Why tech needs the humanities | Eric Berridge

155,254 views ใƒป 2018-05-22

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Zeeva Livshitz ืขืจื™ื›ื”: Ido Dekkers
00:12
You've all been in a bar, right?
0
12647
2242
ื›ื•ืœื›ื ื”ื™ื™ืชื ื‘ื‘ืจ, ื ื›ื•ืŸ?
00:14
(Laughter)
1
14913
1491
ืฆื—ื•ืง
00:16
But have you ever gone to a bar
2
16759
2694
ืื‘ืœ ื”ืื ืื™ ืคืขื ื”ืœื›ืชื ืœื‘ืจ
00:19
and come out with a $200 million business?
3
19477
2952
ื•ื™ืฆืืชื ืขื ืขืกืง ืฉืœ 200 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ?
00:24
That's what happened to us about 10 years ago.
4
24276
2280
ื–ื” ืžื” ืฉืงืจื” ืœื ื• ืœืคื ื™ ื› -10 ืฉื ื™ื.
00:27
We'd had a terrible day.
5
27445
1705
ื”ื™ื” ืœื ื• ื™ื•ื ื ื•ืจื.
00:30
We had this huge client that was killing us.
6
30012
4064
ื”ื™ื” ืœื ื• ืœืงื•ื— ืขื ืง ืฉื”ืจื’ ืื•ืชื ื•.
00:34
We're a software consulting firm,
7
34100
2604
ืื ื—ื ื• ื—ื‘ืจืช ื™ื™ืขื•ืฅ ืœืคื™ืชื•ื—ื™ ืชื•ื›ื ื”,
00:36
and we couldn't find a very specific programming skill
8
36728
2982
ื•ืœื ื”ืฆืœื—ื ื• ืœืžืฆื•ื ื›ื™ืฉื•ืจื™ ืชื›ื ื•ืช ืžืื•ื“ ืกืคืฆื™ืคื™ื™ื
00:39
to help this client deploy a cutting-edge cloud system.
9
39734
3158
ื›ื“ื™ ืœืกื™ื™ืข ืœืœืงื•ื— ื”ื–ื” ืœืคืจื•ืฉ ืžืขืจื›ืช ืžื—ืฉื•ื‘ ืขื ืŸ ื—ื“ืฉื ื™ืช.
00:43
We have a bunch of engineers,
10
43798
1421
ื™ืฉ ืœื ื• ืงื‘ื•ืฆื” ืฉืœ ืžื”ื ื“ืกื™ื,
00:45
but none of them could please this client.
11
45243
2594
ืื‘ืœ ืืฃ ืื—ื“ ืžื”ื ืœื ื”ืฆืœื™ื— ืœืกืคืง ืืช ื”ืœืงื•ื—.
00:49
And we were about to be fired.
12
49274
1657
ื•ืขืžื“ื ื• ื‘ืคื ื™ ืกื›ื ืช ืคื™ื˜ื•ืจื™ืŸ.
00:51
So we go out to the bar,
13
51888
2335
ืื– ื™ืฆืื ื• ืœื‘ืจ,
00:54
and we're hanging out with our bartender friend Jeff,
14
54247
4047
ื•ื™ืฉื‘ื ื• ืขื ื”ื‘ืจืžืŸ, ื”ื—ื‘ืจ ืฉืœื ื• ื’'ืฃ,
00:58
and he's doing what all good bartenders do:
15
58318
2001
ื•ื”ื•ื ืขืฉื”, ืžื” ืฉื›ืœ ื”ื‘ืจืžื ื™ื ื”ื˜ื•ื‘ื™ื ืขื•ืฉื™ื:
01:00
he's commiserating with us, making us feel better,
16
60343
3022
ื ื™ื—ื ืื•ืชื ื• ื›ื“ื™ ืฉื ืจื’ื™ืฉ ื˜ื•ื‘ ื™ื•ืชืจ,
01:03
relating to our pain,
17
63389
2292
ื”ืชื™ื™ื—ืก ืœื›ืื‘ ืฉืœื ื•,
01:05
saying, "Hey, these guys are overblowing it.
18
65705
2048
ื•ืืžืจ, "ื”ื™ื™, ื”ืื ืฉื™ื ื”ืืœื” ืžื ืคื—ื™ื ืืช ื–ื”.
01:07
Don't worry about it."
19
67777
1183
ืืœ ืชื“ืื’ื•."
01:08
And finally, he deadpans us and says,
20
68984
2214
ื•ืœื‘ืกื•ืฃ ื‘ืกื‘ืจ ืคื ื™ื ืกืชื•ืžื•ืช ื”ื•ื ืืžืจ ืœื ื•,
01:11
"Why don't you send me in there?
21
71222
2293
"ืœืžื” ืฉืœื ืชืฉืœื—ื• ืื•ืชื™ ืœืฉื?
01:13
I can figure it out."
22
73539
1507
ืื ื™ ื™ื›ื•ืœ ืœื”ืฆืœื™ื— ืœื”ื‘ื™ืŸ ืืช ื–ื”".
01:15
So the next morning, we're hanging out in our team meeting,
23
75585
3081
ืื– ืœืžื—ืจืช ื‘ื‘ื•ืงืจ, ืื ื—ื ื• ื ืžืฆืื™ื ื‘ืคื’ื™ืฉืช ื”ืฆื•ื•ืช ืฉืœื ื•,
01:19
and we're all a little hazy ...
24
79901
2555
ื•ื›ื•ืœื ื• ืงืฆืช ืžื‘ื•ืœื‘ืœื™ื ...
01:22
(Laughter)
25
82480
1150
(ืฆื—ื•ืง)
01:24
and I half-jokingly throw it out there.
26
84504
2120
ื•ื‘ื—ืฆื™ ืฆื—ื•ืง ืื ื™ ื–ื•ืจืง ืืช ื–ื” ืœื—ืœืœ ื”ื—ื“ืจ.
01:26
I say, "Hey, I mean, we're about to be fired."
27
86648
2584
ืื ื™ ืื•ืžืจ, "ื”ื™ื™, ืื ื™ ืžืชื›ื•ื•ืŸ ืœื•ืžืจ, ืฉืขื•ืžื“ื™ื ืœืคื˜ืจ ืื•ืชื ื•".
01:29
So I say,
28
89256
1302
ืื– ืื ื™ ืื•ืžืจ,
01:30
"Why don't we send in Jeff, the bartender?"
29
90582
2082
"ืœืžื” ืฉืœื ื ืฉืœื— ืœืฉื ืืช ื’'ืฃ, ื”ื‘ืจืžืŸ?"
01:32
(Laughter)
30
92688
3077
(ืฆื—ื•ืง)
01:35
And there's some silence, some quizzical looks.
31
95789
4061
ื•ื ื•ืคืœืช ืฉืชื™ืงื”, ื•ื›ืžื” ืžื‘ื˜ื™ื ืชื•ื”ื™ื.
01:39
Finally, my chief of staff says, "That is a great idea."
32
99874
3542
ืœื‘ืกื•ืฃ, ืจืืฉ ื”ืฆื•ื•ืช ืฉืœื™ ืื•ืžืจ, "ื–ื” ืจืขื™ื•ืŸ ืžืฆื•ื™ืŸ."
01:43
(Laughter)
33
103440
1737
(ืฆื—ื•ืง)
01:45
"Jeff is wicked smart. He's brilliant.
34
105201
2094
"ื’'ืฃ ืคื™ืงื— ื›ืžื• ืฉื“, ื”ื•ื ืžื‘ืจื™ืง.
01:48
He'll figure it out.
35
108168
1150
ื”ื•ื ื™ื‘ื™ืŸ ืืช ื–ื”
01:50
Let's send him in there."
36
110328
1413
ื‘ื•ืื• ื•ื ืฉืœื— ืื•ืชื• ืœืฉื"
01:52
Now, Jeff was not a programmer.
37
112189
2526
ืขื›ืฉื™ื•, ื’'ืฃ ืœื ื”ื™ื” ืžืชื›ื ืช.
01:54
In fact, he had dropped out of Penn as a philosophy major.
38
114739
3889
ืœืžืขืฉื”, ื”ื•ื ื ืคืœื˜ ืžืื•ื . ืคื ืกื™ืœื‘ื ื™ื” ื›ื‘ื•ื’ืจ ืคื™ืœื•ืกื•ืคื™ื”.
01:59
But he was brilliant,
39
119491
1994
ืื‘ืœ ื”ื•ื ื”ื™ื” ืžื‘ืจื™ืง,
02:01
and he could go deep on topics,
40
121509
2627
ื•ื”ื•ื ื”ื™ื” ืžืกื•ื’ืœ ืœื”ืชืขืžืง ื‘ื ื•ืฉืื™ื,
02:04
and we were about to be fired.
41
124160
2032
ื•ืื•ืชื ื• ืขืžื“ื• ื‘ืคื ื™ ืคื™ื˜ื•ืจื™ืŸ.
02:06
So we sent him in.
42
126216
1150
ืื– ืฉืœื—ื ื• ืื•ืชื• ืคื ื™ืžื”.
02:09
After a couple days of suspense,
43
129839
1986
ืœืื—ืจ ื›ืžื” ื™ืžื™ื ืฉืœ ืžืชื—,
02:11
Jeff was still there.
44
131849
2157
ื’'ืฃ ืขื“ื™ื™ืŸ ื”ื™ื” ืฉื.
02:15
They hadn't sent him home.
45
135002
2140
ื”ื ืœื ืฉืœื—ื• ืื•ืชื• ื”ื‘ื™ืชื”.
02:17
I couldn't believe it.
46
137166
2066
ืœื ื™ื›ื•ืœืชื™ ืœื”ืืžื™ืŸ.
02:19
What was he doing?
47
139256
1491
ืžื” ื”ื•ื ืขืฉื”?
02:21
Here's what I learned.
48
141281
1150
ื”ื ื” ืžื” ืฉื’ื™ืœื™ืชื™.
02:23
He had completely disarmed their fixation on the programming skill.
49
143318
4210
ื”ื•ื ืคืจืง ืœื—ืœื•ื˜ื™ืŸ ืืช ื”ืžืงื•ื‘ืขื•ืช ืฉืœื”ื ื‘ืงืฉืจ ืœืžื™ื•ืžื ื•ืช ื”ืชื›ื ื•ืช.
02:29
And he had changed the conversation,
50
149004
2921
ื•ื”ื•ื ืฉื™ื ื” ืืช ื”ืฉื™ื—ื”,
02:31
even changing what we were building.
51
151949
2016
ืืคื™ืœื• ืฉื™ื ื” ืืช ืžื” ืฉื‘ื ื™ื ื•.
02:33
The conversation was now about what we were going to build and why.
52
153989
4552
ื”ืฉื™ื—ื” ืขื›ืฉื™ื• ื”ื™ืชื” ืขืœ ืžื” ืฉืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื‘ื ื•ืช ื•ืœืžื”.
02:41
And yes, Jeff figured out how to program the solution,
53
161059
5358
ื•ื›ืŸ, ื’'ืฃ ื”ื‘ื™ืŸ ืื™ืš ืœืชื›ื ืช ืืช ื”ืคืชืจื•ืŸ,
02:46
and the client became one of our best references.
54
166441
2365
ื•ื”ืœืงื•ื— ื”ืคืš ืœืื—ื“ ื”ืžืžืœื™ืฆื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ืฉืœื ื•.
02:50
Back then, we were 200 people,
55
170782
1977
ื‘ืื•ืชื• ื–ืžืŸ ืžื ื™ื ื• 200 ืื ืฉื™ื,
02:52
and half of our company was made up of computer science majors or engineers,
56
172783
6320
ื•ื—ืฆื™ ืžื”ื ื”ื™ื• ื‘ื•ื’ืจื™ ืžื“ืขื™ ื”ืžื—ืฉื‘ ืื• ืžืžื”ื ื“ืกื™ื,
02:59
but our experience with Jeff left us wondering:
57
179127
2261
ืื‘ืœ ื”ื ื™ืกื™ื•ืŸ ืฉืœื ื• ืขื ื’'ืฃ ื’ืจื ืœื ื• ืœืชื”ื•ืช:
03:02
Could we repeat this through our business?
58
182627
2071
ื”ืื ื ื•ื›ืœ ืœื—ื–ื•ืจ ืขืœ ื–ื” ื‘ืขืกืง ืฉืœื ื•?
03:06
So we changed the way we recruited and trained.
59
186017
4261
ืื– ืฉื™ื ื™ื ื• ืืช ื“ืจืš ื”ื’ื™ื•ืก ื•ื”ื”ื›ืฉืจื”.
03:11
And while we still sought after computer engineers and computer science majors,
60
191766
5984
ื•ื‘ืขื•ื“ ืื ื—ื ื• ืขื“ื™ื™ืŸ ืžื—ืคืฉื™ื ืื—ืจ ืžื”ื ื“ืกื™ ื•ืžื“ืขื ื™ ืžื—ืฉื‘
03:17
we sprinkled in artists, musicians, writers ...
61
197774
4976
ื˜ืคื˜ืคื ื• ืคื ื™ืžื” ืืžื ื™ื, ืžื•ื–ื™ืงืื™ื, ืกื•ืคืจื™ื ...
03:24
and Jeff's story started to multiply itself throughout our company.
62
204818
4374
ื•ืกื™ืคื•ืจื• ืฉืœ ื’'ืฃ ื”ื—ืœ ืœื’ื“ื•ืœ ืžืื•ื“ ื‘ืจื—ื‘ื™ ื”ื—ื‘ืจื” ืฉืœื ื•
03:29
Our chief technology officer is an English major,
63
209216
3333
ืงืฆื™ืŸ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ืจืืฉื™ ืฉืœื ื• ื”ื•ื ื‘ื•ื’ืจ ื”ืคืงื•ืœื˜ื” ืœืื ื’ืœื™ืช,
03:34
and he was a bike messenger in Manhattan.
64
214168
2214
ื•ื”ื•ื ื”ื™ื” ืฉืœื™ื— ืขืœ ืื•ืคื ื™ื™ื ื‘ืžื ื”ื˜ืŸ.
03:38
And today, we're a thousand people,
65
218680
1946
ื•ื”ื™ื•ื ืื ื—ื ื• ืžื•ื ื™ื ืืœืฃ ืื ืฉื™ื,
03:41
yet still less than a hundred have degrees in computer science or engineering.
66
221935
5452
ืืš ืขื“ื™ื™ืŸ ืคื—ื•ืช ืžืžืื” ืžื”ื ื”ื ื‘ืขืœื™ ืชื•ืืจ ื‘ืžื“ืขื™ ื”ืžื—ืฉื‘ ืื• ื‘ื”ื ื“ืกื”.
03:48
And yes, we're still a computer consulting firm.
67
228984
3183
ื•ื›ืŸ, ืื ื—ื ื• ืขื“ื™ื™ืŸ ื—ื‘ืจืช ื™ื™ืขื•ืฅ ื‘ืชื—ื•ื ื”ืžื—ืฉื•ื‘.
03:52
We're the number one player in our market.
68
232191
2126
ืื ื—ื ื• ื”ืฉื—ืงืŸ ืžืกืคืจ ืื—ื“ ื‘ืฉื•ืง ืฉืœื ื•.
03:54
We work with the fastest-growing software package
69
234341
2353
ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขื ื—ื‘ื™ืœืช ืคืชืจื•ื ื•ืช ืชื•ื›ื ื” ืฉื’ื“ืœื” ื”ื›ื™ ืžื”ืจ,
03:56
to ever reach 10 billion dollars in annual sales.
70
236718
2293
ื•ืฉื”ื’ื™ืขื” ืื™ ืคืขื ืœ 10 ืžื™ืœื™ืืจื“ ื“ื•ืœืจ ื‘ืžื›ื™ืจื•ืช ืฉื ืชื™ื•ืช.
04:01
So it's working.
71
241015
1626
ืื– ื–ื” ืขื•ื‘ื“.
04:05
Meanwhile, the push for STEM-based education in this country --
72
245426
5731
ื‘ื™ื ืชื™ื™ื, ื”ื“ื—ื™ืคื” ืœื›ื™ื•ื•ืŸ ื—ื™ื ื•ืš ืฉืžื‘ื•ืกืก ืขืœ ืœื™ืžื•ื“ื™ STEM ื‘ืžื“ื™ื ื” ื–ื•
04:11
science, technology, engineering, mathematics --
73
251181
3334
ืฉื–ื” ืจ"ืช ืฉืœ ืžื“ืข, ื˜ื›ื ื•ืœื•ื’ื™ื”, ื”ื ื“ืกื”, ื•ืžืชืžื˜ื™ืงื” -
04:14
is fierce.
74
254539
1212
ื”ื•ื ืื’ืจืกื™ื‘ื™.
04:15
It's in all of our faces.
75
255775
1880
ื–ื” ืžืจื•ื— ืขืœ ื”ืคืจืฆื•ืคื™ื ืฉืœ ื›ื•ืœื ื•.
04:18
And this is a colossal mistake.
76
258355
1674
ื•ื–ื•ื”ื™ ื˜ืขื•ืช ืขื ืงื™ืช.
04:21
Since 2009, STEM majors in the United States
77
261707
4229
ืžืื– 2009, ืžืก. ื‘ื•ื’ืจื™ ืžื’ืžื•ืช STEM ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช
04:25
have increased by 43 percent,
78
265960
2056
ื’ื“ืœ ื‘ -43%,
04:28
while the humanities have stayed flat.
79
268040
2428
ื‘ืขื•ื“ ืฉื‘ืžื“ืขื™ ื”ืจื•ื— ืœื ื ืฆืคืชื” ืขืœื™ื”.
04:30
Our past president
80
270492
1365
ื”ื ืฉื™ื ื”ืงื•ื“ื ืฉืœื ื•
04:33
dedicated over a billion dollars towards STEM education
81
273047
3503
ื”ืงื“ื™ืฉ ืžืขืœ ืœืžื™ืœื™ืืจื“ ื“ื•ืœืจ ืœื˜ื•ื‘ืช ื—ื™ื ื•ืš STEM
04:36
at the expense of other subjects,
82
276574
2839
ืขืœ ื—ืฉื‘ื•ืŸ ืžืงืฆื•ืขื•ืช ืื—ืจื™ื,
04:39
and our current president
83
279437
2876
ื•ื”ื ืฉื™ื ื”ื ื•ื›ื—ื™ ืฉืœื ื•
04:42
recently redirected 200 million dollars of Department of Education funding
84
282337
4867
ื”ืคื ื” ืœืื—ืจื•ื ื” 200 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ ืžืžื™ืžื•ืŸ ืžื—ืœืงืช ื”ื—ื™ื ื•ืš
04:47
into computer science.
85
287228
1469
ืœืžื“ืขื™ ื”ืžื—ืฉื‘.
04:49
And CEOs are continually complaining about an engineering-starved workforce.
86
289788
6381
ื•ืžื ื›"ืœื™ื ืžืชืœื•ื ื ื™ื ืœืœื ื”ืจืฃ ืขืœ ืžื—ืกื•ืจ ื‘ื›ื•ื— ืขื‘ื•ื“ื” ื”ื ื“ืกื™.
04:57
These campaigns,
87
297717
1445
ืžืกืขื•ืช ืคืจืกื•ื ืืœื”,
05:00
coupled with the undeniable success of the tech economy --
88
300583
3548
ื™ื—ื“ ืขื ื”ืฆืœื—ื” ืฉืื™ื ื” ืžื•ื˜ืœืช ื‘ืกืคืง ืฉืœ ื›ืœื›ืœืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช -
05:04
I mean, let's face it,
89
304155
1248
ืื ื™ ืžืชื›ื•ื•ืŸ, ื‘ื•ืื• ื ื•ื“ื” ื‘ื–ื”,
05:05
seven out of the 10 most valuable companies in the world by market cap
90
305427
5508
7 ืžืชื•ืš 10 ื”ื—ื‘ืจื•ืช ื‘ืขืœื•ืช ื”ืขืจืš ื”ืจื‘ ื‘ื™ื•ืชืจ ื‘ืขื•ืœื ืœืคื™ ืฉื•ื•ื™ ืฉื•ืง
05:10
are technology firms --
91
310959
1511
ื”ืŸ ื—ื‘ืจื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื” --
05:13
these things create an assumption
92
313662
1976
ื”ื“ื‘ืจื™ื ื”ืืœื” ืžื•ื‘ื™ืœื™ื ืœื”ื ื—ื”
05:16
that the path of our future workforce will be dominated by STEM.
93
316805
4214
ืฉื”ื ืชื™ื‘ ืฉืœ ื›ื•ื— ื”ืขื‘ื•ื“ื” ื”ืขืชื™ื“ื™ ืฉืœื ื• ื™ื”ื™ื” ื ืฉืœื˜ ืขืœ ื™ื“ื™ STEM.
05:24
I get it.
94
324583
1150
ืื ื™ ืžื‘ื™ืŸ ืืช ื–ื”.
05:26
On paper, it makes sense.
95
326692
1621
ืขืœ ื”ื ื™ื™ืจ, ื–ื” ื”ื’ื™ื•ื ื™.
05:29
It's tempting.
96
329498
1212
ื–ื” ืžืคืชื”.
05:33
But it's totally overblown.
97
333597
1933
ืื‘ืœ ื–ื” ืœื’ืžืจื™ ืžื•ื’ื–ื.
05:35
It's like, the entire soccer team chases the ball into the corner,
98
335554
6051
ื–ื” ื›ืื™ืœื•, ื›ืœ ืงื‘ื•ืฆืช ื”ื›ื“ื•ืจื’ืœ ืจื•ื“ืคืช ืื—ืจ ื”ื›ื“ื•ืจ ืœืคื™ื ื”,
05:41
because that's where the ball is.
99
341629
1778
ื›ื™ ื–ื” ื”ืžืงื•ื ืฉื‘ื• ื”ื›ื“ื•ืจ ื ืžืฆื.
05:44
We shouldn't overvalue STEM.
100
344841
2246
ืื ื—ื ื• ืœื ืฆืจื™ื›ื™ื ืœื”ืคืจื™ื– ื‘ืขืจืš ืฉืœ ืžื’ืžื•ืช STEM.
05:48
We shouldn't value the sciences any more than we value the humanities.
101
348133
3573
ืื™ื ื ื• ืฆืจื™ื›ื™ื ืœื”ืขืจื™ืš ืืช ื”ืžื“ืขื™ื ื™ื•ืชืจ ืžืืฉืจ ืืช ืžื“ืขื™ ื”ืจื•ื—.
05:52
And there are a couple of reasons.
102
352544
1722
ื•ื™ืฉ ืœื›ืš ื›ืžื” ืกื™ื‘ื•ืช.
05:55
Number one, today's technologies are incredibly intuitive.
103
355058
5986
ืžืกืคืจ 1, ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉืœ ื”ื™ื•ื ื”ืŸ ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ื•ืช ืœื”ืคืœื™ื.
06:01
The reason we've been able to recruit from all disciplines
104
361068
4000
ื”ืกื™ื‘ื” ืฉื”ืฆืœื—ื ื• ืœื’ื™ื™ืก ืžื›ืœ ื”ืžื’ืžื•ืช
06:05
and swivel into specialized skills
105
365092
2119
ื•ืœื”ืชื‘ืจื’ ืœืชื•ืš ื›ื™ืฉื•ืจื™ื ืžื™ื•ื—ื“ื™ื
06:08
is because modern systems can be manipulated without writing code.
106
368377
4754
ื”ื™ื ื›ื™ ื ื™ืชืŸ ืœืชืคืขืœ ืžืขืจื›ื•ืช ืžื•ื“ืจื ื™ื•ืช ืœืœื ื›ืชื™ื‘ืช ืงื•ื“.
06:13
They're like LEGO: easy to put together, easy to learn, even easy to program,
107
373155
5854
ื”ืŸ ื›ืžื• ืœื’ื•: ืงืœื•ืช ืœื”ืจื›ื‘ื”, ืœืœืžื™ื“ื”, ื•ืืคื™ืœื• ืœืชื›ื ื•ืช
06:19
given the vast amounts of information that are available for learning.
108
379033
3491
ื‘ื”ืชื—ืฉื‘ ื‘ื›ืžื•ื™ื•ืช ื”ืขืฆื•ืžื•ืช ืฉืœ ืžื™ื“ืข ื”ื–ืžื™ื ื•ืช ืœืœืžื™ื“ื”.
06:23
Yes, our workforce needs specialized skill,
109
383173
2835
ื›ืŸ, ื›ื•ื— ื”ืขื‘ื•ื“ื” ืฉืœื ื• ื–ืงื•ืง ืœืžื™ื•ืžื ื•ืช ืžืžื•ืงืฆืขืช,
06:27
but that skill requires a far less rigorous and formalized education
110
387242
4794
ืื‘ืœ ืžื™ื•ืžื ื•ืช ื–ื• ื“ื•ืจืฉืช ื—ื™ื ื•ืš ื”ืจื‘ื” ืคื—ื•ืช ืงืคื“ื ื™ ื•ืคื•ืจืžืœื™
06:32
than it did in the past.
111
392060
1856
ืžืืฉืจ ื‘ืขื‘ืจ.
06:34
Number two, the skills that are imperative and differentiated
112
394876
5739
ืžืกืคืจ 2, ื”ื›ื™ืฉื•ืจื™ื ื”ื”ื›ืจื—ื™ื™ื ื•ื”ืžื•ื‘ื—ื ื™ื
06:40
in a world with intuitive technology
113
400639
3149
ื‘ืขื•ืœื ืขื ื˜ื›ื ื•ืœื•ื’ื™ื” ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ืช
06:43
are the skills that help us to work together as humans,
114
403812
3587
ื”ื ื”ื›ื™ืฉื•ืจื™ื ื”ืžืกื™ื™ืขื™ื ืœื ื• ืœืขื‘ื•ื“ ื™ื—ื“ ื›ื‘ื ื™ ืื“ื,
06:49
where the hard work is envisioning the end product
115
409184
3984
ื‘ืžืงื•ื ื‘ื• ื”ืขื‘ื•ื“ื” ื”ืงืฉื” ื—ื•ื–ื” ืืช ื”ืžื•ืฆืจ ื”ืกื•ืคื™
06:54
and its usefulness,
116
414193
1492
ื•ืืช ื”ืชื•ืขืœืชื™ื•ืช ืฉืœื•.
06:55
which requires real-world experience and judgment and historical context.
117
415709
6214
ืฉื“ื•ืจืฉืช ื ื™ืกื™ื•ืŸ ื‘ืขื•ืœื ื”ืืžื™ืชื™ ื•ืฉื™ืคื•ื˜ ื•ื”ืงืฉืจ ื”ื™ืกื˜ื•ืจื™
07:03
What Jeff's story taught us
118
423232
2286
ืžื” ืฉื”ืกื™ืคื•ืจ ืฉืœ ื’'ืฃ ืœื™ืžื“ ืื•ืชื ื•
07:05
is that the customer was focused on the wrong thing.
119
425542
3531
ื”ื•ื ืฉื”ืœืงื•ื— ื”ืชืžืงื“ ื‘ื“ื‘ืจ ื”ืœื ื ื›ื•ืŸ.
07:10
It's the classic case:
120
430160
1507
ื–ื” ื”ืžืงืจื” ื”ืงืœืืกื™:
07:12
the technologist struggling to communicate with the business and the end user,
121
432661
4262
ื”ื˜ื›ื ื•ืœื•ื’ ื ืื‘ืง ืœืชืงืฉืจ ืขื ื”ืขืกืง ื•ืขื ืžืฉืชืžืฉ ื”ืงืฆื”,
07:16
and the business failing to articulate their needs.
122
436947
4186
ื•ื”ืขืกืง ื ื›ืฉืœ ื‘ื‘ื™ื˜ื•ื™ ืฉืœ ืฆืจื›ื™ื”ื.
07:22
I see it every day.
123
442033
1706
ืื ื™ ืจื•ืื” ืืช ื–ื” ื›ืœ ื™ื•ื.
07:25
We are scratching the surface
124
445448
1922
ืื ื—ื ื• ืžื’ืจื“ื™ื ืืช ืคื ื™ ื”ืฉื˜ื—
07:27
in our ability as humans to communicate and invent together,
125
447394
4809
ื‘ื™ื›ื•ืœืช ืฉืœื ื• ื›ื‘ื ื™ ืื“ื ืœืชืงืฉืจ ื•ืœื”ืžืฆื™ื ื™ื—ื“,
07:32
and while the sciences teach us how to build things,
126
452227
4580
ื•ื‘ืขื•ื“ ื”ืžื“ืขื™ื ืžืœืžื“ื™ื ืื•ืชื ื• ืื™ืš ืœื‘ื ื•ืช ื“ื‘ืจื™ื,
07:36
it's the humanities that teach us what to build and why to build them.
127
456831
5410
ืžื“ืขื™ ื”ืจื•ื— ื”ื ืืœื” ืฉืžืœืžื“ื™ื ืื•ืชื ื• ืžื” ืœื‘ื ื•ืช ื•ืœืžื” ืœื‘ื ื•ืช ืื•ืชื.
07:43
And they're equally as important,
128
463612
2604
ื•ื”ื ื—ืฉื•ื‘ื™ื ื‘ืื•ืชื” ืžื™ื“ื”,
07:46
and they're just as hard.
129
466240
1507
ื•ื”ื ืงืฉื™ื ื‘ืื•ืชื” ืžื™ื“ื”.
07:50
It irks me ...
130
470476
1995
ื–ื” ืžื˜ืจื™ื“ ืื•ืชื™ ...
07:54
when I hear people treat the humanities as a lesser path,
131
474532
5493
ื›ืฉืื ื™ ืฉื•ืžืข ืื ืฉื™ื ืžืชื™ื™ื—ืกื™ื ืœืžื“ืขื™ ื”ืจื•ื— ื›ืืœ ืžืกืœื•ืœ ื ื—ื•ืช ื™ื•ืชืจ,
08:00
as the easier path.
132
480049
1184
ื›ืืœ ืžืกืœื•ืœ ืงืœ ื™ื•ืชืจ.
08:01
Come on!
133
481840
1150
ื‘ื—ื™ื™ื›ื!
08:04
The humanities give us the context of our world.
134
484258
4150
ืžื“ืขื™ ื”ืจื•ื— ื ื•ืชื ื™ื ืœื ื• ืืช ื”ื”ืงืฉืจ ืฉืœ ื”ืขื•ืœื ืฉืœื ื•.
08:10
They teach us how to think critically.
135
490573
3437
ื”ื ืžืœืžื“ื™ื ืื•ืชื ื• ืœื—ืฉื•ื‘ ื‘ืฆื•ืจื” ื‘ื™ืงื•ืจืชื™ืช.
08:14
They are purposely unstructured,
136
494034
1969
ื”ื ื‘ื›ื•ื•ื ื” ืœื ืžื•ื‘ื ื™ื,
08:16
while the sciences are purposely structured.
137
496027
2546
ื‘ืขื•ื“ ืฉื”ืžื“ืขื™ื ื”ื ืžื•ื‘ื ื™ื ื‘ื›ื•ื•ื ื”.
08:19
They teach us to persuade, they give us our language,
138
499745
3588
ื”ื ืžืœืžื“ื™ื ืื•ืชื ื• ืื™ืš ืœืฉื›ื ืข, ื”ื ื ื•ืชื ื™ื ืœื ื• ืืช ื”ืฉืคื” ืฉืœื ื•,
08:23
which we use to convert our emotions to thought and action.
139
503357
6839
ืฉื‘ื” ืื ื• ืžืฉืชืžืฉื™ื ื›ื“ื™ ืœื”ืžื™ืจ ืืช ื”ืจื’ืฉื•ืช ืฉืœื ื• ืœืžื—ืฉื‘ื” ื•ืœืคืขื•ืœื”.
08:32
And they need to be on equal footing with the sciences.
140
512267
4264
ื•ื”ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืขืœ ื‘ืกื™ืก ืฉื•ื•ื” ืœืžื“ืขื™ื.
08:36
And yes, you can hire a bunch of artists
141
516555
3992
ื•ื›ืŸ, ืืชื ื™ื›ื•ืœื™ื ืœืฉื›ื•ืจ ื—ื‘ื•ืจื” ืฉืœ ืืžื ื™ื
08:40
and build a tech company
142
520571
1333
ื•ืœื‘ื ื•ืช ื—ื‘ืจืช ื˜ืง
08:43
and have an incredible outcome.
143
523166
1770
ื•ืœืงื‘ืœ ืชื•ืฆืื” ืžื“ื”ื™ืžื”.
08:46
Now, I'm not here today to tell you that STEM's bad.
144
526616
4722
ืขื›ืฉื™ื•, ืื ื™ ืœื ื›ืืŸ ื”ื™ื•ื ื›ื“ื™ ืœื•ืžืจ ืœื›ื ื›ื™ STEM ื”ื•ื ื’ืจื•ืข.
08:52
I'm not here today to tell you that girls shouldn't code.
145
532778
3984
ืื ื™ ืœื ื›ืืŸ ื”ื™ื•ื ื›ื“ื™ ืœื•ืžืจ ืœื›ื ืฉื‘ื ื•ืช ืœื ืฆืจื™ื›ื•ืช ืœืงื•ื“ื“.
08:57
(Laughter)
146
537111
1039
(ืฆื—ื•ืง)
08:58
Please.
147
538174
1150
ื‘ื‘ืงืฉื”,
09:00
And that next bridge I drive over
148
540355
2568
ื•ื”ื’ืฉืจ ื”ื‘ื ืฉืขืœื™ื• ืื ื™ ื ื•ืกืข
09:02
or that next elevator we all jump into --
149
542947
3550
ืื• ื”ืžืขืœื™ืช ื”ื‘ืื” ืฉื›ื•ืœื ื• ืงื•ืคืฆื™ื ืœืชื•ื›ื” -
09:07
let's make sure there's an engineer behind it.
150
547602
2207
ื‘ื•ืื• ื•ื ื•ื•ื“ื ืฉืžืื—ื•ืจื™ื”ื ื™ืฉ ืžื”ื ื“ืก.
09:09
(Laughter)
151
549833
3642
(ืฆื—ื•ืง)
09:14
But to fall into this paranoia
152
554233
3295
ืื‘ืœ ืœื™ืคื•ืœ ืœืชื•ืš ืคืจื ื•ื™ื” ื–ื•
09:17
that our future jobs will be dominated by STEM,
153
557552
4872
ืฉื”ืžืฉืจื•ืช ื”ืขืชื™ื“ื™ื•ืช ืฉืœื ื• ื™ื”ื™ื• ื ืฉืœื˜ื•ืช ืขืœ ื™ื“ื™ STEM,
09:22
that's just folly.
154
562448
1635
ื–ื• ืคืฉื•ื˜ ืฉื˜ื•ืช.
09:24
If you have friends or kids or relatives or grandchildren
155
564526
4091
ืื ื™ืฉ ืœื›ื ื—ื‘ืจื™ื ืื• ื™ืœื“ื™ื ืื• ืงืจื•ื‘ื™ื ืื• ื ื›ื“ื™ื
09:28
or nieces or nephews ...
156
568641
1799
ืื• ืื—ื™ื™ื ื™ื•ืช ืื• ืื—ื™ื™ื ื™ื ...
09:30
encourage them to be whatever they want to be.
157
570464
3150
ืขื•ื“ื“ื• ืื•ืชื ืœื”ื™ื•ืช ืžื” ืฉื”ื ืจื•ืฆื™ื ืœื”ื™ื•ืช.
09:34
(Applause)
158
574336
6896
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
09:41
The jobs will be there.
159
581607
2015
ื”ืžืฉืจื•ืช ื™ื”ื™ื• ืฉื.
09:45
Those tech CEOs
160
585741
1477
ื”ืžื ื›"ืœื™ื ื”ื˜ื›ื ื™ื™ื ื”ืืœื”
09:48
that are clamoring for STEM grads,
161
588235
3334
ืฉืงื•ืจืื™ื ื‘ืขื•ื– ืœื‘ื•ื’ืจื™ STEM,
09:51
you know what they're hiring for?
162
591593
1784
ืืชื ื™ื•ื“ืขื™ื ืขื‘ื•ืจ ืžื™ ื”ื ืžื’ื™ื™ืกื™ื ืขื•ื‘ื“ื™ื?
09:54
Google, Apple, Facebook.
163
594430
2025
ื’ื•ื’ืœ, ืืคืœ, ืคื™ื™ืกื‘ื•ืง.
09:57
Sixty-five percent of their open job opportunities
164
597468
3627
65% ืžื”ื–ื“ืžื ื•ื™ื•ืช ื”ืขื‘ื•ื“ื” ื”ืคืชื•ื—ื•ืช ืฉืœื”ื
10:01
are non-technical:
165
601119
1721
ืื™ื ืŸ ื˜ื›ื ื™ื•ืช:
10:03
marketers, designers, project managers, program managers,
166
603845
4889
ืžืฉื•ื•ืงื™ื, ืžืขืฆื‘ื™ื, ืžื ื”ืœื™ ืคืจื•ื™ืงื˜ื™ื, ืžื ื”ืœื™ ืชื•ื›ื ื™ื•ืช,
10:08
product managers, lawyers, HR specialists,
167
608758
3381
ืžื ื”ืœื™ ืžื•ืฆืจ, ืขื•ืจื›ื™ ื“ื™ืŸ, ืžื•ืžื—ื™ื ืœืžืฉืื‘ื™ ืื ื•ืฉ,
10:12
trainers, coaches, sellers, buyers, on and on.
168
612163
3325
ืžืืžื ื™ื, ื—ื•ื ื›ื™ื, ืžื•ื›ืจื™ื, ืงื•ื ื™ื, ื•ื›ืŸ ื”ืœืื”.
10:15
These are the jobs they're hiring for.
169
615512
3438
ืืœื• ื”ืŸ ื”ืžืฉืจื•ืช ืฉื”ื ืฉื•ื›ืจื™ื ืขื‘ื•ืจื.
10:20
And if there's one thing that our future workforce needs --
170
620602
5405
ื•ืื ื™ืฉ ื“ื‘ืจ ืื—ื“ ืฉื›ื•ื— ื”ืื“ื ืฉืœื ื• ื‘ืขืชื™ื“ ื™ืฆื˜ืจืš --
10:26
and I think we can all agree on this --
171
626031
1952
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื›ื•ืœื ื• ื™ื›ื•ืœื™ื ืœื”ืกื›ื™ื ืขืœ ื–ื” -
10:29
it's diversity.
172
629056
1150
ื–ื” ืžื’ื•ื•ืŸ.
10:31
But that diversity shouldn't end with gender or race.
173
631706
4074
ืื‘ืœ ื”ืžื’ื•ื•ืŸ ื”ื–ื” ืœื ืฆืจื™ืš ืœื”ืกืชื™ื™ื ื‘ืžื™ืŸ ืื• ื’ื–ืข.
10:35
We need a diversity of backgrounds
174
635804
2103
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืกื•ื’ื™ ืจืงืข
10:39
and skills,
175
639192
1150
ื•ืžื™ื•ืžื ื•ื™ื•ืช,
10:42
with introverts and extroverts
176
642100
3738
ืขื ืžื•ืคื ืžื™ื, ื•ืžื•ื—ืฆื ื™ื
10:45
and leaders and followers.
177
645862
2953
ื•ืžื ื”ื™ื’ื™ื, ื•ื›ืืœื” ืฉื”ื•ืœื›ื™ื ื‘ืขืงื‘ื•ืชื™ื”ื.
10:48
That is our future workforce.
178
648839
1689
ื–ื” ื›ื•ื— ื”ืขื‘ื•ื“ื” ื”ืขืชื™ื“ื™ ืฉืœื ื•.
10:51
And the fact that the technology is getting easier and more accessible
179
651767
5699
ื•ื”ืขื•ื‘ื“ื” ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื ืขืฉื™ืช ื™ื•ืชืจ ืงืœื” ื•ื™ื•ืชืจ ื ื’ื™ืฉื”
10:57
frees that workforce up
180
657490
1818
ืžืฉื—ืจืจืช ืืช ื›ื•ื— ื”ืขื‘ื•ื“ื”
10:59
to study whatever they damn well please.
181
659332
3372
ืœืœืžื•ื“ ื›ืœ ืžื” ืฉื”ื ืจื•ืฆื™ื.
11:03
Thank you.
182
663273
1151
ืชื•ื“ื”.
11:04
(Applause)
183
664448
6623
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7