New York -- before the City | Eric Sanderson

1,700,768 views ใƒป 2009-10-13

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Avishai Abbo ืžื‘ืงืจ: Ido Dekkers
00:15
The substance of things unseen.
0
15260
3000
ื”ื˜ื‘ืข ืฉืœ ื”ื“ื‘ืจื™ื ืฉืœื ื ืจืื™ื
00:18
Cities, past and future.
1
18260
3000
ืขืจื™ื, ืขื‘ืจ ื•ื”ื•ื•ื”.
00:21
In Oxford, perhaps we can use Lewis Carroll
2
21260
4000
ื‘ืื•ืงืกืคื•ืจื“, ืื•ืœื™ ืื ื• ื™ื›ื•ืœื™ื ืœื”ืขื–ืจ ื‘ืœื•ืื™ืก ืงืจื•ืœ
00:25
and look in the looking glass that is New York City
3
25260
3000
ื•ืœื”ืกืชื›ืœ ืžื‘ืขื“ ืœืžืจืื” ืฉื”ื™ื ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง
00:28
to try and see our true selves,
4
28260
3000
ืœื ืกื•ืช ื•ืœืจืื•ืช ืืช ื”ื˜ื‘ืข ื”ืืžื™ืชื™ ืฉืœ ืขืฆืžื ื•,
00:31
or perhaps pass through to another world.
5
31260
3000
ืื• ืื•ืœื™ ืœืขื‘ื•ืจ ืœืชื•ืš ืขื•ืœื ืื—ืจ.
00:34
Or, in the words of F. Scott Fitzgerald,
6
34260
3000
ืื•, ื‘ืžื™ืœื•ืชื™ื• ืฉืœ ืค. ืกืงื•ื˜ ืคื™ืฆื’'ืจืœื“,
00:37
"As the moon rose higher,
7
37260
2000
"ื›ืฉื”ื™ืจื— ื’ื‘ื”,
00:39
the inessential houses began to melt away
8
39260
3000
ื”ื‘ืชื™ื ื”ืœื ื—ื™ื•ื ื™ื™ื ื”ื—ืœื• ืœื”ื™ื ืžืก
00:42
until gradually I became aware of the old island
9
42260
2000
ืขื“ ืฉื‘ื”ื“ืจื’ื” ื ื”ื™ื™ืชื™ ืžื•ื“ืข ืœืงื™ื•ืžื• ืฉืœ ื”ืื™ ื”ื™ืฉืŸ
00:44
here that once flowered for Dutch sailors' eyes,
10
44260
3000
ืฉืคืจื— ืคื” ืคืขื ืœืขื™ื ื™ื”ื ืฉืœ ื”ืžืœื—ื™ื ื”ื”ื•ืœื ื“ื™ื,
00:47
a fresh green breast of the new world."
11
47260
3000
ื ืฉื™ืžื” ื˜ืจื™ื™ื” ืžืœื•ื ื”ื—ื–ื” ืฉืœ ื”ืขื•ืœื ื”ื—ื“ืฉ."
00:50
My colleagues and I have been working for 10 years
12
50260
2000
ืื ื™ ื•ืขืžื™ืชื™ื™ ืขื•ื‘ื“ื™ื ื›ื‘ืจ 10 ืฉื ื™ื
00:52
to rediscover this lost world
13
52260
3000
ืขืœ ืžื ืช ืœื’ืœื•ืช ืžื—ื“ืฉ ืืช ื”ืขื•ืœื ื”ืื‘ื•ื“ ื”ื–ื”,
00:55
in a project we call The Mannahatta Project.
14
55260
3000
ื‘ืคืจื•ื™ื™ืงื˜ ืฉืื ื• ืงื•ืจืื™ื ืœื• ืคืจื•ื™ื™ืงื˜ ืžื ื”ื˜ื”.
00:58
We're trying to discover what Henry Hudson would have seen
15
58260
2000
ืื ื• ืžื ืกื™ื ืœื’ืœื•ืช ืžื” ื”ื ืจื™ ื”ื“ืกื•ืŸ ื”ื™ื” ืจื•ืื”
01:00
on the afternoon of September 12th, 1609,
16
60260
3000
ื‘ืื—ืจ ื”ืฆื”ืจื™ื™ื ืฉืœ ื”-12 ื‘ืกืคื˜ืžื‘ืจ, 1609,
01:03
when he sailed into New York harbor.
17
63260
3000
ื›ืฉื”ื•ื ืžืคืœื™ื’ ืœืชื•ืš ื ืžืœ ื ื™ื• ื™ื•ืจืง.
01:06
And I'd like to tell you the story in three acts,
18
66260
2000
ื•ื”ื™ื™ืชื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืืช ื”ืกื™ืคื•ืจ ื‘ืฉืœื•ืฉ ืžืขืจื›ื•ืช.
01:08
and if I have time still, an epilogue.
19
68260
3000
ื•ืื ื™ื”ื™ื” ืœื™ ื–ืžืŸ, ื’ื ืืคื™ืœื•ื’.
01:11
So, Act I: A Map Found.
20
71260
2000
ื•ื‘ื›ืŸ, ืžืขืจื›ื” ืจืืฉื•ื ื”: ืžืคื” ื ืžืฆืืช.
01:13
So, I didn't grow up in New York.
21
73260
2000
ืื–, ืื ื™ ืœื ื’ื“ืœืชื™ ื‘ื ื™ื• ื™ื•ืจืง.
01:15
I grew up out west in the Sierra Nevada Mountains, like you see here,
22
75260
3000
ืื ื™ ื’ื“ืœืชื™ ื‘ืžืขืจื‘, ื‘ื”ืจื™ ืกื™ื™ืจื” ื ื‘ืื“ื”, ื›ืžื• ืฉืืชื ืจื•ืื™ื ืคื”,
01:18
in the Red Rock Canyon.
23
78260
2000
ื‘ืงื ื™ื•ืŸ ื”ืกืœืข ื”ืื“ื•ื.
01:20
And from these early experiences as a child
24
80260
2000
ื•ืžืชื•ืš ื”ื—ื•ื•ื™ื•ืช ื”ืžื•ืงื“ืžื•ืช ื”ืืœื” ื›ื™ืœื“
01:22
I learned to love landscapes.
25
82260
2000
ืœืžื“ืชื™ ืœืื”ื•ื‘ ื ื•ืคื™ื.
01:24
And so when it became time for me to do my graduate studies,
26
84260
2000
ื•ื›ืš ื›ืฉื”ื’ื™ืข ื–ืžื ื™ ืœืœืžื•ื“ ืœืชื•ืืจ ืจืืฉื•ืŸ,
01:26
I studied this emerging field of landscape ecology.
27
86260
4000
ืœืžื“ืชื™ ืืช ื”ืชื—ื•ื ื”ืžืชืขื•ืจืจ ื”ื–ื” ืฉืœ ืืงื•ืœื•ื’ื™ื” ืฉืœ ื ื•ืฃ.
01:30
Landscape ecology concerns itself
28
90260
2000
ืืงื•ืœื•ื’ื™ื™ืช ื ื•ืฃ ืขื•ืกืงืช
01:32
with how the stream and the meadow and the forest and the cliffs
29
92260
4000
ื‘ืื™ืš ื”ื ื—ืœ ื•ื”ืื—ื• ื•ื”ื™ืขืจ ื•ื”ืฆื•ืงื™ื
01:36
make habitats for plants and animals.
30
96260
2000
ื™ื•ืฆืจื™ื ื‘ืชื™ ื’ื™ื“ื•ืœ ืœื—ื™ื•ืช ื•ืฆืžื—ื™ื.
01:38
This experience and this training
31
98260
2000
ื”ื—ื•ื•ื™ื” ื•ื”ื”ื›ืฉืจื” ื”ื–ื•
01:40
lead me to get a wonderful job with the Wildlife Conservation Society,
32
100260
3000
ื”ื•ื‘ื™ืœื• ืื•ืชื™ ืœืงื‘ืœ ืขื‘ื•ื“ื” ืžื“ื”ื™ืžื” ื‘ืื’ื•ื“ืช ืฉื™ืžื•ืจ ื—ื™ื•ืช ื”ื‘ืจ,
01:43
which works to save wildlife and wild places all over the world.
33
103260
3000
ืฉืขื•ืกืงืช ื‘ืฉื™ืžื•ืจ ื‘ืขืœื™ ื—ื™ื™ื ื•ืื–ื•ืจื™ ืžื—ื™ื™ื” ืฉืœื”ื ื‘ื›ืœ ื”ืขื•ืœื.
01:46
And over the last decade,
34
106260
2000
ื•ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ,
01:48
I traveled to over 40 countries
35
108260
2000
ื ืกืขืชื™ ื‘ื™ื•ืชืจ ืž-40 ืžื“ื™ื ื•ืช
01:50
to see jaguars and bears and elephants
36
110260
2000
ื›ื“ื™ ืœืจืื•ืช ื™ื’ื•ืืจื™ื ื•ื“ื•ื‘ื™ื ื•ืคื™ืœื™ื
01:52
and tigers and rhinos.
37
112260
2000
ื•ื˜ื™ื’ืจื™ืกื™ื ื•ืงืจื ืคื™ื.
01:54
But every time I would return from my trips I'd return back to New York City.
38
114260
3000
ืื‘ืœ ื›ืœ ืคืขื ื›ืฉื—ื–ืจืชื™ ืžืžืกืขื•ืชื™ ื”ื™ื™ืชื™ ื—ื•ื–ืจ ื—ื–ืจื” ืœืขื™ืจ ื ื™ื• ื™ื•ืจืง.
01:57
And on my weekends I would go up, just like all the other tourists,
39
117260
3000
ื•ื‘ืกื•ืคื™ ื”ืฉื‘ื•ืข ื”ื™ื™ืชื™ ืขื•ืœื”, ื›ืžื• ื›ืœ ืฉืืจ ื”ืชื™ื™ืจื™ื,
02:00
to the top of the Empire State Building,
40
120260
2000
ืœื’ื’ ื‘ื ื™ื™ืŸ ื”ืืžืคื™ื™ืจ ืกื˜ื™ื™ื˜,
02:02
and I'd look down on this landscape, on these ecosystems,
41
122260
3000
ื•ื”ื™ื™ืชื™ ืžืกืชื›ืœ ืžื˜ื” ืขืœ ื”ื ื•ืฃ ื”ื–ื”, ืขืœ ื”ืžืขืจื›ื•ืช ื”ืืงื•ืœื•ื’ื™ื•ืช ื”ืืœื”,
02:05
and I'd wonder, "How does this landscape
42
125260
2000
ื•ื”ื™ื™ืชื™ ื—ื•ืฉื‘ ืœืขืฆืžื™, "ืื™ืš ื”ื ื•ืฃ ื”ื–ื”
02:07
work to make habitat for plants and animals?
43
127260
2000
ืขื•ื‘ื“ ื›ื“ื™ ืœื™ืฆื•ืจ ื‘ื™ืช ื’ื™ื“ื•ืœ ืœืฆืžื—ื™ื ื•ื—ื™ื•ืช?
02:09
How does it work to make habitat for animals like me?"
44
129260
4000
ื•ืื™ืš ื”ื•ื ืขื•ื‘ื“ ื›ื“ื™ ืœื™ืฆื•ืจ ื‘ื™ืช ื’ื™ื“ื•ืœ ืœื—ื™ื•ืช ื›ืžื•ื ื™?"
02:13
I'd go to Times Square and I'd look at the amazing ladies on the wall,
45
133260
4000
ื”ื™ื™ืชื™ ื”ื•ืœืš ืœื›ื™ื›ืจ ื˜ื™ื™ืžืก ื•ืžืกืชื›ืœ ืขืœ ื”ื’ื‘ืจื•ืช ื”ืžื”ืžืžื•ืช ืขืœ ื”ืงื™ืจ,
02:17
and wonder why nobody is looking at the historical figures just behind them.
46
137260
5000
ื•ืชื•ื”ื” ืœืžื” ืืฃ ืื—ื“ ืœื ืžืชื‘ื•ื ืŸ ื‘ื“ืžื•ื™ื•ืช ื”ื”ื™ืกื˜ื•ืจื™ื•ืช ืžืžืฉ ืžืื—ื•ืจื™ื”ื.
02:22
I'd go to Central Park and see the rolling topography of Central Park
47
142260
3000
ื”ื™ื™ืชื™ ื”ื•ืœืš ืœืกื ื˜ืจืœ ืคืืจืง ื•ืจื•ืื” ืืช ื”ื˜ื•ืคื•ื’ืจืคื™ื” ืฉืœ ื”ื’ื‘ืขื•ืช ืฉื
02:25
come up against the abrupt and sheer
48
145260
2000
ืžื’ื™ืขื” ื›ื ื’ื“ ื”ืฉื™ื ื•ื™ ื”ืคืชืื•ืžื™
02:27
topography of midtown Manhattan.
49
147260
4000
ืฉืœ ื”ื˜ื•ืคื•ื’ืจืคื™ื” ืฉืœ ืžืจื›ื– ืžื ื”ื˜ืŸ.
02:31
I started reading about the history and the geography in New York City.
50
151260
3000
ื”ืชื—ืœืชื™ ืœืงืจื•ื ืขืœ ื”ื”ื™ืกื˜ื•ืจื™ื” ื•ื”ื’ื™ืื•ื’ืจืคื™ื” ืฉืœ ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง.
02:34
I read that New York City was the first mega-city,
51
154260
2000
ืงืจืืชื™ ืฉื ื™ื• ื™ื•ืจืง ื”ื™ื™ืชื” ื”ืžื’ื”-ืขื™ืจ ื”ืจืืฉื•ื ื”,
02:36
a city of 10 million people or more, in 1950.
52
156260
4000
ืขื™ืจ ืฉืœ ื™ื•ืชืจ ืž-10 ืžืœื™ื•ืŸ ืชื•ืฉื‘ื™ื, ื‘-1950.
02:40
I started seeing paintings like this.
53
160260
2000
ื”ืชื—ืœืชื™ ืœื”ืชื‘ื•ื ืŸ ื‘ืฆื™ื•ืจื™ื ื›ืืœื”.
02:42
For those of you who are from New York,
54
162260
2000
ืœื ื™ื• ื™ื•ืจืงืจื™ื ืฉื‘ื™ื ื™ื›ื,
02:44
this is 125th street under the West Side Highway.
55
164260
3000
ื–ื” ื‘ืจื—ื•ื‘ 125 ืžืชื—ืช ืœื›ื‘ื™ืฉ ื”ืžื”ื™ืจ ืฉืœ ื•ื•ืกื˜ ืกื™ื™ื“.
02:47
(Laughter)
56
167260
2000
(ืฆื—ื•ืง)
02:49
It was once a beach. And this painting
57
169260
2000
ื–ื” ื”ื™ื” ืคืขื ื—ื•ืฃ. ื•ื‘ืฆื™ื•ืจ ื”ื–ื”
02:51
has John James Audubon, the painter, sitting on the rock.
58
171260
3000
ืจื•ืื™ื ืืช ื’'ื•ืŸ ื’'ื™ื™ืžืก ืื•ื‘ื•ื“ื•ืŸ, ื”ืฆื™ื™ืจ, ื™ื•ืฉื‘ ืขืœ ืกืœืข.
02:54
And it's looking up on the wooded heights of Washington Heights
59
174260
2000
ื•ื”ื•ื ืžืกืชื›ืœ ืœืขื‘ืจ ื”ื’ื‘ืขื•ืช ื”ืžื™ื•ืขืจื•ืช ืฉืœ ืจืžืช ื•ื•ืฉื™ื ื’ื˜ื•ืŸ,
02:56
to Jeffrey's Hook, where the George Washington Bridge goes across today.
60
176260
4000
ืœื’'ืคืจื™ืก ื”ื•ืง, ื•ืื™ืคื” ืฉื’ืฉืจ ื’'ื•ืจื’' ื•ื•ืฉื™ื ื’ื˜ื•ืŸ ื—ื•ืฆื” ื”ื™ื•ื.
03:00
Or this painting, from the 1740s, from Greenwich Village.
61
180260
3000
ืื• ื”ืฆื™ื•ืจ ื”ื–ื”, ืž-1740, ื‘ื’ืจื™ื ื™ืฅ' ื•ื™ืœื™ื’'.
03:03
Those are two students at King's College -- later Columbia University --
62
183260
3000
ืืœื• ื”ื ืฉื ื™ ืกื˜ื•ื“ื ื˜ื™ื ื‘ืงื™ื ื’ืก ืงื•ืœื’' -- ืฉื ื”ื™ื™ืชื” ืื•ื ื™ื‘ืจืกื™ื˜ืช ืงื•ืœื•ืžื‘ื™ื” --
03:06
sitting on a hill, overlooking a valley.
63
186260
3000
ื™ื•ืฉื‘ื™ื ืขืœ ื’ื‘ืขื”, ืฉืžืฉืงื™ืคื” ืขืœ ืขืžืง.
03:09
And so I'd go down to Greenwich Village and I'd look for this hill,
64
189260
3000
ื•ื›ืš ื”ืœื›ืชื™ ืœื’ืจื™ื ื™ืฅ' ื•ื™ืœื™ื’' ื•ื—ื™ืคืฉืชื™ ืืช ื”ื’ื‘ืขื” ื”ื–ื•.
03:12
and I couldn't find it. And I couldn't find that palm tree.
65
192260
3000
ื•ืœื ื”ืฆืœื—ืชื™ ืœืžืฆื•ื ืื•ืชื”. ื•ืœื ื”ืฆืœื—ืชื™ ืœืžืฆื•ื ืืช ืขืฅ ื”ื“ืงืœ ื”ื–ื”.
03:15
What's that palm tree doing there?
66
195260
2000
ืžื” ืขื•ืฉื” ืฉื ืขืฅ ื“ืงืœ ื‘ื›ืœืœ?
03:17
(Laughter)
67
197260
1000
(ืฆื—ื•ืง)
03:18
So, it was in the course of these investigations that I ran into a map.
68
198260
3000
ื•ื›ืš, ื‘ืžื”ืœืš ืื•ืชื ื”ื—ื™ืคื•ืฉื™ื ื ืชืงืœืชื™ ื‘ืžืคื”.
03:21
And it's this map you see here.
69
201260
2000
ื•ื–ื• ื”ืžืคื” ืฉืืช ืจื•ืื™ื ืคื”.
03:23
It's held in a geographic information system
70
203260
2000
ื”ื™ื ืžืขื•ื’ื ืช ื‘ืžืขืจื›ืช ืžื™ื“ืข ื’ื™ืื•ื’ืจืคื™ืช (GIS)
03:25
which allows me to zoom in.
71
205260
2000
ืžื” ืฉืžืืคืฉืจ ืœื™ ืœื”ืชืžืงื“.
03:27
This map isn't from Hudson's time, but from the American Revolution,
72
207260
3000
ื”ืžืคื” ื”ื–ื• ื”ื™ื ืœื ืžื–ืžื ื• ืฉืœ ื”ื“ืกื•ืŸ, ืืœื ืžื”ืžื”ืคื™ื›ื” ื”ืืžืจื™ืงืื™ืช,
03:30
170 years later, made by British military cartographers
73
210260
4000
170 ืฉื ื” ืžืื•ื—ืจ ื™ื•ืชืจ, ื•ื”ื•ื›ื ื” ืขืœ ื™ื“ื™ ื›ืจื˜ื•ื’ืจืคื™ื ื‘ืจื™ื˜ื™ื
03:34
during the occupation of New York City.
74
214260
2000
ื‘ืžื”ืœืš ื”ื›ื™ื‘ื•ืฉ ืฉืœ ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง.
03:36
And it's a remarkable map. It's in the National Archives here in Kew.
75
216260
4000
ื–ื• ืžืคื” ืžื“ื”ื™ืžื”. ื”ื™ื ื ืžืฆืืช ื‘ืืจื›ื™ื•ืŸ ื”ืœืื•ืžื™ ืคื” ื‘ืงื™ื•.
03:40
And it's 10 feet long and three and a half feet wide.
76
220260
2000
ืื•ืจื›ื” ื›-3 ืžื˜ืจ, ื•ืจื•ื—ื‘ื” ื›-1.5 ืžื˜ืจ.
03:42
And if I zoom in to lower Manhattan
77
222260
3000
ื•ืื ืื ื™ ืžืชืžืงื“ ื‘ื“ืจื•ื ืžื ื”ื˜ืŸ
03:45
you can see the extent of New York City as it was,
78
225260
2000
ืชื•ื›ืœื• ืœืจืื•ืช ืืช ื’ื•ื“ืœื” ืฉืœ ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง ื›ืคื™ ืฉื”ื™ื™ืชื”,
03:47
right at the end of the American Revolution.
79
227260
2000
ืžืžืฉ ื‘ืกื•ืฃ ื”ืžื”ืคื™ื›ื” ื”ืืžืจื™ืงืื™ืช.
03:49
Here's Bowling Green. And here's Broadway.
80
229260
3000
ื”ื ื” ื‘ืื•ืœื™ื ื’ ื’ืจื™ืŸ. ื•ื”ื ื” ื‘ืจื•ื“ื•ื•ื™.
03:52
And this is City Hall Park.
81
232260
2000
ื•ื”ื ื” ืคืืจืง ื‘ื™ืช ื”ืขื™ืจื™ื™ื”.
03:54
So the city basically extended to City Hall Park.
82
234260
3000
ืื– ื”ืขื™ืจ ืžืžืฉ ื ืคืจืกื” ืขื“ ืคืืจืง ื‘ื™ืช ื”ืขื™ืจื™ื™ื”.
03:57
And just beyond it you can see features
83
237260
2000
ื•ืžืžืฉ ืžืขื‘ืจ ืชื•ื›ืœื• ืœืจืื•ืช ืžืืคื™ื™ื ื™ื
03:59
that have vanished, things that have disappeared.
84
239260
2000
ืฉื ืขืœืžื•, ื“ื‘ืจื™ื ืฉืœื ืงื™ื™ืžื™ื ืขื•ื“.
04:01
This is the Collect Pond, which was the fresh water source for New York City
85
241260
3000
ื–ื• ื‘ืจื™ื›ืช ื”ืžืื’ืจ, ืฉื”ื™ื™ืชื” ืžืงื•ืจ ื”ืžื™ื ื”ืžืชื•ืงื™ื ืฉืœ ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง
04:04
for its first 200 years,
86
244260
2000
ื‘-200 ืฉื ื•ืชื™ื” ื”ืจืืฉื•ื ื•ืช,
04:06
and for the Native Americans for thousands of years before that.
87
246260
3000
ื•ื‘ืฉื‘ื™ืœ ื”ื™ืœื™ื“ื™ื ื”ืืžืจื™ืงืื™ื ื‘ืžืฉืš ืืœืคื™ ืฉื ื™ื.
04:09
You can see the Lispenard Meadows
88
249260
2000
ืชื•ื›ืœื• ืœืจืื•ืช ืืช ื”ืื—ื• ืฉืœ ืœื™ืกืคื ืจื“
04:11
draining down through here, through what is TriBeCa now,
89
251260
2000
ืฉืžืชื ืงื–ื™ื ืžื›ืืŸ, ื“ืจืš ืžื” ืฉื”ื•ื ืขื›ืฉื™ื• ื˜ืจื™ื™ื‘ืงื”,
04:13
and the beaches that come up from the Battery,
90
253260
2000
ื•ื”ื—ื•ืคื™ื ืฉืžื’ื™ืขื™ื ืžื”ืกื•ืœืœื”,
04:15
all the way to 42nd St.
91
255260
2000
ื›ืœ ื”ื“ืจืš ืขื“ ืœืจื—' 42.
04:17
This map was made for military reasons.
92
257260
3000
ื”ืžืคื” ื”ื–ื• ื”ื•ื›ื ื” ืœืžื˜ืจื•ืช ืฆื‘ืื™ื•ืช.
04:20
They're mapping the roads, the buildings, these fortifications
93
260260
2000
ื”ื ืžืžืคื™ื ืืช ื”ื›ื‘ื™ืฉื™ื, ื”ื‘ื ื™ื™ื ื™ื, ื”ื‘ื™ืฆื•ืจื™ื
04:22
that they built.
94
262260
2000
ืฉื”ื ื‘ื ื•.
04:24
But they're also mapping things of ecological interest,
95
264260
2000
ืื‘ืœ ื”ื ื’ื ืžืžืคื™ื ืžืืคื™ื™ื ื™ื ื‘ืขืœื™ ืขื ื™ื™ืŸ ืืงื•ืœื•ื’ื™,
04:26
also military interest: the hills,
96
266260
2000
ืฉื™ืฉ ืœื”ื ื”ื™ื‘ื˜ ืฆื‘ืื™: ื”ื’ื‘ืขื•ืช,
04:28
the marshes, the streams.
97
268260
3000
ื”ื‘ื™ืฆื•ืช, ื”ื•ืื“ื™ื•ืช.
04:31
This is Richmond Hill, and Minetta Water,
98
271260
2000
ื–ื•ื”ื™ ื’ื‘ืขืช ืจื™ืฆ'ืžื•ื ื“, ื•ื ื”ืจ ืžื™ื ื˜ื”
04:33
which used to run its way through Greenwich Village.
99
273260
3000
ืฉื‘ืขื‘ืจ ื–ืจื ื“ืจืš ื’ืจื™ื ื™ืฅ' ื•ื™ืœื™ื’'.
04:36
Or the swamp at Gramercy Park, right here.
100
276260
5000
ืื• ื”ื‘ื™ืฆื” ื‘ืคืืจืง ื’ืจืžืจืกื™, ืžืžืฉ ื›ืืŸ.
04:41
Or Murray Hill. And this is the Murrays' house
101
281260
2000
ืื• ื’ื‘ืขืช ืžืืจื™. ื•ื–ื”ื• ื‘ื™ืช ืžืืจื™
04:43
on Murray Hill, 200 years ago.
102
283260
3000
ืขืœ ื’ื‘ืขืช ืžืืจื™, ืœืคื ื™ 200 ืฉื ื”.
04:46
Here is Times Square,
103
286260
3000
ื”ื ื” ื›ื™ื›ืจ ื˜ื™ื™ืžืก,
04:49
the two streams that came together to make a wetland
104
289260
2000
ืฉื ื™ ื”ื ื—ืœื™ื ืฉื”ืชืื—ื“ื• ืœืชื•ืš ื‘ื™ืฆื”
04:51
in Times Square, as it was at the end of the American Revolution.
105
291260
5000
ื‘ื›ื™ื›ืจ ื˜ื™ื™ืžืก, ื›ืคื™ ืฉื”ื™ื” ื‘ืกื™ื•ืžื” ืฉืœ ื”ืžื”ืคื™ื›ื” ื”ืืžืจื™ืงืื™ืช.
04:56
So I saw this remarkable map in a book.
106
296260
2000
ืื– ืจืื™ืชื™ ืืช ื”ืžืคื” ื”ืžื“ื”ื™ืžื” ื”ื–ื• ื‘ืกืคืจ.
04:58
And I thought to myself, "You know, if I could georeference this map,
107
298260
4000
ื•ื—ืฉื‘ืชื™ ืœืขืฆืžื™, "ืืชื” ื™ื•ื“ืข, ืื ืื•ื›ืœ ืœืขื’ืŸ ืืช ื”ืžืคื” ื”ื–ื•,
05:02
if I could place this map in the grid of the city today,
108
302260
3000
ืื ืื ื™ ืื•ื›ืœ ืœืžืงื ืืช ื”ืžืคื” ื”ื–ื• ืขืœ ื”ืจืฉืช ืฉืœ ื”ืขื™ืจ ืฉืœ ื”ื™ื•ื,
05:05
I could find these lost features
109
305260
2000
ืื•ื›ืœ ืœืžืฆื•ื ืืช ื”ืžืืคื™ื™ื ื™ื ื”ืื‘ื•ื“ื™ื
05:07
of the city,
110
307260
2000
ืฉืœ ื”ืขื™ืจ,
05:09
in the block-by-block geography that people know,
111
309260
3000
ื‘ื’ืื•ื’ืจืคื™ื™ืช ื”ื‘ืœื•ืงื™ื ืฉืœ ื”ืขื™ืจ ืฉื”ืื ืฉื™ื ืžื›ื™ืจื™ื ื”ื™ื•ื,
05:12
the geography of where people go to work, and where they go to live,
112
312260
3000
ื‘ื’ืื•ื’ืจืคื™ื” ืฉืœ ื”ืžืงื•ืžื•ืช ืฉื‘ื”ื ื”ืื ืฉื™ื ื”ื•ืœื›ื™ื ืœืขื‘ื•ื“, ื•ืœื’ื•ืจ,
05:15
and where they like to eat."
113
315260
2000
ื•ื”ื™ื›ืŸ ืฉื”ื ื”ื•ืœื›ื™ื ืœืื›ื•ืœ."
05:17
So, after some work we were able to georeference it,
114
317260
2000
ื•ื›ืš, ืื—ืจื™ ืงืฆืช ืขื‘ื•ื“ื” ื”ืฆืœื—ื ื• ืœืขื’ืŸ ืืช ื”ืžืคื”,
05:19
which allows us to put the modern streets on the city,
115
319260
3000
ืžื” ืฉืžืืคืฉืจ ืœื ื• ืœืฉื™ื ืืช ื”ืจื—ื•ื‘ื•ืช ื”ืžื•ื“ืจื ื™ื™ื ืขืœ ื”ืขื™ืจ,
05:22
and the buildings, and the open spaces,
116
322260
5000
ื•ืืช ื”ื‘ื ื™ื™ื ื™ื, ื•ื”ืฉื˜ื—ื™ื ื”ืคืชื•ื—ื™ื,
05:27
so that we can zoom in to where the Collect Pond is.
117
327260
5000
ื›ืš ืฉื ื•ื›ืœ ืœื”ืชืžืงื“ ืขืœ ื”ืื–ื•ืจ ืฉื‘ื• ื”ื™ื™ืชื” ื‘ื™ืฆืช ื”ืžืื’ืจ.
05:32
We can digitize the Collect Pond and the streams,
118
332260
4000
ืื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื“ื™ื’ื™ื˜ืฆื™ื” ืœื‘ื™ืฆืช ื”ืžืื’ืจ ื•ืœื ื—ืœื™ื,
05:36
and see where they actually are in the geography of the city today.
119
336260
5000
ื•ืœืจืื•ืช ืžืžืฉ ืื™ืคื” ื”ื ื ืžืฆืื™ื ื‘ื’ื™ืื•ื’ืจืคื™ื” ืฉืœ ื”ืขื™ืจ ื”ื™ื•ื.
05:41
So this is fun for finding where things are
120
341260
3000
ืื– ื–ื” ื›ื™ืฃ ืœืžืฆื•ื ืื™ืคื” ื“ื‘ืจื™ื ื ืžืฆืื™ื
05:44
relative to the old topography.
121
344260
5000
ื‘ื™ื—ืก ืœื˜ื•ืคื•ื’ืจืคื™ื” ื”ื™ืฉื ื”.
05:49
But I had another idea about this map.
122
349260
2000
ืื‘ืœ ื”ื™ื” ืœื™ ืจืขื™ื•ืŸ ื ื•ืกืฃ ื‘ืงืฉืจ ืœืžืคื” ื”ื–ื•.
05:51
If we take away the streets, and if we take away the buildings,
123
351260
3000
ืื ื ืกืœืง ืืช ื”ืจื—ื•ื‘ื•ืช, ื•ืื ื ืกืœืง ืืช ื”ื‘ื ื™ื™ื ื™ื,
05:54
and if we take away the open spaces,
124
354260
2000
ืื ื ืกืœืง ืืช ื”ืฉื˜ื—ื™ื ื”ืคืชื•ื—ื™ื,
05:56
then we could take this map.
125
356260
2000
ืื– ื ื•ื›ืœ ืœืงื—ืช ืืช ื”ืžืคื” ื”ื–ื•.
05:58
If we pull off the 18th century features
126
358260
2000
ืื ื ืžื—ืง ืืช ื”ืžืืคื™ื™ื ื™ื ืฉืœ ื”ืžืื” ื”-18
06:00
we could drive it back in time.
127
360260
2000
ื ื•ื›ืœ ืœืงื—ืช ืื•ืชื” ื‘ื—ื–ืจื” ื‘ื–ืžืŸ.
06:02
We could drive it back to its ecological fundamentals:
128
362260
4000
ื ื•ื›ืœ ืœืงื—ืช ืื•ืชื” ื—ื–ืจื” ืœื™ืกื•ื“ื•ืช ื”ืืงื•ืœื•ื’ื™ื™ื ืฉืœื”:
06:06
to the hills, to the streams,
129
366260
2000
ืœื’ื‘ืขื•ืช, ืœื ื—ืœื™ื,
06:08
to the basic hydrology and shoreline, to the beaches,
130
368260
4000
ืœื”ื™ื“ืจื•ืœื•ื’ื™ื” ื”ื‘ืกื™ืกื™ืช ื•ืงื• ื”ืžื™ื, ื•ื”ื—ื•ืคื™ื,
06:12
the basic aspects that make the ecological landscape.
131
372260
4000
ื”ืžืืคื™ื™ื ื™ื ื”ื‘ืกื™ืกื™ื™ื ืฉื‘ื•ื ื™ื ื ื•ืฃ ืืงื•ืœื•ื’ื™.
06:16
Then, if we added maps like the geology, the bedrock geology,
132
376260
3000
ื•ืื ื ืฆืจืฃ ืžืคื•ืช ื›ืžื• ื”ื’ืื•ืœื•ื’ื™ื”, ื’ืื•ืœื•ื’ื™ื™ืช ื”ืกืœืข ื”ื‘ืกื™ืก,
06:19
and the surface geology, what the glaciers leave,
133
379260
3000
ื•ื’ืื•ืœื•ื’ื™ื™ืช ืคื ื™ ื”ืฉื˜ื—, ืžื” ืฉื”ืงืจื—ื•ื ื™ื ืžืฉืื™ืจื™ื,
06:22
if we make the soil map,
134
382260
2000
ื•ืื ื ืขืฉื” ืžืคืช ืงืจืงืขื•ืช,
06:24
with the 17 soil classes,
135
384260
3000
ืขื 17 ืกื•ื’ื™ ื”ืงืจืงืข,
06:27
that are defined by the National Conservation Service,
136
387260
3000
ืฉืžื•ื’ื“ืจื™ื ืขืœ ื™ื“ื™ ืฉื™ืจื•ืช ืฉื™ืžื•ืจ ื”ืงืจืงืข ื”ืœืื•ืžื™,
06:30
if we make a digital elevation model
137
390260
2000
ืื ื ื™ืฆื•ืจ ืžื•ื“ืœ ื’ื•ื‘ื” ื“ื™ื’ื™ื˜ืœื™ (DEM)
06:32
of the topography that tells us how high the hills were,
138
392260
3000
ืฉืœ ื”ื˜ื•ืคื•ื’ืจืคื™ื” ืฉื™ืกืคืจ ืœื ื• ื›ืžื” ื’ื‘ื•ื”ื•ืช ื”ื™ื• ื”ื’ื‘ืขื•ืช,
06:35
then we can calculate the slopes.
139
395260
3000
ื ื•ื›ืœ ืœื—ืฉื‘ ืืช ืฉื™ืคื•ืขื™ ื”ืžื“ืจื•ื ื•ืช.
06:38
We can calculate the aspect.
140
398260
3000
ื ื•ื›ืœ ืœื—ืฉื‘ ืืช ื ืงื•ื“ืช ื”ืžื‘ื˜.
06:41
We can calculate the winter wind exposure --
141
401260
2000
ื ื•ื›ืœ ืœื—ืฉื‘ ืืช ื”ื—ืฉื™ืคื” ืœืจื•ื— --
06:43
so, which way the winter winds blow across the landscape.
142
403260
2000
ื•ื›ืš, ื‘ืื™ื–ื” ื›ื™ื•ื•ืŸ ื ืฉื‘ื• ืจื•ื—ื•ืช ื”ื—ื•ืจืฃ ืœืื•ืจืš ื”ื ื•ืฃ.
06:45
The white areas on this map are the places protected from the winter winds.
143
405260
5000
ื”ืื–ื•ืจื™ื ื”ืœื‘ื ื™ื ื‘ืžืคื” ื”ื ืื–ื•ืจื™ื ืžื•ื’ื ื™ื ืžืจื•ื—ื•ืช ื”ื—ื•ืจืฃ.
06:50
We compiled all the information about where the Native Americans were, the Lenape.
144
410260
3000
ืฆื™ืจืคื ื• ืืช ื›ืœ ื”ืžื™ื“ืข ื‘ื ื•ื’ืข ืœืžื™ืงื•ืžื ืฉืœ ื”ื™ืœื™ื“ื™ื ื”ืืžืจื™ืงืื™ื™ื, ืื ืฉื™ ื”ืœื ืืคื”.
06:53
And we built a probability map of where they might have been.
145
413260
4000
ื•ื‘ื ื™ื ื• ืžืคืช ื”ืกืชื‘ืจื•ืช ืฉืœ ื”ื™ื›ืŸ ื”ื ื›ื ืจืื” ื”ื™ื•.
06:57
So, the red areas on this map indicate the places
146
417260
2000
ื”ืื–ื•ืจื™ื ื”ืื“ื•ืžื™ื ื‘ืžืคื” ืžืฆื™ื™ื ื™ื ืืช ื”ืžืงื•ืžื•ืช ื”ืืœื•
06:59
that are best for human sustainability on Manhattan,
147
419260
2000
ืฉื”ื›ื™ ืžืชืื™ืžื™ื ืœืงื™ื•ื ืื ื•ืฉื™ ื‘ืžื ื”ื˜ืŸ,
07:01
places that are close to water,
148
421260
2000
ืžืงื•ืžื•ืช ืฉืงืจื•ื‘ื™ื ืœืžืงื•ืจื•ืช ืžื™ื,
07:03
places that are near the harbor to fish,
149
423260
2000
ืžืงื•ืžื•ืช ืฉืงืจื•ื‘ื™ื ืœื ืžืœ ืœื“ื™ื™ื’,
07:05
places protected from the winter winds.
150
425260
5000
ืžืงื•ืžื•ืช ืฉืžื•ื’ื ื™ื ืžืจื•ื—ื•ืช ื”ื—ื•ืจืฃ.
07:10
We know that there was a Lenape settlement
151
430260
2000
ืื ื• ื™ื•ื“ืขื™ื ืฉื”ื™ื” ืืชืจ ื™ื™ืฉื•ื‘ ืฉืœ ืœื ืืคื”
07:12
down here by the Collect Pond.
152
432260
3000
ืžืžืฉ ืคื” ืœื™ื“ ื‘ื™ืฆืช ื”ืžืื’ืจ.
07:15
And we knew that they planted a kind of horticulture,
153
435260
2000
ื•ื™ื“ืขื ื• ืฉื”ื ื’ื™ื“ืœื• ืกื•ื’ ืฉืœ ื’ื™ื“ื•ืœ ืžืฉืง,
07:17
that they grew these beautiful gardens of corn, beans, and squash,
154
437260
3000
ืฉื”ื ื’ื™ื“ืœื• ื’ื ื™ื ื™ืคื™ื ืฉืœ ืชื™ืจืก, ืงื˜ื ื™ื•ืช ื•ื“ืœื•ืขื™ื,
07:20
the "Three Sisters" garden.
155
440260
2000
ื’ืŸ "ืฉืœื•ืฉ ื”ืื—ื™ื•ืช".
07:22
So, we built a model that explains where those fields might have been.
156
442260
4000
ื•ื›ืš, ื‘ื ื™ื ื• ืžื•ื“ืœ ืฉื—ื•ื–ื” ืืช ืžืงื•ืžื ืฉืœ ื”ื’ื ื™ื ื”ืืœื”.
07:26
And the old fields, the successional fields that go.
157
446260
2000
ื•ื”ืฉื“ื•ืช ื”ื™ืฉื ื™ื, ื”ื’ื™ื“ื•ืœื™ื ื”ื”ืžืฉื›ื™ื™ื.
07:28
And we might think of these as abandoned.
158
448260
2000
ื•ืื•ืœื™ ืื ื• ื—ื•ืฉื‘ื™ื ืขืœื™ื”ื ื›ื ื˜ื•ืฉื™ื.
07:30
But, in fact, they're grassland habitats
159
450260
2000
ืื‘ืœ, ืœืžืขืฉื”, ื”ื ื‘ื™ืช ื’ื™ื“ื•ืœ ืฉืœ ืขืจื‘ื•ืช ืขืฉื‘.
07:32
for grassland birds and plants.
160
452260
2000
ืขื‘ื•ืจ ืฆื™ืคื•ืจื™ื ื•ืฆืžื—ื™ื ืฉืœ ืขืจื‘ื•ืช ืขืฉื‘.
07:34
And they have become successional shrub lands,
161
454260
3000
ื•ื”ื ื ื”ื™ื• ืื–ื•ืจื™ื ืฉืœ ืฆืžื—ื™ื” ื‘ื™ื ื•ื ื™ืช,
07:37
and these then mix in to a map of all the ecological communities.
162
457260
4000
ื•ื›ืš ืืœื• ืžืชืขืจื‘ื‘ื™ื ืœืžืคื” ืฉืœ ื›ืœ ื”ื—ื‘ืจื•ืช ื”ืืงื•ืœื•ื’ื™ื•ืช.
07:41
And it turns out that Manhattan had 55 different ecosystem types.
163
461260
4000
ื•ืžืชื‘ืจืจ ืฉื‘ืžื ื”ื˜ืŸ ื”ื™ื• 55 ืžืขืจื›ื•ืช ืืงื•ืœื•ื’ื™ื•ืช ืฉื•ื ื•ืช.
07:45
You can think of these as neighborhoods,
164
465260
2000
ืชื•ื›ืœื• ืœื—ืฉื•ื‘ ืขืœื™ื”ืŸ ื›ืขืœ ืฉื›ื•ื ื•ืช,
07:47
as distinctive as TriBeCa and the Upper East Side and Inwood --
165
467260
5000
ืžื•ื‘ื—ื ื•ืช ื›ืžื• ื˜ืจื™ื™ื‘ืงื”, ื”"ืืคืจ ืื™ืกื˜ ืกื™ื™ื“", ื•ืื™ื ื•ื•ื“.
07:52
that these are the forest and the wetlands
166
472260
2000
ื•ืืœื• ื”ื ื”ื™ืขืจ, ื•ืžื™ืฉื•ืจื™ ื”ื”ืฆืคื”
07:54
and the marine communities, the beaches.
167
474260
3000
ื•ื”ืžืขืจื›ื•ืช ื”ื™ืžื™ื•ืช, ื”ื—ื•ืคื™ื.
07:57
And 55 is a lot. On a per-area basis,
168
477260
3000
55 ื–ื” ื”ืจื‘ื”. ืœื™ื—ื™ื“ืช ืฉื˜ื—,
08:00
Manhattan had more ecological communities
169
480260
2000
ื”ื™ื• ืœืžื ื”ื˜ืŸ ื™ื•ืชืจ ื—ื‘ืจื•ืช ืืงื•ืœื•ื’ื™ื•ืช
08:02
per acre than Yosemite does,
170
482260
2000
ืœืžื˜ืจ ืจื‘ื•ืข ืžืฉื™ืฉ ืœื™ื•ืกืžื™ื˜ื™,
08:04
than Yellowstone, than Amboseli.
171
484260
3000
ื•ื™ืœื•ืกื˜ื•ืŸ, ื•ืืžื‘ื•ืกืœื™ (ืงื ื™ื”).
08:07
It was really an extraordinary landscape
172
487260
2000
ื–ื” ื‘ืืžืช ื”ื™ื” ื ื•ืฃ ื™ื•ืฆื ื“ื•ืคืŸ
08:09
that was capable of supporting an extraordinary biodiversity.
173
489260
4000
ืฉื”ื™ื” ืžืกื•ื’ืœ ืœืชืžื•ืš ื‘ื’ื™ื•ื•ืŸ ื‘ื™ื•ืœื•ื’ื™ ื™ื•ืฆื ื“ื•ืคืŸ.
08:13
So, Act II: A Home Reconstructed.
174
493260
4000
ื•ื‘ื›ืŸ, ืžืขืจื›ื” ืฉื ื™ื”: ื‘ื™ืช ืžืฉื•ื—ื–ืจ.
08:17
So, we studied the fish and the frogs and the birds and the bees,
175
497260
4000
ื•ื›ืš, ืœืžื“ื ื• ืืช ื”ื“ื’ื™ื ื•ื”ืฆืคืจื“ืขื™ื ื•ื”ืฆื™ืคื•ืจื™ื ื•ื”ื“ื‘ื•ืจื™ื,
08:21
the 85 different kinds of fish that were on Manhattan,
176
501260
3000
85 ืกื•ื’ื™ ื”ื“ื’ื™ื ื”ืฉื•ื ื™ื ืฉื”ื™ื• ื‘ืžื ื”ื˜ืŸ,
08:24
the Heath hens, the species that aren't there anymore,
177
504260
4000
ืชืจื’ื ื•ืœื•ืช ื”ื‘ืจ, ืžื™ืŸ ืฉื›ื‘ืจ ื ื›ื—ื“,
08:28
the beavers on all the streams, the black bears,
178
508260
3000
ื”ื‘ื•ื ื™ื ืฉื‘ื ื—ืœื™ื, ื”ื“ื•ื‘ื™ื ื”ืฉื—ื•ืจื™ื,
08:31
and the Native Americans, to study how they used
179
511260
3000
ื•ื”ื™ืœื™ื“ื™ื ื”ืืžืจื™ืงืื™ื, ื›ื“ื™ ืœืœืžื•ื“ ืื™ืš ื”ื ื”ืฉืชืžืฉื•
08:34
and thought about their landscape.
180
514260
2000
ื•ื—ืฉื‘ื• ืขืœ ื”ื ื•ืฃ ืฉื‘ื• ื—ื™ื•.
08:36
We wanted to try and map these. And to do that what we did
181
516260
3000
ืจืฆื™ื ื• ืœื ืกื•ืช ื•ืœืžืคื•ืช ืืช ื›ืœ ืืœื”. ื•ืœืฉื ื›ืš ืžื” ืฉืขืฉื™ื ื•
08:39
was we mapped their habitat needs.
182
519260
2000
ื”ื™ื” ืœืžืคื•ืช ืืช ืฆืจื›ื™ ื‘ื™ืช ื”ื’ื™ื“ื•ืœ ืฉืœื”ื.
08:41
Where do they get their food?
183
521260
2000
ืื™ืคื” ื”ื ืžืฉื™ื’ื™ื ืžื–ื•ืŸ?
08:43
Where do they get their water? Where do they get their shelter?
184
523260
2000
ืื™ืคื” ื”ื ืžืฉื™ื’ื™ื ืžื™ื? ืื™ืคื” ื”ื ืžื•ืฆืื™ื ืžื—ืกื”?
08:45
Where do they get their reproductive resources?
185
525260
3000
ืื™ืคื” ื”ื ืžืฉื™ื’ื™ื ืืช ื”ืžืฉืื‘ื™ื ื”ืžืชื—ื“ืฉื™ื ืฉืœื”ื?
08:48
To an ecologist, the intersection of these is habitat,
186
528260
3000
ืขื‘ื•ืจ ื”ืืงื•ืœื•ื’, ื”ื”ืฆื˜ืœื‘ื•ืช ืฉืœ ื›ืœ ืืœื” ื”ื™ื ื‘ื™ืช ื’ื™ื“ื•ืœ.
08:51
but to most people, the intersection of these is their home.
187
531260
5000
ืขื‘ื•ืจ ืจื•ื‘ ื”ืื ืฉื™ื, ื”ื”ืฆื˜ืœื‘ื•ืช ื”ื–ื• ืžืกืžืœืช ืืช ื”ื‘ื™ืช.
08:56
So, we would read in field guides, the standard field guides
188
536260
2000
ื•ื›ืš, ืงืจืื ื• ื‘ืžื“ืจื™ื›ื™ ืฉื“ื”, ืžื“ืจื™ื›ื™ ืฉื“ื” ืกื˜ื ื“ืจื˜ื™ื™ื
08:58
that maybe you have on your shelves,
189
538260
2000
ืฉืื•ืœื™ ื™ืฉ ืœื›ื ืขืœ ืžื“ืฃ ื”ืกืคืจื™ื ืฉืœื›ื,
09:00
you know, what beavers need is, "A slowly meandering stream
190
540260
2000
ืืชื ื™ื•ื“ืขื™ื, ืžื” ืฉื”ื‘ื•ื ื” ืฆืจื™ืš ื”ื•ื "ื ื”ืจ ื ื•ื— ื•ืื™ื˜ื™
09:02
with aspen trees and alders and willows,
191
542260
3000
ืขื ืขืฆื™ ืฆืคืฆืคื” ื•ืืœืžื•ืŸ ื•ืขืจื‘ื•ืช,
09:05
near the water." That's the best thing for a beaver.
192
545260
2000
ืœื™ื“ ื”ืžื™ื." ื–ื” ื”ื“ื‘ืจ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืœื‘ื•ื ื”.
09:07
So we just started making a list.
193
547260
2000
ืื– ืžืžืฉ ื”ืชื—ืœื ื• ืœื”ืจื›ื™ื‘ ืจืฉื™ืžื”.
09:09
Here is the beaver. And here is the stream,
194
549260
2000
ื”ื ื” ื”ื‘ื•ื ื”. ื•ื”ื ื” ื”ื ื—ืœ,
09:11
and the aspen and the alder and the willow.
195
551260
2000
ืขืฅ ื”ืฆืคืฆืคื” ื•ื”ืืœืžื•ืŸ ื•ื”ืขืจื‘ื”.
09:13
As if these were the maps that we would need
196
553260
2000
ื•ืื ืืœื• ื”ืžืคื•ืช ืฉืื ื• ืฆืจื™ื›ื™ื
09:15
to predict where you would find the beaver.
197
555260
2000
ื›ื“ื™ ืœื—ื–ื•ืช ืื™ืคื” ืื•ืœื™ ืชืžืฆื ืืช ื”ื‘ื•ื ื”.
09:17
Or the bog turtle, needing wet meadows and insects and sunny places.
198
557260
4000
ืื• ื”ืฆื‘, ืฉื–ืงื•ืง ืœืื—ื• ืœื—, ื•ื—ืจืงื™ื ื•ืžืงื•ื ืฉืžืฉื™.
09:21
Or the bobcat, needing rabbits and beavers and den sites.
199
561260
4000
ืื• ื—ืชื•ืœ ื”ื‘ืจ, ืฉืฆืจื™ืš ืืจื ื‘ื™ื ื•ื‘ื•ื ื™ื ื•ืžืื•ืจื”.
09:25
And rapidly we started to realize that beavers can be
200
565260
3000
ื•ืžื”ืจ ืžืื•ื“ ื”ื‘ื ื• ืฉื”ื‘ื•ื ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช
09:28
something that a bobcat needs.
201
568260
3000
ืžืฉื”ื• ืฉื—ืชื•ืœ ื”ื‘ืจ ืฆืจื™ืš.
09:31
But a beaver also needs things. And that having it
202
571260
2000
ืื‘ืœ ื‘ื•ื ื” ื’ื ืฆืจื™ืš ื“ื‘ืจื™ื. ื•ื”ืขื•ื‘ื“ื” ืฉื™ืฉ ืื•ืชื•
09:33
on either side means that we can link it together,
203
573260
2000
ืžืฉื ื™ ืฆื™ื“ื™ ื”ื˜ื‘ืœื” ืžืืคืฉืจืช ืœื ื• ืœืงืฉื•ืจ ื“ื‘ืจื™ื ื™ื—ื“,
09:35
that we can create the network
204
575260
2000
ืื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืจืฉืช
09:37
of the habitat relationships for these species.
205
577260
3000
ืฉืœ ืงืฉืจื™ ื‘ืชื™ ื’ื™ื“ื•ืœ ืขื‘ื•ืจ ื”ืžื™ื ื™ื ื”ืืœื”.
09:40
Moreover, we realized that you can start out
206
580260
2000
ื•ื™ื•ืชืจ ืžื›ืš, ื’ื™ืœื™ื ื• ืฉืืคืฉืจ ืœื”ืชื—ื™ืœ
09:42
as being a beaver specialist,
207
582260
2000
ื‘ืœื”ื™ื•ืช ืžื•ืžื—ื” ืœื‘ื•ื ื™ื,
09:44
but you can look up what an aspen needs.
208
584260
2000
ืื‘ืœ ืืคืฉืจ ืœื”ืชื—ื™ืœ ืœื‘ื“ื•ืง ืžื” ืฆืจื™ืš ืขืฅ ื”ืฆืคืฆืคื”
09:46
An aspen needs fire and dry soils.
209
586260
3000
ืขืฅ ืฆืคืฆืคื” ืฆืจื™ืš ืืฉ ื•ืื“ืžื” ื™ื‘ืฉื”.
09:49
And you can look at what a wet meadow needs.
210
589260
3000
ื•ืืคืฉืจ ืœื‘ื“ื•ืง ืžื” ืื—ื• ืœื— ืฆืจื™ืš.
09:52
And it need beavers to create the wetlands,
211
592260
2000
ื•ื”ื•ื ืฆืจื™ืš ื‘ื•ื ื™ื ื›ื™ ืœื™ืฆื•ืจ ืžื™ืฉื•ืจ ื”ืฆืคื”,
09:54
and maybe some other things.
212
594260
2000
ื•ืื•ืœื™ ืขื•ื“ ื“ื‘ืจื™ื.
09:56
But you can also talk about sunny places.
213
596260
2000
ื•ืืคืฉืจ ืœื“ื‘ืจ ื’ื ืขืœ ืžืงื•ืžื•ืช ืฉืžืฉื™ื™ื.
09:58
So, what does a sunny place need? Not habitat per se.
214
598260
3000
ืื– ืžื” ืฆืจื™ืš ืžืงื•ื ืฉืžืฉื™? ืœื ื‘ื™ืช ื’ื™ื“ื•ืœ ืœื›ืฉืขืฆืžื•.
10:01
But what are the conditions that make it possible?
215
601260
2000
ืืœื ืžื” ื”ืชื ืื™ื ืฉืžืืคืฉืจื™ื ืืช ืงื™ื•ืžื•?
10:03
Or fire. Or dry soils.
216
603260
3000
ืื• ืืฉ. ืื• ืื“ืžื” ื™ื‘ืฉื”.
10:06
And that you can put these on a grid that's 1,000 columns long
217
606260
3000
ื•ืื– ืืคืฉืจ ืœืžืœื ืืช ื›ืœ ื–ื” ื‘ื˜ื‘ืœื” ืฉื™ืฉ ื‘ื” 1000 ืขืžื•ื“ื•ืช
10:09
across the top and 1,000 rows down the other way.
218
609260
3000
ื•-1000 ืฉื•ืจื•ืช ื›ืœืคื™ ืžื˜ื”.
10:12
And then we can visualize this data like a network,
219
612260
3000
ื•ื ื™ืชืŸ ืœื”ืฆื™ื’ ื’ืจืคื™ืช ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื–ื” ื›ืžื• ืจืฉืช,
10:15
like a social network.
220
615260
2000
ื›ืžื• ืจืฉืช ื—ื‘ืจืชื™ืช.
10:17
And this is the network of all the habitat relationships
221
617260
2000
ื•ื–ื•ื”ื™ ื”ืจืฉืช ืฉืœ ื›ืœ ืงืฉืจื™ ื‘ื™ืช ื”ื’ื™ื“ื•ืœ
10:19
of all the plants and animals on Manhattan,
222
619260
2000
ืฉืœ ื›ืœ ื”ืฆืžื—ื™ื ื•ื‘ืขืœื™ ื”ื—ื™ื™ื ืฉืœ ืžื ื”ื˜ืŸ,
10:21
and everything they needed,
223
621260
2000
ื•ื›ืœ ืžื” ืฉื”ื ื–ืงื•ืงื™ื ืœื•,
10:23
going back to the geology,
224
623260
2000
ื”ื—ืœ ืžื”ื’ื™ืื•ืœื•ื’ื™ื”,
10:25
going back to time and space at the very core of the web.
225
625260
3000
ื•ืขื“ ืœื–ืžืŸ ื•ื”ืžืงื•ื ืžืžืฉ ื‘ืœื‘ ื‘ืจืฉืช ื”ื–ื•.
10:28
We call this the Muir Web. And if you zoom in on it it looks like this.
226
628260
3000
ืื ื• ืงื•ืจืื™ื ืœื–ื” ืจืฉืช ืžื•ื™ืจ (Muir). ื•ืื ื ืชืงืจื‘ ื–ื” ื ืจืื” ื›ืš.
10:31
Each point is a different species
227
631260
2000
ื›ืœ ื ืงื•ื“ื” ื›ื–ื• ืžื™ื™ืฆื’ืช ืžื™ืŸ ืื—ืจ
10:33
or a different stream or a different soil type.
228
633260
3000
ืื• ื ื—ืœ ืื—ืจ, ืื• ืกื•ื’ ืงืจืงืข ืื—ืจ.
10:36
And those little gray lines are the connections that connect them together.
229
636260
3000
ื•ื”ืงื•ื•ื™ื ื”ืืคื•ืจื™ื ื”ืงื˜ื ื™ื ื”ื ื”ืงืฉืจื™ื ืฉืžื—ื‘ืจื™ื ืื•ืชื.
10:39
They are the connections that actually make nature resilient.
230
639260
3000
ืืœื• ื”ื ื”ืงืฉืจื™ื ืฉืขื•ืฉื™ื ืืช ื”ื˜ื‘ืข ืขืžื™ื“ ื•ื—ื–ืง.
10:42
And the structure of this is what makes nature work,
231
642260
4000
ื•ื”ืžื‘ื ื” ืฉืœ ื–ื” ื”ื•ื ืžื” ืฉืžืืคืฉืจ ืœื˜ื‘ืข ืœืคืขื•ืœ,
10:46
seen with all its parts.
232
646260
2000
ื‘ื™ื—ื“ ืขืœ ื›ืœ ื—ืœืงื™ื•.
10:48
We call these Muir Webs after the Scottish-American naturalist
233
648260
3000
ืื ื• ืงื•ืจืื™ื ืœืืœื• ืจืฉืชื•ืช ืžื•ื™ืจ ืขืœ ืฉื ืื™ืฉ ื”ื˜ื‘ืข ื”ืกืงื•ื˜ื™ ืืžืจื™ืงืื™
10:51
John Muir, who said, "When we try to pick out anything by itself,
234
651260
3000
ื’'ื•ืŸ ืžื•ื™ืจ, ืฉืืžืจ, "ื›ืฉืื ื• ืžื ืกื™ื ืœื‘ื—ื•ืจ ื›ืœ ื“ื‘ืจ ืจืง ืœืขืฆืžื•,
10:54
we find that it's bound fast by a thousand invisible cords
235
654260
3000
ืื ื• ืžื•ืฆืื™ื ืฉื”ื•ื ื›ืจื•ืš ื‘ืืœืฃ ื—ื•ื˜ื™ื ื‘ืœืชื™ ื ืจืื™ื
10:57
that cannot be broken, to everything in the universe."
236
657260
4000
ืฉืœื ื ื™ืชื ื™ื ืœื ื™ืชื•ืง, ืœื›ืœ ื“ื‘ืจ ื‘ื™ืงื•ื."
11:01
So then we took the Muir webs and we took them back to the maps.
237
661260
3000
ืื– ื›ืฉืœืงื—ื ื• ืืช ืจืฉืชื•ืช ืžื•ื™ืจ ื•ื”ื‘ืื ื• ืื•ืชืŸ ื—ื–ืจื” ืœืžืคื•ืช.
11:04
So if we wanted to go between 85th and 86th,
238
664260
2000
ืื ืจืฆื™ื ื• ืœืœื›ืช ื‘ื™ืŸ ืจื—' 85 ื•-86,
11:06
and Lex and Third,
239
666260
2000
ื•ืจื—' ืœืงืก ื•ืจื—' ืžืกืคืจ 3,
11:08
maybe there was a stream in that block.
240
668260
2000
ืื•ืœื™ ื”ื™ื” ื ื—ืœ ื‘ื‘ืœื•ืง ื”ื–ื”.
11:10
And these would be the kind of trees that might have been there,
241
670260
2000
ื•ืืœื• ืกื•ื’ื™ ื”ืขืฆื™ื ืฉืื•ืœื™ ื”ื™ื• ืฉื.
11:12
and the flowers and the lichens and the mosses,
242
672260
4000
ื•ื”ืคืจื—ื™ื, ื•ื”ื˜ื—ื‘ื™ื ื•ื”ื—ื–ื–ื™ื•ืช,
11:16
the butterflies, the fish in the stream,
243
676260
3000
ื•ื”ืคืจืคืจื™ื, ื•ื”ื“ื’ื™ื ื‘ื ื—ืœ,
11:19
the birds in the trees.
244
679260
2000
ื•ื”ืฆื™ืคื•ืจื™ื ื•ื”ืขืฆื™ื.
11:21
Maybe a timber rattlesnake lived there.
245
681260
2000
ืื•ืœื™ ืขื›ืกืŸ ืขืฆื™ื (ื ื—ืฉ) ื—ื™ ืฉื.
11:23
And perhaps a black bear walked by. And maybe Native Americans were there.
246
683260
3000
ื•ืื•ืœื™ ื“ื‘ ืฉื—ื•ืจ ื”ืœืš ื‘ืกื‘ื™ื‘ื”. ื•ืื•ืœื™ ื™ืœื™ื“ื™ื ืืžืจื™ืงืื™ื ื”ื™ื• ืฉื.
11:26
And then we took this data.
247
686260
2000
ื•ืื– ืœืงื—ื ื• ืืช ื”ืžื™ื“ืข ื”ื–ื”.
11:28
You can see this for yourself on our website.
248
688260
2000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื•ืชื• ื‘ืขืฆืžื›ื ื‘ืืชืจ ืฉืœื ื•.
11:30
You can zoom into any block on Manhattan,
249
690260
2000
ืืชื ื™ื›ื•ืœื™ื ืœื”ืชืžืงื“ ื‘ื›ืœ ื‘ืœื•ืง ื‘ืžื ื”ื˜ืŸ,
11:32
and see what might have been there 400 years ago.
250
692260
3000
ื•ืœืจืื•ืช ืžื” ืื•ืœื™ ื”ื™ื” ืฉื ืœืคื ื™ 400 ืฉื ื”.
11:35
And we used it to try and reveal a landscape
251
695260
3000
ื•ื ื™ืกื™ื ื• ืœื”ืฉืชืžืฉ ื‘ืžื™ื“ืข ื”ื–ื” ื›ื“ื™ ืœื—ืฉื•ืฃ ื ื•ืฃ
11:38
here in Act III.
252
698260
2000
ื›ืืŸ ื‘ืžืขืจื›ื” ื”ืฉืœื™ืฉื™ืช.
11:40
We used the tools they use in Hollywood
253
700260
2000
ื”ืฉืชืžืฉื ื• ื‘ืื•ืชื ื”ื›ืœื™ื ืฉืžืฉืชืžืฉื™ื ื‘ื”ื ื‘ื”ื•ืœื™ื•ื•ื“
11:42
to make these fantastic landscapes that we all see in the movies.
254
702260
3000
ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ื”ื ื•ืคื™ื ื”ืคื ื˜ืกื˜ื™ื™ื ืฉื›ื•ืœื ื• ืจื•ืื™ื ื‘ืกืจื˜ื™ื.
11:45
And we tried to use it to visualize Third Avenue.
255
705260
3000
ื•ื ื™ืกื™ื ื• ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื”ืžื—ื™ืฉ ืืช ื”ืฉื“ืจื” ื”ืฉืœื™ืฉื™ืช ื‘ืชืœืช ืžื™ืžื“.
11:48
So we would take the landscape and we would build up the topography.
256
708260
4000
ืื– ืœืงื—ื ื• ืืช ื”ื ื•ืฃ ื•ื‘ื ื™ื ื• ืืช ื”ื˜ื•ืคื•ื’ืจืคื™ื” ื›ืœืคื™ ืžืขืœื”.
11:52
We'd lay on top of that the soils and the waters, and illuminate the landscape.
257
712260
4000
ื”ื ื—ื ื• ืžืขืœ ืœื–ื” ืืช ื”ืงืจืงืขื•ืช ื•ื’ื•ืคื™ ื”ืžื™ื ื•ื”ืืจื ื• ืืช ื”ื ื•ืฃ.
11:56
We would lay on top of that the map of the ecological communities.
258
716260
3000
ื”ื ื—ื ื• ืขืœ ื’ื‘ื™ ื”ืžืคื” ืืช ื”ื—ื‘ืจื•ืช ื”ืืงื•ืœื•ื’ื™ื•ืช.
11:59
And feed into that the map of the species.
259
719260
3000
ื•ื”ื–ื ื• ืœืชื•ืš ื–ื” ืืช ืžืคืช ื”ืžื™ื ื™ื.
12:02
So that we would actually take a photograph,
260
722260
2000
ื›ืš ืฉื ื•ื›ืœ ืžืžืฉ ืœืฆืœื ืชืžื•ื ื”,
12:04
flying above Times Square, looking toward the Hudson River,
261
724260
2000
ื‘ื˜ื™ืกื” ืžืขืœ ื›ื™ื›ืจ ื˜ื™ื™ืžืก, ืžื‘ื™ื˜ื™ื ืžื˜ื” ืœืขื‘ืจ ื ื”ืจ ื”ื”ื“ืกื•ืŸ,
12:06
waiting for Hudson to come.
262
726260
2000
ืžื—ื›ื™ื ืœื”ื“ืกื•ืŸ ืฉื™ื’ื™ืข.
12:08
Using this technology, we can make these
263
728260
2000
ื‘ืขื–ืจืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื•, ืื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ
12:10
fantastic georeferenced views.
264
730260
2000
ืืช ื”ื ื•ืคื™ื ื”ืžืขื•ื’ื ื™ื ื”ืžื“ื”ื™ืžื™ื ื”ืืœื”.
12:12
We can basically take a picture out of any window
265
732260
2000
ืื ื• ืžืžืฉ ื™ื›ื•ืœื™ื ืœืฆืœื ืชืžื•ื ื” ืžื›ืœ ื—ืœื•ืŸ
12:14
on Manhattan and see what that landscape looked like 400 years ago.
266
734260
3000
ื‘ืžื ื”ื˜ืŸ ื•ืœืจืื•ืช ืื™ืš ื”ื ื•ืฃ ื ืจืื” ืžืฉื ืœืคื ื™ 400 ืฉื ื”.
12:17
This is the view from the East River, looking up Murray Hill
267
737260
3000
ื–ื” ื”ื ื•ืฃ ืžื”ื ื”ืจ ื”ืžื–ืจื—ื™, ืคื•ื ื” ืœืขื‘ืจ ื’ื‘ืขืช ืžืืจื™
12:20
at where the United Nations is today.
268
740260
3000
ืื™ืคื” ืฉื‘ื ื™ื™ืŸ ื”ืื•"ื ื™ื•ืฉื‘ ื”ื™ื•ื.
12:23
This is the view looking down the Hudson River,
269
743260
2000
ื•ื–ื” ื”ื ื•ืฃ ื‘ืžื‘ื˜ ืœืขื‘ืจ ืžื•ืจื“ ื ื”ืจ ื”ื”ื“ืกื•ืŸ,
12:25
with Manhattan on the left, and New Jersey out on the right,
270
745260
3000
ืขื ืžื ื”ื˜ืŸ ืžืฉืžืืœ ื•ื ื™ื• ื’'ืจืกื™ ืžื™ืžื™ืŸ,
12:28
looking out toward the Atlantic Ocean.
271
748260
3000
ืคื•ื ื” ื”ื—ื•ืฆื” ืœืขื‘ืจ ื”ืื•ืงื™ื™ื ื•ืก ื”ืื˜ืœื ื˜ื™.
12:31
This is the view over Times Square,
272
751260
2000
ื–ื” ื”ื ื•ืฃ ืžืขืœ ืœื›ื™ื›ืจ ื˜ื™ื™ืžืก,
12:33
with the beaver pond there, looking out toward the east.
273
753260
4000
ืขื ื‘ืจื™ื›ืช ื”ื‘ื•ื ื” ืฉื, ืคื•ื ื” ื”ื—ื•ืฆื” ืœืžื–ืจื—.
12:37
So we can see the Collect Pond, and Lispenard Marshes back behind.
274
757260
4000
ืื– ืื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื‘ื™ืฆืช ื”ืžืื’ืจ, ื•ื‘ื™ืฆื•ืช ืœื™ืกืคื ืจื“ ืžืื—ื•ืจื™ื”.
12:41
We can see the fields that the Native Americans made.
275
761260
3000
ืื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืฉื“ื•ืช ืฉืœ ื”ื™ืœื™ื“ื™ื ื”ืืžืจื™ืงืื™ื™ื.
12:44
And we can see this in the geography of the city today.
276
764260
4000
ื•ืื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื–ื” ื‘ื’ื™ืื•ื’ืจืคื™ื” ืฉืœ ื”ืขื™ืจ ืฉืœ ื™ืžื™ื ื•.
12:48
So when you're watching "Law and Order," and the lawyers walk up the steps
277
768260
3000
ืื– ื›ืฉืืชื ืจื•ืื™ื "ื—ื•ืง ื•ืกื“ืจ", ื•ืขื•ืจื›ื™ ื”ื“ื™ืŸ ืขื•ืœื™ื ื‘ืžื“ืจื’ื•ืช
12:51
they could have walked back down those steps
278
771260
2000
ื”ื ื™ื›ืœื• ืœืจื“ืช ื‘ืžื“ืจื’ื•ืช ื”ืืœื•
12:53
of the New York Court House, right into the Collect Pond,
279
773260
2000
ืฉืœ ื‘ื™ืช ื”ืžืฉืคื˜ ื‘ื ื™ื• ื™ื•ืจืง ืžืžืฉ ืœืชื•ืš ื‘ื™ืฆืช ื”ืžืื’ืจ,
12:55
400 years ago.
280
775260
4000
ืœืคื ื™ 400 ืฉื ื”.
12:59
So these images are the work of my friend and colleague,
281
779260
3000
ื•ื”ืื™ื•ืจื™ื ื”ืืœื” ื”ื ืขื‘ื•ื“ืชื• ืฉืœ ื—ื‘ืจื™ ื•ืขืžื™ืชื™,
13:02
Mark Boyer, who is here in the audience today.
282
782260
2000
ืžืืจืง ื‘ื•ื™ืืจ, ืฉื ืžืฆื ืคื” ื‘ืงื”ืœ ื”ื™ื•ื.
13:04
And I'd just like, if you would give him a hand,
283
784260
2000
ื•ื”ื™ื™ืชื™ ืจื•ืฆื” ืฉืชืชื ื• ืœื• ืžื—ื™ืื•ืช ื›ืคื™ื™ื,
13:06
to call out for his fine work.
284
786260
3000
ืขืœ ืขื‘ื•ื“ืชื• ื”ื ื”ื“ืจืช.
13:09
(Applause)
285
789260
9000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:18
There is such power in bringing science and visualization together,
286
798260
3000
ื™ืฉ ื›ื–ื• ืขืฆืžื” ืฉื—ื™ื‘ื•ืจ ืฉืœ ืžื“ืข ื•ื”ื“ืžื™ื™ื” ื•ื™ื–ื•ืืœื™ืช ื™ื—ื“,
13:21
that we can create images like this,
287
801260
2000
ื‘ื›ืš ืฉื”ื•ื ืžืืคืฉืจ ืœื ื• ืœื™ืฆื•ืจ ืื™ื•ืจื™ื ื›ืืœื”.
13:23
perhaps looking on either side of a looking glass.
288
803260
3000
ืื•ืœื™ ื‘ื”ืกื›ืœื•ืช ืžืฉื ื™ ืขื‘ืจื™ ื”ืžืจืื”.
13:26
And even though I've only had a brief time to speak,
289
806260
2000
ื•ืืคื™ืœื• ืฉื”ื™ื” ืœื™ ืžืขื˜ ื–ืžืŸ ืœื“ื‘ืจ,
13:28
I hope you appreciate that Mannahatta was a very special place.
290
808260
3000
ืื ื™ ืžืื•ื“ ืžืงื•ื•ื” ืฉืืชื ืžื‘ื™ื ื™ื ืฉืžื ื”ื˜ื” ื”ื™ื” ืžืงื•ื ืžืื•ื“ ืžื™ื•ื—ื“.
13:31
The place that you see here on the left side
291
811260
3000
ื”ืžืงื•ื ืฉืืชื ืจื•ืื™ื ืคื” ื‘ืฆื“ ืฉืžืืœ
13:34
was interconnected. It was based on this diversity.
292
814260
2000
ื”ื™ื” ืžืจื•ืฉืช ืขื ืขืฆืžื•. ื”ื•ื ื”ืชื‘ืกืก ืขืœ ื”ื’ื™ื•ื•ืŸ ืฉืœื•.
13:36
It had this resilience that is what we need in our modern world.
293
816260
5000
ื”ื™ื™ืชื” ืœื• ืืช ื”ืขืžื™ื“ื•ืช ืฉืื ื• ืฆืจื™ื›ื™ื ื‘ืขื•ืœืžื ื• ื”ืžื•ื“ืจื ื™.
13:41
But I wouldn't have you think that I don't like the place
294
821260
3000
ืื‘ืœ ืื ื™ ืœื ืจื•ืฆื” ืฉืชื—ืฉื‘ื• ืฉืื ื™ ืœื ืื•ื”ื‘ ืืช ื”ืžืงื•ื
13:44
on the right, which I quite do. I've come to love the city
295
824260
3000
ืฉืžื™ืžื™ืŸ, ื•ืื ื™ ืื•ื”ื‘ ืื•ืชื•. ืœืžื“ืชื™ ืœืื”ื•ื‘ ืืช ื”ืขื™ืจ
13:47
and its kind of diversity, and its resilience,
296
827260
2000
ื•ืกื•ื’ ื”ื’ื™ื•ื•ืŸ ืฉืœื”, ื”ืขืžื™ื“ื•ืช ืฉืœื”,
13:49
and its dependence on density and how we're connected together.
297
829260
5000
ื”ืชืœื•ืช ืฉืœื” ื‘ืฆืคื™ืคื•ืช ื•ื”ื“ืจืš ืฉื‘ื” ืื ื• ืžืจื•ืฉืชื™ื ื™ื—ื“.
13:54
In fact, that I see them as reflections of each other,
298
834260
4000
ืœืžืขืฉื” ืื ื™ ืจื•ืื” ืืช ืฉื ื™ ื”ืžืงื•ืžื•ืช ื›ื”ืฉืชืงืคื•ืช ื”ืื—ื“ ืฉืœ ื”ืฉื ื™.
13:58
much as Lewis Carroll did in "Through the Looking Glass."
299
838260
3000
ื‘ื“ื•ืžื” ืžืื•ื“ ืœืœื•ืื™ืก ืงืจื•ืœ ื‘-"ืžื‘ืขื“ ืœืžืจืื”".
14:01
We can compare these two and hold them in our minds at the same time,
300
841260
4000
ื ื•ื›ืœ ืœื”ืฉื•ื•ืช ื‘ื™ืŸ ืฉื ื™ื”ื ื•ืœืฉืžื•ืจ ืื•ืชื ื‘ืžื•ื—ื ื• ื‘ืื•ืชื• ื”ื–ืžืŸ,
14:05
that they really are the same place,
301
845260
2000
ื•ืœื”ื‘ื™ืŸ ืฉื”ื ื‘ืืžืช ืื•ืชื• ื”ืžืงื•ื,
14:07
that there is no way that cities can escape from nature.
302
847260
3000
ืฉืื™ืŸ ืฉื•ื ื“ืจืš ืฉื‘ื” ื”ืขืจื™ื ื™ื›ื•ืœื•ืช ืœื”ื™ืžืœื˜ ืžืŸ ื”ื˜ื‘ืข.
14:10
And I think this is what we're learning about building cities in the future.
303
850260
4000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืžื” ืฉืื ื• ืœื•ืžื“ื™ื ืขืœ ื‘ื ื™ื™ืช ืขืจื™ื ื‘ืขืชื™ื“.
14:14
So if you'll allow me a brief epilogue, not about the past,
304
854260
3000
ืื– ืื ืชืจืฉื• ืœื™ ืœื”ื•ืกื™ืฃ ืืคื™ืœื•ื’ ืงืฆืจ, ืœื ืขืœ ื”ืขื‘ืจ,
14:17
but about 400 years from now,
305
857260
2000
ืืœื ืขืœ 400 ืฉื ื” ืžื”ื™ื•ื,
14:19
what we're realizing is that
306
859260
2000
ืžื” ืฉืื ื• ืžื‘ื™ื ื™ื ื”ื•ื
14:21
cities are habitats for people,
307
861260
2000
ืฉืขืจื™ื ื”ืŸ ื‘ืชื™ ื’ื™ื“ื•ืœ ืœืื ืฉื™ื,
14:23
and need to supply what people need:
308
863260
2000
ื•ืฆืจื™ื›ื•ืช ืœืžืœื ืžื” ืฉืื ืฉื™ื ืฆืจื™ื›ื™ื:
14:25
a sense of home, food, water, shelter,
309
865260
3000
ืชื—ื•ืฉื” ืฉืœ ื‘ื™ืช, ืžื–ื•ืŸ, ืžื™ื, ืžื—ืกื”,
14:28
reproductive resources, and a sense of meaning.
310
868260
4000
ืžืฉืื‘ื™ื ืžืชื—ื“ืฉื™ื, ื•ืชื—ื•ืฉืช ืžืฉืžืขื•ืช.
14:32
This is the particular additional habitat requirement of humanity.
311
872260
3000
ื–ื• ื”ืชื•ืกืคืช ื”ื™ื™ื—ื•ื“ื™ืช ืœื“ืจื™ืฉื•ืช ื‘ื™ืช ื”ื’ื™ื“ื•ืœ ืฉืœ ื‘ื ื™ ืื“ื.
14:35
And so many of the talks here at TED are about meaning,
312
875260
3000
ื•ื›ืš ื”ืจื‘ื” ืžื”ืจืฆืื•ืช TED ื ื•ื’ืขื•ืช ื‘ืžืฉืžืขื•ืช,
14:38
about bringing meaning to our lives
313
878260
2000
ื•ื‘ื”ื‘ืืช ืžืฉืžืขื•ืช ืœื—ื™ื™ื ื•
14:40
in all kinds of different ways, through technology,
314
880260
2000
ื‘ื›ืœ ืžื™ื ื™ ื“ืจื›ื™ื ืฉื•ื ื•ืช, ื“ืจืš ื˜ื›ื ื•ืœื•ื’ื™ื”,
14:42
through art, through science,
315
882260
2000
ื“ืจืš ืืžื ื•ืช, ื“ืจืš ืžื“ืข,
14:44
so much so that I think we focus so much on
316
884260
3000
ื›ืœ ื›ืš ื”ืจื‘ื” ืฉื ื“ืžื” ืœื™ ืฉืื ื• ืžืžื•ืงื“ื™ื ื›ืœ ื›ืš
14:47
that side of our lives, that we haven't given enough
317
887260
2000
ื‘ืฆื“ ื”ื–ื” ืฉืœ ื—ื™ื™ื ื•, ืฉืœื ื”ืงื“ืฉื ื• ืžืกืคื™ืง ืžื—ืฉื‘ื”
14:49
attention to the food and the water and the shelter,
318
889260
3000
ื•ืชืฉื•ืžืช ืœื‘ ืœืžื–ื•ืŸ, ืœืžื™ื ื•ืœืžื—ืกื”,
14:52
and what we need to raise the kids.
319
892260
3000
ื•ืœืžื” ืฉื ื“ืจืฉ ื›ื“ื™ ืœื’ื“ืœ ืืช ื”ื™ืœื“ื™ื.
14:55
So, how can we envision the city of the future?
320
895260
3000
ืื–, ืื™ืš ืื ื• ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืืช ื”ืขื™ืจ ื‘ืขืชื™ื“?
14:58
Well, what if we go to Madison Square Park,
321
898260
2000
ืžื” ืื ื ืœืš ืœืคืืจืง ื›ื™ื›ืจ ืžื“ื™ืกื•ืŸ,
15:00
and we imagine it without all the cars,
322
900260
3000
ื•ื ื“ืžื™ื™ืŸ ืื•ืชื• ื‘ืœื™ ื›ืœ ื”ืžื›ื•ื ื™ื•ืช,
15:03
and bicycles instead
323
903260
2000
ื•ืื•ืคื ื™ื™ื ื‘ืžืงื•ืžืŸ,
15:05
and large forests, and streams instead of sewers and storm drains?
324
905260
5000
ื•ื™ืขืจื•ืช ื’ื“ื•ืœื™ื, ื•ื ื—ืœื™ื ื‘ืžืงื•ื ื‘ื™ื•ื‘ื™ื ื•ืžืจื–ื‘ื™ื?
15:10
What if we imagined the Upper East Side
325
910260
2000
ืžื” ืื ื ื“ืžื™ื™ืŸ ืืช ื”ืืคืจ ืื™ืกื˜ ืกื™ื™ื“
15:12
with green roofs, and streams winding through the city,
326
912260
4000
ืขื ื’ื’ื•ืช ื™ืจื•ืงื™ื, ื•ื ื—ืœื™ื ืฉืขื•ืฉื™ื ืืช ื“ืจื›ื ื‘ืชื•ืš ื”ืขื™ืจ,
15:16
and windmills supplying the power we need?
327
916260
3000
ื•ื˜ื•ืจื‘ื™ื ื•ืช ืจื•ื— ืฉืžืกืคืงื•ืช ืืช ื”ื—ืฉืžืœ ืฉืื ื• ืฆืจื™ื›ื™ื?
15:19
Or if we imagine the New York City metropolitan area,
328
919260
3000
ืื• ืื ื ื“ืžื™ื™ืŸ ืืช ื ื™ื• ื™ื•ืจืง ืจื‘ืชื™,
15:22
currently home to 12 million people,
329
922260
2000
ื›ืขืช ืžืื›ืœืกืช 12 ืžืœื™ื•ืŸ ื‘ื ื™ ืื“ื,
15:24
but 12 million people in the future, perhaps living at the density of Manhattan,
330
924260
4000
ืื‘ืœ 12 ืžืœื™ื•ืŸ ื‘ื ื™ ืื“ื ื‘ืขืชื™ื“, ืื•ืœื™ ื™ื’ื•ืจื• ื‘ืฆืคื™ืคื•ืช ืฉืœ ืื–ื•ืจ ืžื ื”ื˜ืŸ,
15:28
in only 36 percent of the area,
331
928260
2000
ืจืง ื‘-36 ืื—ื•ื–ื™ื ืžื”ืฉื˜ื—,
15:30
with the areas in between covered by farmland,
332
930260
3000
ื›ืฉืื–ื•ืจื™ ื”ื‘ื™ื ื™ื™ื ื™ื›ื•ืกื• ื‘ืฉื˜ื—ื™ื ื—ืงืœืื™ื™ื,
15:33
covered by wetlands,
333
933260
2000
ื‘ืžื™ืฉื•ืจื™ ื”ืฆืคื”,
15:35
covered by the marshes we need.
334
935260
2000
ื‘ื‘ื™ืฆื•ืช ืฉืื ื• ืฆืจื™ื›ื™ื.
15:37
This is the kind of future I think we need,
335
937260
3000
ื–ื” ื”ืขืชื™ื“ ืฉืื ื™ ื—ื•ืฉื‘ ืฉืื ื• ืฆืจื™ื›ื™ื,
15:40
is a future that has the same diversity
336
940260
3000
ื–ื” ืขืชื™ื“ ืฉื™ืฉ ืœื• ืื•ืชื• ื”ื’ื™ื•ื•ืŸ
15:43
and abundance and dynamism of Manhattan,
337
943260
3000
ื•ืชืคื•ืฆื” ื•ื“ื™ื ืžื™ื•ืช ืฉืœ ืžื ื”ื˜ืŸ,
15:46
but that learns from the sustainability of the past,
338
946260
3000
ืื‘ืœ ืœื•ืžื“ ืžืชื•ืš ื”ืงื™ื™ืžื•ืช ืฉืœ ื”ืขื‘ืจ,
15:49
of the ecology, the original ecology, of nature with all its parts.
339
949260
5000
ืฉืœ ื”ืืงื•ืœื•ื’ื™ื”, ืฉืœ ื”ืืงื•ืœื•ื’ื™ื” ื”ืžืงื•ืจื™ืช, ืฉืœ ื”ื˜ื‘ืข ืขืœ ื›ืœ ื—ืœืงื™ื•.
15:54
Thank you very much.
340
954260
2000
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
15:56
(Applause)
341
956260
7000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7