The next species of human | Juan Enriquez

882,507 views ใƒป 2009-02-17

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Avihu Turzion ืžื‘ืงืจ: Arnon Cahen
00:12
There's a great big elephant in the room called the economy.
0
12160
3000
ื™ืฉ ืคื™ืœ ื’ื“ื•ืœ ื‘ื—ื“ืจ ืฉื ืงืจื: ื”ื›ืœื›ืœื”.
00:16
So let's start talking about that.
1
16160
2000
ืื– ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ืœื“ื‘ืจ ืขืœ ื–ื”.
00:18
I wanted to give you a current picture of the economy.
2
18160
3000
ืื ื™ ืจื•ืฆื” ืœืชืช ืœื›ื ืชืžื•ื ื” ืขื“ื›ื ื™ืช ืฉืœ ื”ื›ืœื›ืœื”.
00:21
That's what I have behind myself.
3
21160
3000
ื–ื” ืžื” ืฉื™ืฉ ืœื™ ืคื” ืžืื—ื•ืจื™ื™.
00:24
(Laughter)
4
24160
3000
(ื›ืชื•ื‘: ื”ื›ืœื›ืœื”...) (ืฆื—ื•ืง)
00:27
But of course what we have to remember is this.
5
27160
3000
ืื‘ืœ, ื›ืžื•ื‘ืŸ, ืฉืขืœื™ื ื• ืœื–ื›ื•ืจ ืืช ื–ื”: (ื›ืชื•ื‘: ื”ืžืคืชื— ืœื ื™ื”ื•ืœ ืžืฉื‘ืจ ื”ื•ื ืœืฉื™ื ืขื™ืŸ ืขืœ ื”ื˜ื•ื•ื— ื”ืืจื•ืš...
00:30
And what you have to think about is,
6
30160
3000
(ื”ืžืฉืš ื”ื›ืชื•ื‘: ื‘ื–ืžืŸ ืฉืจื•ืงื“ื™ื ื‘ืœื”ื‘ื•ืช.) ื•ืขืœื™ื ื• ืœื—ืฉื•ื‘ ืขืœ ื›ืš
00:33
when you're dancing in the flames, what's next?
7
33160
3000
ืฉื‘ื–ืžืŸ ืฉืจื•ืงื“ื™ื ื‘ืœื”ื‘ื•ืช, ืžื” ื‘ื ืื—"ื›?
00:36
So what I'm going to try to do in the next 17 and a half minutes
8
36160
3000
ืื– ืžื” ืฉืื ืกื” ืœืขืฉื•ืช ื‘-17 ื•ื—ืฆื™ ื”ื“ืงื•ืช ื”ื‘ืื•ืช
00:39
is I'm going to talk first about the flames --
9
39160
2000
ื”ื•ื ืฉืื ื™ ืื“ื‘ืจ ืงื•ื“ื ืขืœ ื”ืœื”ื‘ื•ืช
00:41
where we are in the economy --
10
41160
2000
ืื™ืคื” ืฉืื ื—ื ื• ื‘ื›ืœื›ืœื”
00:43
and then I'm going to take three trends
11
43160
2000
ื•ืื– ืื“ื‘ืจ ืขืœ ืฉืœื•ืฉ ืžื’ืžื•ืช,
00:45
that have taken place at TED over the last 25 years
12
45160
3000
ืฉื”ืชืจื—ืฉื• ื‘-TED ื‘-25 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
00:48
and that will take place in this conference
13
48160
2000
ื•ืฉื™ืชืจื—ืฉื• ื‘ื›ื ืก ื”ื–ื”,
00:50
and I will try and bring them together.
14
50160
3000
ื•ืื ืกื” ืœืื—ื“ ืื•ืชืŸ.
00:53
And I will try and give you a sense of what the ultimate reboot looks like.
15
53160
4000
ื•ืื ืกื” ืœืชืช ืœื›ื ืžื•ืฉื’ ืื™ืš ื”ืื™ืชื—ื•ืœ ื”ืื•ืœื˜ื™ืžื˜ื™ื‘ื™ ื ืจืื”.
00:57
Those three trends are
16
57160
2000
ืฉืœื•ืฉ ื”ืžื’ืžื•ืช ื”ืœืœื• ื”ืŸ:
00:59
the ability to engineer cells,
17
59160
2000
ื”ื™ื›ื•ืœืช ืœื”ื ื“ืก ืชืื™ื,
01:01
the ability to engineer tissues,
18
61160
2000
ื”ื™ื›ื•ืœืช ืœื”ื ื“ืก ืจืงืžื•ืช
01:03
and robots.
19
63160
2000
ื•ืจื•ื‘ื•ื˜ื™ื.
01:05
And somehow it will all make sense.
20
65160
2000
ื•ืื™ื›ืฉื”ื•, ื”ื›ืœ ื™ืชื—ื‘ืจ ื‘ืฆื•ืจื” ื”ื’ื™ื•ื ื™ืช.
01:07
But anyway, let's start with the economy.
21
67160
3000
ืื‘ืœ ื‘ื›ืœ ืžืงืจื”, ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ื›ืœื›ืœื”.
01:10
There's a couple of really big problems that are still sitting there.
22
70160
3000
ื™ืฉ ื›ืžื” ื‘ืขื™ื•ืช ืžืžืฉ ื’ื“ื•ืœื•ืช ืฉืขื“ื™ื™ืŸ ื™ื•ืฉื‘ื•ืช ืฉื.
01:13
One is leverage.
23
73160
2000
ืื—ืช ื”ื™ื ืžื™ื ื•ืฃ.
01:15
And the problem with leverage is
24
75160
2000
ื•ื”ื‘ืขื™ื” ืขื ืžื™ื ื•ืฃ ื”ื™ื,
01:17
it makes the U.S. financial system look like this.
25
77160
3000
ืฉื”ื™ื ื’ื•ืจืžืช ืœืžืขืจื›ืช ื”ื›ืœื›ืœื™ืช ืฉืœ ืืจื”"ื‘ ืœื”ื™ืจืื•ืช ื›ืš:
01:20
(Laughter)
26
80160
3000
(ืฆื—ื•ืง)
01:27
So, a normal commercial bank has nine to 10 times leverage.
27
87160
3000
ืื– ื‘ื ืง ืกื—ืจ ืจื’ื™ืœ ืžืžื ืฃ ืคื™ 9 ืขื“ 10.
01:30
That means for every dollar you deposit, it loans out about nine or 10.
28
90160
3000
ื–ื” ืื•ืžืจ, ืฉืขื‘ื•ืจ ื›ืœ ื“ื•ืœืจ ืฉืืชื ืžืคืงื™ื“ื™ื ื”ื•ื ืžืœื•ื•ื” 9 ืขื“ 10.
01:33
A normal investment bank is not a deposit bank,
29
93160
3000
ื‘ื ืง ื”ืฉืงืขื•ืช ืจื’ื™ืœ ื”ื•ื ืœื ื‘ื ืง ื”ืคืงื“ื•ืช,
01:36
it's an investment bank;
30
96160
2000
ื”ื•ื ื‘ื ืง ื”ืฉืงืขื•ืช
01:38
it has 15 to 20 times.
31
98160
2000
ืื– ื™ืฉ ืœื• ืคื™ 15 ืขื“ ืคื™ 20.
01:40
It turns out that B of A in September had 32 times.
32
100160
3000
ืžืกืชื‘ืจ ืฉืœื‘ื ืง ืืžืจื™ืงื” ื‘ืกืคื˜ืžื‘ืจ ื”ื™ื” ืคื™ 32.
01:43
And your friendly Citibank had 47 times.
33
103160
3000
ื•ืœื—ื‘ืจื™ื ื•, ืกื™ื˜ื™ื‘ื ืง, ื”ื™ื” ืคื™ 47.
01:46
Oops.
34
106160
2000
ืื•ืคืก...
01:48
That means every bad loan goes bad 47 times over.
35
108160
4000
ื–ื” ืื•ืžืจ ืฉื›ืœ ื”ืœื•ื•ืื” ื’ืจื•ืขื” ืžื–ื™ืงื” ืคื™ 47.
01:52
And that, of course, is the reason why all of you
36
112160
3000
ื•ื–ื•, ื›ืžื•ื‘ืŸ, ื”ืกื™ื‘ื” ืฉื›ื•ืœื›ื
01:55
are making such generous and wonderful donations
37
115160
3000
ืชื•ืจืžื™ื ื›ืœ ื›ืš ื”ืจื‘ื” ืชืจื•ืžื•ืช ื ื“ื™ื‘ื•ืช
01:58
to these nice folks.
38
118160
2000
ืœื—ื‘ืจ'ื” ื”ื ื—ืžื“ื™ื ื”ืืœื”.
02:03
And as you think about that,
39
123160
2000
ื•ื›ืฉื—ื•ืฉื‘ื™ื ืขืœ ื–ื”
02:05
you've got to wonder: so what do banks have in store for you now?
40
125160
3000
ื—ื™ื™ื‘ื™ื ืœืชื”ื•ืช: ืžื” ื ื™ืชืŸ ืœืฆืคื•ืช ืžื”ื‘ื ืงื™ื ื›ืขืช?
02:11
(Laughter)
41
131160
3000
(ืขืœ ื”ื—ื•ืœืฆื•ืช: ืขื•ื“ ื–-- ื˜ื•ื‘) (ืฆื—ื•ืง)
02:20
It ain't pretty.
42
140160
2000
ื–ื” ืœื ื™ืคื”.
02:23
The government, meanwhile, has been acting like Santa Claus.
43
143160
4000
ื”ืžืžืฉืœื”, ื‘ื™ื ืชื™ื™ื, ืžืชื ื”ื’ืช ื›ืžื• ืกื ื˜ื” ืงืœืื•ืก.
02:27
We all love Santa Claus, right?
44
147160
3000
ื›ื•ืœื ื• ืื•ื”ื‘ื™ื ืืช ืกื ื˜ื”, ื ื›ื•ืŸ?
02:30
But the problem with Santa Clause is,
45
150160
3000
ืื‘ืœ ื”ื‘ืขื™ื” ืขื ืกื ื˜ื” ืงืœืื•ืก ื”ื™ื,
02:33
if you look at the mandatory spending of what these folks have been doing
46
153160
3000
ืื ืชืกืชื›ืœื• ืขืœ ื”ื”ื•ืฆืขื•ืช ื”ื”ื›ืจื—ื™ื•ืช ืขืœ ืžื” ืฉื”ื—ื‘ืจ'ื” ื”ืืœื” ืขื•ืฉื™ื,
02:36
and promising folks,
47
156160
2000
ื•ืžื‘ื˜ื™ื—ื™ื ืœืื ืฉื™ื,
02:38
it turned out that in 1967, 38 percent was mandatory spending
48
158160
5000
ืžืกืชื‘ืจ ืฉื‘-1967: 38 ืื—ื•ื– ื”ื™ื• ื”ื•ืฆืขื•ืช ื”ื›ืจื—ื™ื•ืช,
02:43
on what we call "entitlements."
49
163160
3000
ื•ืžื” ืฉืื ื—ื ื• ืžื›ื ื™ื "ื–ื›ืื•ื™ื•ืช".
02:46
And then by 2007 it was 68 percent.
50
166160
3000
ื•ืื– ื‘-2007 ื›ื‘ืจ ื”ื™ื• 68 ืื—ื•ื–.
02:49
And we weren't supposed to run into 100 percent until about 2030.
51
169160
4000
ื•ืœื ื”ื™ื™ื ื• ืืžื•ืจื™ื ืœื”ื’ื™ืข ืœ-100 ืื—ื•ื– ืขื“ 2030 ื‘ืขืจืš.
02:54
Except we've been so busy giving away a trillion here, a trillion there,
52
174160
3000
ืืœื ืฉื”ื™ื™ื ื• ืขืกื•ืงื™ื ื›ืœ ื›ืš ื‘ืœืชืช ื˜ืจื™ืœื™ื•ืŸ ื›ืืŸ, ื˜ืจื™ืœื™ื•ืŸ ืฉื,
02:57
that we've brought that date of reckoning forward
53
177160
3000
ืฉื”ืงื“ืžื ื• ืืช ื™ื•ื ื”ื“ื™ืŸ.
03:00
to about 2017.
54
180160
3000
ืœ-2017 ื‘ืขืจืš.
03:03
And we thought we were going to be able to lay these debts off on our kids,
55
183160
3000
ื•ืื ื—ื ื• ื—ืฉื‘ื ื• ืฉื ื•ื›ืœ ืœื”ืฉืื™ืจ ืืช ื”ื—ื•ื‘ื•ืช ื”ืืœื” ืœื™ืœื“ื™ื ื•,
03:06
but, guess what?
56
186160
2000
ืื‘ืœ, ื ื—ืฉื• ืžื”?
03:08
We're going to start to pay them.
57
188160
2000
ืื ื—ื ื• ื ืชื—ื™ืœ ืœืฉืœื ืื•ืชื.
03:10
And the problem with this stuff is, now that the bill's come due,
58
190160
2000
ื•ื”ื‘ืขื™ื” ืขื ื”ื“ื‘ืจ ื”ื–ื” ื”ื™ื, ืฉืขื›ืฉื™ื•, ื›ืฉื™ื•ืžื• ืฉืœ ื”ืฉื˜ืจ ื—ืœืฃ,
03:12
it turns out Santa isn't quite as cute when it's summertime.
59
192160
4000
ืžืกืชื‘ืจ ืฉืกื ื˜ื” ืœื ื›ืœ ื›ืš ื—ืžื•ื“ ื‘ืงื™ืฅ.
03:16
Right?
60
196160
2000
ื ื›ื•ืŸ?
03:18
(Laughter)
61
198160
3000
(ืฆื—ื•ืง)
03:30
Here's some advice from one of the largest investors in the United States.
62
210160
4000
ื”ื ื” ืขืฆื” ืžืื—ื“ ื”ืžืฉืงื™ืขื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ื‘ืืจื”"ื‘.
03:34
This guy runs the China Investment Corporation.
63
214160
3000
ื”ื‘ื—ื•ืจ ื”ื–ื” ืžื ื”ืœ ืืช ื—ื‘ืจืช ื”ื”ืฉืงืขื•ืช ื”ืกื™ื ื™ืช.
03:37
He is the main buyer of U.S. Treasury bonds.
64
217160
3000
ื”ื•ื ื”ืงื•ื ื” ื”ืขื™ืงืจื™ ืฉืœ ืื’"ื— ืžืžืฉืœืชื™ ืฉืœ ืืจื”"ื‘.
03:40
And he gave an interview in December.
65
220160
3000
ื•ื”ื•ื ื”ืชืจืื™ื™ืŸ ื‘ื“ืฆืžื‘ืจ.
03:43
Here's his first bit of advice.
66
223160
2000
ื”ื ื” ื”ื—ืœืง ื”ืจืืฉื•ืŸ ื‘ืขืฆืชื•: (ื”ื™ื• ื ื—ืžื“ื™ื ืœืžื™ ืฉืœื•ื•ื™ื ืžืžื ื• ื›ืกืฃ)
03:45
And here's his second bit of advice.
67
225160
3000
ื•ื”ื ื” ื”ื—ืœืง ื”ืฉื ื™ ื‘ืขืฆืชื•: (ื ืฉืžื— ืœืชืžื•ืš ื‘ื›ื... ืื ื–ื” ื‘ืจ-ืงื™ื•ื)
03:50
And, by the way,
68
230160
2000
ื•ื“ืจืš ืื’ื‘,
03:52
the Chinese Prime Minister reiterated this at Davos last Sunday.
69
232160
3000
ืจื”"ืž ื”ืกื™ื ื™ ืขื‘ืจ ืขืœ ื–ื” ืžื—ื“ืฉ ื‘ื“ืื‘ื•ืก ื‘ื™ื•ื ืจืืฉื•ืŸ ื”ืื—ืจื•ืŸ.
03:55
This stuff is getting serious enough
70
235160
2000
ื”ื“ื‘ืจื™ื ื”ืืœื” ื ื”ื™ื™ื ืžืกืคื™ืง ืจืฆื™ื ื™ื™ื,
03:57
that if we don't start paying attention to the deficit,
71
237160
2000
ืฉืื ืœื ื ืชื—ื™ืœ ืœืฉื™ื ืœื‘ ืœื’ื™ืจืขื•ืŸ
03:59
we're going to end up losing the dollar.
72
239160
3000
ื‘ืกื•ืฃ ื ืื‘ื“ ืืช ื”ื“ื•ืœืจ.
04:02
And then all bets are off.
73
242160
3000
ื•ืื– ื›ืœ ื”ื”ื™ืžื•ืจื™ื ืžื‘ื•ื˜ืœื™ื.
04:05
Let me show you what it looks like.
74
245160
3000
ื‘ื•ืื• ืื ื™ ืืจืื” ืœื›ื ืื™ืš ื–ื” ื ืจืื”:
04:08
I think I can safely say
75
248160
2000
ืื ื™ ื—ื•ืฉื‘ ืฉืื ื™ ื™ื›ื•ืœ ืœื”ื’ื™ื“ ื‘ื‘ื˜ื—ื”
04:10
that I'm the only trillionaire in this room.
76
250160
3000
ืฉืื ื™ ื”ื˜ืจื™ืœื™ื•ื ืจ ื”ื™ื—ื™ื“ ื‘ื—ื“ืจ ื”ื–ื”.
04:14
This is an actual bill.
77
254160
2000
ื–ื” ืฉื˜ืจ ืืžื™ืชื™.
04:16
And it's 10 triliion dollars.
78
256160
3000
ื•ื”ื•ื ืฉื•ื•ื” 10 ื˜ืจื™ืœื™ื•ืŸ ื“ื•ืœืจ.
04:19
The only problem with this bill is it's not really worth very much.
79
259160
3000
ื”ื‘ืขื™ื” ื”ื™ื—ื™ื“ื” ืขื ื”ืฉื˜ืจ ื”ื–ื” ื”ื™ื ืฉื”ื•ื ืœื ืฉื•ื•ื” ื”ืจื‘ื”.
04:22
That was eight bucks last week, four bucks this week,
80
262160
3000
ื–ื” ื”ื™ื” ืฉื•ื•ื” 8 ื“ื•ืœืจ ืฉื‘ื•ืข ืฉืขื‘ืจ, 4 ื“ื•ืœืจ ื”ืฉื‘ื•ืข,
04:25
a buck next week.
81
265160
2000
ื•ื“ื•ืœืจ ืื—ื“ ื‘ืฉื‘ื•ืข ื”ื‘ื.
04:27
And that's what happens to currencies when you don't stand behind them.
82
267160
4000
ื•ื–ื” ืžื” ืฉืงื•ืจื” ืœืžื˜ื‘ืข ื›ืฉืœื ืขื•ืžื“ื™ื ืžืื—ื•ืจื™ื•.
04:32
So the next time somebody as cute as this shows up on your doorstep,
83
272160
5000
ืื– ื‘ืคืขื ื”ื‘ืื” ืฉืžื™ืฉื”ื• ื—ืžื•ื“ ื›ื–ื” ืžื•ืคื™ืข ื‘ืžืคืชืŸ ื“ืœืชื›ื,
04:37
and sometimes this creature's called Chrysler and sometimes Ford and sometimes ... whatever you want --
84
277160
7000
ื•ืœืคืขืžื™ื ืœื™ืฆื•ืจ ื”ื–ื” ืงื•ืจืื™ื ืงืจื™ื™ื–ืœืจ, ื•ืœืคืขืžื™ื ืคื•ืจื“, ื•ืœืคืขืžื™ื... ืžื” ืฉื‘ื ืœื›ื.
04:44
you've just got to say no.
85
284160
2000
ืืชื ื—ื™ื™ื‘ื™ื ืคืฉื•ื˜ ืœื”ื’ื™ื“: ืœื.
04:46
And you've got to start banishing a word that's called "entitlement."
86
286160
4000
ื•ืืชื ื—ื™ื™ื‘ื™ื ืœื”ื™ืคื˜ืจ ืžื”ืžื™ืœื” "ื–ื›ืื•ื™ื•ืช",
04:50
And the reason we have to do that in the short term
87
290160
3000
ื•ื”ืกื™ื‘ื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืืช ื–ื” ื‘ื˜ื•ื•ื— ื”ืงืฆืจ
04:53
is because we have just run out of cash.
88
293160
3000
ื”ื™ื, ื›ื™ ื ื’ืžืจื• ืœื ื• ื”ืžื–ื•ืžื ื™ื.
04:56
If you look at the federal budget, this is what it looks like.
89
296160
3000
ืื ืชืกืชื›ืœื• ืขืœ ื”ืชืงืฆื™ื‘ ื”ืคื“ืจืœื™, ื›ืš ื”ื•ื ื ืจืื”:
04:59
The orange slice is what's discretionary.
90
299160
3000
ื”ืคืจื•ืกื” ื”ื›ืชื•ืžื” ื ื™ืชื ืช ืข"ืค ืฉื™ืงื•ืœ ื“ืขืช.
05:02
Everything else is mandated.
91
302160
2000
ื›ืœ ื”ืฉืืจ ืžื•ื›ืชื‘ ืžืจืืฉ.
05:05
It makes no difference if we cut out the bridges to Alaska in the overall scheme of things.
92
305160
3000
ื‘ืฉืงืœื•ืœ ื”ืกื•ืคื™ ื–ื” ืœื ื™ืฉื ื” ืฉื•ื ื“ื‘ืจ ืื ืชืงื˜ืขื• ืืช ื”ื’ืฉืจื™ื ืœืืœืกืงื”.
05:08
So what we have to start thinking about doing
93
308160
3000
ืื– ืžื” ืฉืขืœื™ื ื• ืœื—ืฉื•ื‘ ืขืœื™ื•,
05:11
is capping our medical spending
94
311160
2000
ื”ื•ื ืœื”ื’ื‘ื™ืœ ืืช ื”ื•ืฆืื•ืช ื”ื‘ืจื™ืื•ืช ืฉืœื ื•,
05:13
because that's a monster that's simply going to eat the entire budget.
95
313160
3000
ืžื›ื™ื•ื•ืŸ ืฉื–ื• ืžืคืœืฆืช ืฉืคืฉื•ื˜ ื”ื•ืœื›ืช ืœืื›ื•ืœ ืœื ื• ืืช ื›ืœ ื”ืชืงืฆื™ื‘.
05:16
We've got to start thinking about asking people
96
316160
3000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืชื—ื™ืœ ืœื‘ืงืฉ ืžืื ืฉื™ื
05:19
to retire a little bit later.
97
319160
2000
ืœืคืจื•ืฉ ื‘ื’ื™ืœ ืžืื•ื—ืจ ื™ื•ืชืจ.
05:22
If you're 60 to 65 you retire on time.
98
322160
3000
ืื ืืชื ื‘ื ื™ 60 ืขื“ 65 ืชืคืจืฉื• ื‘ื–ืžืŸ.
05:25
Your 401(k) just got nailed.
99
325160
2000
ืชื•ื›ื ื™ืช ื”ืคื ืกื™ื” ืฉืœื›ื ืžื•ื‘ื˜ื—ืช.
05:27
If you're 50 to 60 we want you to work two years more.
100
327160
3000
ืื ืืชื ื‘ื ื™ 50 ืขื“ 60, ืื ื—ื ื• ืจื•ืฆื™ื ืฉืชืขื‘ื“ื• ืขื•ื“ ืฉื ืชื™ื™ื.
05:30
If you're under 50 we want you to work four more years.
101
330160
3000
ืื ืืชื ืžืชื—ืช ืœื’ื™ืœ 50, ืื ื—ื ื• ืจื•ืฆื™ื ืฉืชืขื‘ื“ื• ืขื•ื“ ืืจื‘ืข ืฉื ื™ื.
05:33
The reason why that's reasonable is,
102
333160
3000
ื”ืกื™ื‘ื” ืฉื–ื” ื”ื’ื™ื•ื ื™ ื”ื™ื,
05:36
when your grandparents were given Social Security,
103
336160
2000
ื›ืฉืœืกื‘ื™ื ืฉืœื›ื ื ื™ืชืŸ ื‘ื™ื˜ื•ื— ืœืื•ืžื™
05:38
they got it at 65 and were expected to check out at 68.
104
338160
3000
ื”ื ืงื™ื‘ืœื• ืื•ืชื• ื‘ื’ื™ืœ 65 ื•ืฆื™ืคื• ืžื”ื ืฉื™ืขื–ื‘ื• ื‘ื’ื™ืœ 68.
05:41
Sixty-eight is young today.
105
341160
3000
68 ื–ื” ืฆืขื™ืจ ื”ื™ื•ื.
05:44
We've also got to cut the military about three percent a year.
106
344160
4000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ื’ื ืœืงืฆืฅ ื‘ืฆื‘ื ื‘ืฉืœื•ืฉื” ืื—ื•ื–ื™ื ื‘ืฉื ื”.
05:48
We've got to limit other mandatory spending.
107
348160
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื’ื‘ื™ืœ ื”ื•ืฆืขื•ืช ืื—ืจื•ืช, ืฉืžื•ื›ืชื‘ื•ืช ืžืจืืฉ.
05:50
We've got to quit borrowing as much,
108
350160
3000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืคืกื™ืง ืœืœื•ื•ืช ื›"ื› ื”ืจื‘ื”,
05:53
because otherwise the interest is going to eat that whole pie.
109
353160
3000
ื›ื™ ืื—ืจืช ื”ืจื™ื‘ื™ืช ืชืื›ืœ ืืช ื›ืœ ื”ืขื•ื’ื”.
05:56
And we've got to end up with a smaller government.
110
356160
2000
ื•ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืกื™ื™ื ืขื ืžืžืฉืœื” ืงื˜ื ื” ื™ื•ืชืจ.
05:58
And if we don't start changing this trend line,
111
358160
3000
ื•ืื ืœื ื ืชื—ื™ืœ ืœืฉื ื•ืช ืืช ื”ืžื’ืžื” ื”ื–ื•,
06:01
we are going to lose the dollar
112
361160
2000
ืื ื—ื ื• ื‘ืกื•ืฃ ื ืื‘ื“ ืืช ื”ื“ื•ืœืจ,
06:03
and start to look like Iceland.
113
363160
2000
ื•ื ืชื—ื™ืœ ืœื”ื™ืจืื•ืช ื›ืžื• ืื™ืกืœื ื“.
06:05
I got what you're thinking.
114
365160
3000
ืื ื™ ื™ื•ื“ืข ืžื” ืืชื ื—ื•ืฉื‘ื™ื:
06:08
This is going to happen when hell freezes over.
115
368160
4000
ื–ื” ื™ืงืจื” ื›ืฉื”ื’ื™ื”ื ื•ื ื™ืงืคื ืขืœ ืคื ื™ื•.
06:13
But let me remind you this December it did snow in Vegas.
116
373160
3000
ืื‘ืœ ืื ื™ ืจืง ืจื•ืฆื” ืœื”ื–ื›ื™ืจ ืœื›ื ืฉื‘ื“ืฆืžื‘ืจ ื”ืื—ืจื•ืŸ ื‘ืืžืช ื™ืจื“ ืฉืœื’ ื‘ืœืืก ื•ื’ืืก.
06:18
(Laughter)
117
378160
3000
(ืฆื—ื•ืง)
06:23
Here's what happens if you don't address this stuff.
118
383160
3000
ื”ื ื” ืžื” ืฉืงื•ืจื ื›ืฉืœื ืžื˜ืคืœื™ื ื‘ื ื•ืฉืื™ื ื”ืืœื”:
06:26
So, Japan had a fiscal real estate crisis
119
386160
3000
ืื–, ืœื™ืคืŸ ื”ื™ื” ืžืฉื‘ืจ ื ื“ืœ"ืŸ ืฆื™ื‘ื•ืจื™
06:29
back in the late '80s.
120
389160
2000
ื‘ืฉื ื•ืช ื”-80'.
06:31
And its 225 largest companies today
121
391160
3000
ื•-225 ื”ื—ื‘ืจื•ืช ื”ื’ื“ื•ืœื•ืช ืฉืœ ื™ืคืŸ
06:34
are worth one quarter of what they were 18 years ago.
122
394160
3000
ืฉื•ื•ืช ืจื‘ืข ืžืžื” ืฉื”ื™ื• ืฉื•ื•ืช ืœืคื ื™ 18 ืฉื ื”.
06:37
We don't fix this now,
123
397160
2000
ืื ืœื ื ืชืงืŸ ืืช ื–ื” ืขื›ืฉื™ื•,
06:39
how would you like to see a Dow 3,500 in 2026?
124
399160
3000
ืื™ืš ื”ื™ื™ืชื ืจื•ืฆื™ื ืœืจืื•ืช ืืช ื”ื“ืื• ืขื•ืžื“ ืขืœ 3,500 ื‘-2026?
06:42
Because that's the consequence of not dealing with this stuff.
125
402160
3000
ื›ื™ ืืœื” ื”ืชื•ืฆืื•ืช ืฉืœ ืื™-ื”ืชืžื•ื“ื“ื•ืช ืขื ื”ื ื•ืฉืื™ื ื”ืืœื”.
06:45
And unless you want this person
126
405160
3000
ื•ืืœื ืื ื›ืŸ ืื ื• ืจื•ืฆื™ื ืฉื”ืื“ื ื”ื–ื”
06:48
to not just become the CFO of Florida, but the United States,
127
408160
3000
ื™ื”ืคื•ืš ืœื ืจืง ืœื›ืœื›ืœืŸ ื”ืจืืฉื™ ืฉืœ ืคืœื•ืจื™ื“ื”, ืืœื ืฉืœ ื›ืœ ืืจื”"ื‘,
06:51
we'd better deal with this stuff.
128
411160
3000
ื›ื“ืื™ ืฉื ืชืžื•ื“ื“ ืขื ื–ื”.
06:54
That's the short term. That's the flame part.
129
414160
3000
ื–ื” ื”ื˜ื•ื•ื— ื”ืงืฆืจ. ื–ื” ื”ื—ืœืง ืฉืœ ื”ืœื”ื‘ื•ืช.
06:57
That's the financial crisis.
130
417160
2000
ื–ื” ื”ืžืฉื‘ืจ ื”ืคื™ื ื ืกื™.
06:59
Now, right behind the financial crisis there's a second and bigger wave
131
419160
4000
ืขื›ืฉื™ื•, ืžืžืฉ ืžืื—ื•ืจื™ ื”ืžืฉื‘ืจ ื”ืคื™ื ื ืกื™, ืžื’ื™ืข ื’ืœ ืฉื ื™ ื•ื’ื“ื•ืœ ื™ื•ืชืจ,
07:03
that we need to talk about.
132
423160
1000
ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื“ื‘ืจ ืขืœื™ื•.
07:04
That wave is much larger, much more powerful,
133
424160
2000
ื”ื’ืœ ื”ื–ื” ื’ื“ื•ืœ ื‘ื”ืจื‘ื”, ื•ื—ื–ืง ื‘ื”ืจื‘ื”,
07:06
and that's of course the wave of technology.
134
426160
3000
ื•ื–ื”, ื›ืžื•ื‘ืŸ, ื’ืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
07:09
And what's really important in this stuff is,
135
429160
2000
ื•ืžื” ืฉืžืžืฉ ื—ืฉื•ื‘ ื‘ื ื•ืฉื ื”ื–ื” ื”ื•ื,
07:11
as we cut, we also have to grow.
136
431160
2000
ื›ืฉืื ื—ื ื• ืžืงืฆืฆื™ื, ืื ื—ื ื• ืฆืจื™ื›ื™ื ื’ื ืœืฆืžื•ื—.
07:13
Among other things, because startup companies
137
433160
3000
ื‘ื™ืŸ ืฉืืจ ื”ื“ื‘ืจื™ื, ืžื›ื™ื•ื•ืŸ ืฉื—ื‘ืจื•ืช ืกื˜ืืจื˜-ืืค
07:16
are .02 percent of U.S. GDP investmentm
138
436160
2000
ื”ืŸ %0.02 ืžื›ืœืœ ื”ืชืœ"ื’ ื”ืœืื•ืžื™ ื”ืžื•ืฉืงืข ืฉืœ ืืจื”"ื‘
07:18
and they're about 17.8 percent of output.
139
438160
3000
ื•ื”ืŸ ื‘ืขืจืš %17.8 ืžื”ื™ื™ืฆื•ื.
07:23
It's groups like that in this room that generate the future of the U.S. economy.
140
443160
3000
ื–ื” ืงื‘ื•ืฆื•ืช ื›ืžื• ืืœื• ื‘ื—ื“ืจ ื”ื–ื” ืฉืžื™ื™ืฆืจื•ืช ืืช ื”ืขืชื™ื“ ืฉืœ ื›ืœื›ืœืช ืืจื”"ื‘.
07:26
And that's what we've got to keep growing.
141
446160
2000
ื•ื–ื” ืžื” ืฉืขืœื™ื ื• ืœื”ืžืฉื™ืš ืœื’ื“ืœ.
07:28
We don't have to keep growing these bridges to nowhere.
142
448160
3000
ืื ื—ื ื• ืœื ืฆืจื™ื›ื™ื ืœื”ืžืฉื™ืš ืœื‘ื ื•ืช ื’ืฉืจื™ื ืœืฉื•ื-ืžืงื•ื.
07:32
So let's bring a romance novelist into this conversation.
143
452160
4000
ืื– ื‘ื•ืื• ื ืขืจื‘ ืกื•ืคืจ ืจื•ืžื ื™ื ื‘ื“ื™ื•ืŸ.
07:38
And that's where these three trends come together.
144
458160
5000
ื•ื›ืืŸ ืฉืœื•ืฉ ื”ืžื’ืžื•ืช ืžืชื—ื‘ืจื•ืช.
07:43
That's where the ability to engineer microbes,
145
463160
3000
ื›ืืŸ ื”ื™ื›ื•ืœืช ืœื”ื ื“ืก ืžื™ืงืจื•ื‘ื™ื,
07:46
the ability to engineer tissues,
146
466160
2000
ื”ื™ื›ื•ืœืช ืœื”ื ื“ืก ืจืงืžื•ืช,
07:48
and the ability to engineer robots
147
468160
2000
ื•ื”ื™ื›ื•ืœืช ืœื”ื ื“ืก ืจื•ื‘ื•ื˜ื™ื
07:50
begin to lead to a reboot.
148
470160
2000
ืžืชื—ื™ืœื•ืช ืœื”ื•ื‘ื™ืœ ืœืื™ืชื—ื•ืœ ืžื—ื“ืฉ.
07:52
And let me recap some of the stuff you've seen.
149
472160
2000
ื•ืชื ื• ืœื™ ืœืกืงื•ืจ ืžื—ื“ืฉ ื—ืœืง ืžื”ื“ื‘ืจื™ื ืฉืจืื™ื ื•.
07:54
Craig Venter showed up last year
150
474160
2000
ืงืจื™ื™ื’ ื•ื ื˜ืจ ื”ื•ืคื™ืข ืฉื ื” ืฉืขื‘ืจื”,
07:56
and showed you the first fully programmable cell that acts like hardware
151
476160
2000
ื•ื”ืจืื” ืœื›ื ืืช ื”ืชื ื”ืจืืฉื•ืŸ ืฉืืคืฉืจ ืœืชื›ื ืช ื‘ืื•ืคืŸ ืžืœื ื›ืžื• ื—ื•ืžืจื”,
07:58
where you can insert DNA and have it boot up as a different species.
152
478160
3000
ืฉืืคืฉืจ ืœื”ื›ื ื™ืก ืืœื™ื• ื“ื "ื ื•ืœื’ืจื•ื ืœื• ืœื”ื™ื˜ืขืŸ ื›ืžื™ืŸ ืื—ืจ ืœื—ืœื•ื˜ื™ืŸ.
08:01
In parallel, the folks at MIT
153
481160
3000
ื‘ืžืงื‘ื™ืœ, ื”ื—ื‘ืจ'ื” ื‘-MIT
08:04
have been building a standard registry of biological parts.
154
484160
3000
ื‘ื•ื ื™ื ืจื™ืฉื•ื ืกื˜ื ื“ืจื˜ื™ ืฉืœ ื—ืœืงื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื.
08:07
So think of it as a Radio Shack for biology.
155
487160
3000
ืื– ืชื—ืฉื‘ื• ืขืœ ื–ื” ื›ืžื• ืื•ืคื™ืก ื“ื™ืคื• ืœื‘ื™ื•ืœื•ื’ื™ื”.
08:10
You can go out and get your proteins, your RNA, your DNA, whatever.
156
490160
3000
ืืชื ื™ื›ื•ืœื™ื ืœืฆืืช ื•ืœืงื ื•ืช ืืช ื”ื—ืœื‘ื•ื ื™ื ืฉืœื›ื, ื”ืจื "ื ืฉืœื›ื, ื”ื“ื "ื ืฉืœื›ื, ืžื” ืฉืืชื ืจื•ืฆื™ื,
08:13
And start building stuff.
157
493160
3000
ื•ืœื”ืชื—ื™ืœ ืœื‘ื ื•ืช ื“ื‘ืจื™ื.
08:16
In 2006 they brought together high school students and college students
158
496160
3000
ื‘-2006 ืงื™ื‘ืฆื• ื™ื—ื“ ืชืœืžื™ื“ื™ ืชื™ื›ื•ืŸ ื•ืžื›ืœืœื•ืช,
08:19
and started to build these little odd creatures.
159
499160
2000
ื•ื”ืชื—ื™ืœื• ืœื‘ื ื•ืช ืืช ื”ื™ืฆื•ืจื™ื ื”ืงื˜ื ื™ื ื•ื”ืžื•ื–ืจื™ื ื”ืืœื”.
08:21
They just happened to be alive instead of circuit boards.
160
501160
3000
ื‘ืžืงืจื” ื”ื ื—ื™ื™ื ื•ืœื ืขืฉื•ื™ื™ื ืžืžืขื’ืœื™ื ืžืฉื•ืœื‘ื™ื.
08:24
Here was one of the first things they built.
161
504160
3000
ื”ื ื” ืื—ื“ ื”ื“ื‘ืจื™ื ื”ืจืืฉื•ื ื™ื ืฉื”ื ื‘ื ื•.
08:27
So, cells have this cycle.
162
507160
2000
ืื–, ืœืชืื™ื ื™ืฉ ืžื—ื–ื•ืจ.
08:29
First they don't grow.
163
509160
2000
ื“ื‘ืจ ืจืืฉื•ืŸ, ื”ื ืœื ื’ื“ืœื™ื.
08:31
Then they grow exponentially.
164
511160
2000
ื•ืื– ื”ื ื’ื“ืœื™ื ืžืขืจื™ื›ื™ืช.
08:33
Then they stop growing.
165
513160
2000
ื•ืื– ื”ื ืžืคืกื™ืงื™ื ืœื’ื“ื•ืœ.
08:35
Graduate students wanted a way of telling which stage they were in.
166
515160
3000
ื”ื‘ื•ื’ืจื™ื ืจืฆื• ื“ืจืš ืœื“ืขืช ื‘ืื™ื–ื” ืฉืœื‘ ื”ื ื ืžืฆืื™ื.
08:38
So they engineered these cells
167
518160
2000
ืื– ื”ื ื”ื™ื ื“ืกื• ืืช ื”ืชืื™ื ื”ืืœื”,
08:40
so that when they're growing in the exponential phase,
168
520160
2000
ื›ืš ืฉื‘ืฉืœื‘ ื”ื’ื“ื™ืœื” ื”ืžืขืจื™ื›ื™ืช,
08:42
they would smell like wintergreen.
169
522160
2000
ื”ื ื™ืจื™ื—ื• ื›ืžื• ื•ื•ื™ื ืจื˜ื’ืจื™ืŸ (ืคืจื—).
08:44
And when they stopped growing they would smell like bananas.
170
524160
3000
ื•ื›ืฉื”ื ืžืคืกื™ืงื™ื ืœื’ื“ื•ืœ, ื”ื ื™ืจื™ื—ื• ื›ืžื• ื‘ื ื ื”.
08:47
And you could tell very easily when your experiment was working
171
527160
3000
ื•ืืคืฉืจ ื”ื™ื” ืœื“ืขืช ื‘ืงืœื•ืช ื›ืฉื”ื ื™ืกื•ื™ ืขื‘ื“,
08:50
and wasn't, and where it was in the phase.
172
530160
3000
ื•ื›ืฉื”ื•ื ืœื ืขื‘ื“, ื•ื‘ืื™ื–ื” ืฉืœื‘ ื‘ืžื—ื–ื•ืจ ื”ื ื ืžืฆืื™ื.
08:53
This got a bit more complicated two years later.
173
533160
3000
ื–ื” ื ืขืฉื” ืงืฆืช ืžื•ืจื›ื‘ ื™ื•ืชืจ ืฉื ืชื™ื™ื ืœืื—ืจ ืžื›ืŸ.
08:56
Twenty-one countries came together. Dozens of teams.
174
536160
2000
21 ืžื“ื™ื ื•ืช ื—ื‘ืจื• ื™ื—ื“. ืขืฉืจื•ืช ืฆื•ื•ืชื™ื.
08:58
They started competing.
175
538160
2000
ื”ื ื”ืชื—ื™ืœื• ืœื”ืชื—ืจื•ืช.
09:00
The team from Rice University started to engineer the substance in red wine
176
540160
5000
ื”ืฆื•ื•ืช ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืจื™ื™ืก ื”ืชื—ื™ืœ ืœื”ื ื“ืก ืืช ื”ื—ื•ืžืจ ื‘ื™ื™ืŸ ืื“ื•ื
09:05
that makes red wine good for you
177
545160
2000
ืฉื’ื•ืจื ืœื™ื™ืŸ ืื“ื•ื ืœื”ื™ื•ืช ื˜ื•ื‘ ื‘ืฉื‘ื™ืœื›ื,
09:07
into beer.
178
547160
2000
ืฉื™ื”ื™ื” ืงื™ื™ื ื‘ื‘ื™ืจื”.
09:10
So you take resveratrol and you put it into beer.
179
550160
4000
ืื– ืœื•ืงื—ื™ื ืจื–ื‘ืจื˜ืจื•ืœ ื•ืฉืžื™ื ืื•ืชื• ื‘ื‘ื™ืจื”.
09:14
Of course, one of the judges is wandering by, and he goes,
180
554160
3000
ื›ืžื•ื‘ืŸ, ืื—ื“ ื”ืฉื•ืคื˜ื™ื, ืขื‘ืจ ืœื™ื“, ื•ืืžืจ:
09:17
"Wow! Cancer-fighting beer! There is a God."
181
557160
4000
"ื•ื•ืื•! ื‘ื™ืจื” ืฉื ืœื—ืžืช ื‘ืกืจื˜ืŸ! ื™ืฉ ืืœื•ื”ื™ื."
09:21
(Laughter)
182
561160
3000
(ืฆื—ื•ืง)
09:24
The team from Taiwan was a little bit more ambitious.
183
564160
3000
ื”ืฆื•ื•ืช ืžื˜ื™ื™ื•ื•ืืŸ ื”ื™ื” ืงืฆืช ื™ื•ืชืจ ืฉืืคืชื ื™.
09:27
They tried to engineer bacterias in such a way
184
567160
3000
ื”ื ื ื™ืกื• ืœื”ื ื“ืก ื‘ืงื˜ืจื™ื•ืช,
09:30
that they would act as your kidneys.
185
570160
3000
ื›ืš ืฉื”ืŸ ื™ืชืคืงื“ื• ื›ื›ืœื™ื•ืช.
09:33
Four years ago, I showed you this picture.
186
573160
3000
ืœืคื ื™ ืืจื‘ืข ืฉื ื™ื, ื”ืจืื™ืชื™ ืืช ื”ืชืžื•ื ื” ื”ื–ื•:
09:36
And people oohed and ahhed,
187
576160
2000
ื•ืื ืฉื™ื ืขืฉื• ืื•ื•ื•, ื•ืืื”....
09:38
because Cliff Tabin had been able to grow an extra wing on a chicken.
188
578160
3000
ืžื›ื™ื•ื•ืŸ ืฉืงืœื™ืฃ ื˜ื‘ื™ืŸ ื”ืฆืœื™ื— ืœื’ื“ืœ ื›ื ืฃ ื ื•ืกืคืช ื‘ืชืจื ื’ื•ืœืช.
09:41
And that was very cool stuff back then.
189
581160
3000
ื•ืื– ื–ื” ื”ื™ื” ื“ื‘ืจ ืžืžืฉ ืžื’ื ื™ื‘.
09:44
But now moving from bacterial engineering to tissue engineering,
190
584160
3000
ืื‘ืœ ืขื›ืฉื™ื• ื ืขื‘ื•ืจ ืžื”ื ื“ืกื” ื‘ืงื˜ืจื™ืืœื™ืช ืœื”ื ื“ืกืช ืจืงืžื•ืช.
09:47
let me show you what's happened in that period of time.
191
587160
3000
ื‘ื•ืื• ืื ื™ ืืจืื” ืœื›ื ืžื” ืงืจื” ื‘ืชืงื•ืคืช ื”ื–ืžืŸ ื”ื–ื•.
09:50
Two years ago, you saw this creature.
192
590160
3000
ืœืคื ื™ ืฉื ืชื™ื™ื ืจืื™ืชื ืืช ื”ื™ืฆื•ืจ ื”ื–ื”:
09:53
An almost-extinct animal from Xochimilco, Mexico
193
593160
3000
ื—ื™ื” ืฉื›ืžืขื˜ ื ื›ื—ื“ื” ืžืกื•ืฆ'ื™ืžื™ืœืงื•, ืžืงืกื™ืงื•,
09:56
called an axolotl
194
596160
2000
ืฉื ืงืจืืช ืืงืกื•ืœื•ื˜ืœ,
09:58
that can re-generate its limbs.
195
598160
2000
ืฉื™ื›ื•ืœื” ืœื™ื™ืฆืจ ืžื—ื“ืฉ ืืช ื’ืคื™ื”.
10:00
You can freeze half its heart. It regrows.
196
600160
2000
ืืคืฉืจ ืœื”ืงืคื™ื ื—ืฆื™ ืžืœื™ื‘ื”, ื•ื”ื•ื ื™ื’ื“ืœ.
10:02
You can freeze half the brain. It regrows.
197
602160
2000
ืืคืฉืจ ืœื”ืงืคื™ื ื—ืฆื™ ืžืžื•ื—ื”, ื•ื”ื•ื ื™ื’ื“ืœ.
10:04
It's almost like leaving Congress.
198
604160
2000
ื–ื” ื›ืžืขื˜ ื›ืžื• ืœืขื–ื•ื‘ ืืช ื”ืงื•ื ื’ืจืก.
10:06
(Laughter)
199
606160
3000
(ืฆื—ื•ืง)
10:12
But now, you don't have to have the animal itself to regenerate,
200
612160
3000
ืื‘ืœ ืขื›ืฉื™ื•, ืœื ืฆืจื™ื›ื™ื ืืช ื”ื—ื™ื” ืขืฆืžื” ื›ื“ื™ ืœื™ื™ืฆืจ ืžื—ื“ืฉ,
10:15
because you can build cloned mice molars in Petri dishes.
201
615160
5000
ืžื›ื™ื•ื•ืŸ ืฉืขื›ืฉื™ื• ื ื™ืชืŸ ืœื™ื™ืฆืจ ืฉื™ื ื™ื™ื ื˜ื•ื—ื ื•ืช ืžืฉื•ื›ืคืœื•ืช ืฉืœ ืขื›ื‘ืจื™ื ื‘ืฆืœื—ื•ืช ืคื˜ืจื™.
10:21
And, of course if you can build mice molars in Petri dishes,
202
621160
4000
ื•ื›ืžื•ื‘ืŸ ืฉืื ื ื™ืชืŸ ืœื‘ื ื•ืช ืฉื™ื ื™ื™ื ื˜ื•ื—ื ื•ืช ืฉืœ ืขื›ื‘ืจื™ื ื‘ืฆืœื—ื•ืช ืคื˜ืจื™,
10:25
you can grow human molars in Petri dishes.
203
625160
3000
ื ื™ืชืŸ ืœื’ื“ืœ ืฉื™ื ื™ื™ื ื˜ื•ื—ื ื™ื ืฉืœ ื‘ื ื™-ืื“ื ื‘ืฆืœื—ื•ืช ืคื˜ืจื™.
10:28
This should not surprise you, right?
204
628160
2000
ื–ื” ืœื ืืžื•ืจ ืœื”ืคืชื™ืข ืืชื›ื, ื ื›ื•ืŸ?
10:30
I mean, you're born with no teeth.
205
630160
2000
ืื ื™ ืžืชื›ื•ื•ืŸ, ืืชื ื ื•ืœื“ื™ื ื‘ืœื™ ืฉื™ื ื™ื™ื.
10:32
You give away all your teeth to the tooth fairy.
206
632160
3000
ืืชื ื ื•ืชื ื™ื ืืช ื›ืœ ื”ืฉื™ื ื™ื™ื ืฉืœื›ื ืœืคื™ื™ืช ื”ืฉื™ื ื™ื™ื.
10:35
You re-grow a set of teeth.
207
635160
2000
ืืชื ืžื’ื“ืœื™ื ืžื—ื“ืฉ ืกื˜ ื—ื“ืฉ ืฉืœ ืฉื™ื ื™ื™ื.
10:37
But then if you lose one of those second set of teeth, they don't regrow,
208
637160
3000
ืื‘ืœ ืื–, ืื ืืชื ืžืื‘ื“ื™ื ืฉื™ื ื™ื™ื ืžื”ืกื˜ ื”ื—ื“ืฉ, ื”ืŸ ืœื ื’ื“ืœื•ืช ืžื—ื“ืฉ,
10:40
unless, if you're a lawyer.
209
640160
2000
ืืœื ืื ืืชื” ืขื•ืจืš-ื“ื™ืŸ.
10:42
(Laughter)
210
642160
4000
(ืฆื—ื•ืง)
10:46
But, of course, for most of us,
211
646160
3000
ืื‘ืœ, ื›ืžื•ื‘ืŸ, ืขื‘ื•ืจ ืจื•ื‘ื ื•
10:49
we know how to grow teeth, and therefore we can take adult stem teeth,
212
649160
3000
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืœื’ื“ืœ ืฉื™ื ื™ื™ื, ื•ืœื›ืŸ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืฉื•ืจืฉื™ ืฉื™ื ื™ื™ื ื‘ื•ื’ืจื™ื,
10:52
put them on a biodegradable mold, re-grow a tooth,
213
652160
3000
ืœืฉื™ื ืื•ืชื ื‘ืชื‘ื ื™ื•ืช ื‘ื™ื•ืœื•ื’ื™ื•ืช ืžืชื›ืœื•ืช, ืœื’ื“ืœ ืžื—ื“ืฉ ืฉืŸ,
10:55
and simply implant it.
214
655160
1000
ื•ืคืฉื•ื˜ ืœื”ืฉืชื™ืœ ืื•ืชื”.
10:56
And we can do it with other things.
215
656160
3000
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื” ืขื ื“ื‘ืจื™ื ืื—ืจื™ื.
10:59
So, a Spanish woman who was dying of T.B. had a donor trachea,
216
659160
5000
ืื–, ืœืื™ืฉื” ืกืคืจื“ื™ื” ืฉื’ืกืกื” ืžืฉื—ืคืช ื”ื™ื” ืชื•ืจื ืงื ื” ื ืฉื™ืžื”,
11:04
they took all the cells off the trachea,
217
664160
2000
ื”ืกื™ืจื• ืืช ื›ืœ ื”ืชืื™ื ืžืงื ื” ื”ื ืฉื™ืžื”,
11:06
they spraypainted her stem cells onto that cartilage.
218
666160
3000
ืจื™ืกืกื• ืืช ืชืื™ ื”ื’ื–ืข ืฉืœื” ืขืœ ื”ืกื—ื•ืก ื”ื–ื”.
11:09
She regrew her own trachea,
219
669160
2000
ื”ื™ื ื’ื™ื“ืœื” ืžื—ื“ืฉ ืืช ืงื ื” ื”ื ืฉื™ืžื” ืฉืœื”,
11:11
and 72 hours later it was implanted.
220
671160
3000
ื•-72 ืฉืขื•ืช ืœืื—ืจ ืžื›ืŸ ื”ื•ื ื”ื•ืฉืชืœ.
11:14
She's now running around with her kids.
221
674160
2000
ื”ื™ื ืขื›ืฉื™ื• ืจืฆื” ื‘ื”ื ืื” ืขื ื™ืœื“ื™ื”.
11:16
This is going on in Tony Atala's lab in Wake Forest
222
676160
3000
ื–ื” ืžื” ืฉืžืชืจื—ืฉ ื‘ืžืขื‘ื“ืชื• ืฉืœ ื˜ื•ื ื™ ืื˜ืœื” ื‘ื•ื•ื™ื™ืง ืคื•ืจืกื˜,
11:19
where he is re-growing ears for injured soldiers,
223
679160
3000
ืฉื ื”ื•ื ืžื’ื“ืœ ืžื—ื“ืฉ ืื•ื–ื ื™ื™ื ืœื—ื™ื™ืœื™ื ืคืฆื•ืขื™ื,
11:22
and he's also re-growing bladders.
224
682160
4000
ื•ื”ื•ื ื’ื ืžื’ื“ืœ ืžื—ื“ืฉ ืฉืœืคื•ื—ื™ื•ืช ืฉืชืŸ,
11:26
So there are now nine women walking around Boston
225
686160
3000
ื›ืš ืฉื™ืฉ ืขื›ืฉื™ื• 9 ื ืฉื™ื ืฉืžืกืชื•ื‘ื‘ื•ืช ื‘ืจื—ื‘ื™ ื‘ื•ืกื˜ื•ืŸ
11:29
with re-grown bladders,
226
689160
2000
ืขื ืฉืœืคื•ื—ื™ื•ืช ืฉืชืŸ ืฉื’ื•ื“ืœื• ืžื—ื“ืฉ,
11:31
which is much more pleasant than walking around with a whole bunch of plastic bags
227
691160
2000
ืฉื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ื ืขื™ื ืžืืฉืจ ืœื”ืกืชื•ื‘ื‘ ืขื ืขืจื™ืžื” ืฉืœ ืฉืงื™ื•ืช ืคืœืกื˜ื™ืง
11:33
for the rest of your life.
228
693160
2000
ืœืžืฉืš ืฉืืจื™ืช ื—ื™ื™ืš.
11:35
This is kind of getting boring, right?
229
695160
3000
ื–ื” ื›ื‘ืจ ืžืชื—ื™ืœ ืœืฉืขืžื, ื ื›ื•ืŸ?
11:38
I mean, you understand where this story's going.
230
698160
2000
ืื ื™ ืžืชื›ื•ื•ืŸ, ืืชื ืžื‘ื™ื ื™ื ืœืืŸ ื–ื” ืžืชืงื“ื.
11:40
But, I mean it gets more interesting.
231
700160
2000
ืื‘ืœ, ืื ื™ ืžืชื›ื•ื•ืŸ ืฉื–ื” ื ื”ื™ื” ืžืขื ื™ื™ืŸ ื™ื•ืชืจ.
11:42
Last year, this group was able to take all the cells off a heart,
232
702160
4000
ืฉื ื” ืฉืขื‘ืจื”, ื”ืงื‘ื•ืฆื” ื”ื–ื• ื”ืฆืœื™ื—ื” ืœื”ืกื™ืจ ืืช ื›ืœ ื”ืชืื™ื ืžืœื‘,
11:46
leaving just the cartilage.
233
706160
3000
ื•ืœื”ืฉืื™ืจ ืจืง ืืช ื”ืกื—ื•ืกื™ื.
11:49
Then, they sprayed stem cells onto that heart, from a mouse.
234
709160
2000
ื•ืื–, ื”ื ืจื™ืกืกื• ืชืื™-ื’ื–ืข ืขืœ ื”ืœื‘ ื”ื–ื” ืžืขื›ื‘ืจื™ื.
11:51
Those stem cells self-organized, and that heart started to beat.
235
711160
4000
ืชืื™-ื”ื’ื–ืข ื”ืืœื” ื”ืชืืจื’ื ื• ืžื—ื“ืฉ, ื•ื”ืœื‘ ื”ื–ื” ื”ืชื—ื™ืœ ืœืคืขื•ื.
11:55
Life happens.
236
715160
3000
ื—ื™ื™ื ืงื•ืจื™ื.
11:59
This may be one of the ultimate papers.
237
719160
3000
ื–ื” ืื•ืœื™ ื”ื•ืœืš ืœื”ื™ื•ืช ืื—ื“ ืžื”ืžืืžืจื™ื ื”ืื•ืœื˜ื™ืžื˜ื™ื‘ื™ื™ื.
12:02
This was done in Japan and in the U.S., published at the same time,
238
722160
3000
ื–ื” ื ืขืฉื” ื‘ื™ืคืŸ ื•ื‘ืืจื”"ื‘, ืคื•ืจืกื ื‘ืื•ืชื• ื–ืžืŸ,
12:05
and it rebooted skin cells into stem cells, last year.
239
725160
4000
ื•ื–ื” ืื™ืชื—ืœ ืชืื™-ืขื•ืจ ืžื—ื“ืฉ ืœืชืื™-ื’ื–ืข, ืฉื ื” ืฉืขื‘ืจื”.
12:10
That meant that you can take the stuff right here,
240
730160
3000
ื–ื” ืื•ืžืจ ืฉืืชื” ื™ื›ื•ืœ ืœืงื—ืช ืืช ื”ื—ื•ืžืจ ืžื›ืืŸ,
12:13
and turn it into almost anything in your body.
241
733160
2000
ืœื”ืคื•ืš ืื•ืชื• ื›ืžืขื˜ ืœื›ืœ ื“ื‘ืจ ื‘ื’ื•ืฃ ืฉืœืš.
12:15
And this is becoming common, it's moving very quickly,
242
735160
3000
ื•ื–ื” ื ื”ื™ื” ื ืคื•ืฅ. ื–ื” ื ืข ืžื”ืจ.
12:18
it's moving in a whole series of places.
243
738160
3000
ื–ื” ื ืข ื‘ื”ืจื‘ื” ื›ื™ื•ื ื™ื.
12:22
Third trend: robots.
244
742160
2000
ืžื’ืžื” ืฉืœื™ืฉื™ืช: ืจื•ื‘ื•ื˜ื™ื.
12:25
Those of us of a certain age grew up expecting that by now
245
745160
3000
ื—ืœืงื™ื ื• ื‘ื’ื™ืœ ืžืกื•ื™ื™ื ื’ื“ืœื ื• ื‘ืฆื™ืคื™ื™ื” ืฉืขื›ืฉื™ื•
12:28
we would have Rosie the Robot from "The Jetsons" in our house.
246
748160
4000
ืชื”ื™ื” ืœื ื• ื‘ื‘ื™ืช ืืช ืจื•ื–ื™ ื”ืจื•ื‘ื•ื˜ "ืžื”ื’'ื˜ืกื•ื ื™ื".
12:32
And all we've got is a Roomba.
247
752160
3000
ื•ื›ืœ ืžื” ืฉื™ืฉ ืœื ื• ื–ื” ืจื•ืžื‘ื” (ืจื•ื‘ื•ื˜ ืงื˜ืŸ ืฉืฉื•ืื‘ ืื‘ืง ื‘ื‘ื™ืช).
12:35
(Laughter)
248
755160
3000
(ืฆื—ื•ืง)
12:38
We also thought we'd have this robot to warn us of danger.
249
758160
4000
ื—ืฉื‘ื ื• ื’ื ืฉื™ื”ื™ื” ืœื ื• ืืช ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ืฉื™ื–ื”ื™ืจ ืื•ืชื ื• ืžืกื›ื ื”.
12:42
Didn't happen.
250
762160
2000
ืœื ืงืจื”.
12:44
And these were robots engineered for a flat world, right?
251
764160
3000
ื•ืืœื” ืจื•ื‘ื•ื˜ื™ื ืฉืชื•ื›ื ื ื• ืœืขื•ืœื ืฉื˜ื•ื—, ื ื›ื•ืŸ?
12:47
So, Rosie runs around on skates
252
767160
2000
ืื–, ืจื•ื–ื™ ืžืกืชื•ื‘ื‘ืช ืขืœ ืกืงื™ื™ื˜ื™ื,
12:49
and the other one ran on flat threads.
253
769160
2000
ื•ื”ืฉื ื™ ื”ืกืชื•ื‘ื‘ ืขืœ ื–ื—ืœ ืฉื˜ื•ื—.
12:52
If you don't have a flat world, that's not good,
254
772160
2000
ืื ืื™ืŸ ืœื›ื ืขื•ืœื ืฉื˜ื•ื—, ื–ื” ืœื ื˜ื•ื‘,
12:54
which is why the robot's we're designing today are a little different.
255
774160
5000
ื•ื‘ื“ื™ื•ืง ื‘ื’ืœืœ ื–ื” ื”ืจื•ื‘ื•ื˜ื™ื ืฉืื ื—ื ื• ืžืชื›ื ื ื™ื ื”ื™ื•ื ื”ื ืงืฆืช ืฉื•ื ื™ื.
13:00
This is Boston Dynamics' "BigDog."
256
780160
2000
ื–ื” "ื›ืœื‘-ื’ื“ื•ืœ" ืฉืœ ื‘ื•ืกื˜ื•ืŸ-ื“ื™ื ืžื™ืงืก.
13:05
And this is about as close as you can get to a physical Turing test.
257
785160
3000
ื•ื–ื” ื›ืžืขื˜ ื”ื›ื™ ืงืจื•ื‘ ืฉื ื™ืชืŸ ืœื”ื’ื™ืข ืœืžื‘ื—ืŸ ื˜ื™ื•ืจื™ื ื’ ืคื™ื–ื™.
13:08
O.K., so let me remind you, a Turing test is where you've got a wall,
258
788160
4000
ื˜ื•ื‘, ืื– ืชื ื• ืœื”ื–ื›ื™ืจ ืœื›ื, ื‘ืžื‘ื—ืŸ ื˜ื™ื•ืจื™ื ื’ ื™ืฉ ืœื›ื ืงื™ืจ
13:12
you're talking to somebody on the other side of the wall,
259
792160
2000
ืืชื ืžื“ื‘ืจื™ื ืขื ืžื™ืฉื”ื• ื‘ืฆื“ ื”ืฉื ื™ ืฉืœ ื”ืงื™ืจ,
13:14
and when you don't know if that thing is human or animal --
260
794160
3000
ื•ื›ืฉืืชื ืœื ื™ื•ื“ืขื™ื ืื ื”ื“ื‘ืจ ื”ื–ื” ื”ื•ื ืื ื•ืฉื™ ืื• ื—ื™ื”,
13:17
that's when computers have reached human intelligence.
261
797160
4000
ืื– ืžื—ืฉื‘ื™ื ื”ื’ื™ืขื• ืœืจืžืช ืื™ื ื˜ื™ืœื™ื’ื ืฆื™ื” ืื ื•ืฉื™ืช.
13:21
This is not an intelligence Turing rest,
262
801160
3000
ื–ื” ืœื ืžื‘ื—ืŸ ื˜ื™ื•ืจื™ื ื’ ืœืื™ื ื˜ื™ืœื™ื’ื ืฆื™ื”,
13:24
but this is as close as you can get to a physical Turing test.
263
804160
3000
ืื‘ืœ ื–ื” ื”ื›ื™ ืงืจื•ื‘ ืฉืืคืฉืจ ืœื”ื’ื™ืข ืœืžื‘ื—ืŸ ื˜ื™ื•ืจื™ื ื’ ืคื™ื–ื™.
13:27
And this stuff is moving very quickly,
264
807160
2000
ื•ื”ื ื•ืฉื ื”ื–ื” ืžืชืงื“ื ืžื”ืจ ืžืื•ื“.
13:29
and by the way, that thing can carry about 350 pounds of weight.
265
809160
4000
ื•ื“ืจืš ืื’ื‘, ื”ื“ื‘ืจ ื”ื–ื” ื™ื›ื•ืœ ืœืฉืืช 160 ืง"ื’.
13:34
These are not the only interesting robots.
266
814160
3000
ืืœื” ืœื ื”ืจื•ื‘ื•ื˜ื™ื ื”ืžืขื ื™ื™ื ื™ื ื”ื™ื—ื™ื“ื™ื.
13:37
You've also got flies, the size of flies,
267
817160
2000
ื™ืฉ ื’ื ื–ื‘ื•ื‘ื™ื ื‘ื’ื•ื“ืœ ืฉืœ ื–ื‘ื•ื‘ื™ื,
13:39
that are being made by Robert Wood at Harvard.
268
819160
3000
ืฉื‘ื•ื ื” ืจื•ื‘ืจื˜ ื•ื•ื“ ื‘ื”ืจื•ื•ืืจื“.
13:42
You've got Stickybots that are being made at Stanford.
269
822160
3000
ื™ืฉ ืจื•ื‘ื•ื˜ื™ื ื“ื‘ื™ืงื™ื ืฉื ื‘ื ื™ื ื‘ืกื˜ื ืคื•ืจื“.
13:45
And as you bring these things together,
270
825160
3000
ื•ื›ืฉืžื—ื‘ืจื™ื ืืช ื”ื“ื‘ืจื™ื ื”ืืœื” ื™ื—ื“,
13:48
as you bring cells, biological tissue engineering and mechanics together,
271
828160
6000
ื›ืฉืžื—ื‘ืจื™ื ืชืื™ื, ื”ื ื“ืกืช ืจืงืžื•ืช ื‘ื™ื•ืœื•ื’ื™ื•ืช ื•ืžื›ื ื™ืงื” ื™ื—ื“,
13:54
you begin to get some really odd questions.
272
834160
3000
ืžืชื—ื™ืœื™ื ืœืงื‘ืœ ืฉืืœื” ืžืื•ื“ ืžื•ื–ืจื”.
13:57
In the last Olympics, this gentleman,
273
837160
2000
ื‘ืื•ืœื™ืžืคื™ืื“ื” ื”ืื—ืจื•ื ื”, ื”ืื“ื•ืŸ ื”ื–ื”,
13:59
who had several world records in the Special Olympics,
274
839160
4000
ื‘ืขืœ ืžืกืคืจ ืฉื™ืื™ื ื‘ืื•ืœื™ืžืคื™ืื“ื” ื”ืžื™ื•ื—ื“ืช,
14:03
tried to run in the normal Olympics.
275
843160
2000
ื ื™ืกื” ืœืจื•ืฅ ื‘ืื•ืœื™ืžืคื™ืื“ื” ื”ืจื’ื™ืœื”.
14:05
The only issue with Oscar Pistorius
276
845160
2000
ื”ื‘ืขื™ื” ื”ื™ื—ื™ื“ื” ืฉืœ ืื•ืกืงืจ ืคื™ืกื˜ื•ืจื™ื•ืก
14:07
is he was born without bones in the lower part of his legs.
277
847160
4000
ื”ื™ื ืฉื”ื•ื ื ื•ืœื“ ื‘ืœื™ ืขืฆืžื•ืช ื‘ื—ืœืง ื”ืชื—ืชื•ืŸ ืฉืœ ืจื’ืœื™ื•.
14:11
He came within about a second of qualifying.
278
851160
2000
ื”ื™ื™ืชื” ื—ืกืจื” ืœื• ืฉื ื™ื” ืื—ืช ื›ื“ื™ ืœื”ืชืงื‘ืœ.
14:13
He sued to be allowed to run,
279
853160
3000
ื”ื•ื ืชื‘ืข ืฉื™ืชื ื• ืœื• ืœืจื•ืฅ,
14:16
and he won the suit,
280
856160
2000
ื”ื•ื ื–ื›ื” ื‘ืชื‘ื™ืขื”,
14:18
but didn't qualify by time.
281
858160
2000
ืื‘ืœ ื”ื•ื ืœื ืขืžื“ ื‘ื“ืจื™ืฉืช ื”ื–ืžืŸ.
14:20
Next Olympics, you can bet that Oscar, or one of Oscar's successors,
282
860160
5000
ื‘ืื•ืœื™ืžืคื™ืื“ื” ื”ื‘ืื”, ืชื”ื™ื• ื‘ื˜ื•ื—ื™ื ืฉืื•ืกืงืจ, ืื• ืื—ื“ ืžื™ื•ืจืฉื™ื•,
14:25
is going to make the time.
283
865160
2000
ื™ืฉื™ื’ ืืช ื”ื–ืžืŸ ื”ื–ื”.
14:27
And two or three Olympics after that, they are going to be unbeatable.
284
867160
3000
ื•ืฉืชื™ื™ื-ืฉืœื•ืฉ ืื•ืœื™ืžืคื™ืื“ื•ืช ืื—"ื›, ื”ื ื™ื”ื™ื• ื‘ืœืชื™-ืžื ื•ืฆื—ื™ื.
14:30
And as you bring these trends together, and as you think of what it means
285
870160
5000
ื•ื›ืฉืžื—ื‘ืจื™ื ืืช ื”ืžื’ืžื•ืช ื”ืœืœื• ื™ื—ื“, ื•ื›ืฉื—ื•ืฉื‘ื™ื ืžื” ื–ื” ืื•ืžืจ
14:35
to take people who are profoundly deaf, who can now begin to hear --
286
875160
4000
ืœืงื—ืช ืื ืฉื™ื ื—ืจืฉื™ื ื‘ืื•ืคืŸ ืžื•ื—ืœื˜, ืฉืขื›ืฉื™ื• ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืœืฉืžื•ืข...
14:39
I mean, remember the evolution of hearing aids, right?
287
879160
3000
ืื ื™ ืžืชื›ื•ื•ืŸ ืœื”ืชืคืชื—ื•ืช ืฉืœ ืžื›ืฉื™ืจื™ ืฉืžื™ืขื”, ื ื›ื•ืŸ?
14:42
I mean, your grandparents had these great big cones,
288
882160
3000
ืื ื™ ืžืชื›ื•ื•ืŸ ืฉืœืกื‘ื™ื›ื ื”ื™ื• ืืช ื”ืงื•ื ื•ืกื™ื ื”ื’ื“ื•ืœื™ื ื”ืืœื”,
14:45
and then your parents had these odd boxes
289
885160
2000
ื•ืœื”ื•ืจื™ื ืฉืœื›ื ื”ื™ื• ืืช ื”ืงื•ืคืกืื•ืช ื”ืžื•ื–ืจื•ืช ื”ืืœื”
14:47
that would squawk at odd times during dinner,
290
887160
2000
ืฉื”ื™ื• ืžืงืจืงืจื•ืช ื‘ื–ืžื ื™ื ืœื ืžืชืื™ืžื™ื ื‘ืืจื•ื—ืช ืขืจื‘,
14:49
and now we have these little buds that nobody sees.
291
889160
2000
ื•ืขื›ืฉื™ื• ื™ืฉ ืœื ื• ืืช ื”ื ื™ืฆื ื™ื ื”ืงื˜ื ื™ื ื”ืืœื” ืฉืืฃ ืื—ื“ ืœื ืจื•ืื”.
14:51
And now you have cochlear implants
292
891160
2000
ื•ืขื›ืฉื™ื• ื™ืฉ ื”ืฉืชืœื•ืช ืœืชื•ืš ืฉื‘ืœื•ืœ ื”ืื•ื–ืŸ,
14:53
that go into people's heads and allow the deaf to begin to hear.
293
893160
5000
ืฉื ื›ื ืกื•ืช ืœืชื•ืš ืจืืฉื™ื”ื ืฉืœ ืื ืฉื™ื ื•ืžืืคืฉืจื•ืช ืœื—ืจืฉื™ื ืœืฉื•ื‘ ื•ืœืฉืžื•ืข.
14:58
Now, they can't hear as well as you and I can.
294
898160
2000
ืขื›ืฉื™ื•, ื”ื ืœื ื™ื›ื•ืœื™ื ืœืฉืžื•ืข ื˜ื•ื‘ ื›ืžื•ื›ื.
15:00
But, in 10 or 15 machine generations they will,
295
900160
3000
ืื‘ืœ, ืชื•ืš 10 ืขื“ 15 ื“ื•ืจื•ืช ืžื›ื•ื ื” ื”ื ื™ืฆืœื™ื—ื•,
15:03
and these are machine generations, not human generations.
296
903160
2000
ื•ื”ื›ื•ื•ื ื” ืœื“ื•ืจื•ืช ืžื›ื•ื ื”, ืœื ืœื“ื•ืจื•ืช ืื“ื.
15:06
And about two or three years after they can hear as well as you and I can,
297
906160
4000
ื•ืฉื ืชื™ื™ื-ืฉืœื•ืฉ ืื—ืจื™ ืฉื”ื ื™ื•ื›ืœื• ืœืฉืžื•ืข ื˜ื•ื‘ ื›ืžื•ื›ื
15:10
they'll be able to hear maybe how bats sing, or how whales talk,
298
910160
4000
ื”ื ืื•ืœื™ ื™ื•ื›ืœื• ืœืฉืžื•ืข ืขื˜ืœืคื™ื ืฉืจื™ื, ืื• ืœื•ื•ื™ื™ืชื ื™ื ืžื“ื‘ืจื™ื,
15:14
or how dogs talk, and other types of tonal scales.
299
914160
3000
ืื• ืื™ืš ื›ืœื‘ื™ื ืžื“ื‘ืจื™ื, ื•ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ืกื•ืœืžื•ืช ื˜ื•ืŸ.
15:17
They'll be able to focus their hearing,
300
917160
2000
ื”ื ื™ื•ื›ืœื• ืœืžืงื“ ืืช ื”ืฉืžื™ืขื” ืฉืœื”ื.
15:19
they'll be able to increase the sensitivity, decrease the sensitivity,
301
919160
3000
ื”ื ื™ื•ื›ืœื• ืœื”ื’ื“ื™ืœ ืืช ื”ืจื’ื™ืฉื•ืช, ืœื”ืงื˜ื™ืŸ ืืช ื”ืจื’ื™ืฉื•ืช.
15:22
do a series of things that we can't do.
302
922160
2000
ืœืขืฉื•ืช ืกื“ืจื” ืฉืœ ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื.
15:24
And the same thing is happening in eyes.
303
924160
2000
ื•ืื•ืชื• ื”ื“ื‘ืจ ืงื•ืจื” ืขื ืขื™ื ื™ื™ื.
15:27
This is a group in Germany that's beginning to engineer eyes
304
927160
3000
ื–ื• ืงื‘ื•ืฆื” ื‘ื’ืจืžื ื™ื” ืฉืžืชื—ื™ืœื” ืœื”ื ื“ืก ืขื™ื ื™ื™ื
15:30
so that people who are blind can begin to see light and dark.
305
930160
4000
ื›ื“ื™ ืฉืื ืฉื™ื ืขื™ื•ื•ืจื™ื ื™ื•ื›ืœื• ืœื”ื‘ื“ื™ืœ ื‘ื™ืŸ ืื•ืจ ืœื—ื•ืฉืš.
15:34
Very primitive.
306
934160
2000
ืžืื•ื“ ืคืจื™ืžื™ื˜ื™ื‘ื™.
15:36
And then they'll be able to see shape.
307
936160
2000
ื•ืื– ื”ื ื™ืชื—ื™ืœื• ืœืจืื•ืช ืฆื•ืจื”.
15:38
And then they'll be able to see color, and then they'll be able to see in definition,
308
938160
3000
ื•ืื– ื”ื ื™ื•ื›ืœื• ืœืจืื•ืช ืฆื‘ืข, ื•ืจืžืช ื”ื”ืคืจื“ื” ื‘ืจืื™ื™ื” ืชื’ื“ืœ,
15:41
and one day, they'll see as well as you and I can.
309
941160
3000
ื•ื™ื•ื ืื—ื“ ื”ื ื™ื•ื›ืœื• ืœืจืื•ืช ื˜ื•ื‘ ื›ืžื•ื ื™ ื•ื›ืžื•ื›ื.
15:44
And a couple of years after that, they'll be able to see in ultraviolet,
310
944160
3000
ื•ื›ืžื” ืฉื ื™ื ืื—ืจื™ ื–ื”, ื”ื ื™ื•ื›ืœื• ืœืจืื•ืช ืื•ืœื˜ืจื”-ืกื’ื•ืœ.
15:47
they'll be able to see in infrared, they'll be able to focus their eyes,
311
947160
2000
ื”ื ื™ื•ื›ืœื• ืœืจืื•ืช ืื™ื ืคืจื”-ืื“ื•ื. ื”ื ื™ื•ื›ืœื• ืœืžืงื“ ืืช ืขื™ื ื™ื”ื.
15:49
they'll be able to come into a microfocus.
312
949160
3000
ื”ื ื™ื•ื›ืœื• ืœื”ืชืžืงื“ ื‘ืจืžืช ืžื™ืงืจื•.
15:52
They'll do stuff you and I can't do.
313
952160
2000
ื”ื ื™ื•ื›ืœื• ืœืขืฉื•ืช ื“ื‘ืจื™ื ืฉืื ื™ ื•ืืชื ืœื ื™ื›ื•ืœื™ื.
15:55
All of these things are coming together,
314
955160
2000
ื•ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื” ืžืชื—ื‘ืจื™ื,
15:57
and it's a particularly important thing to understand,
315
957160
4000
ื•ื–ื” ื—ืฉื•ื‘ ื‘ืžื™ื•ื—ื“ ืœื”ื‘ื™ืŸ,
16:01
as we worry about the flames of the present,
316
961160
3000
ืฉื‘ื–ืžืŸ ืฉืื ื• ื“ื•ืื’ื™ื ืœืœื”ื‘ื•ืช ื”ื”ื•ื•ื”,
16:04
to keep an eye on the future.
317
964160
3000
ืฆืจื™ืš ืœืฉื™ื ืขื™ืŸ ืขืœ ื”ืขืชื™ื“.
16:07
And, of course, the future is looking back 200 years,
318
967160
3000
ื•ื›ืžื•ื‘ืŸ, ื”ืขืชื™ื“ ื”ื•ื ืœื”ืกืชื›ืœ ืื—ื•ืจื” 200 ืฉื ื”,
16:10
because next week is the 200th anniversary of Darwin's birth.
319
970160
4000
ืžื›ื™ื•ื•ืŸ ืฉืฉื‘ื•ืข ื”ื‘ื ื–ื” ื™ื•ื-ื”ื•ืœื“ืช ื”-200 ืฉืœ ื“ืืจื•ื•ื™ืŸ.
16:14
And it's the 150th anniversary of the publication of "The Origin of Species."
320
974160
6000
ื•ื—ื’ื™ื’ื•ืช 150 ืฉื ื” ืœืคื™ืจืกื•ื "ืžื•ืฆื ื”ืžื™ื ื™ื".
16:20
And Darwin, of course, argued that evolution is a natural state.
321
980160
4000
ื•ื“ืืจื•ื•ื™ืŸ, ื›ืžื•ื‘ืŸ, ื˜ืขืŸ ืฉืื‘ื•ืœื•ืฆื™ื” ื”ื™ื ืžืฆื‘ ื˜ื‘ืขื™.
16:24
It is a natural state in everything that is alive, including hominids.
322
984160
6000
ื”ื™ื ืžืฆื‘ ื˜ื‘ืขื™ ื‘ื›ืœ ื“ื‘ืจ ื—ื™, ื›ื•ืœืœ ื”ื•ืžื•ื ื™ื“ื™ื.
16:30
There have actually been 22 species of hominids
323
990160
5000
ืœืžืขืฉื” ื”ื™ื• 22 ืžื™ื ื™ื ืฉืœ ื”ื•ืžื•ื ื™ื“ื™ื
16:35
that have been around, have evolved, have wandered in different places,
324
995160
4000
ืฉื”ื™ื• ื‘ืกื‘ื™ื‘ื”, ื”ืชืคืชื—ื•, ื ื“ื“ื• ื‘ืื™ื–ื•ืจื™ื ืฉื•ื ื™ื,
16:39
have gone extinct.
325
999160
2000
ื•ื ื›ื—ื“ื•.
16:41
It is common for hominids to evolve.
326
1001160
5000
ื–ื” ื˜ื‘ืขื™ ืขื‘ื•ืจ ื”ื•ืžื•ื ื™ื“ื™ื ืœื”ืชืคืชื—.
16:46
And that's the reason why, as you look at the hominid fossil record,
327
1006160
3000
ื•ื–ื• ื”ืกื™ื‘ื” ืฉื‘ื”ืกืชื›ืœื•ืช ืขืœ ืžืื•ื‘ื ื™ ื”ื•ืžื•ื ื™ื“ื™ื,
16:49
erectus, and heidelbergensis, and floresiensis, and Neanderthals,
328
1009160
8000
ืืจืงื˜ื•ืก, ื”ื™ื™ืœื“ืœื‘ืจื’ื ืกื™ืก ื•ืคืœืจื•ืกื™ื™ื ืกื™ืก ื•ื ื™ืื ื“ืจื˜ืœื™
16:57
and Homo sapiens, all overlap.
329
1017160
4000
ื•ื”ื•ืžื• ืกืคื™ืื ืก, ื”ื ื—ื•ืคืคื™ื.
17:02
The common state of affairs is to have overlapping versions of hominids,
330
1022160
5000
ื”ืžืฆื‘ ื”ื ืคื•ืฅ ื”ื•ื ืฉื™ืฉ ื’ืจืกืื•ืช ื—ื•ืคืคื•ืช ืฉืœ ื”ื•ืžื•ื ื™ื“ื™ื.
17:07
not one.
331
1027160
2000
ืœื ืื—ืช.
17:09
And as you think of the implications of that,
332
1029160
2000
ื•ื›ืฉื—ื•ืฉื‘ื™ื ืขืœ ื”ื”ืฉืœื›ื•ืช ืฉืœ ื–ื”,
17:11
here's a brief history of the universe.
333
1031160
2000
ื”ื ื” ื”ืกื˜ื•ืจื™ื” ืงืฆืจื” ืฉืœ ื”ื™ืงื•ื:
17:13
The universe was created 13.7 billion years ago,
334
1033160
3000
ื”ื™ืงื•ื ื ื•ืฆืจ ืœืคื ื™ 13.7 ืžื™ืœื™ืืจื“ ืฉื ื™ื,
17:16
and then you created all the stars, and all the planets,
335
1036160
2000
ื•ืื– ื ื•ืฆืจื• ื›ืœ ื”ื›ื•ื›ื‘ื™ื, ื•ื›ืœ ื”ืคืœื ื˜ื•ืช,
17:18
and all the galaxies, and all the Milky Ways.
336
1038160
2000
ื•ื›ืœ ื”ื’ืœืืงืกื™ื•ืช, ื•ื›ืœ ืฉื‘ื™ืœื™ ื”ื—ืœื‘.
17:20
And then you created Earth about 4.5 billion years ago,
337
1040160
3000
ื•ืื– ื ื•ืฆืจ ื›ื“ื•ืจ ื”ืืจืฅ ืœืคื ื™ 4.5 ืžื™ืœื™ืืจื“ ืฉื ื™ื,
17:23
and then you got life about four billion years ago,
338
1043160
3000
ื•ืื– ื™ืฉ ื—ื™ื™ื ืœืคื ื™ 4 ืžื™ืœื™ืืจื“ ืฉื ื™ื,
17:26
and then you got hominids about 0.006 billion years ago,
339
1046160
4000
ื•ืื– ื™ืฉ ื”ื•ืžื•ื ื™ื“ื™ื ืœืคื ื™ 0.006 ืžื™ืœื™ืืจื“ ืฉื ื™ื,
17:30
and then you got our version of hominids about 0.0015 billion years ago.
340
1050160
5000
ื•ืื– ื™ืฉ ืืช ื”ื’ืจืกื” ืฉืœื ื• ืœื”ื•ืžื•ื ื™ื“ื™ื ืœืคื ื™ ื‘ืขืจืš 0.0015 ืžื™ืœื™ื•ืŸ ืฉื ื™ื,
17:35
Ta-dah!
341
1055160
2000
ื˜ื”-ื“ื”!
17:37
Maybe the reason for thr creation of the universe,
342
1057160
2000
ืื•ืœื™ ื”ืกื™ื‘ื” ืœื”ื™ื•ื•ืฆืจื•ืช ื”ื™ืงื•ื
17:39
and all the galaxies, and all the planets, and all the energy,
343
1059160
3000
ื•ื›ืœ ื”ื’ืœืืงืกื™ื•ืช ื•ื›ืœ ื”ืคืœื ื˜ื•ืช ื•ื›ืœ ื”ืื ืจื’ื™ื”
17:42
and all the dark energy, and all the rest of stuff
344
1062160
2000
ื•ื›ืœ ื”ืื ืจื’ื™ื” ื”ืืคืœื” ื•ื›ืœ ื”ืฉืืจ
17:44
is to create what's in this room.
345
1064160
4000
ื”ื™ื ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ืžื” ืฉื™ืฉ ืคื” ื‘ื—ื“ืจ.
17:48
Maybe not.
346
1068160
2000
ืื•ืœื™ ืœื.
17:51
That would be a mildly arrogant viewpoint.
347
1071160
3000
ื–ื• ืชื”ื™ื” ื ืงื•ื“ืช-ืžื‘ื˜ ืžืขื˜ ืฉื—ืฆื ื™ืช.
17:54
(Laughter)
348
1074160
4000
(ืฆื—ื•ืง)
17:59
So, if that's not the purpose of the universe, then what's next?
349
1079160
3000
ืื–, ืื ื–ื• ืœื ืžื˜ืจืช ื”ื™ืงื•ื, ืžื” ื”ืœืื”?
18:04
(Laughter)
350
1084160
4000
(ืฆื—ื•ืง)
18:08
I think what we're going to see is we're going to see a different species of hominid.
351
1088160
4000
ืื ื™ ื—ื•ืฉื‘ ืฉืžื” ืฉืื ื—ื ื• ืขื•ืžื“ื™ื ืœืจืื•ืช ื”ื•ื ื–ืŸ ื—ื“ืฉ ืฉืœ ื”ื•ืžื•ื ื™ื“ื™ื.
18:13
I think we're going to move from a Homo sapiens into a Homo evolutis.
352
1093160
4000
ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ืขื•ืžื“ื™ื ืœืขื‘ื•ืจ ืžื”ื•ืžื•-ืกืคื™ืื ืก ืœื”ื•ืžื•-ืื‘ื•ืœื•ื˜ื™ืก
18:17
And I think this isn't 1,000 years out.
353
1097160
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืœื ืขื•ื“ 1,000 ืฉื ื™ื.
18:19
I think most of us are going to glance at it,
354
1099160
3000
ืื ื™ ื—ื•ืฉื‘ ืฉืจื•ื‘ื™ื ื• ื ื–ื›ื” ืœืžื‘ื˜ ื—ื˜ื•ืฃ,
18:22
and our grandchildren are going to begin to live it.
355
1102160
2000
ื•ืฉื ื›ื“ื™ื ื• ืขื•ืžื“ื™ื ืœื—ื™ื•ืช ืืช ื–ื”.
18:24
And a Homo evolutis brings together these three trends
356
1104160
3000
ื•ื”ื•ืžื•-ืื‘ื•ืœื•ื˜ื™ืก ืžืื—ื“ ืืช ืฉืœื•ืฉ ื”ืžื’ืžื•ืช ื”ืœืœื•
18:27
into a hominid that takes direct and deliberate control
357
1107160
3000
ืœื™ืฆื™ืจืช ื”ื•ืžื•ื ื™ื“ ืฉืœื•ืงื— ื—ืœืง ืคืขื™ืœ ื‘ืฉืœื™ื˜ื”
18:30
over the evolution of his species, her species and other species.
358
1110160
4000
ืขืœ ืžื™ื ื™ื•, ืžื™ื ื™ื” ื•ืžื™ื ื™ื ืื—ืจื™ื.
18:35
And that, of course, would be the ultimate reboot.
359
1115160
4000
ื•ื–ื”, ื›ืžื•ื‘ืŸ, ื”ืื™ืชื—ื•ืœ ื”ืื•ืœื˜ื™ืžื˜ื™ื‘ื™.
18:39
Thank you very much.
360
1119160
2000
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
18:41
(Applause)
361
1121160
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7