื™ื” ืœื”ืชืื™ื ืœืžื•ื— ืฉืœื ื•,
07:51
fit our minds,
211
471568
969
07:52
because our brains have a tremendous potential
212
472537
2109
ื›ื™ ืœืžื•ื— ืฉืœื ื• ื™ืฉ ืคื•ื˜ื ืฆื™ืืœ ืขืฆื•ื
07:54
for analyzing huge amounts of information,
213
474646
3086
ืœื ืชื— ื›ืžื•ื™ื•ืช-ืขื ืง ืฉืœ ืžื™ื“ืข,
07:57
just not like this.
214
477732
1297
ืื‘ืœ ืœื ื‘ืฆื•ืจื” ื”ื–ืืช.
07:59
So what if we could unlock that potential
215
479029
1467
ืžื” ืื ื ื•ื›ืœ ืœื ืฆืœ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ื”ื–ื”
08:00
just by translating this
216
480496
1527
ื‘ื›ืš ืฉืคืฉื•ื˜ ื ืชืจื’ื ื–ืืช ืœืกื•ื’ ื”ืžื™ื“ืข ื”ื ื›ื•ืŸ?
08:02
to the right kind of information?
217
482023
2848
08:04
So with these ideas in mind,
218
484871
1194
ืื– ืขื ื”ืจืขื™ื•ืŸ ื”ื–ื”,
08:06
I sprinted out of my basement lab at work
219
486065
1618
ื™ืฆืืชื™ ื‘ืจื™ืฆื” ืžืžืขื‘ื“ืช ื”ืžืจืชืฃ ืฉื‘ืขื‘ื•ื“ื”,
08:07
to my basement lab at home,
220
487683
1307
ืืœ ืžืขื‘ื“ืช ื”ืžืจืชืฃ ื‘ื‘ื™ืช,
08:08
which looked pretty much the same.
221
488990
1996
ืฉื ืจืื™ืช ื“ื•ืžื” ืœื” ืœืžื“ื™,
08:10
The main difference is, at work,
222
490986
1824
ื›ืฉื”ื”ื‘ื“ืœ ื”ืขื™ืงืจื™ ื”ื•ื, ืฉื‘ืขื‘ื•ื“ื”,
08:12
I'm surrounded by cyber materials,
223
492810
1579
ืื ื™ ืžื•ืงืฃ ื‘ื“ื‘ืจื™ื ืฉืœ ืกื™ื™ื‘ืจ,
08:14
and cyber seemed to be the problem in this situation.
224
494389
2605
ื•ื›ื ืจืื” ืฉื”ืกื™ื™ื‘ืจ ืขืฆืžื• ื”ื™ื” ื”ื‘ืขื™ื” ื‘ืžืฆื‘ ื”ื–ื”.
08:16
At home, I'm surrounded by everything else I've ever learned.
225
496994
3353
ื‘ื‘ื™ืช ืื ื™ ืžื•ืงืฃ ื‘ื›ืœ ื™ืชืจ ื”ื“ื‘ืจื™ื ืฉืœืžื“ืชื™.
08:20
So I poured through every book I could find,
226
500347
1872
ืื– ืขื‘ืจืชื™ ืขืœ ื›ืœ ืกืคืจ ืฉื™ื›ื•ืœืชื™ ืœืžืฆื•ื,
08:22
every idea I'd ever encountered,
227
502219
1332
ืขืœ ื›ืœ ืจืขื™ื•ืŸ ืฉืื™-ืคืขื ื ืชืงืœืชื™ ื‘ื•,
08:23
to see how could we translate a problem
228
503551
2146
ื›ื“ื™ ืœืจืื•ืช ืื ืืคืฉืจ ืœืชืจื’ื ื‘ืขื™ื”
08:25
from one domain to something completely different?
229
505697
3132
ืžืชื—ื•ื ืื—ื“ ืœืชื—ื•ื ืื—ืจ, ืฉื•ื ื” ืœื’ืžืจื™.
08:28
The biggest question was,
230
508829
1394
ื”ืฉืืœื” ื”ื’ื“ื•ืœื” ื”ื™ืชื”: ืœืžื” ื›ื“ืื™ ืœืชืจื’ื ืืช ื–ื”?
08:30
what do we want to translate it to?
231
510223
1968
08:32
What do our brains do perfectly naturally
232
512191
2112
ืžื” ื”ืžื•ื— ืฉืœื ื• ืขื•ืฉื” ื‘ืื•ืคืŸ ื˜ื‘ืขื™ ื•ืžื•ืฉืœื
08:34
that we could exploit?
233
514303
1878
ืฉื‘ื• ื ื™ืชืŸ ืœื”ืฉืชืžืฉ?
08:36
My answer was vision.
234
516181
2289
ื”ืชืฉื•ื‘ื” ืฉืœื™ ื”ื™ืชื” ื›ื•ืฉืจ ื”ืจืื™ื™ื”.
08:38
We have a tremendous capability to analyze visual information.
235
518470
3149
ื™ืฉ ืœื ื• ื™ื›ื•ืœืช ืขืฆื•ืžื” ืœื ืชื— ืžื™ื“ืข ื—ื–ื•ืชื™.
08:41
We can combine color gradients, depth cues,
236
521619
2583
ืื ื• ืžืกื•ื’ืœื™ื ืœืžื–ื’ ื’ื•ื•ื ื™ื ื•ื“ืจื’ื•ืช ื‘ื”ื™ืจื•ืช,
08:44
all sorts of these different signals
237
524202
1788
ื›ืœ ืžื™ื ื™ ืื•ืชื•ืช ื›ืืœื”,
08:45
into one coherent picture of the world around us.
238
525990
2395
ืœืชืžื•ื ื” ืžื’ื•ื‘ืฉืช ืื—ืช ืฉืœ ื”ืขื•ืœื ื”ืกื•ื‘ื‘ ืื•ืชื ื•.
08:48
That's incredible.
239
528385
1407
ื–ื” ืžื“ื”ื™ื.
08:49
So if we could find a way to translate
240
529792
1381
ืื– ืื ื ื•ื›ืœ ืœืžืฆื•ื ื“ืจืš ืœืชืจื’ื
08:51
these binary patterns to visual signals,
241
531173
2186
ืืช ื”ื“ืคื•ืกื™ื ื”ื‘ื™ื ืืจื™ื™ื ื”ืืœื” ืœืื•ืชื•ืช ื—ื–ื•ืชื™ื™ื,
08:53
we could really unlock the power of our brains
242
533359
1832
ื ื•ื›ืœ ื‘ืืžืช ืœืฉื—ืจืจ ืืช ืขื•ืฆืžืช ืžื•ื—ื ื•
08:55
to process this stuff.
243
535191
2710
ืœืฆื•ืจืš ืขื™ื‘ื•ื“ ื”ื“ื‘ืจื™ื ื”ืืœื”.
08:57
So I started looking at the binary information,
244
537901
1843
ืื– ื”ืชื—ืœืชื™ ืœื”ืชื‘ื•ื ืŸ ื‘ืžื™ื“ืข ื”ื‘ื™ื ืืจื™
08:59
and I asked myself, what do I do
245
539744
1090
ื•ืฉืืœืชื™ ืืช ืขืฆืžื™ ืžื” ืื ื™ ืขื•ืฉื”
09:00
when I first encounter something like this?
246
540834
1876
ื›ืฉืื ื™ ื ืชืงืœ ืœืจืืฉื•ื ื” ื‘ืžืฉื”ื• ื›ื–ื”?
09:02
And the very first thing I want to do,
247
542710
1623
ื•ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืื ื™ ืจื•ืฆื” ืœืขืฉื•ืช,
09:04
the very first question I want to answer,
248
544333
1359
ื”ืฉืืœื” ื”ืจืืฉื•ื ื” ืฉืื ื™ ืจื•ืฆื” ืœืฉืื•ืœ
09:05
is what is this?
249
545692
1278
ื”ื™ื: "ืžื” ื–ื”?"
09:06
I don't care what it does, how it works.
250
546970
2528
ืœื ืื™ื›ืคืช ืœื™ ืžื” ื–ื” ืขื•ืฉื” ืื• ืื™ืš ื–ื” ืขื•ื‘ื“.
09:09
All I want to know is, what is this?
251
549498
2479
ืื ื™ ืจืง ืจื•ืฆื” ืœื“ืขืช ืžื” ื–ื”.
09:11
And the way I can figure that out
252
551977
1675
ื•ื”ื“ืจืš ื‘ื” ืื ื™ ื™ื›ื•ืœ ืœื’ืœื•ืช ืžื” ื–ื”
09:13
is by looking at chunks,
253
553652
1683
ื”ื™ื ืœื”ืชื‘ื•ื ืŸ ื‘ื’ื•ืฉื™ื,
09:15
sequential chunks of binary information,
254
555335
2453
ื’ื•ืฉื™ื ืจืฆื™ืคื™ื ืฉืœ ืžื™ื“ืข ื‘ื™ื ืืจื™,
09:17
and I look at the relationships between those chunks.
255
557788
2902
ื•ืื ื™ ืžืชื‘ื•ื ืŸ ื‘ื™ื—ืกื™ื ืฉื‘ื™ืŸ ื”ื’ื•ืฉื™ื ื”ืืœื”.
09:20
When I gather up enough of these sequences,
256
560690
1772
ื›ืฉื™ืฉ ืœื™ ืžืกืคื™ืง ืจืฆืคื™ื ื›ืืœื”,
09:22
I begin to get an idea of exactly
257
562462
2004
ืื ื™ ืžืชื—ื™ืœ ืœืงื‘ืœ ืžื•ืฉื’ ืžื“ื•ื™ืง
09:24
what this information must be.
258
564466
2634
ืžื”ื• ื•ื“ืื™ ื”ืžื™ื“ืข ื”ื–ื”.
09:27
So let's go back to that
259
567100
1184
ืื– ื›ืขืช ื”ื‘ื” ื ื—ื–ื•ืจ
09:28
blow up the terrorist's phone situation.
260
568284
2090
ืœื“ื•ื’ืžื” ืฉืœ ืคื™ืฆื•ืฅ ื”ื˜ืœืคื•ืŸ ืฉืœ ื”ืžื—ื‘ืœ.
09:30
This is what English text looks like
261
570374
2203
ื›ื›ื” ื ืจืื” ื˜ืงืกื˜ ื‘ืื ื’ืœื™ืช
09:32
at a binary level.
262
572577
1313
ื‘ืจืžื” ื”ื‘ื™ื ืืจื™ืช.
09:33
This is what your contacts list would look like
263
573890
2326
ื›ื›ื” ื ืจืื™ืช ืจืฉื™ืžืช ืื ืฉื™-ืงืฉืจ
09:36
if I were examining it.
264
576216
1560
ืื™ืœื• ื‘ื“ืงื ื• ืื•ืชื”.
09:37
It's really hard to analyze this at this level,
265
577776
2234
ืงืฉื” ืžืื“ ืœื ืชื— ืืช ื–ื” ื‘ืจืžื” ื”ื–ืืช,
09:40
but if we take those same binary chunks
266
580010
2104
ืื‘ืœ ืื ื ื™ืงื— ืืช ืื•ืชื ื’ื•ืฉื™ ืžื™ื“ืข ื‘ื™ื ืืจื™
09:42
that I would be trying to find,
267
582114
1182
ืฉืื ื™ ืžื ืกื” ืœืžืฆื•ื, ื•ื ืชืจื’ื ืื•ืชื
09:43
and instead translate that
268
583296
1764
09:45
to a visual representation,
269
585060
1920
ืœื™ื™ืฆื•ื’ ื—ื–ื•ืชื™,
09:46
translate those relationships,
270
586980
1797
ื ืชืจื’ื ืืช ื”ื™ื—ืกื™ื ื‘ื™ื ื™ื”ื,
09:48
this is what we get.
271
588777
1556
ื–ื” ืžื” ืฉื ืงื‘ืœ.
09:50
This is what English text looks like
272
590333
1914
ื›ื›ื” ื ืจืื” ื˜ืงืกื˜ ื‘ืื ื’ืœื™ืช
09:52
from a visual abstraction perspective.
273
592247
2671
ืžื ืงื•ื“ืช-ืžื‘ื˜ ื—ื–ื•ืชื™ืช ืžื•ืคืฉื˜ืช.
09:54
All of a sudden,
274
594918
1140
ืœืคืชืข ืคืชืื•ื ืื ื• ืจื•ืื™ื ืืช ืื•ืชื• ื”ืžื™ื“ืข
09:56
it shows us all the same information
275
596058
1435
09:57
that was in the ones and zeros,
276
597493
1172
ืฉื”ื™ื” ืงื•ื“ื ื‘ืฆื•ืจืช ืื—ื“ื•ืช ื•ืืคืกื™ื,
09:58
but show us it in an entirely different way,
277
598665
2321
ื‘ืฆื•ืจื” ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ,
10:00
a way that we can immediately comprehend.
278
600986
1717
ืฆื•ืจื” ืฉืื ื• ื™ื›ื•ืœื™ื ืœืชืคื•ืฉ ืžื™ื“.
10:02
We can instantly see all of the patterns here.
279
602703
2965
ืื ื• ืจื•ืื™ื ื›ืืŸ ืžื™ื“ ืืช ื›ืœ ื”ื“ืคื•ืกื™ื.
10:05
It takes me seconds to pick out patterns here,
280
605668
2592
ืื ื™ ืžื–ื”ื” ืชื•ืš ืฉื ื™ื•ืช ืืช ื”ื“ืคื•ืกื™ื ื›ืืŸ,
10:08
but hours, days, to pick them out
281
608260
2254
ืื‘ืœ ื™ื™ื“ืจืฉื• ืœื™ ืฉืขื•ืช ื•ื™ืžื™ื ืœื–ื”ื•ืช ืื•ืชื
10:10
in ones and zeros.
282
610514
1320
ื‘ืื—ื“ื•ืช ื•ืืคืกื™ื.
10:11
It takes minutes for anybody to learn
283
611834
1736
ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœืœืžื•ื“ ืชื•ืš ื“ืงื•ืช
10:13
what these patterns represent here,
284
613570
1665
ืžื” ืžื™ื™ืฆื’ื™ื ื›ืืŸ ื”ื“ืคื•ืกื™ื ื”ืืœื”,
10:15
but years of experience in cyber
285
615235
2247
ืื‘ืœ ื™ื™ื“ืจืฉื• ืœื• ืฉื ื™ื ืฉืœ ื ืกื™ื•ืŸ-ืกื™ื™ื‘ืจ
10:17
to learn what those same patterns represent
286
617482
1654
ืœืœืžื•ื“ ืžื” ืื•ืชื ื”ื“ืคื•ืกื™ื ืžื™ื™ืฆื’ื™ื
10:19
in ones and zeros.
287
619136
1586
ื‘ืื—ื“ื•ืช ื•ืืคืกื™ื.
10:20
So this piece is caused by
288
620722
1662
ื”ืงื˜ืข ื”ื–ื” ื ื•ืฆืจ
10:22
lower case letters followed by lower case letters
289
622384
2024
ืข"ื™ ืื•ืชื™ื•ืช ืงื˜ื ื•ืช ืื—ืจื™ ืื•ืชื™ื•ืช ืงื˜ื ื•ืช
10:24
inside of that contact list.
290
624408
1767
ื‘ืจืฉื™ืžืช ืื ืฉื™ ื”ืงืฉืจ.
10:26
This is upper case by upper case,
291
626175
1341
ื›ืืŸ ื–ื• ืื•ืช ื’ื“ื•ืœื” ืื—ืจื™ ืื•ืช ื’ื“ื•ืœื”,
10:27
upper case by lower case, lower case by upper case.
292
627516
2685
ืื•ืช ื’ื“ื•ืœื” ืื—ืจื™ ืื•ืช ืงื˜ื ื”, ืื•ืช ืงื˜ื ื” ืื—ืจื™ ืื•ืช ื’ื“ื•ืœื”.
10:30
This is caused by spaces. This is caused by carriage returns.
293
630201
2686
ื–ื” ื ื•ืฆืจ ืข"ื™ ืชื•ื•ื™ ืจื•ื•ื—, ื–ื” ื ื•ืฆืจ ืข"ื™ ืชื•ื•ื™ "ืื ื˜ืจ".
10:32
We can go through every little detail
294
632887
1508
ืืคืฉืจ ืœืขื‘ื•ืจ ืขืœ ื›ืœ ืคืจื˜ ื•ืคืจื˜ ืฉืœ ื”ืžื™ื“ืข ื”ื‘ื™ื ืืจื™ ืชื•ืš ืฉื ื™ื•ืช,
10:34
of the binary information in seconds,
295
634395
2966
10:37
as opposed to weeks, months, at this level.
296
637361
3534
ืœืขื•ืžืช ืฉื‘ื•ืขื•ืช ื•ื—ื•ื“ืฉื™ื ื‘ืจืžื” ื”ื–ืืช.
10:40
This is what an image looks like
297
640895
1512
ื›ื›ื” ื ืจืื™ืช ืชืžื•ื ื”
10:42
from your cell phone.
298
642407
1876
ืžื”ื˜ืœืคื•ืŸ ื”ื ื™ื™ื“ ืฉืœื›ื.
10:44
But this is what it looks like
299
644283
1013
ืื‘ืœ ื›ื›ื” ื”ื™ื ื ืจืื™ืช
10:45
in a visual abstraction.
300
645296
1891
ื›ื”ืคืฉื˜ื” ื—ื–ื•ืชื™ืช.
10:47
This is what your music looks like,
301
647187
1985
ื›ื›ื” ื ืจืื™ืช ื”ืžื•ืกื™ืงื” ืฉืœื›ื,
10:49
but here's its visual abstraction.
302
649172
2203
ืื‘ืœ ื–ืืช ื”ื”ืคืฉื˜ื” ื”ื—ื–ื•ืชื™ืช ืฉืœื”.
10:51
Most importantly for me,
303
651375
1760
ื”ื›ื™ ื—ืฉื•ื‘, ืžื‘ื—ื™ื ืชื™,
10:53
this is what the code on your cell phone looks like.
304
653135
3275
ื›ืš ื ืจืื” ื”ืงื•ื“ ื‘ื˜ืœืคื•ืŸ ื”ื ื™ื™ื“ ืฉืœื›ื.
10:56
This is what I'm after in the end,
305
656410
2157
ื•ืื•ืชื• ืื ื™ ืžื—ืคืฉ, ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ,
10:58
but this is its visual abstraction.
306
658567
2140
ืื‘ืœ ื–ืืช ื”ื”ืคืฉื˜ื” ื”ื—ื–ื•ืชื™ืช ืฉืœื•.
11:00
If I can find this, I can't make the phone explode.
307
660707
2509
ืื ืื•ื›ืœ ืœืžืฆื•ื ืืช ื–ื”, ืื•ื›ืœ ืœื’ืจื•ื ืœื˜ืœืคื•ืŸ ืœื”ืชืคื•ืฆืฅ.
11:03
I could spend weeks trying to find this
308
663216
2619
ืื ื™ ื™ื›ื•ืœ ืœื—ืคืฉ ืืช ื–ื” ื‘ืžืฉืš ืฉื‘ื•ืขื•ืช
11:05
in ones and zeros,
309
665835
1177
ื‘ืื—ื“ื•ืช ื•ืืคืกื™ื,
11:07
but it takes me seconds to pick out
310
667012
1784
ืื‘ืœ ืื ื™ ืื–ื”ื” ื–ืืช ืชื•ืš ืฉื ื™ื•ืช
11:08
a visual abstraction like this.
311
668796
3304
ื‘ื”ืคืฉื˜ื” ื—ื–ื•ืชื™ืช ื›ื–ืืช.
11:12
One of those most remarkable parts about all of this
312
672100
2492
ืื—ื“ ื”ื“ื‘ืจื™ื ื”ื›ื™ ืžืขื ื™ื™ื ื™ื ื‘ื›ืœ ื–ื”
11:14
is it gives us an entirely new way to understand
313
674592
2832
ื”ื•ื ืฉื–ื” ื ื•ืชืŸ ืœื ื• ื“ืจืš ื—ื“ืฉื” ืœื’ืžืจื™ ืœื”ื‘ื™ืŸ
11:17
new information, stuff that we haven't seen before.
314
677424
3239
ืžื™ื“ืข ื—ื“ืฉ, ื“ื‘ืจื™ื ืฉืœื ืจืื™ื ื• ืœืคื ื™ ื›ืŸ.
11:20
So I know what English looks like at a binary level,
315
680663
2504
ืื– ืื ื™ ื™ื•ื“ืข ืื™ืš ื ืจืื™ืช ืื ื’ืœื™ืช ื‘ืจืžื” ื”ื‘ื™ื ืืจื™ืช,
11:23
and I know what its visual abstraction looks like,
316
683167
2110
ื•ืื ื™ ื™ื•ื“ืข ืื™ืš ื”ื™ื ื ืจืื™ืช ื‘ื”ืคืฉื˜ื” ื—ื–ื•ืชื™ืช,
11:25
but I've never seen Russian binary in my entire life.
317
685277
3315
ืื‘ืœ ืžืขื•ืœื ืœื ืจืื™ืชื™ ืจื•ืกื™ืช ื‘ื™ื ืืจื™ืช.
11:28
It would take me weeks just to figure out
318
688592
1800
ื™ื™ื“ืจืฉื• ืœื™ ืฉื‘ื•ืขื•ืช ืจืง ื›ื“ื™ ืœื”ื‘ื™ืŸ
11:30
what I was looking at from raw ones and zeros,
319
690392
2997
ืžื” ืื ื™ ืจื•ืื” ื‘ืจืžื” ื”ื’ื•ืœืžื™ืช ืฉืœ ืื—ื“ื•ืช ื•ืืคืกื™ื,
11:33
but because our brains can instantly pick up
320
693389
1751
ืื‘ืœ ื”ื™ื•ืช ืฉื”ืžื•ื— ืฉืœื ื• ืžืกื•ื’ืœ ืœืจืื•ืช ืžื™ื“
11:35
and recognize these subtle patterns inside
321
695140
2817
ื•ืœื–ื”ื•ืช ืืช ื”ื“ืคื•ืกื™ื ื”ืขื“ื™ื ื™ื ื”ืืœื”
11:37
of these visual abstractions,
322
697957
1488
ืฉื‘ื”ืคืฉื˜ื•ืช ื”ื—ื–ื•ืชื™ื•ืช ื”ืืœื•,
11:39
we can unconsciously apply those
323
699445
1832
ื”ืจื™ ืฉืื ื• ื™ื›ื•ืœื™ื ื‘ืื•ืคืŸ ื‘ืœืชื™-ืžื•ื“ืข ืœื™ื™ืฉื ื–ืืช
11:41
in new situations.
324
701277
1573
ื‘ืžืฆื‘ื™ื ื—ื“ืฉื™ื.
11:42
So this is what Russian looks like
325
702850
1482
ืื– ื›ืš ื ืจืื™ืช ืจื•ืกื™ืช
11:44
in a visual abstraction.
326
704332
1580
ื‘ื”ืคืฉื˜ื” ื—ื–ื•ืชื™ืช.
11:45
Because I know what one language looks like,
327
705912
1804
ื”ืขื•ื‘ื“ื” ืฉืื ื™ ื™ื•ื“ืข ืื™ืš ื ืจืื™ืช ืฉืคื” ืื—ืช,
11:47
I can recognize other languages
328
707716
1576
ืžืืคืฉืจืช ืœื™ ืœื–ื”ื•ืช ืฉืคื•ืช ืื—ืจื•ืช
11:49
even when I'm not familiar with them.
329
709292
1870
ืืคื™ืœื• ืื ื”ืŸ ื–ืจื•ืช ืœื™.
11:51
This is what a photograph looks like,
330
711162
1786
ื›ืš ื ืจืื” ืฆื™ืœื•ื,
11:52
but this is what clip art looks like.
331
712948
1887
ื•ื›ืš ื ืจืื” ืงื•ื‘ืฅ ื’ืจืคื™.
11:54
This is what the code on your phone looks like,
332
714835
2555
ื›ืš ื ืจืื” ื”ืงื•ื“ ื‘ื˜ืœืคื•ืŸ ืฉืœื›ื,
11:57
but this is what the code on your computer looks like.
333
717390
2707
ื•ื›ืš ื ืจืื” ื”ืงื•ื“ ื‘ืžื—ืฉื‘ ืฉืœื›ื.
12:00
Our brains can pick up on these patterns
334
720097
1864
ืžื•ื—ื ื• ืžืกื•ื’ืœ ืœื–ื”ื•ืช ื“ืคื•ืกื™ื ืืœื”
12:01
in ways that we never could have
335
721961
1951
ื›ืคื™ ืฉืœื ื”ื™ื™ื ื• ืžืฆืœื™ื—ื™ื
12:03
from looking at raw ones and zeros.
336
723912
2496
ืžืชื•ืš ื”ืชื‘ื•ื ื ื•ืช ื‘ืื—ื“ื•ืช ื•ื‘ืืคืกื™ื ื’ื•ืœืžื™ื™ื.
12:06
But we've really only scratched the surface
337
726408
1856
ืื‘ืœ ืื ื• ืจืง ืžื’ืจื“ื™ื ืืช ืคื ื™ ื”ืฉื˜ื—
12:08
of what we can do with this approach.
338
728264
2137
ืฉืœ ืžื” ืฉืืคืฉืจ ืœื”ืฉื™ื’ ื‘ื’ื™ืฉื” ื”ื–ืืช.
12:10
We've only begun to unlock the capabilities
339
730401
1678
ืจืง ื”ืชื—ืœื ื• ืœืฉื—ืจืจ ืืช ื”ื™ื›ื•ืœื•ืช ื”ืืœื” ืฉืœ ืžื•ื—ื ื•
12:12
of our minds to process visual information.
340
732079
3315
ื‘ืขื™ื‘ื•ื“ ืžื™ื“ืข ื—ื–ื•ืชื™.
12:15
If we take those same concepts and translate them
341
735394
1990
ืื ื ื™ืงื— ืืช ื”ืชืคื™ืฉื•ืช ื”ืืœื” ื•ื ืชืจื’ื ืื•ืชืŸ
12:17
into three dimensions instead,
342
737384
1651
ืœืฉืœื•ืฉื” ืžื™ืžื“ื™ื,
12:19
we find entirely new ways of making sense of information.
343
739035
3195
ื ื’ืœื” ื“ืจื›ื™ื ื—ื“ืฉื•ืช ืœื’ืžืจื™ ืœื”ื‘ื ืช ืžื™ื“ืข.
12:22
In seconds, we can pick out every pattern here.
344
742230
2485
ื ื•ื›ืœ ืชื•ืš ืฉื ื™ื•ืช ืœื–ื”ื•ืช ื›ืืŸ ื›ืœ ื“ืคื•ืก.
12:24
we can see the cross associated with code.
345
744715
1820
ื ื•ื›ืœ ืœืจืื•ืช ืืช ื”ืฆืœื‘ ื”ืงืฉื•ืจ ืœืงื•ื“.
12:26
We can see cubes associated with text.
346
746535
1932
ื ื•ื’ืœ ืœืจืื•ืช ืงื•ื‘ื™ื•ืช ืฉืงืฉื•ืจื•ืช ืœื˜ืงืกื˜.
12:28
We can even pick up the tiniest visual artifacts.
347
748467
2476
ื ื•ื›ืœ ืืคื™ืœื• ืœื–ื”ื•ืช ืืช ื”ืคืจื™ื˜ื™ื ื”ื—ื–ื•ืชื™ื™ื ื”ื–ืขื™ืจื™ื ื‘ื™ื•ืชืจ.
12:30
Things that would take us weeks,
348
750943
2130
ื“ื‘ืจื™ื ืฉื”ื™ื• ื ื“ืจืฉื™ื ืœื ื• ืฉื‘ื•ืขื•ืช ื•ื—ื•ื“ืฉื™ื
12:33
months to find in ones and zeroes,
349
753073
2194
ื›ื“ื™ ืœืืชืจ ื‘ืื—ื“ื•ืช ื•ืืคืกื™ื,
12:35
are immediately apparent
350
755267
1803
ื ื’ืœื™ื ืžื™ื“ ืœืขื™ืŸ
12:37
in some sort of visual abstraction,
351
757070
2270
ื‘ืกื•ื’ ื›ืœืฉื”ื• ืฉืœ ื”ืคืฉื˜ื” ื—ื–ื•ืชื™ืช,
12:39
and as we continue to go through this
352
759340
1132
ื•ื›ื›ืœ ืฉื ืžืฉื™ืš ืœืขื‘ื•ืจ ืขืœ ื–ื”
12:40
and throw more and more information at it,
353
760472
2016
ื•ืœืขืจื•ื ืขื•ื“ ื•ืขื•ื“ ืžื™ื“ืข,
12:42
what we find is that we're capable of processing
354
762488
2281
ื ื’ืœื” ืฉืื ื• ืžืกื•ื’ืœื™ื ืœืขื‘ื“
12:44
billions of ones and zeros
355
764769
2416
ืžื™ืœื™ืืจื“ื™ ืื—ื“ื•ืช ื•ืืคืกื™ื
12:47
in a matter of seconds
356
767185
1168
ืชื•ืš ืฉื ื™ื•ืช
12:48
just by using our brain's built-in ability
357
768353
3234
ืคืฉื•ื˜ ื‘ื›ืš ืฉื ืฉืชืžืฉ ื‘ื™ื›ื•ืœืช ื”ื˜ื‘ืขื™ืช ืฉืœ ืžื•ื—ื ื•
12:51
to analyze patterns.
358
771587
1954
ืœื ืชื— ื“ืคื•ืกื™ื.
12:53
So this is really nice and helpful,
359
773541
2303
ืื– ื–ื” ื ื—ืžื“ ื•ืžื•ืขื™ืœ,
12:55
but all this tells me is what I'm looking at.
360
775844
2359
ืื‘ืœ ื–ื” ืจืง ืื•ืžืจ ืœื™ ืขืœ ืžื” ืื ื™ ืžืกืชื›ืœ.
12:58
So at this point, based on visual patterns,
361
778203
1484
ืื– ื‘ืฉืœื‘ ื–ื”, ืขืœ ืกืžืš ื“ืคื•ืกื™ื ื—ื–ื•ืชื™ื™ื,
12:59
I can find the code on the phone.
362
779687
2409
ืื ื™ ืžืกื•ื’ืœ ืœืžืฆื•ื ืืช ื”ืงื•ื“ ื‘ื˜ืœืคื•ืŸ.
13:02
But that's not enough to blow up a battery.
363
782096
2665
ืื‘ืœ ืื™ืŸ ื‘ื›ืš ื“ื™ ื›ื“ื™ ืœืคื•ืฆืฅ ืกื•ืœืœื”.
13:04
The next thing I need to find is the code
364
784761
1568
ื”ื“ื‘ืจ ื”ื‘ื ืฉืขืœื™ ืœืžืฆื•ื ื”ื•ื ื”ืงื•ื“
13:06
that controls the battery, but we're back
365
786329
1761
ืฉืฉื•ืœื˜ ื‘ืกื•ืœืœื”, ืื‘ืœ ืื– ืื ื• ื—ื•ื–ืจื™ื
13:08
to the needle in a stack of needles problem.
366
788090
1731
ืœื‘ืขื™ื™ืช ื”ืžื—ื˜ ื‘ืขืจื™ืžืช ื”ืžื—ื˜ื™ื.
13:09
That code looks pretty much like all the other code
367
789821
2389
ื”ืงื•ื“ ื ืจืื” ื“ื•ืžื” ืœืžื“ื™ ืœื›ืœ ื™ืชืจ ื”ื‘ื™ื˜ื•ื™ื™ื
13:12
on that system.
368
792210
2238
ื‘ืžืขืจื›ืช.
13:14
So I might not be able to find the code that controls the battery,
369
794448
2401
ืื– ื™ื™ืชื›ืŸ ืฉืœื ืืฆืœื™ื— ืœืžืฆื•ื ืืช ื”ืงื•ื“ ืฉืฉื•ืœื˜ ื‘ืกื•ืœืœื”,
13:16
but there's a lot of things that are very similar to that.
370
796849
2011
ืื‘ืœ ื™ืฉ ื”ืžื•ืŸ ื“ื‘ืจื™ื ื“ื•ืžื™ื ืœื•.
13:18
You have code that controls your screen,
371
798860
1854
ื™ืฉ ืงื•ื“ื™ื ืฉืฉื•ืœื˜ื™ื ื‘ืžืกืš,
13:20
that controls your buttons, that controls your microphones,
372
800714
2216
ื‘ืœื—ืฆื ื™ื, ื‘ืžื™ืงืจื•ืคื•ืŸ,
13:22
so even if I can't find the code for the battery,
373
802930
1928
ืื– ืืคื™ืœื• ืื ืœื ืืฆืœื™ื— ืœืืชืจ ืืช ื”ืงื•ื“ ืฉืœ ื”ืกื•ืœืœื”,
13:24
I bet I can find one of those things.
374
804858
2245
ื‘ื˜ื•ื— ืฉืืฆืœื™ื— ืœืžืฆื•ื ืื—ื“ ืžื”ื“ื‘ืจื™ื ื”ืืœื”.
13:27
So the next step in my binary analysis process
375
807103
2705
ืื– ื”ืฉืœื‘ ื”ื‘ื ื‘ืชื”ืœื™ืš ื”ื ื™ืชื•ื— ื”ื‘ื™ื ืืจื™ ืฉืœื™
13:29
is to look at pieces of information
376
809808
1231
ื”ื•ื ืœื‘ื—ื•ืŸ ืงื˜ืขื™ ืžื™ื“ืข ืฉื“ื•ืžื™ื ื–ื” ืœื–ื”.
13:31
that are similar to each other.
377
811039
2018
13:33
It's really, really hard to do at a binary level,
378
813057
3983
ืžืื“ ืžืื“ ืงืฉื” ืœืขืฉื•ืช ื–ืืช ื‘ืจืžื” ื”ื‘ื™ื ืืจื™ืช,
13:37
but if we translate those similarities to a visual abstraction instead,
379
817040
3643
ืื‘ืœ ืื ื ืชืจื’ื ืืช ื”ื–ื”ื•ื™ื•ืช ื”ืืœื” ืœื”ืคืฉื˜ื” ื—ื–ื•ืชื™ืช,
13:40
I don't even have to sift through the raw data.
380
820683
2438
ืื ื™ ืœื ืฆืจื™ืš ืืคื™ืœื• ืœื—ื˜ื˜ ื‘ื ืชื•ื ื™ื ื”ื’ื•ืœืžื™ื™ื.
13:43
All I have to do is wait for the image to light up
381
823121
2155
ืขืœื™ ืจืง ืœื”ืžืชื™ืŸ ืขื“ ืฉื”ืชืžื•ื ื” ืชืชื‘ื”ืจ
13:45
to see when I'm at similar pieces.
382
825276
2236
ื›ื“ื™ ืœืจืื•ืช ืื ื™ืฉ ืœื™ ืงื˜ืขื™ื ื“ื•ืžื™ื.
13:47
I follow these strands of similarity like a trail of bread crumbs
383
827512
3028
ืื ื™ ืขื•ืงื‘ ืื—ืจื™ ื—ื•ื˜ื™ ื–ื”ื•ืช ืืœื” ื›ืžื• ืื—ืจื™ ื ืชื™ื‘ ืคื™ืจื•ืจื™-ืœื—ื
13:50
to find exactly what I'm looking for.
384
830540
3106
ื›ื“ื™ ืœืžืฆื•ื ื‘ื“ื™ื•ืง ืืช ืžื” ืฉืื ื™ ืžื—ืคืฉ.
13:53
So at this point in the process,
385
833646
1734
ืื– ื‘ืฉืœื‘ ื”ื–ื” ื‘ืชื”ืœื™ืš
13:55
I've located the code
386
835380
1318
ืื™ืชืจืชื™ ืืช ื”ืงื•ื“
13:56
responsible for controlling your battery,
387
836698
1685
ืฉืื—ืจืื™ ืœืฉืœื™ื˜ื” ื‘ืกื•ืœืœื” ืฉืœื›ื,
13:58
but that's still not enough to blow up a phone.
388
838383
2576
ืื‘ืœ ื–ื” ืขื“ื™ื™ืŸ ืœื ืžืกืคื™ืง ื›ื“ื™ ืœืคื•ืฆืฅ ื˜ืœืคื•ืŸ.
14:00
The last piece of the puzzle
389
840959
1564
ื”ืคื™ืกื” ื”ืื—ืจื•ื ื” ื‘ืชืฆืจืฃ
14:02
is understanding how that code
390
842523
2679
ื”ื™ื ืœื”ื‘ื™ืŸ ืื™ืš ื”ืงื•ื“ ื”ื–ื” ืฉื•ืœื˜ ื‘ืกื•ืœืœื” ืฉืœื›ื.
14:05
controls your battery.
391
845202
1202
14:06
For this, I need to identify
392
846404
2388
ืœืฉื ื›ืš ืขืœื™ ืœื–ื”ื•ืช
14:08
very subtle, very detailed relationships
393
848792
1716
ื™ื—ืกื™ื ืกืžื•ื™ื™ื ื•ืžืคื•ืจื˜ื™ื ืžืื“
14:10
within that binary information,
394
850508
2089
ื‘ืชื•ืš ื”ืžื™ื“ืข ื”ื‘ื™ื ืืจื™ ื”ื–ื”,
14:12
another very hard thing to do
395
852597
1755
ื•ื’ื ืืช ื–ื” ืงืฉื” ืžืื“ ืœืขืฉื•ืช ื›ืฉื‘ื•ื—ื ื™ื ืื—ื“ื•ืช ื•ืืคืกื™ื.
14:14
when looking at ones and zeros.
396
854352
2312
14:16
But if we translate that information
397
856664
1396
ืื‘ืœ ืื ื ืชืจื’ื ืืช ื”ืžื™ื“ืข ื”ื–ื” ืœื™ื™ืฆื•ื’ ืคื™ื–ื™
14:18
into a physical representation,
398
858060
2180
14:20
we can sit back and let our visual cortex do all the hard work.
399
860240
3016
ืืคืฉืจ ืœืฉื‘ืช ื‘ื ื•ื—ื•ืช ื•ืœื”ืฉืื™ืจ ืืช ื›ืœ ื”ืขื‘ื•ื“ื” ื”ืงืฉื” ืœืงืœื™ืคืช ื”ืจืื™ื™ื” ื‘ืžื•ื—.
14:23
It can find all the detailed patterns,
400
863256
1734
ื”ื™ื ืžืกื•ื’ืœืช ืœืžืฆื•ื ืืช ื›ืœ ื”ื“ืคื•ืกื™ื ื”ืžืคื•ืจื˜ื™ื,
14:24
all the important pieces, for us.
401
864990
2020
ืืช ื›ืœ ื”ืงื˜ืขื™ื ื”ื—ืฉื•ื‘ื™ื, ืœืžืขื ื ื•.
14:27
It can find out exactly how the pieces of that code
402
867010
2593
ื”ื™ื ื™ื›ื•ืœื” ืœืžืฆื•ื ืื™ืš ื‘ื“ื™ื•ืง ืงื˜ืขื™ ื”ืงื•ื“ ื”ื–ื”
14:29
work together to control that battery.
403
869603
2934
ืคื•ืขืœื™ื ื‘ืžืฉื•ืœื‘ ื›ื“ื™ ืœืฉืœื•ื˜ ื‘ืกื•ืœืœื”.
14:32
All of this can be done in a matter of hours,
404
872537
3004
ืืคืฉืจ ืœืขืฉื•ืช ืืช ื›ืœ ื–ื” ืชื•ืš ืฉืขื•ืช ืกืคื•ืจื•ืช,
14:35
whereas the same process
405
875541
1356
ื‘ืขื•ื“ ืฉืื•ืชื• ืชื”ืœื™ืš ื“ืจืฉ ื‘ืขื‘ืจ ื—ื•ื“ืฉื™ื.
14:36
would have taken months in the past.
406
876897
2922
14:39
This is all well and good
407
879819
1189
ื›ืœ ื–ื” ื˜ื•ื‘ ื•ื™ืคื”
14:41
in a theoretical blow up a terrorist's phone situation.
408
881008
2942
ื›ืฉืžื“ื•ื‘ืจ ื‘ืชืจื—ื™ืฉ ืชื™ืื•ืจื˜ื™ ืฉืœ ืคื™ืฆื•ืฅ ื˜ืœืคื•ืŸ ืฉืœ ืžื—ื‘ืœ.
14:43
I wanted to find out if this would really work
409
883950
2847
ืจืฆื™ืชื™ ืœื’ืœื•ืช ืื ื–ื” ื™ืฆืœื™ื—
14:46
in the work I do every day.
410
886797
2629
ื‘ืขื‘ื•ื“ื” ื”ื™ื•ืžื™ื•ืžื™ืช ืฉืœื™.
14:49
So I was playing around with these same concepts
411
889426
3055
ืื– ื”ืฉืชืขืฉืขืชื™ ืœื™ ืขื ืจืขื™ื•ื ื•ืช ื›ืืœื”
14:52
with some of the data I've looked at in the past,
412
892481
3024
ื‘ื—ืœืง ืžื”ืžื™ื“ืข ืฉื‘ื—ื ืชื™ ื‘ืขื‘ืจ,
14:55
and yet again, I was trying to find
413
895505
2492
ื•ืฉื•ื‘, ื ื™ืกื™ืชื™ ืœืžืฆื•ื
14:57
a very detailed, specific piece of code
414
897997
2208
ืงื˜ืข ืงื•ื“ ืžืคื•ืจื˜ ื•ืกืคืฆื™ืคื™ ืžืื“
15:00
inside of a massive piece of binary information.
415
900205
3595
ื‘ืชื•ืš ื’ื•ืฉ ืžืกื™ื‘ื™ ืฉืœ ืžื™ื“ืข ื‘ื™ื ืืจื™.
15:03
So I looked at it at this level,
416
903800
1773
ืื– ื‘ื—ื ืชื™ ืืช ื–ื” ื‘ืจืžื” ื”ื–ื•,
15:05
thinking I was looking at the right thing,
417
905573
1950
ื‘ืžื—ืฉื‘ื” ืฉืื ื™ ืžืชื‘ื•ื ืŸ ื‘ื“ื‘ืจ ื”ื ื›ื•ืŸ,
15:07
only to see this doesn't have
418
907523
2321
ืื‘ืœ ื’ื™ืœื™ืชื™
15:09
the connectivity I would have expected
419
909844
1740
ืฉืื™ืŸ ื›ืืŸ ื”ืงื™ืฉื•ืจื™ื•ืช ืฉื”ื™ื™ืชื™ ืžืฆืคื” ืœืžืฆื•ื
15:11
for the code I was looking for.
420
911584
1905
ื‘ืงื•ื“ ืฉืื ื™ ืžื—ืคืฉ.
15:13
In fact, I'm not really sure what this is,
421
913489
2603
ืœืžืขืฉื”, ื‘ื›ืœืœ ืœื ื™ื“ืขืชื™ ืžื” ื–ื”,
15:16
but when I stepped back a level
422
916092
1012
ืื‘ืœ ื›ืฉืขืœื™ืชื™ ืจืžื” ื•ื‘ื—ื ืชื™ ืืช ื”ื–ื”ื•ื™ื•ืช ืฉื‘ืชื•ืš ื”ืงื•ื“,
15:17
and looked at the similarities within the code
423
917104
1715
15:18
I saw, this doesn't have similarities
424
918819
2294
ืจืื™ืชื™ ืฉืื™ืŸ ื‘ื• ื–ื”ื•ื™ื•ืช ื›ืžื• ื‘ื›ืœ ืงื•ื“ ืื—ืจ.
15:21
like any code that exists out there.
425
921113
1491
15:22
I can't even be looking at code.
426
922604
2225
ืื•ืœื™ ืื ื™ ื‘ื›ืœืœ ืœื ืžืกืชื›ืœ ืขืœ ืงื˜ืข ืงื•ื“.
15:24
In fact, from this perspective,
427
924829
2386
ืœืžืขืฉื”, ืžื ืงื•ื“ืช ื”ืžื‘ื˜ ื”ื–ืืช,
15:27
I could tell, this isn't code.
428
927215
2048
ื™ื›ื•ืœืชื™ ืœืงื‘ื•ืข ืฉื–ื” ืื™ื ื ื• ืงื•ื“.
15:29
This is an image of some sort.
429
929263
2048
ื–ืืช ืชืžื•ื ื” ื›ืœืฉื”ื™.
15:31
And from here, I can see,
430
931311
1682
ื•ืžื›ืืŸ ืื ื™ ื™ื›ื•ืœ ืœืจืื•ืช
15:32
it's not just an image, this is a photograph.
431
932993
2911
ืฉื–ืืช ืœื ืกืชื ืชืžื•ื ื”, ืืœื ืฆื™ืœื•ื.
15:35
Now that I know it's a photograph,
432
935904
1392
ืžืฉื”ืชื‘ืจืจ ืœื™ ืฉื–ื” ืฆื™ืœื•ื,
15:37
I've got dozens of other binary translation techniques
433
937296
2930
ืขื•ืžื“ื•ืช ืœืจืฉื•ืชื™ ืขืฉืจื•ืช ื˜ื›ื ื™ืงื•ืช ืชืจื’ื•ื ื‘ื™ื ืืจื™
15:40
to visualize and understand that information,
434
940226
2421
ื›ื“ื™ ืœื”ืคื•ืš ืžื™ื“ืข ื–ื” ืœื—ื–ื•ืชื™ ื•ืœื”ื‘ื™ื ื•,
15:42
so in a matter of seconds, we can take this information,
435
942647
2543
ืื– ืื ื• ื™ื›ื•ืœื™ื ืชื•ืš ืฉื ื™ื•ืช ืœืงื—ืช ืืช ื”ืžื™ื“ืข ื”ื–ื”,
15:45
shove it through a dozen other visual translation techniques
436
945190
2397
ืœื”ืขื‘ื™ืจ ืื•ืชื• ื“ืจืš ืขื•ื“ ืขืฉืจ ื˜ื›ื ื™ืงื•ืช ืชืจื’ื•ื ื—ื–ื•ืชื™
15:47
in order to find out exactly what we were looking at.
437
947587
3731
ื›ื“ื™ ืœื’ืœื•ืช ืขืœ ืžื” ืื ื• ื‘ืขืฆื ืžืกืชื›ืœื™ื.
15:51
I saw โ€” (Laughter) โ€”
438
951318
1682
ืจืื™ืชื™ -- [ืฆื—ื•ืง]
15:53
it was that darn kitten again.
439
953000
3456
ื–ื” ืฉื•ื‘ ื”ื—ืชืœืชื•ืœ ื”ืžืขืฆื‘ืŸ ื”ื–ื”.
15:56
All this is enabled
440
956456
1050
ื›ืœ ื–ื” ื”ืชืืคืฉืจ
15:57
because we were able to find a way
441
957506
1495
ื”ื•ื“ื•ืช ืœื›ืš ืฉื™ื›ื•ืœื ื• ืœืžืฆื•ื ื“ืจืš
15:59
to translate a very hard problem
442
959001
2029
ืœืชืจื’ื ื‘ืขื™ื” ืงืฉื” ืžืื“
16:01
to something our brains do very naturally.
443
961030
2512
ืœืžืฉื”ื• ืฉืžื•ื—ื ื• ืžืกื•ื’ืœ ืœืขืฉื•ืช ื‘ืื•ืคืŸ ื˜ื‘ืขื™ ื‘ื™ื•ืชืจ.
16:03
So what does this mean?
444
963542
2238
ืื– ืžื” ื–ื” ืื•ืžืจ?
16:05
Well, for kittens, it means
445
965780
1545
ืžื‘ื—ื™ื ืช ื”ื—ืชืœืชื•ืœื™ื ื–ื” ืื•ืžืจ
16:07
no more hiding in ones and zeros.
446
967325
2417
ืฉื”ื ื›ื‘ืจ ืœื ื™ื›ื•ืœื™ื ืœื”ืกืชืชืจ ื‘ื™ืŸ ื”ืื—ื“ื•ืช ื•ื”ืืคืกื™ื.
16:09
For me, it means no more wasted weekends.
447
969742
3303
ืžื‘ื—ื™ื ืชื™ ื–ื” ืื•ืžืจ ืœื ืขื•ื“ ืกื•ืคื™-ืฉื‘ื•ืข ืžื‘ื•ื–ื‘ื–ื™ื.
16:13
For cyber, it means we have a radical new way
448
973045
2612
ืžื‘ื—ื™ื ืช ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื ื–ื” ืื•ืžืจ ืฉื™ืฉ ืœื ื• ืฉื™ื˜ื” ื—ื“ืฉื” ื•ืจื“ื™ืงืœื™ืช
16:15
to tackle the most impossible problems.
449
975657
2965
ืœื”ืชืžื•ื“ื“ื•ืช ืขื ื”ื‘ืขื™ื•ืช ื”ื›ื™ ื‘ืœืชื™-ืืคืฉืจื™ื•ืช.
16:18
It means we have a new weapon
450
978622
1812
ื–ื” ืื•ืžืจ ืฉื™ืฉ ืœื ื• ื ืฉืง ื—ื“ืฉ
16:20
in the evolving theater of cyber warfare,
451
980434
2416
ื‘ื–ื™ืจื” ื”ืžืชืคืชื—ืช ืฉืœ ื”ืœื•ื—ืžื” ื”ืžืžื•ื—ืฉื‘ืช,
16:22
but for all of us,
452
982850
1420
ืื‘ืœ ืžื‘ื—ื™ื ืช ื›ื•ืœื ื•,
16:24
it means that cyber engineers
453
984270
1475
ื–ื” ืื•ืžืจ ืฉืžื”ื ื“ืกื™ ืื‘ื˜ื—ืช ื”ืžื—ืฉื‘ื™ื
16:25
now have the ability to become first responders
454
985745
2146
ืžืฆื•ื™ื“ื™ื ื›ืขืช ื‘ื™ื›ื•ืœืช ืœื”ื’ื™ื‘ ืจืืฉื•ื ื™ื
16:27
in emergency situations.
455
987891
2583
ื‘ืžืฆื‘ื™ ื—ื™ืจื•ื.
16:30
When seconds count,
456
990474
1047
ื›ืฉื›ืœ ืฉื ื™ื” ืงื•ื‘ืขืช,
16:31
we've unlocked the means to stop the bad guys.
457
991521
3409
ื’ื™ืœื™ื ื• ืืช ื”ืืžืฆืขื™ื ื›ื™ืฆื“ ืœืขืฆื•ืจ ืืช ื”ืจืขื™ื.
16:34
Thank you.
458
994930
2000
ืชื•ื“ื” ืœื›ื.
16:36
(Applause)
459
996930
2962
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7