The next species of human | Juan Enriquez

882,507 views ใƒป 2009-02-17

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Hahn Ryu ๊ฒ€ํ† : Jisu Lee
00:12
There's a great big elephant in the room called the economy.
0
12160
3000
๊ฒฝ์ œ๋ผ๋Š” ๋ฐฉ์•ˆ์— ์ง„์งœ ํฐ ์ฝ”๋ผ๋ฆฌ๊ฐ€ ํ•œ๋งˆ๋ฆฌ ์žˆ์Šต๋‹ˆ๋‹ค.
00:16
So let's start talking about that.
1
16160
2000
๊ทธ๋Ÿฌ๋‹ˆ ์ด ์–˜๊ธธ ๋จผ์ € ํ•ด๋ณด์ฃ .
00:18
I wanted to give you a current picture of the economy.
2
18160
3000
์š”์ฆ˜ ๊ฒฝ์ œ๊ฐ€ ์–ด๋–ค์ง€ ๊ทธ๋ฆผ์œผ๋กœ ํ•œ๋ฒˆ ๋ณด์—ฌ๋“œ๋ฆฌ๊ณ  ์‹ถ๊ตฐ์š”.
00:21
That's what I have behind myself.
3
21160
3000
์ œ ๋“ฑ๋’ค๋กœ ๋ณด์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:24
(Laughter)
4
24160
3000
(๊นœ๊นœํ•จ)
00:27
But of course what we have to remember is this.
5
27160
3000
๊ผญ ์—ผ๋‘์— ๋‘ฌ์•ผ ํ• ๊ฒŒ ์žˆ์Šต๋‹ˆ๋‹ค.
00:30
And what you have to think about is,
6
30160
3000
"์œ„๊ธฐ์— ๋Œ€์ฒ˜ํ•จ์— ๊ฐ€์žฅ ์ค‘์š”ํ•œ๊ฒƒ์€ ์žฅ๊ธฐ์  ์•ˆ๋ชฉ์ด๋‹ค. - ํŠนํžˆ ๋ถˆ์†์—์„œ ์ถค์„ ์ถœ๋•Œ"
00:33
when you're dancing in the flames, what's next?
7
33160
3000
์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ ๋ถˆ ์†์—์„œ ์ถค์ถ”๊ณ  ์žˆ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค. ์ด์ œ ์–ด๋–กํ• ๊นŒ์š”?
00:36
So what I'm going to try to do in the next 17 and a half minutes
8
36160
3000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ์•ž์œผ๋กœ 17๋ถ„ 30์ดˆ๋™์•ˆ ๋ง์”€๋“œ๋ฆฌ๋ ค๋Š” ๊ฒƒ์€
00:39
is I'm going to talk first about the flames --
9
39160
2000
์ฒซ์งธ๊ฐ€ ๋ถˆ ์–˜๊น๋‹ˆ๋‹ค.
00:41
where we are in the economy --
10
41160
2000
๋ฐ”๋กœ ์ง€๊ธˆ ๊ฒฝ์ œ์— ๋Œ€ํ•œ ์ด์•ผ๊ธฐ์ž…๋‹ˆ๋‹ค.
00:43
and then I'm going to take three trends
11
43160
2000
๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ ์„ธ ๊ฐ€์ง€์˜ ํŠธ๋ Œ๋“œ ์–˜๊ธธ ํ•ด๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
00:45
that have taken place at TED over the last 25 years
12
45160
3000
TED์—์„œ ๋‚˜์˜จ ์ง€๋‚œ 25๋…„๊ฐ„ ํŠธ๋ Œ๋“œ,
00:48
and that will take place in this conference
13
48160
2000
์ด๋ฒˆ TED์—๋„ ๋ณ€ํ•จ์—†์ด ์ด์–ด์ง€๊ณ  ์žˆ๋Š” ์„ธ ๊ฐ€์ง€ ํŠธ๋ Œ๋“œ,
00:50
and I will try and bring them together.
14
50160
3000
์ด๊ฑธ ํ•œ๋ฒˆ ์ •๋ฆฌํ•ด๋ณด์ž๋Š” ๊ฒ๋‹ˆ๋‹ค.
00:53
And I will try and give you a sense of what the ultimate reboot looks like.
15
53160
4000
๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ '์ ˆ๋Œ€๋ฆฌ๋ถ€ํŒ…'๋ž€ ๊ฒŒ ๋ญ”์ง€ ์ข€ ์–˜๊ธธํ• ๊ฒ๋‹ˆ๋‹ค.
00:57
Those three trends are
16
57160
2000
์„ธ ๊ฐ€์ง€ ์ปค๋‹ค๋ž€ ํŠธ๋ Œ๋“œ๋ž€ ์ด๋Ÿฐ๊ฒ๋‹ˆ๋‹ค.
00:59
the ability to engineer cells,
17
59160
2000
์ฒซ์งธ ๋‹จ์ผ์„ธํฌ ์—”์ง€๋‹ˆ์–ด๋ง,
01:01
the ability to engineer tissues,
18
61160
2000
๋‘˜์งธ ์„ธํฌ์กฐ์ง ์—”์ง€๋‹ˆ์–ด๋ง,
01:03
and robots.
19
63160
2000
๊ทธ๋ฆฌ๊ณ  ์…‹์งธ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
01:05
And somehow it will all make sense.
20
65160
2000
์ด๋Ÿฐ ๊ฒƒ๋“ค์€ ์กฐ๋งŒ๊ฐ„ ์ƒ์‹์ด ๋ ๊ฒ๋‹ˆ๋‹ค.
01:07
But anyway, let's start with the economy.
21
67160
3000
์–ด์จŒ๋“ , ๊ฒฝ์ œ์–˜๊ธฐ๋ถ€ํ„ฐ ํ•ด๋ณด์ฃ .
01:10
There's a couple of really big problems that are still sitting there.
22
70160
3000
์ง„์งœ ํฐ ๋ฌธ์ œ ๋ช‡ ๊ฐ€์ง€๊ฐ€ ์•„์ง๋„ ๋ฒ„ํ‹ฐ๊ณ  ์•‰์•„ ์žˆ์Šต๋‹ˆ๋‹ค.
01:13
One is leverage.
23
73160
2000
์ฒซ์งธ๋Š” ๋ ˆ๋ฒ„๋ฆฌ์ง€์ž…๋‹ˆ๋‹ค.
01:15
And the problem with leverage is
24
75160
2000
์ด๋†ˆ์˜ ๋ ˆ๋ฒ„๋ฆฌ์ง€ ๋ฌธ์ œ ๋•Œ๋ฌธ์—
01:17
it makes the U.S. financial system look like this.
25
77160
3000
์ง€๊ธˆ ๋ฏธ๊ตญ ๊ธˆ์œต์‹œ์Šคํ…œ ๊ผด์ด ๋”ฑ ์ด๋ ‡์Šต๋‹ˆ๋‹ค.
01:20
(Laughter)
26
80160
3000
(์‹ธ๊ตฌ๋ ค ํŠœ๋ธŒ ํ’€์žฅ์—์„œ์˜ ํ˜ธ์‚ฌ)
01:27
So, a normal commercial bank has nine to 10 times leverage.
27
87160
3000
์ผ๋ฐ˜์ ์ธ ๋ฏผ๊ฐ„ ์€ํ–‰์ด ์•„ํ™‰ ๋ฐฐ ๋‚ด์ง€ ์—ด ๋ฐฐ๋ฅผ ๋ ˆ๋ฒ„๋ฆฌ์ง€ํ•ฉ๋‹ˆ๋‹ค.
01:30
That means for every dollar you deposit, it loans out about nine or 10.
28
90160
3000
ํ†ต์žฅ์— 100์›์„ ์˜ˆ๊ธˆํ•˜๋ฉด ๊ทธ๊ฑธ ๋ฐ‘์ฒœ์œผ๋กœ 900์› ๋‚ด์ง€ 1,000์„ ๊ตด๋ฆฐ๋‹ค๋Š” ๋œป์ด์ฃ .
01:33
A normal investment bank is not a deposit bank,
29
93160
3000
๋ณดํ†ต์˜ ํˆฌ์ž์€ํ–‰์€ ์ƒ์—…์€ํ–‰์ด๋ž‘์€ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
01:36
it's an investment bank;
30
96160
2000
๋ง๊ทธ๋Œ€๋กœ "ํˆฌ์ž์€ํ–‰"์ด์ฃ .
01:38
it has 15 to 20 times.
31
98160
2000
์›๊ธˆ์˜ 15~20๋ฐฐ๋ฅผ ์šด์šฉํ•ฉ๋‹ˆ๋‹ค.
01:40
It turns out that B of A in September had 32 times.
32
100160
3000
์•„๋ฉ”๋ฆฌ์นด ์€ํ–‰์€ 32๋ฐฐ ๋”๊ตฐ์š”.
01:43
And your friendly Citibank had 47 times.
33
103160
3000
์šฐ๋ฆฌ์˜ ์ข‹์€ ์นœ๊ตฌ ์”จํ‹ฐ์€ํ–‰์€ 47๋ฐฐ๊ตฌ์š”.
01:46
Oops.
34
106160
2000
์ €๋Ÿฐ.
01:48
That means every bad loan goes bad 47 times over.
35
108160
4000
ํ•œ๋งˆ๋””๋กœ ๋ชจ๋“  ์•…์„ฑ๋Œ€์ถœ์ด ์ž๋™์ ์œผ๋กœ 47๋ฐฐ ๋” ๋‚˜๋น ์ง„๋‹จ ๊ฒ๋‹ˆ๋‹ค.
01:52
And that, of course, is the reason why all of you
36
112160
3000
์—ฌ๋Ÿฌ๋ถ„์ด ๋„ˆ๋ฌด ์นœ์ ˆํ•˜๊ณ  ์ž์ƒํ•˜์…”์„œ
01:55
are making such generous and wonderful donations
37
115160
3000
์ด๋Ÿฐ ํ›Œ๋ฅญํ•œ ์นœ๊ตฌ๋“ค์—๊ฒŒ ์ž์„ ์‚ฌ์—…ํ•˜๋“ฏ
01:58
to these nice folks.
38
118160
2000
๋งˆ๊ตฌ ๋ˆ์„ ํผ์ฃผ์‹  ๊ฒฐ๊ณผ์ฃ .
02:03
And as you think about that,
39
123160
2000
๊ฐ‘์ž๊ธฐ ๊ถ๊ธˆํ•ด์ง‘๋‹ˆ๋‹ค.
02:05
you've got to wonder: so what do banks have in store for you now?
40
125160
3000
๊ทธ๋ž˜, ๊ทผ๋ฐ ์€ํ–‰์— ์šฐ๋ฆฌ๊ฐ€ ์‚ด ์ˆ˜ ์žˆ๋Š” ๊ฑฐ์‹œ๊ธฐ ๋ฌผ๊ฑด์ด ๋ญ๊ฐ€ ์žˆ์„๊ผฌ?
02:11
(Laughter)
41
131160
3000
"๋”์–ด" "์กฐ์€" "๊ฑฐ์‹œ๊ธฐ"
02:20
It ain't pretty.
42
140160
2000
๋ณ„๋กœ ์•„๋ฆ„๋‹ต์ง€ ์•Š์ฃ .
02:23
The government, meanwhile, has been acting like Santa Claus.
43
143160
4000
ํ•œํŽธ ์ •๋ถ€๋Š” ๋ฌด์Šจ ์‚ฐํƒ€ํด๋กœ์Šค๋ผ๋„ ๋˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ํ–‰๋™ํ•ด์™”์Šต๋‹ˆ๋‹ค.
02:27
We all love Santa Claus, right?
44
147160
3000
์šฐ๋ฆฌ ๋ชจ๋‘ ์‚ฐํƒ€ ์ข‹์•„ํ•˜์ฃ . ๊ทธ์ฐฎ์•„์š”?
02:30
But the problem with Santa Clause is,
45
150160
3000
๊ทผ๋ฐ ์‚ฐํƒ€(ํผ๋‹ค์ฃผ๋Š” ์ •๋ถ€)ํ•œํ…Œ ์žˆ๋Š” ๋ฌธ์ œ๊ฐ€ ๋ญ๋ƒ..
02:33
if you look at the mandatory spending of what these folks have been doing
46
153160
3000
์ด ์นœ๊ตฌ๋“ค์ด ๋ญ๋ผ๋„ ์ผ์„ ํ•˜์ž๋ฉด ๋ฐ˜๋“œ์‹œ ํ•ญ์ƒ ๋‚˜๊ฐ€๋Š” ํ•„์ˆ˜์ง€์ถœ ๊ฐ™์€๊ฒŒ ์žˆ์–ด์š”.
02:36
and promising folks,
47
156160
2000
์ฐธ ๋ฏฟ์„๋งŒํ•œ ์นœ๊ตฌ๋“ค์ธ๋ฐ..
02:38
it turned out that in 1967, 38 percent was mandatory spending
48
158160
5000
1967๋…„์— ๋ดค๋”๋‹ˆ, ์ด ํ•„์ˆ˜์ง€์ถœ์ด๋ž€ ๊ฒƒ์˜ 38ํผ์„ผํŠธ๊ฐ€
02:43
on what we call "entitlements."
49
163160
3000
์†Œ์œ„ ๋ณด์ƒ์•ก(entitlement)์ด๋”๊ตฐ์š”.
02:46
And then by 2007 it was 68 percent.
50
166160
3000
์–ด์จŒ๋“  2007๋…„์— ์ด๋Ÿฐ ํ•„์ˆ˜ ์ง€์ถœ์€ 68%๋ฅผ ์ฐ์—ˆ์Šต๋‹ˆ๋‹ค.
02:49
And we weren't supposed to run into 100 percent until about 2030.
51
169160
4000
๊ทธ๋ž˜๋„ ๋ชจ๋‘๋“ค 100%๊ฐ€ ๋ ์ผ์€ ์ ์–ด๋„ 2030๋…„ ์ „๊นŒ์ง„ ์—†๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ์ฃ .
02:54
Except we've been so busy giving away a trillion here, a trillion there,
52
174160
3000
์ง€๊ธˆ ์—ฌ๊ธฐ ์ €๊ธฐ ์ˆ˜์‹ญ์กฐ์”ฉ ๋ˆ์„ ๋ฟŒ๋ฆฌ๊ณ  ๋‹ค๋‹ˆ๊ณ  ์žˆ๋Š” ์ฃผ์ œ์— ๋ง์ž…๋‹ˆ๋‹ค.
02:57
that we've brought that date of reckoning forward
53
177160
3000
๊ทธ๋ž˜์„œ 2017์ด๋ฉด ๋ณด์ƒ์•ก ์ œ๋„๊ฐ€ ํ•„์ˆ˜์ง€์ถœ์˜ 100%๋ฅผ
03:00
to about 2017.
54
180160
3000
์ฐจ์ง€ํ•˜๊ฒŒ ๋  ๊ฒŒ ๋ป”ํ•œ๋ฐ๋„ ๋ง์ž…๋‹ˆ๋‹ค.
03:03
And we thought we were going to be able to lay these debts off on our kids,
55
183160
3000
ํ•œ๋• ์ด ๋นš์„ ๋‹ค์Œ ์„ธ๋Œ€์—๊ฒŒ ๋ฌผ๋ ค์ฃผ๋ฉด ๋œ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ๋Š”๋ฐ
03:06
but, guess what?
56
186160
2000
์ด์   ์–ด์ฉŒ๋ฉด ์ข‹์„๊นŒ์š”?
03:08
We're going to start to pay them.
57
188160
2000
๊ณ ์Šค๋ž€ํžˆ ์šฐ๋ฆฌ ์„ธ๋Œ€๊ฐ€ ๊ฐš๊ฒŒ ๋๊ตฐ์š”.
03:10
And the problem with this stuff is, now that the bill's come due,
58
190160
2000
์ด๊ฒŒ ๋ฌธ์ œ์ธ ๊ฒƒ์€ ์ด์ œ ์ง€๋ถˆ์‹œํ•œ์€ ๋‹ค๊ฐ€์˜ค๋Š”๋ฐ..
03:12
it turns out Santa isn't quite as cute when it's summertime.
59
192160
4000
์šฐ๋ฆฌ ์‚ฐํƒ€ ํ• ์•„๋ฒ„์ง€๊ฐ€ ์ธ๋จธํƒ€์ž„์—” ๊ทธ๋‹ค์ง€ ๊ท€์—ฝ์ง€ ์•Š๋‹จ๊ฒ๋‹ˆ๋‹ค.
03:16
Right?
60
196160
2000
๊ทธ์ตธ?
03:18
(Laughter)
61
198160
3000
(์›ƒ์Œ)
03:30
Here's some advice from one of the largest investors in the United States.
62
210160
4000
๋ฏธ๊ตญ์—์„œ ๊ฐ€์žฅ ํฐ ํฐ์† ํˆฌ์ž๊ฐ€์ค‘ ํ•œ๋ช…์ด ์กฐ์–ธ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:34
This guy runs the China Investment Corporation.
63
214160
3000
์ค‘๊ตญํˆฌ์ž์œ ํ•œ์ฑ…์ž„๊ณต์‚ฌ(CIC) ์‚ฌ์žฅ์ž…๋‹ˆ๋‹ค.
03:37
He is the main buyer of U.S. Treasury bonds.
64
217160
3000
๋ฏธ๊ตญ ๊ตญ์ฑ„๋ฅผ ์‚ฌ๋Š” ์ค‘์š”ํ•œ ๊ณ ๊ฐ์ค‘ ํ•œ๋ช…์ด์ฃ .
03:40
And he gave an interview in December.
65
220160
3000
์ด์‚ฌ๋žŒ์ด 12์›”์— ์ธํ„ฐ๋ทฐ๋ฅผ ํ•œ์ ์ด ์žˆ์—ˆ๋Š”๋ฐ,
03:43
Here's his first bit of advice.
66
223160
2000
์ด๋Ÿฐ ์ถฉ๊ณ ๋ฅผ ํ–ˆ๋‹ค๋Š”๊ตฐ์š”. (๋ˆ์„ ๋นŒ๋ ค๊ฐ€๋Š” ๋‚˜๋ผํ•œํ…Œ ์ž˜ํ•ด์ค„ ๊ฒƒ)
03:45
And here's his second bit of advice.
67
225160
3000
์ด๊ฒŒ ๊ทธ ๋‹ค์Œ ์กฐ์–ธ์ž…๋‹ˆ๋‹ค. (๊ธฐ๊บผ์ด ๋„์™€๋“œ๋ฆฌ์ฃ . ๋‹น์‹ ์ด ์‚ด์•„๋‚  ๊ฐ€๋ง์ด ์žˆ์œผ๋ฉด)
03:50
And, by the way,
68
230160
2000
์•„๋‹ˆ๋‚˜๋‹ค๋ฅผ๊นŒ,
03:52
the Chinese Prime Minister reiterated this at Davos last Sunday.
69
232160
3000
์›์ž๋ฐ”์˜ค ์ค‘๊ตญ ๊ตญ๋ฌด์ด๋ฆฌ๋„ ์ง€๋‚œ ์ผ์š”์ผ์— ๋˜‘๊ฐ™์€ ์–˜๊ธธ ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:55
This stuff is getting serious enough
70
235160
2000
์ด์ œ ์‹ฌ๊ฐํ• ๋Œ€๋กœ ์‹ฌ๊ฐํ•ด์กŒ์Šต๋‹ˆ๋‹ค.
03:57
that if we don't start paying attention to the deficit,
71
237160
2000
์ด์ œ๋ผ๋„ ์ง€๊ธˆ๊ป ๋ˆ„์ ๋œ ์ ์ž์— ์ฃผ๋ชฉํ•˜๊ธฐ ์‹œ์ž‘ํ•˜์ง€ ์•Š์œผ๋ฉด
03:59
we're going to end up losing the dollar.
72
239160
3000
๋‹ฌ๋Ÿฌ๋ฅผ ๊ณง ๋‹ค ์žƒ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
04:02
And then all bets are off.
73
242160
3000
๋ญ˜ ํ•ด๋ณด๋ ค๋„ ํŒจ๊ฐ€ ์•ˆ๋‚จ๋Š”๊ฒ๋‹ˆ๋‹ค.
04:05
Let me show you what it looks like.
74
245160
3000
์ด๊ฒŒ ์–ด๋–ค๊ฑด์ง€ ๋ณด์—ฌ๋“œ๋ฆด๊นŒ์š”?
04:08
I think I can safely say
75
248160
2000
ํ•œ๊ฐ€์ง€ "์‚ฌ์‹ค"์„ ๋ง์”€๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
04:10
that I'm the only trillionaire in this room.
76
250160
3000
์ง€๊ธˆ ์ด ํ™€์— ์žˆ๋Š” ์–ต๋งŒ์žฅ์ž๋Š” ์ € ํ˜ผ์ž ๋ฟ์ž…๋‹ˆ๋‹ค.
04:14
This is an actual bill.
77
254160
2000
์ด๊ฒŒ ๊ทธ ๋ˆ์ž…๋‹ˆ๋‹ค.
04:16
And it's 10 triliion dollars.
78
256160
3000
1์กฐ ๋‹ฌ๋Ÿฌ์ž…๋‹ˆ๋‹ค.
04:19
The only problem with this bill is it's not really worth very much.
79
259160
3000
์ด ๋ˆ์ด ๊ฐ€์ง„ ์œ ์ผํ•œ ๋ฌธ์ œ๋Š” ์ด ์•ก์ˆ˜๊ฐ€ ๋ณ„ ๊ฐ€์น˜๊ฐ€ ์—†๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
04:22
That was eight bucks last week, four bucks this week,
80
262160
3000
์ง€๋‚œ์ฃผ์—” 8๋‹ฌ๋Ÿฌ๊ฐ€์น˜์˜€๋Š”๋ฐ, ์ด๋ฒˆ์ฃผ์—” 4๋‹ฌ๋Ÿฌ๊ฐ€ ๋์Šต๋‹ˆ๋‹ค.
04:25
a buck next week.
81
265160
2000
๋‹ค์Œ์ฃผ๋ฉด 1๋‹ฌ๋Ÿฌ๊ฐ€ ๋ ๊ฒ๋‹ˆ๋‹ค.
04:27
And that's what happens to currencies when you don't stand behind them.
82
267160
4000
์ด๊ฒŒ ๋ฐ”๋กœ ์•ž์œผ๋กœ ํ™”ํ์— ์ƒ๊ธฐ๊ฒŒ ๋  ์ผ์ž…๋‹ˆ๋‹ค. ์ข€ ๋„๋ง๊ฐ€ ์žˆ์–ด์•ผ ํ•  ๊ฒƒ ๊ฐ™๋„ค์š”.
04:32
So the next time somebody as cute as this shows up on your doorstep,
83
272160
5000
๊ทธ๋‹ˆ๊นŒ ๋‹ด๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ๋ถ„ ํ˜„๊ด€์•ž์— ์ด๋ ‡๊ฒŒ ์•™์ฆ๋งž๊ฒŒ ๋ถˆ์Œํ•ด๋ณด์ด๋Š” ์‚ฌ๋žŒ์ด ์„œ์žˆ์œผ๋ฉด..
04:37
and sometimes this creature's called Chrysler and sometimes Ford and sometimes ... whatever you want --
84
277160
7000
ํฌ๋ผ์ด์Šฌ๋Ÿฌ..ํฌ๋“œ.. ๋ญ ์ด๋Ÿฐ ์‚ฌ๋žŒ๋“ค์ด ์—ฌ๋Ÿฌ๋ถ„ ํ˜„๊ด€์•ž์— ์ฐพ์•„์˜ค๋ฉด
04:44
you've just got to say no.
85
284160
2000
๊ทธ๋ƒฅ "no" ํ•˜์‹œ๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
04:46
And you've got to start banishing a word that's called "entitlement."
86
286160
4000
์ด์ œ ๋ณด์ƒ๊ธˆ(entitlement)๋ฅผ ์ด ๋•…์—์„œ ๋ชฐ์•„๋‚ผ ๋•Œ์ž…๋‹ˆ๋‹ค.
04:50
And the reason we have to do that in the short term
87
290160
3000
์ด๊ฑธ ๋นจ๋ฆฌ ๋นจ๋ฆฌ ํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๋Š”
04:53
is because we have just run out of cash.
88
293160
3000
๋„ˆ๋ฌด ๋‹น์—ฐํžˆ๋„ ์šฐ๋ฆฌ์—๊ฒŒ ๋”์ด์ƒ ๋ˆ์ด ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
04:56
If you look at the federal budget, this is what it looks like.
89
296160
3000
๋ฏธ๊ตญ ์—ฐ๋ฐฉ ์˜ˆ์‚ฐ์„ ํ•œ๋ฒˆ ๋ณด๋ฉด ๋”ฑ ์ด๋ ‡์Šต๋‹ˆ๋‹ค.
04:59
The orange slice is what's discretionary.
90
299160
3000
์˜ค์ง ์ฃผํ™ฉ์ƒ‰๋งŒ์ด ์ž„์˜๋กœ ์“ธ ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
05:02
Everything else is mandated.
91
302160
2000
๋‹ค๋ฅธ ๊ฑด ๋‹ค ์ •ํ•ด์ ธ ์žˆ๋Š”๊ฑฐ๊ตฌ์š”.
05:05
It makes no difference if we cut out the bridges to Alaska in the overall scheme of things.
92
305160
3000
์•Œ๋ž˜์Šค์นด์— ๋‹ค๋ฆฌ ๋†“๋Š” ์‚ฌ์—…์„ ์ง€๊ธˆ ๋‹น์žฅ ์ ‘๋Š”๋‹ค๊ณ  ํ•ด๋„ ๋ณ„๋กœ ๋‹ฌ๋ผ์ง€๋Š”๊ฑด ์—†์Šต๋‹ˆ๋‹ค.
05:08
So what we have to start thinking about doing
93
308160
3000
์‚ฌ์‹ค ์šฐ๋ฆฌ๊ฐ€ ํ•ด์•ผํ•˜๋Š” ๊ณ ๋ฏผ์€ ๊ณผ์—ฐ ์–ด๋–ป๊ฒŒ
05:11
is capping our medical spending
94
311160
2000
์˜๋ฃŒ์ง€์ถœ ๋น„์ค‘์„ ์ค„์ด๋ƒ๋Š” ๊ฑฐ์ฃ .
05:13
because that's a monster that's simply going to eat the entire budget.
95
313160
3000
์ด ์˜๋ฃŒ์ง€์ถœ์ด ๋ฐ”๋กœ ๋ˆ ๋‹ค ๊นŒ๋จน๋Š” ๊ดด๋ฌผ์ด๋‹ˆ๊นŒ์š”.
05:16
We've got to start thinking about asking people
96
316160
3000
์ด์ œ ๊ณต์‹์ ์ธ ์€ํ‡ด ์—ฐ๋ น์„ ๋†’์ด๋Š” ์•ˆ์„
05:19
to retire a little bit later.
97
319160
2000
์ง„์ง€ํ•˜๊ฒŒ ๊ณ ๋ คํ•ด ๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:22
If you're 60 to 65 you retire on time.
98
322160
3000
์ง€๊ธˆ ์—ฌ๋Ÿฌ๋ถ„์ด 60~65์‚ด์ธ๋ฐ ์ œ๋•Œ ์€ํ‡ด๋ฅผ ํ•˜๋ฉด
05:25
Your 401(k) just got nailed.
99
325160
2000
์—ฐ๊ธˆ์€ ์—†์Šต๋‹ˆ๋‹ค.
05:27
If you're 50 to 60 we want you to work two years more.
100
327160
3000
์ง€๊ธˆ 50~60์‚ด์ด๋ฉด 2๋…„์€ ๋” ์ผํ•˜์…”์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:30
If you're under 50 we want you to work four more years.
101
330160
3000
50์‚ด ์ดํ•˜๋ฉด 4๋…„ ๋” ์ผํ•˜์‹œ๊ตฌ์š”.
05:33
The reason why that's reasonable is,
102
333160
3000
๋ง์ด ์•ˆ๋˜๋Š” ์ด์•ผ๊ธฐ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
05:36
when your grandparents were given Social Security,
103
336160
2000
์ฃผ๋ฏผ๋“ฑ๋ก๋ฒˆํ˜ธ์ œ๋„๊ฐ€ ์ฒจ ๋„์ž…๋œ ๊ฒƒ์ด ์—ฌ๋Ÿฌ๋ถ„ ํ• ์•„๋ฒ„์ง€ ์„ธ๋Œ€์˜€๋Š”๋ฐ,
05:38
they got it at 65 and were expected to check out at 68.
104
338160
3000
๋‹น์‹œ์— ํ• ์•„๋ฒ„์ง€๋“ค์€ 65์„ธ์— ๋ฏผ์ฆ์„ ๋ฐ›์•„์„œ 68์„ธ์— ์€ํ‡ด๋ฅผ ํ•˜์…จ์œผ๋‹ˆ๊นŒ์š”.
05:41
Sixty-eight is young today.
105
341160
3000
์ง€๊ธˆ 68์‚ด์ด๋ฉด ์ Š์€๊ฑฐ์ฃ .
05:44
We've also got to cut the military about three percent a year.
106
344160
4000
๊ตฐ๋Œ€๋„ 1๋…„์— 3%์”ฉ ์ถ•์†Œํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค.
05:48
We've got to limit other mandatory spending.
107
348160
2000
๋‹ค๋ฅธ ๊ณ ์ •์ง€์ถœ๋„ ์ ์ฐจ ์ค„์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค.
05:50
We've got to quit borrowing as much,
108
350160
3000
๋ˆ ๋นŒ๋ฆฌ๋Š” ์ง“๋„ ์ด์ œ ๋ฉˆ์ถฐ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:53
because otherwise the interest is going to eat that whole pie.
109
353160
3000
์•ˆ๊ทธ๋Ÿฌ๋ฉด ์ด์ž๊ฐ€ ๋ชจ๋“  ๊ฑธ ๋‹ค ์ง‘์–ด ์‚ผ์ผœ๋ฒ„๋ฆดํ…Œ๋‹ˆ๊นŒ์š”.
05:56
And we've got to end up with a smaller government.
110
356160
2000
์ด์ œ ์ž‘์€์ •๋ถ€๋„ ๋๋‚ผ ๋•Œ๊ฐ€ ๋์Šต๋‹ˆ๋‹ค.
05:58
And if we don't start changing this trend line,
111
358160
3000
์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ ์ด ํŠธ๋ Œ๋“œ์—์„œ ๋ฒ—์–ด๋‚˜์ง€ ์•Š์œผ๋ฉด,
06:01
we are going to lose the dollar
112
361160
2000
๋‹ฌ๋Ÿฌ ๋‹ค ์žƒ๊ณ 
06:03
and start to look like Iceland.
113
363160
2000
์•„์ด์Šฌ๋ž€๋“œ์ฒ˜๋Ÿผ ๋ ๊ฒ๋‹ˆ๋‹ค.
06:05
I got what you're thinking.
114
365160
3000
์ง€๊ธˆ ๋ฌด์Šจ์ƒ๊ฐ ํ•˜์‹œ๋Š”์ง€ ์••๋‹ˆ๋‹ค.
06:08
This is going to happen when hell freezes over.
115
368160
4000
์ง€์˜ฅ์— ๋ˆˆ์ด ์˜ค์ง€ ์•Š๋Š” ํ•œ ๊ทธ๋Ÿฐ ๋‚ ์€ ์•ˆ์˜ฌ ๊ฒƒ ๊ฐ™์ฃ ?
06:13
But let me remind you this December it did snow in Vegas.
116
373160
3000
ํ•˜์ง€๋งŒ ์ž‘๋…„ 12์›”์— ๋ถˆํƒ€๋Š” ๋ผ์Šค๋ฒ ๊ฐ€์Šค์— ๋ˆˆ์ด ์™”๋‹ค๋Š” ๊ฑฐ..
06:18
(Laughter)
117
378160
3000
(์›ƒ์Œ)
06:23
Here's what happens if you don't address this stuff.
118
383160
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์ด๋Ÿฐ ๋ถ€๋ถ„์„ ๊ฐ„๊ณผํ•˜๋ฉด ์ƒ๊ธธ ์ผ์ž…๋‹ˆ๋‹ค.
06:26
So, Japan had a fiscal real estate crisis
119
386160
3000
์ง€๋‚œ 80๋…„๋Œ€์— ์ผ๋ณธ์— ๋ถ€๋™์‚ฐ ์œ„๊ธฐ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:29
back in the late '80s.
120
389160
2000
์ง€๋‚œ 80๋…„๋Œ€์— ์ผ๋ณธ์— ๋ถ€๋™์‚ฐ ์œ„๊ธฐ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:31
And its 225 largest companies today
121
391160
3000
(๊ทธ๋ฆผ:๊ตฌ์ œ๊ธˆ์œต์„ ์คฌ๋Š”๋ฐ๋„ ๋งํ•ด๊ฐ)์˜ค๋Š˜๋‚  ๊ทœ๋ชจ์ˆœ์œผ๋กœ ์ƒ์œ„ 225๊ฐœ ํšŒ์‚ฌ๋ฅผ ๋ณด๋ฉด
06:34
are worth one quarter of what they were 18 years ago.
122
394160
3000
(๊ทธ๋ฆผ:๊ตฌ์ œ๊ธˆ์œต์„ ์คฌ๋Š”๋ฐ๋„ ๋งํ•ด๊ฐ)์‹ค์งˆ ๊ฐ€์น˜๊ฐ€ 18๋…„ ์ „์˜ 1/4๋ฐ–์— ์•ˆ๋ฉ๋‹ˆ๋‹ค.
06:37
We don't fix this now,
123
397160
2000
์ง€๊ธˆ ์ด๊ฑธ ์–ด๋–ป๊ฒŒ ํ•˜์ง€ ์•Š์œผ๋ฉด
06:39
how would you like to see a Dow 3,500 in 2026?
124
399160
3000
2026๋…„์— ๋‹ค์šฐ์ง€์ˆ˜ 3,500 ์ฐ๋Š” ๊ผด์„ ๋ณด๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
06:42
Because that's the consequence of not dealing with this stuff.
125
402160
3000
์ง€๊ธˆ ์šฐ๋ฆฌ๊ฐ€ "์ž˜" ํ•˜์ง€ ์•Š์œผ๋ฉด ์น˜๋Ÿฌ์•ผ ํ•  ๋Œ€๊ฐ€์ฃ .
06:45
And unless you want this person
126
405160
3000
์ด ๋ณด์‹œ๋Š” ์ด ์‚ฌ๋žŒ์„
06:48
to not just become the CFO of Florida, but the United States,
127
408160
3000
๋น„๋‹จ ํ”Œ๋กœ๋ฆฌ๋‹ค CFO๋ฟ๋งŒ์ด ์•„๋‹ˆ๋ผ ๋ฏธ๊ตญ CFO๋กœ ์‚ผ์ง€ ์•Š๋Š” ํ•œ,
06:51
we'd better deal with this stuff.
128
411160
3000
์—ฌ๋Ÿฌ๋ถ„ ์ •๋ง "์ž˜" ํ•˜์…”์•ผ ํ•  ๊ฒ๋‹ˆ๋‹ค.
06:54
That's the short term. That's the flame part.
129
414160
3000
์ด๊ฒŒ ๋‹จ๊ธฐ์ „๋ง์ž…๋‹ˆ๋‹ค. ๋ถˆ ๋ถ€๋ถ„์ด์ฃ .
06:57
That's the financial crisis.
130
417160
2000
์—ฌ๊ธฐ ์ž‘์€ ํŒŒ๋„๊ฐ€ ๊ธˆ์œต ์œ„๊ธฐ์ž…๋‹ˆ๋‹ค.
06:59
Now, right behind the financial crisis there's a second and bigger wave
131
419160
4000
์ด์ œ ์ด๊ฒŒ ์ง€๋‚˜๊ฐ€๋ฉด ์ด์–ด์„œ ์—„์ฒญ๋‚œ ํŒŒ๋„๊ฐ€ ๋ชฐ์•„๋‹ฅ์นฉ๋‹ˆ๋‹ค.
07:03
that we need to talk about.
132
423160
1000
์ž˜ ์ƒ๊ฐํ•ด ๋ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ์ฃ .
07:04
That wave is much larger, much more powerful,
133
424160
2000
์ด ํŒŒ๋„๋Š” ์ง„์งœ ํฝ๋‹ˆ๋‹ค. ์ƒ์ƒ์„ ์ดˆ์›”ํ•ด์š”.
07:06
and that's of course the wave of technology.
134
426160
3000
์ด๊ฒŒ ๋ญ๋ƒ? ๋ฐ”๋กœ ํ…Œํฌ๋†€๋กœ์ง€์˜ ํŒŒ๋„์ž…๋‹ˆ๋‹ค.
07:09
And what's really important in this stuff is,
135
429160
2000
์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ๊ฒƒ์€, ์šฐ๋ฆฌ๊ฐ€ ์ณ๋‚ผ๊ฑด ์ณ๋‚ด๋ฉด์„œ
07:11
as we cut, we also have to grow.
136
431160
2000
๋™์‹œ์— ๋˜ ์•ž์œผ๋กœ ๋‚˜๊ฐ€์•ผ๋งŒ ํ•œ๋‹จ ๊ฒ๋‹ˆ๋‹ค.
07:13
Among other things, because startup companies
137
433160
3000
์ƒ๊ฐํ•ด๋ณด์„ธ์š”. ๋ฏธ๊ตญ์˜ ์ž‘์€ ๋ฒค์ฒ˜ ํšŒ์‚ฌ๋“ค์€
07:16
are .02 percent of U.S. GDP investmentm
138
436160
2000
๋ฏธ๊ตญ GDP์˜ 17.8ํผ์„ผํŠธ๋ฅผ ์ƒ์‚ฐํ•ด๋ƒ…๋‹ˆ๋‹ค.
07:18
and they're about 17.8 percent of output.
139
438160
3000
ํˆฌ์ž๋ฐ›๋Š” ์•ก์ˆ˜๋Š” ๊ณ ์ž‘ GPD ๋Œ€๋น„ 0.2%๋ฐ–์— ์•ˆ๋˜๋Š”๋ฐ๋„ ๋ง์ž…๋‹ˆ๋‹ค.
07:23
It's groups like that in this room that generate the future of the U.S. economy.
140
443160
3000
์ด ํ™€์•ˆ์— ๊ณ„์‹  ๋ถ„๋“ค์ด ๋ฏธ๋ž˜์˜ ๊ฒฝ์ œ๋ฅผ ์ด๋Œ์–ด๊ฐ€๋Š” ์›๋™๋ ฅ์ž…๋‹ˆ๋‹ค.
07:26
And that's what we've got to keep growing.
141
446160
2000
์šฐ๋ฆฌ๊ฐ€ ๊ณ„์† ์œ ์ง€ํ•˜๊ณ  ๋ฐœ์ „์‹œ์ผœ์•ผ ํ•˜๋Š” ๊ฒƒ์ด์ง€์š”.
07:28
We don't have to keep growing these bridges to nowhere.
142
448160
3000
๋‹ค๋ฆฌ๋ฅผ ์•„๋ฌด ๋ฐ๋‚˜ ๋†“๋Š” ์ง“์„ ๊ณ„์†ํ•  ํ•„์š” ์—†์Šต๋‹ˆ๋‹ค.
07:32
So let's bring a romance novelist into this conversation.
143
452160
4000
๊ทธ๋Ÿฌ๋‹ˆ ๋‚ญ๋งŒ์ ์ธ ์†Œ์„ค๊ฐ€๋ฅผ ํ•œ๋ช… ๋ผ์›Œ๋ณด๋„๋ก ํ•˜์ฃ .(๋ชจ๋“ ๊ฒŒ ๋‹ค ๋๋‚ฌ๋‹ค๊ณ  ์ƒ๊ฐ๋  ๋•Œ๊ณ  ์˜ฌ๊ฒƒ์ด๋‹ค. ๊ทธ ๋•Œ๊ฐ€ ๋ฐ”๋กœ ์ƒˆ๋กœ์šด ์‹œ์ž‘์ด๋‹ค.)
07:38
And that's where these three trends come together.
144
458160
5000
์—ฌ๊ธฐ๊ฐ€ ๋ฐ”๋กœ ์„ธ ๊ฐ€์ง€ ํŠธ๋ Œ๋“œ๊ฐ€ ํ•œ๋ฐ๋กœ ๋ชจ์ด๋Š” ๊ณณ์ž…๋‹ˆ๋‹ค.
07:43
That's where the ability to engineer microbes,
145
463160
3000
์—ฌ๊ธฐ๊ฐ€ ๋ฐ”๋กœ ๋‹จ์ผ์„ธํฌ ์—”์ง€๋‹ˆ์–ด๋ง๊ณผ
07:46
the ability to engineer tissues,
146
466160
2000
์„ธํฌ์กฐ์ง ์—”์ง€๋‹ˆ์–ด๋ง๊ณผ
07:48
and the ability to engineer robots
147
468160
2000
๋กœ๋ด‡ ์—”์ง€๋‹ˆ์–ด๋ง์ด ํ•œ๋ฐ ๋ชจ์—ฌ
07:50
begin to lead to a reboot.
148
470160
2000
์—ญ์‚ฌ๋ฅผ ๋ฆฌ์…‹ํ•˜๋Š” ๊ณณ์ด์ฃ .
07:52
And let me recap some of the stuff you've seen.
149
472160
2000
์ง€๊ธˆ๊นŒ์ง€ ์ด์™€ ๊ด€๋ จํ•ด์„œ ์žˆ์—ˆ๋˜ ์ผ์„ ์ •๋ฆฌํ•ด๋ณด์ฃ .
07:54
Craig Venter showed up last year
150
474160
2000
์ž‘๋…„์— ํฌ๋ ˆ์ด๊ทธ ๋ฒคํ„ฐ๊ฐ€
07:56
and showed you the first fully programmable cell that acts like hardware
151
476160
2000
ํ”„๋กœ๊ทธ๋ž˜๋ฐ์ด ๊ฐ€๋Šฅํ•œ ์„ธํฌ๋ฅผ ๋ฐœํ‘œํ–ˆ์ฃ . ํ•˜๋“œ์›จ์—๋‹ค ํ•˜๋“ฏ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
07:58
where you can insert DNA and have it boot up as a different species.
152
478160
3000
ํ”„๋กœ๊ทธ๋žจ์ฒ˜๋Ÿผ DNA๋ฅผ ๋ผ์›Œ๋„ฃ๊ณ  ๊ป๋‹ค ํ‚ค๋ฉด ๋‹ค๋ฅธ ์ข…์œผ๋กœ ๋ฆฌ๋ถ€ํŒ…์ด ๋œ๋‹ค๋Š” ๊ฑฐ์ฃ .
08:01
In parallel, the folks at MIT
153
481160
3000
ํ•œํŽธ MIT์—์„œ๋Š”
08:04
have been building a standard registry of biological parts.
154
484160
3000
์‹ ์ฒด๋ถ€ํ’ˆ ํ‘œ์ค€ ๊ทœ๊ฒฉ๋ฅผ ๋งŒ๋“ค๊ณ  ์žˆ์—ˆ์–ด์š”.
08:07
So think of it as a Radio Shack for biology.
155
487160
3000
์ „ํŒŒ์‚ฌ๊ฐ€๋ฉด ๋ถ€ํ’ˆ์ด ์ง„์—ด๋ผ ์žˆ๋“ฏ ์‹ ์ฒด ๋ถ€ํ’ˆ์ด ๋‚˜์˜ค๋Š”๊ฒ๋‹ˆ๋‹ค.
08:10
You can go out and get your proteins, your RNA, your DNA, whatever.
156
490160
3000
์ง‘๋ฐ–์— ๋‚˜๊ฐ€๋ฉด ๋‚ด ๋‹จ๋ฐฑ์งˆ, ๋‚ด RNA, DNA ๋ญ ์ด๋Ÿฐ๊ฒŒ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด์„ธ์š”.
08:13
And start building stuff.
157
493160
3000
๋ชธ์„ ์กฐ๋ฆฝํ•˜๋Š”๊ฒ๋‹ˆ๋‹ค.
08:16
In 2006 they brought together high school students and college students
158
496160
3000
2006๋…„์—๋Š” ์˜๋ฆฌํ•œ ๋Œ€ํ•™์ƒ๋“ค ๊ณ ๋“ฑํ•™์ƒ๋“ค์„ ๋ถˆ๋Ÿฌ๋ชจ์•„๋‹ค ํ•จ๊ป˜
08:19
and started to build these little odd creatures.
159
499160
2000
์ƒˆ๋กœ์šด ์ƒ๋ช…์ฒด๋ฅผ ์‹ค์ œ๋กœ ๋งŒ๋“ค๊ธฐ ์‹œ์ž‘ํ•˜๊ธฐ๋„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
08:21
They just happened to be alive instead of circuit boards.
160
501160
3000
ํšŒ๋กœํŒ์„ ๋ฒ—์–ด๋‚˜ ์‚ด์•„์žˆ๋Š” ๋ญ”๊ฐ€๋ฅผ ๋งŒ๋“ค๊ณ  ์žˆ๋Š” ๊ฒƒ์ด์ฃ .
08:24
Here was one of the first things they built.
161
504160
3000
์ด๊ฒŒ ๋ฐ”๋กœ ๊ทธ ํ•™์ƒ๋“ค์ด ๋งŒ๋“  ๊ฒ๋‹ˆ๋‹ค. (ํ–ฅ์ˆ˜)
08:27
So, cells have this cycle.
162
507160
2000
์„ค๋ช…ํ•˜์ž๋ฉด ์ด๋ ‡์Šต๋‹ˆ๋‹ค. ์„ธํฌ์—๋Š” ์„ฑ์žฅ ์ฃผ๊ธฐ๊ฐ€ ์žˆ๋Š”๋ฐ์š”,
08:29
First they don't grow.
163
509160
2000
์ฒ˜์Œ์€ ์ž˜ ์ž๋ฆฌ์ง€ ์•Š๋Š” ์ฃผ๊ธฐ์—์„œ
08:31
Then they grow exponentially.
164
511160
2000
๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ž๋ผ๋Š” ์ฃผ๊ธฐ๋กœ ๋„˜์–ด๊ฐ‘๋‹ˆ๋‹ค.
08:33
Then they stop growing.
165
513160
2000
๊ทธ๋Ÿฌ๊ณค ์„ฑ์žฅ์ด ๋ฉˆ์ถ”๋Š” ๋‹จ๊ณ„์— ๋‹ค๋‹ค๋ฅด์ฃ .
08:35
Graduate students wanted a way of telling which stage they were in.
166
515160
3000
ํ•™์ƒ๋“ค์ด ๊ถ๊ธˆํ•ดํ•œ๊ฑด ์„ธํฌ๊ฐ€ ์ด๋“ค ์ค‘ ์–ด๋Š ์ฃผ๊ธฐ์— ์žˆ๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:38
So they engineered these cells
167
518160
2000
๊ทธ๋ž˜์„œ ๋งŒ๋“ค์–ด ๋‚ธ ๊ฒŒ ๋ฐ”๋กœ ์ด ํ–ฅ์ˆ˜ ์„ธํฌ์ž…๋‹ˆ๋‹ค.
08:40
so that when they're growing in the exponential phase,
168
520160
2000
์ด ์„ธํฌ๋Š” ์ฆ‰ ๋ฏธ์นœ๋“ฏ ์ž๋ผ๋‚˜๋Š” ๋‘๋ฒˆ์งธ ๋‹จ๊ณ„ ์ด๋ฅด๋ฉด,
08:42
they would smell like wintergreen.
169
522160
2000
๋น„๋ˆ„ ๋ƒ„์ƒˆ๋ฅผ ๋‚ด๊ธฐ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
08:44
And when they stopped growing they would smell like bananas.
170
524160
3000
์„ฑ์žฅ์„ ๋ฉˆ์ถ”๋Š” ๋‹จ๊ณ„์— ๋„์ฐฉํ•˜๋ฉด ๋ฐ”๋‚˜๋‚˜ ๋ƒ„์ƒˆ๋ฅผ ๋‚ด๊ตฌ์š”.
08:47
And you could tell very easily when your experiment was working
171
527160
3000
์ด๋Ÿฐ ์‹์œผ๋กœ ํ•˜๋ฉด ์‹คํ—˜์ด ์ œ๋Œ€๋กœ ๋˜๋Š”๊ฑด์ง€ ๋งˆ๋Š”๊ฑด์ง€
08:50
and wasn't, and where it was in the phase.
172
530160
3000
์‹คํ—˜์ด ์–ด๋–ค ๋‹จ๊ณ„์— ์žˆ๋Š”์ง€๋ฅผ ์•„์ฃผ ์‰ฝ๊ฒŒ ์•Œ ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
08:53
This got a bit more complicated two years later.
173
533160
3000
2008๋…„์ด ์ง€๋‚˜๋ฉด์„œ ์กฐ๊ธˆ ๋” ๋ณต์žกํ•ด์ง‘๋‹ˆ๋‹ค.
08:56
Twenty-one countries came together. Dozens of teams.
174
536160
2000
21๊ฐœ๊ตญ์ด ๋ชจ์—ฌ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ ํŒ€๋“ค์ด ํƒ„์ƒํ–ˆ์Šต๋‹ˆ๋‹ค.
08:58
They started competing.
175
538160
2000
๊ฒฝ์Ÿ์„ ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์ฃ .
09:00
The team from Rice University started to engineer the substance in red wine
176
540160
5000
๋ผ์ด์Šค ๋Œ€ํ•™์˜ ํ•œ ํŒ€์€ ์ ํฌ๋„์ฃผ๋กœ๋ถ€ํ„ฐ ์‚ฌ๋žŒ ๋ชธ์— ์ข‹๋‹ค๋Š” ์–ด๋–ค ์„ฑ๋ถ„์„ ์ถ”์ถœํ•ด
09:05
that makes red wine good for you
177
545160
2000
๊ทธ๊ฒƒ์„ ๋งฅ์ฃผ๋กœ ์žฌ์„ค๊ณ„ ํ•˜๋Š”๋ฐ
09:07
into beer.
178
547160
2000
์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค.
09:10
So you take resveratrol and you put it into beer.
179
550160
4000
๋ ˆ์Šค๋ฒ ๋ผํŠธ๋กค(ํ•ญ์‚ฐํ™”์ œ)๋ฅผ ์ทจํ•ด๋‹ค ๋งฅ์ฃผ์— ๋„ฃ์€ ๊ฑฐ์ฃ .
09:14
Of course, one of the judges is wandering by, and he goes,
180
554160
3000
์‹ฌ์‚ฌ์œ„์›๋“ค์ด ์ง€๋‚˜๊ฐ€๋ฉด์„œ ์Šฅ ๋ณด๊ณ ๋Š” ํ•œ๋งˆ๋”” ํ•ฉ๋‹ˆ๋‹ค.
09:17
"Wow! Cancer-fighting beer! There is a God."
181
557160
4000
"์บฌ? ํ•ญ์•”๋งฅ์ฃผ? ์ข‹์€ ์„ธ์ƒ์ด๊ตฌ๋งŒ!"
09:21
(Laughter)
182
561160
3000
(์›ƒ์Œ)
09:24
The team from Taiwan was a little bit more ambitious.
183
564160
3000
ํƒ€์ด์™„ ํŒ€์€ ์•ผ๋ง์ด ๋” ํฌ๋”๊ตฐ์š”.
09:27
They tried to engineer bacterias in such a way
184
567160
3000
์—ฌ๋Ÿฌ๋ถ„ ๋ชธ ์†์— ์žˆ๋Š” ์ฝฉํŒฅ์„ ๊ฐˆ์•„์น˜์šธ ์ˆ˜ ์žˆ๋Š”
09:30
that they would act as your kidneys.
185
570160
3000
"๋ฐ•ํ…Œ๋ฆฌ์•„"๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด๋ ค๊ณ  ๋…ธ๋ ฅ์ค‘์ด๋”๊ตฐ์š”.
09:33
Four years ago, I showed you this picture.
186
573160
3000
4๋…„ ์ „์—” ๋˜ ์ด๋Ÿฐ ๊ฒƒ๋„ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
09:36
And people oohed and ahhed,
187
576160
2000
์‚ฌ๋žŒ๋“ค์ด ๋Œ€๊ฒฝ์‹ค์ƒ‰์„ ํ–ˆ์ฃ .
09:38
because Cliff Tabin had been able to grow an extra wing on a chicken.
188
578160
3000
๋‚ ๊ฐœ ๋‘๊ฐœ๋ฅผ ํ™•์žฅํŒฉ์œผ๋กœ ์„ค์น˜ํ•œ ๋‹ญ์ž…๋‹ˆ๋‹ค. ํด๋ฆฌํ”„ ํƒœ๋นˆ ์ž‘ํ’ˆ์ด์ฃ .
09:41
And that was very cool stuff back then.
189
581160
3000
๊ทธ๋•Œ๋งŒ ํ•ด๋„ ์ด๊ฒŒ ๋†€๋ผ์šด ์ผ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
09:44
But now moving from bacterial engineering to tissue engineering,
190
584160
3000
ํ•˜์ง€๋งŒ ์ด์ œ๋Š” ๊ธฐ์ˆ ์˜ ๋ ˆ๋ฒจ์ด ๋ฐ•ํ…Œ๋ฆฌ์•„ ๋‹จ๊ณ„์—์„œ ์„ธํฌ์กฐ์ง ๋‹จ๊ณ„๋กœ ๋„˜์–ด๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:47
let me show you what's happened in that period of time.
191
587160
3000
์–ด๋–ค ์ผ์ด ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š”์ง€ ํ•œ๋ฒˆ ๋ณผ๊นŒ์š”.
09:50
Two years ago, you saw this creature.
192
590160
3000
2๋…„ ์ „์— ์žˆ์—ˆ๋˜ ์ผ์ž…๋‹ˆ๋‹ค.
09:53
An almost-extinct animal from Xochimilco, Mexico
193
593160
3000
๋ฉ•์‹œ์ฝ” ์˜์น˜๋ฐ€์ฝ”์— ๊ฑฐ์˜ ๋ฉธ์ข… ์ง์ „์ธ
09:56
called an axolotl
194
596160
2000
์•…์ ๋กœํ‹€์ด๋ž€ ๋™๋ฌผ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
09:58
that can re-generate its limbs.
195
598160
2000
์‚ฌ์ง€๋ฅผ ๋ณต์›ํ•˜๋Š” ๋Šฅ๋ ฅ์ด ์žˆ์ฃ .
10:00
You can freeze half its heart. It regrows.
196
600160
2000
์‹ฌ์žฅ์˜ ๋ฐ˜์„ ๋–ผ์–ด๋‚ด ์–ผ๋ฆฌ๋ฉด ์ž๋ž๋‹ˆ๋‹ค.
10:02
You can freeze half the brain. It regrows.
197
602160
2000
๋‡Œ์˜ ๋ฐ˜์„ ์ž˜๋ผ๋‹ค ์–ผ๋ฆฌ๋ฉด ์ž๋ž๋‹ˆ๋‹ค.
10:04
It's almost like leaving Congress.
198
604160
2000
์ด์ •๋„๋ฉด ๋ญ ๊ฑฐ์˜ ์‚ด์•„์žˆ๋Š” ๊ตญํšŒ์ฃ .
10:06
(Laughter)
199
606160
3000
(์›ƒ์Œ)
10:12
But now, you don't have to have the animal itself to regenerate,
200
612160
3000
ํ•œ๋งˆ๋ฆฌ์˜ ์˜จ์ „ํ•œ ๊ฐœ์ฒด๋ฅผ ๋”์ด์ƒ ํฌ์ƒ์‹œํ‚ฌ ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
10:15
because you can build cloned mice molars in Petri dishes.
201
615160
5000
์ด๋ฏธ ์ฅ๋ฅผ ์„ธํฌ๋‹จ์œ„๋กœ ์ƒฌ๋ ˆ์—์„œ ํ‚ค์šฐ๋Š”๊ฒŒ ๊ฐ€๋Šฅํ•˜๋‹ˆ๊นŒ์š”.
10:21
And, of course if you can build mice molars in Petri dishes,
202
621160
4000
์ฅ ์„ธํฌ๋ฅผ ์ƒฌ๋ ˆ์—์„œ ํ‚ค์šฐ๋Š” ๊ฒŒ ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด,
10:25
you can grow human molars in Petri dishes.
203
625160
3000
์‚ฌ๋žŒ ๋ชธ์˜ ์ผ๋ถ€๋ฅผ ์ƒฌ๋ ˆ์—์„œ ํ‚ค์šฐ๋Š” ๊ฒƒ๋„ ์•ˆ๋  ์ด์œ ๊ฐ€ ์—†๋Š”๊ฑฐ์ฃ .
10:28
This should not surprise you, right?
204
628160
2000
ํ•˜๋‚˜๋„ ์•ˆ๋†€๋ž์ฃ ? ๊ทธ์ตธ?
10:30
I mean, you're born with no teeth.
205
630160
2000
์ƒ๊ฐํ•ด๋ณด์„ธ์š”. ์šฐ๋ฆฐ ์ด๋นจ๋„ ์—†์ด ํƒœ์–ด๋‚ฌ์–ด์š”.
10:32
You give away all your teeth to the tooth fairy.
206
632160
3000
์‚ฌ์ถ˜๊ธฐ๊ฐ€ ๋๋‚˜๊ธฐ ์ „์— ์ด๊ฐ€ ํ•œ๋ฒˆ์”ฉ์€ ๋‹ค ๋น ์ง‘๋‹ˆ๋‹ค.
10:35
You re-grow a set of teeth.
207
635160
2000
๊ทผ๋ฐ ๋‹ค์‹œ ๋˜ ํ•œ ์„ธํŠธ๊ฐ€ ์ž๋ผ์ฃ .
10:37
But then if you lose one of those second set of teeth, they don't regrow,
208
637160
3000
ํ•˜์ง€๋งŒ ์ด ๋‘๋ฒˆ์งธ ์ด๋นจ์„ ์žƒ์—ˆ๋‹ค๊ณ  ์„ธ ๋ฒˆ์งธ๊ฐ€ ์ด๊ฐ€ ๋‚˜๋Š” ๊ฑด ์•„๋‹ˆ์ฃ .
10:40
unless, if you're a lawyer.
209
640160
2000
์—ฌ๋Ÿฌ๋ถ„์ด ๋ณ€ํ˜ธ์‚ฌ๊ฐ€ ์•„๋‹Œ ์ด์ƒ์€ ๋ง์ž…๋‹ˆ๋‹ค.
10:42
(Laughter)
210
642160
4000
(์›ƒ์Œ)
10:46
But, of course, for most of us,
211
646160
3000
ํ•˜์ง€๋งŒ ์ด๋Ÿฐ๊ฒŒ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
10:49
we know how to grow teeth, and therefore we can take adult stem teeth,
212
649160
3000
์ด์ œ ์šฐ๋ฆฌ๊ฐ€ ์„ธํฌ๋ฅผ ํ‚ค์šฐ๋Š” ๋ฐฉ๋ฒ•์„ ์•„๋Š”๋งŒํผ
10:52
put them on a biodegradable mold, re-grow a tooth,
213
652160
3000
์ด๋นจ์˜ ์„ฑ์ฒด ์ค„๊ธฐ์„ธํฌ๋ฅผ ์ทจํ•ด๋‹ค ์ƒฌ๋ ˆ์— ํ‚ค์›Œ์„œ
10:55
and simply implant it.
214
655160
1000
๋ชธ์—๋‹ค ์ด์‹์„ ํ•˜๋Š”๊ฑฐ์ฃ .
10:56
And we can do it with other things.
215
656160
3000
์ด์—๋งŒ ๊ตญํ•œ๋˜๋Š” ์–˜๊ธฐ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
10:59
So, a Spanish woman who was dying of T.B. had a donor trachea,
216
659160
5000
๊ฒฐํ•ต๋•Œ๋ฌธ์— ์ฃฝ์–ด๊ฐ€๋‹ค๊ฐ€ ๊ธฐ๊ด€์ง€๋ฅผ ๊ธฐ์ฆ๋ฐ›์€ ํ•œ ์ŠคํŽ˜์ธ ์•„์ฃผ๋จธ๋‹ˆ๊ฐ€ ์žˆ์—ˆ๋Š”๋ฐ์š”,
11:04
they took all the cells off the trachea,
217
664160
2000
์˜์‚ฌ๋“ค์€ ๊ทธ ๊ธฐ์ฆ๋ฐ›์€ ๊ธฐ๊ด€์ง€์—์„œ
11:06
they spraypainted her stem cells onto that cartilage.
218
666160
3000
์›๋ž˜ ์„ธํฌ๋ฅผ ๋ชจ๋‘ ๊ฑท์–ด๋‚ด๊ณ , ๊ทธ ์œ„์— ์•„์ฃผ๋จธ๋‹ˆ์˜ ์ค„๊ธฐ์„ธํฌ๋ฅผ ์‹ฌ์—ˆ์Šต๋‹ˆ๋‹ค.
11:09
She regrew her own trachea,
219
669160
2000
๊ทธ๋Ÿฌ์ž ๊ทธ ๊ธฐ๊ด€์ง€๊ฐ€ ์•„์ฃผ๋จธ๋‹ˆ์˜ ์„ธํฌ๋กœ ์ž๋ผ๋‚ฌ์ฃ .
11:11
and 72 hours later it was implanted.
220
671160
3000
์‚ฌํ˜ ํ›„์— ์ด์‹์— ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค.
11:14
She's now running around with her kids.
221
674160
2000
์•„์ฃผ๋จธ๋‹ˆ๋Š” ์ด์ œ ์ž์ œ๋ถ„๋“ค๊ณผ ๋›ฐ์–ด๋‹ค๋‹™๋‹ˆ๋‹ค.
11:16
This is going on in Tony Atala's lab in Wake Forest
222
676160
3000
์›จ์ดํฌ ํฌ๋ ˆ์ŠคํŠธ์—์žˆ๋Š” ํ† ๋‹ˆ ์•„ํƒˆ๋ผ ์—ฐ๊ตฌ์†Œ์—์„œ๋Š”
11:19
where he is re-growing ears for injured soldiers,
223
679160
3000
์‚ฌ๋žŒ์˜ ๊ท€์™€ ๋ฐฉ๊ด‘์„ ๊ธธ๋Ÿฌ๋ƒ…๋‹ˆ๋‹ค.
11:22
and he's also re-growing bladders.
224
682160
4000
๋ถ€์ƒ๋‹นํ•œ ๊ตฐ์ธ๋“ค์„ ์œ„ํ•ด์„œ์ฃ .
11:26
So there are now nine women walking around Boston
225
686160
3000
๋ณด์Šคํ†ค์—๋งŒ๋„ ๋ฒŒ์จ ์žฌ์ƒ ๋ฐฉ๊ด‘์„ ์‹ฌ๊ณ  ๋‹ค๋‹ˆ๋Š” ๋ถ„๋“ค์ด
11:29
with re-grown bladders,
226
689160
2000
์•„ํ™‰์ด๋ช…์ด๋‚˜ ๋ฉ๋‹ˆ๋‹ค.
11:31
which is much more pleasant than walking around with a whole bunch of plastic bags
227
691160
2000
์ฃผ์ธ ๊ฒƒ๊ณผ ๋˜‘๊ฐ™์€ ์žฌ์ƒ ๋ฐฉ๊ด‘์ž…๋‹ˆ๋‹ค. ๋‚จ์€ ํ•œํ‰์ƒ์„ ๋ชธ ์†์— ํ”Œ๋ผ์Šคํ‹ฑ ๋ถ€ํ’ˆ์„ ๋„ฃ๊ณ 
11:33
for the rest of your life.
228
693160
2000
๋ถˆํŽธํ•˜๊ฒŒ ์‚ฌ๋Š” ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋‚ซ์ฃ .
11:35
This is kind of getting boring, right?
229
695160
3000
์ด์ œ ์Šฌ์Šฌ ์ง€๊ฒจ์›Œ์ง€๋„ค์š”. ๊ทธ์ตธ?
11:38
I mean, you understand where this story's going.
230
698160
2000
์–˜๊ธฐ๊ฐ€ ์–ด๋””๋กœ ๊ฐ€๋Š”์ง€ ๋„ˆ๋ฌด ๋นคํžˆ ๋ณด์ด๋„ค์š”.
11:40
But, I mean it gets more interesting.
231
700160
2000
๋‹คํ–‰ํžˆ ์‹ ๊ธฐํ•œ๊ฒŒ ํ•˜๋‚˜ ๋” ์žˆ์Šต๋‹ˆ๋‹ค.
11:42
Last year, this group was able to take all the cells off a heart,
232
702160
4000
์ž‘๋…„์—”๊ฐ€ ์–ด๋Š ํ•œ ์—ฐ๊ตฌ์†Œ๋Š” ์‹ฌ์žฅ์—์„œ ์—ฐ๊ณจ์„ ์ œ์™ธํ•œ
11:46
leaving just the cartilage.
233
706160
3000
๋ชจ๋“  ์„ธํฌ๋ฅผ ๋“ค์–ด๋‚ด๋Š”๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค.
11:49
Then, they sprayed stem cells onto that heart, from a mouse.
234
709160
2000
๊ทธ๋ฆฌ๊ณค ๊ฑฐ๊ธฐ์— ์ฅํ•œํ…Œ ๊ฐ€์ ธ์˜จ ์ค„๊ธฐ์„ธํฌ๋ฅผ ์ด์‹ ํ•ด ๋ดค์Šต๋‹ˆ๋‹ค..
11:51
Those stem cells self-organized, and that heart started to beat.
235
711160
4000
๊ทธ๋žฌ๋”๋‹ˆ ์ค„๊ธฐ์„ธํฌ๊ฐ€ ์ด๋ฆฌ์ €๋ฆฌ ์กฐ์ง๋˜๋ฉด์„œ, ๊ฒฐ๊ตญ์—” ์‹ฌ์žฅ์ด ๋›ฐ์—ˆ๋‹ค๋Š”๊ตฐ์š”.
11:55
Life happens.
236
715160
3000
๋‚œ๋ฐ์—†์ด ์ƒ๋ช…์ด ์ƒ๋ช…์ด ์ƒ๊ธด๊ฑฐ์ฃ . ์‚ฌ๊ณ ์ฒ˜๋Ÿผ.
11:59
This may be one of the ultimate papers.
237
719160
3000
๋‹ค์Œ์€ ๊ฑฐ์˜ ๊ถ๊ทน์˜ ํŽ˜์ดํผ์ž…๋‹ˆ๋‹ค.
12:02
This was done in Japan and in the U.S., published at the same time,
238
722160
3000
์ด๋Ÿฐ ๊ฒฐ๊ณผ๋ฅผ ์ผ๋ณธ๊ณผ ๋ฏธ๊ตญ์—์„œ ๊ฑฐ์˜ ๋™์‹œ์— ๋ฐœํ‘œํ–ˆ์Šต๋‹ˆ๋‹ค.
12:05
and it rebooted skin cells into stem cells, last year.
239
725160
4000
์ž‘๋…„์— ํ”ผ๋ถ€์„ธํฌ๋ฅผ ์ค„๊ธฐ์„ธํฌ๋กœ ๋ฐ”๊พธ๋Š”๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค.
12:10
That meant that you can take the stuff right here,
240
730160
3000
์ด๊ฒŒ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ๋‚ด ๋ชธ ์•„๋ฌด๋ฐ๋‚˜์„œ ํ”ผ๋ถ€์„ธํฌ๋ฅผ ๋–ผ์–ด๋‚ด๋ฉด
12:13
and turn it into almost anything in your body.
241
733160
2000
์ด๊ฒŒ ๊ณง์žฅ ๋‚ด๊ฐ€ ์›ํ•˜๋Š” ์‹ ์ฒด ๋ถ€์œ„๊ฐ€ ๋œ๋‹จ ๋œป์ž…๋‹ˆ๋‹ค.
12:15
And this is becoming common, it's moving very quickly,
242
735160
3000
๊ธˆ๋ฐฉ ์ผ์ƒ์ ์ธ ์ผ์ด ๋ ๊ฒ๋‹ˆ๋‹ค. ์•„์ฃผ ๋นจ๋ฆฌ ๋ณ€ํ•˜๊ณ  ์žˆ์–ด์š”.
12:18
it's moving in a whole series of places.
243
738160
3000
์•„์ฃผ ์ „๋ฐฉ์œ„์ ์œผ๋กœ์š”.
12:22
Third trend: robots.
244
742160
2000
์„ธ๋ฒˆ์งธ ํŠธ๋ Œ๋“œ๋Š” ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
12:25
Those of us of a certain age grew up expecting that by now
245
745160
3000
์šฐ๋ฆฌ ์„ธ๋Œ€๋Š” ์ง€๊ธˆ์ฏค์ด๋ฉด ์ง‘์ง‘๋งˆ๋‹ค ํ•˜๋…€ ๋กœ๋ด‡ ํ•˜๋‚˜์ฏค์€
12:28
we would have Rosie the Robot from "The Jetsons" in our house.
246
748160
4000
๋‹น์—ฐํžˆ ๊ฐ€์ง€๊ณ  ์žˆ์„์ค„ ์•Œ๊ณ  ์ž๋ž€ ์„ธ๋Œ€์ฃ . <์ ฏ์Šท>์ด๋ž€ ๋งŒํ™”์ฒ˜๋Ÿผ ๋ง์ž…๋‹ˆ๋‹ค.
12:32
And all we've got is a Roomba.
247
752160
3000
ํ•˜์ง€๋งŒ ์ง€๊ธˆ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง„๊ฑด ๋ฃธ๋ฐ” ๋ฟ์ด์ฃ .
12:35
(Laughter)
248
755160
3000
(๋ฃธ๋ฐ” = ์ธ๊ณต์ง€๋Šฅ ์ฒญ์†Œ๊ธฐ)
12:38
We also thought we'd have this robot to warn us of danger.
249
758160
4000
์ธ๊ฐ„์—๊ฒŒ ์œ„๊ธฐ๊ฐ€ ๋‹ฅ์น˜๋ฉด ์•Œ๋ ค์ค„ ์ด๋Ÿฐ ๋กœ๋ด‡๋„ ์ƒ๊ธธ๊ฑฐ๋ผ ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
12:42
Didn't happen.
250
762160
2000
ํ•˜์ง€๋งŒ ์•„์ง ์•„๋‹ˆ์ฃ .
12:44
And these were robots engineered for a flat world, right?
251
764160
3000
๋กœ๋ด‡ ๋ฐœ์„ ๋ณด์„ธ์š”. ํ‰ํ‰ํ•œ ๋•…์ด ์•„๋‹ˆ๋ฉด ๋ชป ๋‹ค๋‹ˆ๊ฒŒ ๋˜์–ด ์žˆ์ž–์•„์š”.
12:47
So, Rosie runs around on skates
252
767160
2000
ํ•˜๋…€ ๋กœ๋ด‡์€ ์Šค์ผ€์ดํŠธ ํƒ€๊ณ  ๋‹ค๋‹ˆ๊ณ 
12:49
and the other one ran on flat threads.
253
769160
2000
์Šคํƒ€ํŠธ๋ž™์— ๋‚˜์˜ค๋Š” ์ด ๋…€์„์€ ๋ ˆ์ผ์—์„œ๋งŒ ๋‹ค๋‹ˆ์ฃ .
12:52
If you don't have a flat world, that's not good,
254
772160
2000
ํ‰ํ‰ํ•œ ๋•…์ด ์—†์œผ๋ฉด ์†Œ์šฉ์ด ์—†๋„ค์š”.
12:54
which is why the robot's we're designing today are a little different.
255
774160
5000
์š”์ฆ˜ ๋กœ๋ด‡ ๋””์ž์ธ์€ ์ด๋ ‡์ง€๊ฐ€ ์•Š์Šต๋‹ˆ๋‹ค.
13:00
This is Boston Dynamics' "BigDog."
256
780160
2000
๋ณด์Šคํ†ค ๋‹ค์ด๋‚ด๋ฏน์Šค๊ฐ€ ๋งŒ๋“  "๋น…๋…(Big Dog)"์ž…๋‹ˆ๋‹ค.
13:05
And this is about as close as you can get to a physical Turing test.
257
785160
3000
ํŠœ๋งํ…Œ์ŠคํŠธ๋ฅผ ๋ฌผ๋ฆฌ๊ณต๊ฐ„์—์„œ ๊ฑฐ์˜ ๊ถ๊ทน์˜ ๋‹จ๊ณ„๋กœ๊นŒ์ง€ ๋ชฐ์•„๊ฐ„ ๊ฒฐ๊ณผ๋ฌผ์ด์ฃ .
13:08
O.K., so let me remind you, a Turing test is where you've got a wall,
258
788160
4000
ํŠœ๋งํ…Œ์ŠคํŠธ๊ฐ€ ๋ญ๋ƒ๊ณ ์š”? ์‚ฌ๋žŒ ํ•œ๋ช…์ด ๋ฒฝ ํ•œ ์ชฝ์— ์„œ์žˆ๊ณ ,
13:12
you're talking to somebody on the other side of the wall,
259
792160
2000
๋ฐ˜๋Œ€ํŽธ์— ์žˆ๋Š” ์‚ฌ๋žŒํ•œํ…Œ ๋ง์„ ๊ฒ๋‹ˆ๋‹ค.
13:14
and when you don't know if that thing is human or animal --
260
794160
3000
์ด ๋•Œ ๋ฐ˜๋Œ€ํŽธ์˜ ์‚ฌ๋žŒ์ด ์ง„์งœ ์‚ฌ๋žŒ์ธ์ง€ ์•„๋‹˜ ๋™๋ฌผ์ธ์ง€ ๋ชจ๋ฅผ ๋•Œ,
13:17
that's when computers have reached human intelligence.
261
797160
4000
์ด ๋•Œ๊ฐ€ ๋ฐ”๋กœ ์ปดํ“จํ„ฐ๊ฐ€ ์ธ๊ณต์ง€๋Šฅ์„ ๊ฐ–๊ฒŒ ๋˜๋Š” ๋•Œ๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
13:21
This is not an intelligence Turing rest,
262
801160
3000
์ด๊ฑธ ๋”ฑํžˆ ์Šค๋งˆํŠธํ•œ ํŠœ๋ง ํ…Œ์ŠคํŠธ๋ผ ํ•˜๊ธด ํž˜๋“ค์ง€๋งŒ
13:24
but this is as close as you can get to a physical Turing test.
263
804160
3000
์–ด์จŒ๋“  ๋ฌผ๋ฆฌ์  ํŠœ๋ง ํ…Œ์ŠคํŠธ์— ์ตœ๋Œ€ํ•œ ๊ทผ์ ‘ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.
13:27
And this stuff is moving very quickly,
264
807160
2000
์ด๋Ÿฐ ๊ฒƒ๋„ ์•„์ฃผ ๋นจ๋ฆฌ ์ง„ํ™”ํ•˜๊ณ  ์žˆ์ฃ .
13:29
and by the way, that thing can carry about 350 pounds of weight.
265
809160
4000
์–ด์จŒ๊ฑฐ๋‚˜ 170kg์ •๋„๊นŒ์ง€ ๋ฌผ๊ฑด์„ ์‹ค์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:34
These are not the only interesting robots.
266
814160
3000
์ด๋Ÿฐ๊ฒŒ ๋‹ค๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
13:37
You've also got flies, the size of flies,
267
817160
2000
ํ•˜๋ฐ”๋“œ์—์„œ ๋กœ๋ฒ„ํŠธ ์šฐ๋“œ๊ฐ€ ๋งŒ๋“ค๊ณ  ์žˆ๋Š”
13:39
that are being made by Robert Wood at Harvard.
268
819160
3000
ํŒŒ๋ฆฌ ํฌ๊ธฐ์˜ ๋กœ๋ด‡๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
13:42
You've got Stickybots that are being made at Stanford.
269
822160
3000
์Šคํƒ ํฌ๋“œ์—์„œ ๋งŒ๋“ค๊ณ  ์žˆ๋Š” ์Šคํ‹ฑํ‚ค๋ด‡(Stickybot)๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
13:45
And as you bring these things together,
270
825160
3000
์ด๋Ÿฐ ๊ฒƒ๋“ค์ด ํ•œ ๋ฐ ๋ชจ์ด๋ฉด,
13:48
as you bring cells, biological tissue engineering and mechanics together,
271
828160
6000
์„ธํฌ ๊ณตํ•™, ์กฐ์ง ๊ณตํ•™ ๊ทธ๋ฆฌ๊ณ  ๋กœ๋ด‡ ๊ณตํ•™์ด ํ•œ๋ฐ ๋ชจ์ด๋ฉด
13:54
you begin to get some really odd questions.
272
834160
3000
ํ•œ๊ฐ€์ง€ ์ด์ƒํ•œ ์งˆ๋ฌธ๊ณผ ๋งž๋”ฑ๋œจ๋ฆฌ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
13:57
In the last Olympics, this gentleman,
273
837160
2000
์˜ค์Šค์นด๋ผ๋Š” ์‚ฌ๋žŒ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
13:59
who had several world records in the Special Olympics,
274
839160
4000
์žฅ์• ์ธ ์˜ฌ๋ฆผํ”ฝ ๋ฉ”๋‹ฌ์„ ๊ฑฐ์˜ ์ˆ˜๋…„๋™์•ˆ ํœฉ์“ธ๊ณ  ๋‹ค๋…”์ฃ .
14:03
tried to run in the normal Olympics.
275
843160
2000
์ด๋ถ„์ด ์ž‘๋…„ ๋ถ๊ฒฝ ์˜ฌ๋ฆผํ”ฝ์— ์ถœ์ „ ์‹ ์ฒญ์„ ํ–ˆ๋Š”๋ฐ์š”,
14:05
The only issue with Oscar Pistorius
276
845160
2000
๊ฒฐ๊ตญ์€ ํ•œ๊ฐ€์ง€ ์‚ฌ์†Œํ•œ ๋ฌธ์ œ ๋•Œ๋ฌธ์— ๊ธฐ๊ฐ์„ ๋‹นํ–ˆ์ฃ .
14:07
is he was born without bones in the lower part of his legs.
277
847160
4000
์˜ค์Šค์นด์”จ๋Š” ํƒœ์–ด๋‚  ๋•Œ๋ถ€ํ„ฐ ์ •๊ฐ•์ด๋ผˆ๊ฐ€ ์—†์—ˆ๊ฑฐ๋“ ์š”.
14:11
He came within about a second of qualifying.
278
851160
2000
์ฐธ๊ฐ€์ž๊ฒฉ์‹œํ—˜์—์„œ ์ œํ•œ๋ณด๋‹ค 1์ดˆ ๋นจ๋ฆฌ ๋“ค์–ด์™”๋Š”๋ฐ๋„ ๋ง์ด์ฃ .
14:13
He sued to be allowed to run,
279
853160
3000
๊ทธ๋ž˜์„œ ์ถœ์ „ํ•˜๊ฒŒ ํ•ด๋‹ฌ๋ผ๊ณ  ๊ณ ์†Œ๋ฅผ ํ–ˆ์ฃ .
14:16
and he won the suit,
280
856160
2000
์ด๊ฒผ์Šต๋‹ˆ๋‹ค.
14:18
but didn't qualify by time.
281
858160
2000
ํ•˜์ง€๋งŒ ์ถœ์ „์‹ ์ฒญ๊ธฐํ•œ์ด ์ง€๋‚œ ๋’ค์˜€์ฃ .
14:20
Next Olympics, you can bet that Oscar, or one of Oscar's successors,
282
860160
5000
์•„๋งˆ ๋‹ค์Œ ์˜ฌ๋ฆผํ”ฝ์—์„œ๋Š” ์˜ค์Šค์นด์”จ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์„๊ฒ๋‹ˆ๋‹ค. ์–ด์ฉŒ๋ฉด ๊ทธ์˜ ํ›„๊ณ„์ž๋Š”
14:25
is going to make the time.
283
865160
2000
์‹œ๊ฐ„์•ˆ์— ๋“ค์–ด์˜ฌ์ˆ˜๋„ ์žˆ์„๊ฒ๋‹ˆ๋‹ค.
14:27
And two or three Olympics after that, they are going to be unbeatable.
284
867160
3000
๋‹ค์Œ, ๋‹ค๋‹ค์Œ ์˜ฌ๋ฆผํ”ฝ์—์„œ๋Š” ์•„๋งˆ ์ฒœํ•˜๋ฌด์ ์ด ๋˜์–ด ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
14:30
And as you bring these trends together, and as you think of what it means
285
870160
5000
์ด ์„ธ๊ฐ€์ง€ ํŠธ๋ Œ๋“œ๋“ค์ด ํ•œ์ž๋ฆฌ์— ๋ชจ์ด๋ฉด ๊ฒฐ๊ตญ ์ด๋Ÿฐ ์ƒ๊ฐ์„ ํ•  ์ˆ˜ ๋ฐ–์— ์—†์Šต๋‹ˆ๋‹ค.
14:35
to take people who are profoundly deaf, who can now begin to hear --
286
875160
4000
๊ท€๋จธ๊ฑฐ๋ฆฌ ํ™˜์ž๋„ ์†Œ๋ฆฌ๋ฅผ ๋“ค์„ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๊ฑฐ์˜ˆ์š”.
14:39
I mean, remember the evolution of hearing aids, right?
287
879160
3000
๋ณด์ฒญ๊ธฐ์˜ ์—ญ์‚ฌ๋ฅผ ํ•œ๋ฒˆ ์ƒ๊ฐํ•ด ๋ณด์„ธ์š”. ๊ทธ๋ ‡์ž–์•„์š”.
14:42
I mean, your grandparents had these great big cones,
288
882160
3000
์—ฌ๋Ÿฌ๋ถ„ ํ• ์•„๋ฒ„์ง€ ์„ธ๋Œ€๋Š” ๊ท€์— ๊น”๋•Œ๊ธฐ๋ฅผ ๋ผ์›Œ์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
14:45
and then your parents had these odd boxes
289
885160
2000
์•„๋ฒ„์ง€ ์„ธ๋Œ€๋Š” ์ด๋Ÿฐ ์ด์ƒํ•˜๊ฒŒ ์ƒ๊ธด ์ƒ์ž๋ฅผ ์ผ๊ตฌ์š”.
14:47
that would squawk at odd times during dinner,
290
887160
2000
์ €๋…๋จน๋Š”๋ฐ ์ด์ƒํ•œ ์†Œ๋ฆฌ๋„ ๋‚˜๊ณ 
14:49
and now we have these little buds that nobody sees.
291
889160
2000
์ด์   ์ด๋ ‡๊ฒŒ ์ž‘์•„์ ธ์„œ ๋ณด์ด์ง€๋„ ์•Š์Šต๋‹ˆ๋‹ค.
14:51
And now you have cochlear implants
292
891160
2000
์™€์šฐ๊ฐ ์ด์‹์ˆ ๋„ ์žˆ์–ด์š”.
14:53
that go into people's heads and allow the deaf to begin to hear.
293
893160
5000
์‚ฌ๋žŒ ๋จธ๋ฆฌ์†์— ๋„ฃ์œผ๋ฉด ๊ท€๋จธ๊ฑฐ๋ฆฌ๋„ ๋“ฃ๋Š”๊ฑฐ์ฃ .
14:58
Now, they can't hear as well as you and I can.
294
898160
2000
์šฐ๋ฆฌ์™€ ๋‹ค๋ฅผ ๊ฒƒ ์—†์ด ๋˜‘๊ฐ™์ด ๋“ฃ๋Š”๊ฒ๋‹ˆ๋‹ค.
15:00
But, in 10 or 15 machine generations they will,
295
900160
3000
ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๊ธฐ๊ณ„๊ฐ€ 10~15์„ธ๋Œ€๋งŒ ๋” ์ง„ํ™”ํ•˜๋ฉด
15:03
and these are machine generations, not human generations.
296
903160
2000
๊ทธ๋ ‡๊ฒŒ ๋˜๋Š” ๊ฒ๋‹ˆ๋‹ค. ์ธ๊ฐ„์˜ ์„ธ๋Œ€ ์–˜๊ธฐ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค. ๊ธฐ๊ณ„์˜ ์„ธ๋Œ€์˜ˆ์š”.
15:06
And about two or three years after they can hear as well as you and I can,
297
906160
4000
2~3๋…„๋งŒ ์ง€๋‚˜๋ฉด ์šฐ๋ฆฌ๋ž‘ ๋˜‘๊ฐ™์ด ๋“ฃ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
15:10
they'll be able to hear maybe how bats sing, or how whales talk,
298
910160
4000
๋ฐ•์ฅ์†Œ๋ฆฌ, ๊ณ ๋ž˜์†Œ๋ฆฌ๊นŒ์ง€ ๋“ฃ๊ฒŒ ๋ ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
15:14
or how dogs talk, and other types of tonal scales.
299
914160
3000
๊ฐœ๊ฐ€ ํ•˜๋Š” ๋ง๋„ ๋“ฃ๊ณ , ๋‹ค๋ฅธ ๋ถˆ๊ฐ€์ฒญ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ๋„ ๋“ค์„ ์ˆ˜ ์žˆ๊ฒ ์ฃ .
15:17
They'll be able to focus their hearing,
300
917160
2000
๋ฌด์ˆ˜ํ•œ ์žก์Œ ์†์—์„œ ๋“ฃ๊ณ ์ž ํ•˜๋Š” ์†Œ๋ฆฌ๋ฅผ ๊ณจ๋ผ๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
15:19
they'll be able to increase the sensitivity, decrease the sensitivity,
301
919160
3000
๊ฐ๋„๋ฅผ ๋†’์ด๊ณ  ๋‚ฎ์ถœ์ˆ˜๋„ ์žˆ๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
15:22
do a series of things that we can't do.
302
922160
2000
์ธ๊ฐ„์˜ ๊ท€๋กœ ๋ชปํ•˜๋Š” ๊ฑธ ํ•˜๋Š”๊ฑฐ์ฃ .
15:24
And the same thing is happening in eyes.
303
924160
2000
๋ˆˆ์—๋„ ๋งˆ์ฐฌ๊ฐ€์ง€ ์ผ์ด ์ผ์–ด๋‚ฉ๋‹ˆ๋‹ค.
15:27
This is a group in Germany that's beginning to engineer eyes
304
927160
3000
๋…์ผ์—์„œ ๋ˆˆ์„ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
15:30
so that people who are blind can begin to see light and dark.
305
930160
4000
์ด๊ฑธ ํ†ตํ•ด ๋น›๊ณผ ์–ด๋‘ ์„ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์žˆ์ฃ .
15:34
Very primitive.
306
934160
2000
์•„์ง ๊ธฐ์ดˆ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.
15:36
And then they'll be able to see shape.
307
936160
2000
์ข€ ์ง€๋‚˜๋ฉด ํ˜•์ฒด๋ฅผ ๊ฐ๋ณ„ ํ•˜๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
15:38
And then they'll be able to see color, and then they'll be able to see in definition,
308
938160
3000
๊ทธ๋Ÿฌ๋‹ค ์ƒ‰๊น”์„ ๋ณด๊ฒŒ ๋ ๊ฑฐ๊ณ , ๋˜ ํ•ด์ƒ๋„๋„ ๋†’๊ฒŒ ๋˜๊ฒ ์ฃ .
15:41
and one day, they'll see as well as you and I can.
309
941160
3000
๊ฒฐ๊ตญ์€ ์—ฌ๋Ÿฌ๋ถ„ ๋ˆˆ๊ณผ ๋˜‘๊ฐ™์•„ ์งˆ๊ฒ๋‹ˆ๋‹ค.
15:44
And a couple of years after that, they'll be able to see in ultraviolet,
310
944160
3000
๊ทธ ๋’ค๋กœ ๋˜ ๋ช‡๋…„์ด ์ง€๋‚˜๋ฉด, ์ž์™ธ์„ ์„ ๋ณผ๊ฒ๋‹ˆ๋‹ค.
15:47
they'll be able to see in infrared, they'll be able to focus their eyes,
311
947160
2000
์ ์™ธ์„ ์„ ๋ณด๊ณ , ์ดˆ์ ๋„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ฒ ์ฃ .
15:49
they'll be able to come into a microfocus.
312
949160
3000
๋ˆˆ์— "์ ‘์‚ฌ๋ชจ๋“œ"๊ฐ€ ์ƒ๊ธฐ๋Š”๊ฒ๋‹ˆ๋‹ค.
15:52
They'll do stuff you and I can't do.
313
952160
2000
์šฐ๋ฆฌ ๋ˆˆ์œผ๋กœ ๋ชปํ•˜๋Š” ๊ฑธ ํ•˜๋Š”๊ฑฐ์ฃ .
15:55
All of these things are coming together,
314
955160
2000
์ด๋Ÿฐ ๋ชจ๋“  ๊ฒƒ์„ ๊ณ ๋ คํ•  ๋•Œ
15:57
and it's a particularly important thing to understand,
315
957160
4000
์šฐ๋ฆฌ๊ฐ€ ๋‹น๋ฉดํ•˜๊ณ  ์žˆ๋Š” ๊ฒฝ์ œ์œ„๊ธฐ๋ฅผ ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜๊ณ 
16:01
as we worry about the flames of the present,
316
961160
3000
์–ด๋–ค ๋ฏธ๋ž˜๊ฐ€ ์˜ค๊ณ  ์žˆ๋Š”์ง€ ์‹œ์„ ์„ ์•ž์— ๊ณ ์ •ํ•˜๋Š” ๊ฒƒ์ด
16:04
to keep an eye on the future.
317
964160
3000
๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๊ณ  ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
16:07
And, of course, the future is looking back 200 years,
318
967160
3000
์ด ๋ฏธ๋ž˜ ์ด์•ผ๊ธฐ๋Š” 200๋…„ ์ „์œผ๋กœ ๋˜๋Œ์•„๊ฐ‘๋‹ˆ๋‹ค.
16:10
because next week is the 200th anniversary of Darwin's birth.
319
970160
4000
๋‹ค์Œ์ฃผ๊ฐ€ ๋‹ค์œˆํƒ„์ƒ 200์ฃผ๋…„์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
16:14
And it's the 150th anniversary of the publication of "The Origin of Species."
320
974160
6000
<์ข…์˜๊ธฐ์›>์ด ์ถœํŒ๋œ์ง€ 150๋…„์ด ๋˜๋Š” ํ•ด์ด๊ธฐ๋„ ํ•˜๊ตฌ์š”.
16:20
And Darwin, of course, argued that evolution is a natural state.
321
980160
4000
๋‹ค์œˆ์€ ์ง„ํ™”๊ฐ€ ์ž์—ฐ์Šค๋Ÿฐ ์ƒํƒœ๋ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
16:24
It is a natural state in everything that is alive, including hominids.
322
984160
6000
์˜์žฅ๋ฅ˜๋ฅผ ํฌํ•จํ•ด ์‚ด์•„์žˆ๋Š” ๋ชจ๋“  ๊ฒƒ์˜ ์ž์—ฐ์Šค๋Ÿฐ ์ƒํƒœ๋ผ ํ–ˆ์ฃ .
16:30
There have actually been 22 species of hominids
323
990160
5000
์ง€๊ธˆ๊นŒ์ง€ ์ •ํ™•ํžˆ 22์ข…๋ฅ˜์˜ ์˜์žฅ๋ฅ˜๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
16:35
that have been around, have evolved, have wandered in different places,
324
995160
4000
์„œ๋กœ๋‹ค๋ฅธ ์ข…์ด ํƒœ์–ด๋‚˜๊ณ , ์ง„ํ™”ํ•˜๊ณ , ๋จผ ๊ณณ์œผ๋กœ ํฉ์–ด์กŒ์Šต๋‹ˆ๋‹ค.
16:39
have gone extinct.
325
999160
2000
๋ฉธ์ข…ํ•œ ๊ฒƒ๋„ ์žˆ์ฃ .
16:41
It is common for hominids to evolve.
326
1001160
5000
์ง„ํ™”๋Š” ์˜์žฅ๋ฅ˜์—์„œ ์ผ๋ฐ˜์ ์ธ ์ผ์ž…๋‹ˆ๋‹ค.
16:46
And that's the reason why, as you look at the hominid fossil record,
327
1006160
3000
์ด๊ฒŒ ๋ฐ”๋กœ ํ˜ธ๋ชจ ์—๋ ‰ํˆฌ์Šค, ํ•˜์ด๋ธ๋ฒ ๋ฅด๊ฒŒ๋„ค์‹œ์Šค, ํ”Œ๋กœ๋ Œ์‹œ์—”์‹œ์Šค,
16:49
erectus, and heidelbergensis, and floresiensis, and Neanderthals,
328
1009160
8000
๋„ค์•ˆ๋ฐ๋ฅดํƒˆ, ํ˜ธ๋ชจ ์‚ฌํ”ผ์—”์Šค ๋“ฑ๋“ฑ์˜ ์˜์žฅ๋ฅ˜ ํ™”์„์ด ์‚ฌ์ด์˜ ๊ตฌ๋ถ„์ด
16:57
and Homo sapiens, all overlap.
329
1017160
4000
๊ฒฝ๊ณ„๊ฐ€ ์„œ๋กœ ๊ฒน์น˜๊ณ  ๋ถˆ๋ถ„๋ช…ํ•œ ์ด์œ ์ฃ .
17:02
The common state of affairs is to have overlapping versions of hominids,
330
1022160
5000
ํ•œ์ข…๊ณผ ํ•œ์ข… ๋ผ๋ฆฌ๋งŒ ๊ฒน์น˜๋Š”๊ฒŒ ์•„๋‹™๋‹ˆ๋‹ค.
17:07
not one.
331
1027160
2000
์„œ๋กœ ๋ณต์žกํ•˜๊ฒŒ ๊ฒน์น˜๊ณ  ์„ž์ด์ฃ .
17:09
And as you think of the implications of that,
332
1029160
2000
์ด๊ฒŒ ์˜๋ฏธํ•˜๋Š” ๊ฒŒ ๋ญ˜๊นŒ์š”.
17:11
here's a brief history of the universe.
333
1031160
2000
์šฐ์ฃผ์˜ ์—ญ์‚ฌ๋ฅผ ๊ฐ„๋žตํ•˜๊ฒŒ ๋ณด๋„๋ก ํ•˜์ฃ .
17:13
The universe was created 13.7 billion years ago,
334
1033160
3000
์šฐ์ฃผ๋Š” 137์–ต๋…„ ์ „์— ์ƒ๊ฒผ์Šต๋‹ˆ๋‹ค.
17:16
and then you created all the stars, and all the planets,
335
1036160
2000
๋ณ„๋“ค์ด ์ƒ๊ธฐ๊ณ , ํ–‰์„ฑ๋“ค๋„ ์ƒ๊ฒผ์Šต๋‹ˆ๋‹ค.
17:18
and all the galaxies, and all the Milky Ways.
336
1038160
2000
์€ํ•˜์™€ ์€ํ•˜์ˆ˜๊ฐ€ ์ƒ๊ฒผ์ฃ .
17:20
And then you created Earth about 4.5 billion years ago,
337
1040160
3000
๊ทธ๋ฆฌ๊ณค ์ง€๊ตฌ๊ฐ€ 45์–ต๋…„ ์ „์— ํƒœ์–ด๋‚ฌ์Šต๋‹ˆ๋‹ค.
17:23
and then you got life about four billion years ago,
338
1043160
3000
40์–ต๋…„ ์ „์— ์ƒ๋ช…์ด ํƒœ์–ด๋‚ฌ์ฃ .
17:26
and then you got hominids about 0.006 billion years ago,
339
1046160
4000
6๋ฐฑ๋งŒ๋…„ ์ „๋ถ€ํ„ฐ ์˜์žฅ๋ฅ˜๊ฐ€ ๋“ฑ์žฅํ•ฉ๋‹ˆ๋‹ค.
17:30
and then you got our version of hominids about 0.0015 billion years ago.
340
1050160
5000
์ธ๊ฐ„ํ˜• ์˜์žฅ๋ฅ˜๊ฐ€ ๋“ฑ์žฅํ•˜๋Š” ๊ฒƒ์€ ์•ฝ 1,500๋งŒ๋…„ ์ „์ž…๋‹ˆ๋‹ค.
17:35
Ta-dah!
341
1055160
2000
์งœ์ž”~!
17:37
Maybe the reason for thr creation of the universe,
342
1057160
2000
์•„๋งˆ ์šฐ์ฃผ๊ฐ€ ์ฐฝ์กฐ๋œ ์ด์œ ๋Š”
17:39
and all the galaxies, and all the planets, and all the energy,
343
1059160
3000
๋ชจ๋“  ์€ํ•˜์™€, ๋ชจ๋“  ํ–‰์„ฑ๊ณผ, ๋ชจ๋“  ์—๋„ˆ์ง€..
17:42
and all the dark energy, and all the rest of stuff
344
1062160
2000
๊ทธ์™ธ ์–ด๋‘ ์˜ ์„ธ๋ ฅ ๋“ฑ๋“ฑ ๊ทธ ๋ชจ๋“  ๊ฒƒ๋“ค์ด ์ฐฝ์กฐ๋œ ์ด์œ ๋Š”
17:44
is to create what's in this room.
345
1064160
4000
๋ฐ”๋กœ ์ด ๋ฐฉ ์ด ์ˆœ๊ฐ„์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ์ผ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
17:48
Maybe not.
346
1068160
2000
์•„๋‹˜ ๋ง๊ตฌ์š”.
17:51
That would be a mildly arrogant viewpoint.
347
1071160
3000
์กฐ๊ธˆ ์˜ค๋งŒํ•ด ๋ณด์ผ์ง€๋„ ๋ชจ๋ฅด๊ฒ ์Šต๋‹ˆ๋‹ค.
17:54
(Laughter)
348
1074160
4000
(์›ƒ์Œ)
17:59
So, if that's not the purpose of the universe, then what's next?
349
1079160
3000
๋งŒ์ผ ์ง€๊ธˆ ์ด์ˆœ๊ฐ„์ด ์šฐ์ฃผ๊ฐ€ ์ฐฝ์กฐ๋œ ์ด์œ ๊ฐ€ ์•„๋‹ˆ๋‹ค? ๊ทธ๋Ÿผ ๋ญ์ฃ ?
18:04
(Laughter)
350
1084160
4000
(์›ƒ์Œ)
18:08
I think what we're going to see is we're going to see a different species of hominid.
351
1088160
4000
์•ž์œผ๋กœ๋Š” ๋‹ค๋ฅธ ๋ฒ„์ „์˜ ์˜์žฅ๋ฅ˜๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
18:13
I think we're going to move from a Homo sapiens into a Homo evolutis.
352
1093160
4000
์šฐ๋ฆฌ๋Š” ์ง€๊ธˆ ํ˜ธ๋ชจ ์‚ฌํ”ผ์—”์Šค์—์„œ ํ˜ธ๋ชจ์—๋ณผ๋ฃจํ‹ฐ์Šค(์ง„ํ™”์ ์ธ๊ฐ„)์œผ๋กœ ๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
18:17
And I think this isn't 1,000 years out.
353
1097160
2000
์ฒœ๋…„๋„ ์•ˆ๊ฑธ๋ฆด๊ฑฐ์˜ˆ์š”.
18:19
I think most of us are going to glance at it,
354
1099160
3000
์—ฌ๊ธฐ ๊ณ„์‹ ๋ถ„๋“ค๋„ ๋Œ€์ถฉ ๋ง›์€ ๋ณด๊ณ  ๊ฐ€์‹ค๊ฒ๋‹ˆ๋‹ค.
18:22
and our grandchildren are going to begin to live it.
355
1102160
2000
์šฐ๋ฆฌ ์†์ž ์†๋…€๋“ค์€ ๊ทธ ์•ˆ์—์„œ ์‚ด๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
18:24
And a Homo evolutis brings together these three trends
356
1104160
3000
ํ˜ธ๋ชจ ์—๋ณผ๋ฃจํ‹ฐ์Šค๋Š” ์ด ์„ธ๊ฐ€์ง€ ํŠธ๋ Œ๋“œ๋ฅผ ํ•œ๋ฐ ๋ชจ์•„์„œ
18:27
into a hominid that takes direct and deliberate control
357
1107160
3000
์ž๊ธฐ ์ž์‹ ์˜ ์ง„ํ™” ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋‹ค๋ฅธ ์ข…์˜ ์ง„ํ™”๊นŒ์ง€๋„
18:30
over the evolution of his species, her species and other species.
358
1110160
4000
์ด๋Œ์–ด ๋‚˜๊ฐ€๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:35
And that, of course, would be the ultimate reboot.
359
1115160
4000
์ด๊ฒŒ ๋ฐ”๋กœ ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ์ ˆ๋Œ€ ๋ฆฌ๋ถ€ํŒ…์ž…๋‹ˆ๋‹ค.
18:39
Thank you very much.
360
1119160
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
18:41
(Applause)
361
1121160
3000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7