Frederic Kaplan: How I built an information time machine

78,615 views ใƒป 2014-01-09

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Boaz Hovav
00:12
This is an image of the planet Earth.
0
12285
2893
ื–ื•ื”ื™ ืชืžื•ื ืช ื›ื“ื•ืจ-ื”ืืจืฅ.
00:15
It looks very much like the Apollo pictures
1
15178
3093
ื”ื™ื ืžืื•ื“ ื“ื•ืžื” ืœืชืžื•ื ื•ืช ืžื”ื—ืœืœื™ืช ืืคื•ืœื•
00:18
that are very well known.
2
18271
1611
ื”ืžื•ื›ืจื•ืช ืœื›ื•ืœื.
00:19
There is something different;
3
19882
2070
ืื‘ืœ ื™ืฉ ื”ื‘ื“ืœ;
00:21
you can click on it,
4
21952
1447
ื ื™ืชืŸ ืœื”ืงืœื™ืง ืขืœื™ื”,
00:23
and if you click on it,
5
23399
1198
ื•ืื ืขื•ืฉื™ื ื–ืืช,
00:24
you can zoom in on almost any place on the Earth.
6
24597
3072
ืžืงื‘ืœื™ื ื–ื•ื ืขืœ ื›ืžืขื˜ ื›ืœ ืื–ื•ืจ ื‘ืขื•ืœื.
00:27
For instance, this is a bird's-eye view
7
27669
1999
ืœื“ื•ื’ืžื, ื–ื”ื• ืžื‘ื˜ ืžืžืขื•ืฃ ืฆื™ืคื•ืจ
00:29
of the EPFL campus.
8
29668
2666
ืขืœ ืงืžืคื•ืก ื”- EPFL.
00:32
In many cases, you can also see
9
32334
2108
ื‘ืžืงืจื™ื ืจื‘ื™ื, ื ื™ืชืŸ ื’ื ืœืจืื•ืช
00:34
how a building looks from a nearby street.
10
34442
3740
ื›ื™ืฆื“ ื‘ื ื™ื™ืŸ ืžืกื•ื™ื™ื ื ืจืื” ืžื”ืจื—ื•ื‘ ืœื™ื“.
00:38
This is pretty amazing.
11
38182
1422
ื–ื” ื“ื™ ืžื“ื”ื™ื.
00:39
But there's something missing in this wonderful tour:
12
39604
3427
ืื‘ืœ ืžืฉื”ื• ื—ืกืจ ื‘ืกื™ื•ืจ ืžื•ืคืœื ื–ื”:
00:43
It's time.
13
43031
2188
ื”ื–ืžืŸ ื—ืกืจ.
00:45
i'm not really sure when this picture was taken.
14
45219
3070
ืื™ื ื™ ื‘ื˜ื•ื— ืžืชื™ ืชืžื•ื ื” ื–ื• ืฆื•ืœืžื”.
00:48
I'm not even sure it was taken
15
48289
1412
ืื™ื ื™ ืืคื™ืœื• ื‘ื˜ื•ื—
00:49
at the same moment as the bird's-eye view.
16
49701
6083
ืฉื”ื™ื ืฆื•ืœืžื” ื‘ืื•ืชื• ื–ืžืŸ ืฉืœ ื”ืžื‘ื˜ ืžืžืขื•ืฃ ื”ืฆื™ืคื•ืจ.
00:55
In my lab, we develop tools
17
55784
2209
ื‘ืžืขื‘ื“ื” ืฉืœื ื•, ืื ื• ืžืคืชื—ื™ื ื›ืœื™ื
00:57
to travel not only in space
18
57993
1764
ืœืžืกืข ืœื ืจืง ื‘ืžืจื—ื‘
00:59
but also through time.
19
59757
2558
ืืœื ื’ื ื‘ื–ืžืŸ.
01:02
The kind of question we're asking is
20
62315
1870
ื”ืฉืืœื” ืฉืื ื• ืฉื•ืืœื™ื ื”ื™ื:
01:04
Is it possible to build something
21
64185
1393
ื”ืื ื ื™ืชืŸ ืœื‘ื ื•ืช ืžืฉื”ื•
01:05
like Google Maps of the past?
22
65578
2178
ื›ืžื• ืžืคื•ืช ื’ื•ื’ืœ ืฉืœ ื”ืขื‘ืจ?
01:07
Can I add a slider on top of Google Maps
23
67756
3310
ื”ืื ื ื™ืชืŸ ืœื”ื•ืกื™ืฃ ื›ืคืชื•ืจ ื‘ืจืืฉ ืžืคื•ืช ื’ื•ื’ืœ
01:11
and just change the year,
24
71066
1803
ื•ืœืฉื ื•ืช ื‘ืืžืฆืขื•ืชื• ืืช ื”ืฉื ื”,
01:12
seeing how it was 100 years before,
25
72869
1791
ื›ื“ื™ ืœืจืื•ืช ื›ื™ืฆื“ ื–ื” ื”ื™ื” ืœืคื ื™ 100 ืฉื ื”,
01:14
1,000 years before?
26
74660
1669
ืœืคื ื™ 1,000 ืฉื ื”?
01:16
Is that possible?
27
76329
2123
ื”ืื ื–ื” ืืคืฉืจื™?
01:18
Can I reconstruct social networks of the past?
28
78452
2252
ื”ืื ื ื™ืชืŸ ืœืฉื—ื–ืจ ืจืฉืชื•ืช ื—ื‘ืจืชื™ื•ืช ืžืŸ ื”ืขื‘ืจ?
01:20
Can I make a Facebook of the Middle Ages?
29
80704
3049
ื”ืื ื ื™ืชืŸ ืœื™ืฆื•ืจ ืคื™ื™ืกื‘ื•ืง ืฉืœ ื™ืžื™-ื”ื‘ื™ื ื™ื™ื?
01:23
So, can I build time machines?
30
83753
3776
ื”ืื ื ื™ืชืŸ ืœื‘ื ื•ืช ืžื›ื•ื ื•ืช ื–ืžืŸ?
01:27
Maybe we can just say, "No, it's not possible."
31
87529
2565
ืื•ืœื™ ืืคืฉืจ ืคืฉื•ื˜ ืœื•ืžืจ, "ืœื, ื–ื” ื‘ืœืชื™ ืืคืฉืจื™."
01:30
Or, maybe, we can think of it from an information point of view.
32
90094
3810
ืื• ืฉืื•ืœื™ ื ื™ืชืŸ ืœื—ืฉื•ื‘ ืขืœ ื›ืš ืžื ืงื•ื“ืช ืžื‘ื˜ ืฉืœ ืžื™ื“ืข.
01:33
This is what I call the information mushroom.
33
93904
3190
ืœื–ื” ืื ื™ ืงื•ืจื ืคื˜ืจื™ื™ืช ื”ืžื™ื“ืข.
01:37
Vertically, you have the time.
34
97094
1583
ืื ื›ื™ืช, ื–ื” ื”ื–ืžืŸ.
01:38
and horizontally, the amount of digital information available.
35
98677
2740
ืื•ืคืงื™ืช, ื›ืžื•ืช ื”ืžื™ื“ืข ื”ื“ื™ื’ื™ื˜ืœื™ ื”ื–ืžื™ืŸ.
01:41
Obviously, in the last 10 years, we have much information.
36
101417
3482
ื‘ืจื•ืจ ืฉื‘-10 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช, ื™ืฉ ืœื ื• ื”ืžื•ืŸ ืžื™ื“ืข.
01:44
And obviously the more we go in the past, the less information we have.
37
104899
3548
ื•ื‘ืจื•ืจ ืฉื›ื›ืœ ืฉืื ื• ื ืขื™ื ืืœ ื”ืขื‘ืจ, ื™ืฉ ืคื—ื•ืช ืžื™ื“ืข.
01:48
If we want to build something like Google Maps of the past,
38
108447
2318
ืื ื‘ืจืฆื•ื ื ื• ืœื‘ื ื•ืช ืžืฉื”ื• ื›ืžื• ืžืคื•ืช ื’ื•ื’ืœ ืฉืœ ื”ืขื‘ืจ,
01:50
or Facebook of the past,
39
110765
1494
ืื• ืคื™ื™ืกื‘ื•ืง ืฉืœ ื”ืขื‘ืจ,
01:52
we need to enlarge this space,
40
112259
1574
ืขืœื™ื ื• ืœื”ื’ื“ื™ืœ ืžืจื—ื‘ ื–ื”,
01:53
we need to make that like a rectangle.
41
113833
1938
ืขืœื™ื ื• ืœื”ืคื›ื• ืœืฆื•ืจืช ืžืœื‘ืŸ.
01:55
How do we do that?
42
115771
1510
ื›ื™ืฆื“ ืขื•ืฉื™ื ื–ืืช?
01:57
One way is digitization.
43
117281
2098
ื“ืจืš ืื—ืช ื”ื™ื ื“ื™ื’ื™ื˜ืœื™ื–ืฆื™ื”.
01:59
There's a lot of material available --
44
119395
1779
ื™ืฉ ื”ืžื•ืŸ ื—ื•ืžืจ ื–ืžื™ืŸ --
02:01
newspaper, printed books, thousands of printed books.
45
121190
6270
ืขื™ืชื•ื ื™ื, ืกืคืจื™ื, ืืœืคื™ ืกืคืจื™ื.
02:07
I can digitize all these.
46
127460
1768
ื ื™ืชืŸ ืœื”ืคื›ื ืœื“ื™ื’ื™ื˜ืœื™ื™ื.
02:09
I can extract information from these.
47
129228
2737
ื ื™ืชืŸ ืœืฉืœื•ืฃ ืžื”ื ืžื™ื“ืข.
02:11
Of course, the more you go in the past, the less information you will have.
48
131965
3543
ื‘ืจื•ืจ ืฉื›ื›ืœ ืฉื ืขื™ื ืืœ ื”ืขื‘ืจ, ื ืงื‘ืœ ืคื—ื•ืช ื ืชื•ื ื™ื.
02:15
So, it might not be enough.
49
135508
2646
ืœื›ืŸ ื–ื” ืขืœื•ืœ ืฉืœื ืœื”ืกืคื™ืง.
02:18
So, I can do what historians do.
50
138154
2408
ืื– ืืคืฉืจ ืœืขืฉื•ืช ืžื” ืฉื”ื™ืกื˜ื•ืจื™ื•ื ื™ื ืขื•ืฉื™ื.
02:20
I can extrapolate.
51
140562
1524
ืœืขืฉื•ืช ืืงืกื˜ืจืคื•ืœืฆื™ื”.
02:22
This is what we call, in computer science, simulation.
52
142086
4470
ืœื–ื” ืื ื• ืงื•ืจืื™ื, ื‘ืžื“ืขื™ ื”ืžื—ืฉื‘, ื”ื“ืžื™ื”.
02:26
If I take a log book,
53
146556
1751
ืื ืื ื™ ืœื•ืงื— ื™ื•ืžืŸ,
02:28
I can consider, it's not just a log book
54
148307
2404
ืื ื™ ื™ื›ื•ืœ ืœื”ื—ืฉื™ื‘ื• ืœื ืจืง ื‘ืชื•ืจ ื™ื•ืžืŸ
02:30
of a Venetian captain going to a particular journey.
55
150711
2972
ืฉืœ ืจื‘-ื—ื•ื‘ืœ ื•ื ืฆื™ืื ื™ ื”ืžืคืœื™ื’ ืœืžืกืข ืžืกื•ื™ื™ื.
02:33
I can consider it is actually a log book
56
153683
1643
ืื ื™ ื™ื›ื•ืœ ืœื”ื—ืฉื™ื‘ื• ื‘ืชื•ืจ ื™ื•ืžืŸ
02:35
which is representative of many journeys of that period.
57
155326
2582
ื”ืžื™ื™ืฆื’ ื”ืจื‘ื” ื”ืคืœื’ื•ืช ืฉืœ ืื•ืชื” ืชืงื•ืคื”.
02:37
I'm extrapolating.
58
157908
2245
ืื ื™ ืขื•ืฉื” ืืงืกื˜ืจืคื•ืœืฆื™ื”.
02:40
If I have a painting of a facade,
59
160153
2038
ืื ื™ืฉ ืฆื™ื•ืจ ืฉืœ ื—ื–ื™ืช ืžื‘ื ื”,
02:42
I can consider it's not just that particular building,
60
162191
2751
ืื ื™ ื™ื›ื•ืœ ืœื”ื—ืฉื™ื‘ื• ืœื ืจืง ื›ื›ื–ื” ื”ืฉื™ื™ืš
02:44
but probably it also shares the same grammar
61
164942
3932
ืœืžื‘ื ื” ืžืกื•ื™ื™ื, ืืœื ื›ื›ื–ื” ื”ืžื™ื™ืฆื’ ืฉื™ื˜ืช ื‘ื ื™ื”
02:48
of buildings where we lost any information.
62
168874
4041
ืฉืœ ืžื‘ื ื™ื ืื—ืจื™ื ืฉืื™ืŸ ืœื ื• ืžื™ื“ืข ืขืœื™ื”ื.
02:52
So if we want to construct a time machine,
63
172915
2858
ืœื›ืŸ ืื ื‘ืจืฆื•ื ื ื• ืœื‘ื ื•ืช ืžื›ื•ื ืช ื–ืžืŸ,
02:55
we need two things.
64
175773
1339
ื“ืจื•ืฉื™ื ืœื ื• ืฉื ื™ ื“ื‘ืจื™ื.
02:57
We need very large archives,
65
177112
2234
ืื ื• ื–ืงื•ืงื™ื ืœืžืื’ืจื™ ื ืชื•ื ื™ื ืžืื•ื“ ื’ื“ื•ืœื™ื,
02:59
and we need excellent specialists.
66
179346
2742
ื•ืื ื• ื–ืงื•ืงื™ื ืœืžื•ืžื—ื™ื ืžืฆื˜ื™ื™ื ื™ื.
03:02
The Venice Time Machine,
67
182088
1874
ืžื›ื•ื ืช ื”ื–ืžืŸ ื”ื•ื ืฆื™ืื ื™ืช,
03:03
the project I'm going to talk to you about,
68
183962
1805
ื”ืžื™ื–ื ืฉืื ื™ ืขื•ืžื“ ืœื“ื‘ืจ ืขืœื™ื•,
03:05
is a joint project between the EPFL
69
185767
3020
ื”ื•ื ืžื™ื–ื ืžืฉื•ืชืฃ ื‘ื™ืŸ ื”-EPFL
03:08
and the University of Venice Ca'Foscari.
70
188787
2978
ื•ืื•ื ื™ื‘ืจืกื™ื˜ืช Venice Ca'Foscari.
03:11
There's something very peculiar about Venice,
71
191765
2165
ื™ืฉ ื“ื‘ืจ ืื—ื“ ืžืื•ื“ ืžื™ื•ื—ื“ ื‘ื•ื ืฆื™ื”,
03:13
that its administration has been
72
193930
2674
ื•ื”ื•ื ืฉื”ืžืžืกื“ ืฉื ื”ื™ื” ืชืžื™ื“
03:16
very, very bureaucratic.
73
196604
2194
ืžืื•ื“ ื™ื™ืงื”.
03:18
They've been keeping track of everything,
74
198798
2193
ื”ื ืฉืžืจื• ืฉื ื”ื›ืœ,
03:20
almost like Google today.
75
200991
2915
ื›ืžืขื˜ ื›ืžื• ื’ื•ื’ืœ ื”ื™ื•ื.
03:23
At the Archivio di Stato,
76
203906
1514
ื‘- Archivio di Stato,
03:25
you have 80 kilometers of archives
77
205420
1764
ื™ืฉ 80 ืง"ืž ืฉืœ ืืจื›ื™ื•ื ื™ื
03:27
documenting every aspect
78
207184
2009
ื”ืžืชืขื“ื™ื ื›ืœ ืืกืคืงื˜ ืฉืœ ื”ื—ื™ื™ื
03:29
of the life of Venice over more than 1,000 years.
79
209193
2246
ื‘ื•ื ืฆื™ื” ื‘ืžืฉืš ื™ื•ืชืจ ืž-1,000 ืฉื ื”.
03:31
You have every boat that goes out,
80
211439
1920
ื™ืฉ ืจื™ืฉื•ื ืฉืœ ื›ืœ ืกืคื™ื ื” ืฉื”ืคืœื™ื’ื”,
03:33
every boat that comes in.
81
213359
1076
ื›ืœ ืกืคื™ื ื” ืฉื ื›ื ืกืช.
03:34
You have every change that was made in the city.
82
214435
2797
ืฉืœ ื›ืœ ืฉื™ื ื•ื™ ืฉื‘ื•ืฆืข ื‘ืขื™ืจ.
03:37
This is all there.
83
217232
3291
ื”ื›ืœ ืžืชื•ืขื“ ืฉื.
03:40
We are setting up a 10-year digitization program
84
220523
3908
ืื ื• ืžืชื—ื™ืœื™ื ืžื™ื–ื ื“ื™ื’ื™ื˜ืœื™ื–ืฆื™ื” ื‘ืŸ 10 ืฉื ื™ื
03:44
which has the objective of transforming
85
224431
1677
ืฉืžื˜ืจืชื• ืœื”ืคื•ืš ืืช
03:46
this immense archive
86
226108
1384
ื”ืืจื›ื™ื•ืŸ ื”ื›ื‘ื™ืจ ื”ื–ื”
03:47
into a giant information system.
87
227492
2426
ืœืžืื’ืจ ืžื™ื“ืข ืขื ืงื™.
03:49
The type of objective we want to reach
88
229918
1857
ื”ื™ืขื“ ืฉืื ื• ืจื•ืฆื™ื
03:51
is 450 books a day that can be digitized.
89
231775
4726
ืœื”ื’ื™ืข ืืœื™ื• ื–ื” 450 ืกืคืจื™ื ื‘ื™ื•ื ืฉื™ืขื‘ืจื• ื“ื™ื’ื™ื˜ืœื™ื–ืฆื™ื”.
03:56
Of course, when you digitize, that's not enough,
90
236501
2247
ืื‘ืœ ื‘ืจื•ืจ ืฉื–ื” ืœื ืžืกืคื™ืง ืœืขืฉื•ืช ื“ื™ื’ื™ื˜ืœื™ื–ืฆื™ื”,
03:58
because these documents,
91
238748
1287
ื›ื™ ืžืกืžื›ื™ื ื”ืœืœื•,
04:00
most of them are in Latin, in Tuscan,
92
240035
2639
ื‘ืจื•ื‘ื ื”ื ื‘ืœื˜ื™ื ื™ืช, ื˜ื•ืกืงื ื™ืช,
04:02
in Venetian dialect,
93
242689
1515
ื‘ื ื™ื‘ ื•ื ืฆื™ืื ื™,
04:04
so you need to transcribe them,
94
244204
1675
ืœื›ืŸ ืฆืจื™ืš ืœืชืขืชืง ืื•ืชื,
04:05
to translate them in some cases,
95
245879
1681
ืœืชืจื’ืžื ื‘ืžืงืจื™ื ืžืกื•ื™ื™ืžื™ื,
04:07
to index them,
96
247560
1120
ืœืžืกืคืจ ืื•ืชื,
04:08
and this is obviously not easy.
97
248680
2164
ื•ื‘ืจื•ืจ ืฉื›ืœ ื–ื” ืœื ืงืœ.
04:10
In particular, traditional optical character recognition method
98
250844
3844
ื‘ืžื™ื•ื—ื“, ื”ืฉื™ื˜ื” ื”ืžืกื•ืจืชื™ืช ืœื–ื™ื”ื•ื™ ืื•ืคื˜ื™ ืฉืœ ืื•ืชื™ื•ืช, ื”ืžืฉืžืฉืช
04:14
that can be used for printed manuscripts,
99
254688
1424
ืœื›ืชื‘ื™-ื™ื“ ืžื•ื“ืคืกื™ื,
04:16
they do not work well on the handwritten document.
100
256112
4004
ืื™ื ื” ื™ืขื™ืœื” ืœืžืกืžื›ื™ื ื”ื›ืชื•ื‘ื™ื ื‘ื™ื“.
04:20
So the solution is actually to take inspiration
101
260116
2130
ื”ืคื™ืชืจื•ืŸ ืœื›ืš ืžื’ื™ืข
04:22
from another domain: speech recognition.
102
262246
2901
ืžืชื—ื•ื ืื—ืจ: ื–ื™ื”ื•ื™ ื“ื™ื‘ื•ืจ.
04:25
This is a domain of something that seems impossible,
103
265147
2055
ื–ื” ืžืฉื”ื• ืฉื ืจืื” ื‘ืœืชื™ ืืคืฉืจื™,
04:27
which can actually be done,
104
267202
2537
ืื‘ืœ ื‘ืขืฆื ื ื™ืชืŸ ืœื”ื•ืฆื™ืื• ืœืคื•ืขืœ,
04:29
simply by putting additional constraints.
105
269739
2194
ืคืฉื•ื˜ ืขืœ-ื™ื“ื™ ื”ื•ืกืคืช ืื™ืœื•ืฆื™ื.
04:31
If you have a very good model
106
271933
1586
ืื ื™ืฉ ืœื ื• ื“ื•ื’ืžื” ื˜ื•ื‘ื”
04:33
of a language which is used,
107
273519
1526
ืฉืœ ื”ืฉืคื” ืฉื‘ืฉื™ืžื•ืฉ,
04:35
if you have a very good model of a document,
108
275045
2086
ืื ื™ืฉ ืœื ื• ื“ื•ื’ืžื” ื˜ื•ื‘ื” ืฉืœ ืžืกืžืš,
04:37
how well they are structured.
109
277131
1432
ื›ืœื•ืžืจ, ืื ื”ื•ื ื‘ื ื•ื™ ื›ื”ืœื›ื”.
04:38
And these are administrative documents.
110
278563
1353
ื•ืืœื” ื”ื ืžืกืžื›ื™ื ืžื ื”ืœืชื™ื™ื.
04:39
They are well structured in many cases.
111
279931
2132
ื‘ืจื•ื‘ ื”ืžืงืจื™ื ื”ื ื‘ื ื•ื™ื™ื ื›ื”ืœื›ื”.
04:42
If you divide this huge archive into smaller subsets
112
282063
3308
ืื ืžื—ืœืงื™ื ืืช ื”ืืจื›ื™ื•ืŸ ื”ืขื ืงื™ ื”ื–ื” ืœืžืจื›ื™ื‘ื™-ืžืฉื ื”
04:45
where a smaller subset actually shares similar features,
113
285371
2877
ื‘ื”ื ื›ืœ ืžืจื›ื™ื‘ ื›ื–ื”, ื™ืฉ ืœื• ืชื›ื•ื ื•ืช ื”ื“ื•ืžื•ืช ืœืื—ืจื™ื,
04:48
then there's a chance of success.
114
288248
4031
ืื– ื™ืฉ ืกื™ื›ื•ื™ ืœื”ืฆืœื™ื—.
04:54
If we reach that stage, then there's something else:
115
294761
2435
ืื ืžื’ื™ืขื™ื ืœืฉืœื‘ ื”ื–ื”, ื ืชืงืœื™ื ื‘ืขื•ื“ ืžืฉื”ื•:
04:57
we can extract from this document events.
116
297196
3522
ื ื™ืชืŸ ืœืฉืœื•ืฃ ืžืžืกืžืš ื›ื–ื” ืื™ืจื•ืขื™ื.
05:00
Actually probably 10 billion events
117
300718
2298
ืงืจื•ื‘ ืœื•ื“ืื™ ื ื™ืชืŸ ืœืฉืœื•ืฃ 10 ืžื™ืœื™ืืจื“
05:03
can be extracted from this archive.
118
303016
1931
ืื™ืจื•ืขื™ื ืžืืจื›ื™ื•ืŸ ื–ื”.
05:04
And this giant information system
119
304947
1724
ื ื™ืชืŸ ืœื—ืคืฉ ื‘ืชื•ืš ืžืขืจื›ืช ืžื™ื“ืข
05:06
can be searched in many ways.
120
306671
1816
ืขื ืงื™ืช ื›ื–ื• ื‘ื”ืžื•ืŸ ื“ืจื›ื™ื.
05:08
You can ask questions like,
121
308487
1368
ื ื™ืชืŸ ืœืฉืื•ืœ ืฉืืœื•ืช ื›ื’ื•ืŸ,
05:09
"Who lived in this palazzo in 1323?"
122
309855
2760
"ืžื™ ื—ื™ ื‘ืžื‘ื ื” ืžืคื•ืืจ ื–ื” ื‘-1,323?"
05:12
"How much cost a sea bream at the Realto market
123
312615
2222
"ื›ืžื” ืขืœื” ื“ื’ ื“ื ื™ืก ื‘ืฉื•ืง ืฉืœ
05:14
in 1434?"
124
314837
1724
ืžื—ื•ื– ืจื™ืืœื˜ื• ื‘ืฉื ืช 1,434?"
05:16
"What was the salary
125
316561
1460
"ืžื” ื”ื™ืชื” ืžืฉื›ื•ืจืชื•
05:18
of a glass maker in Murano
126
318021
2045
ืฉืœ ื ืคื— ื–ื›ื•ื›ื™ืช ื‘-Murano
05:20
maybe over a decade?"
127
320066
1406
ื‘ืžืฉืš ืขืฉื•ืจ?"
05:21
You can ask even bigger questions
128
321472
1422
ืืคืฉืจ ืืฃ ืœืฉืื•ืœ ืฉืืœื•ืช
05:22
because it will be semantically coded.
129
322894
2738
ื™ื•ืชืจ ืžื•ืจื›ื‘ื•ืช ื›ื™ ื”ืžืื’ืจ ื™ื›ื™ืœ ื”ื’ื“ืจื•ืช ืกืžื ื˜ื™ื•ืช.
05:25
And then what you can do is put that in space,
130
325632
2140
ื•ืื– ืžื” ืฉื ื™ืชืŸ ื™ื”ื™ื” ืœืขืฉื•ืช ื–ื” ืœืฉื™ื ืžื™ื“ืข ื‘ืžืจื—ื‘,
05:27
because much of this information is spatial.
131
327772
2173
ื›ื™ ื”ืจื‘ื” ืžื”ืžื™ื“ืข ื”ื•ื ืžืจื—ื‘ื™.
05:29
And from that, you can do things like
132
329945
1935
ื•ืžื–ื”, ื ื™ืชืŸ ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ืžื•
05:31
reconstructing this extraordinary journey
133
331880
2113
ืœืฉื—ื–ืจ ืืช ื”ืžืกืข ื™ื•ืฆื-ื”ื“ื•ืคืŸ
05:33
of that city that managed to have a sustainable development
134
333993
3356
ืฉืœ ืขื™ืจ ืžืกื•ื™ื™ืžืช ืฉื”ื™ื” ื‘ื” ืคื™ืชื•ื— ืžืชืžืฉืš
05:37
over a thousand years,
135
337349
2126
ื‘ืžืฉืš 1,000 ืฉื ื”,
05:39
managing to have all the time
136
339475
1620
ื•ืฉื”ืฆืœื™ื—ื” ื‘ืžืฉืš ื›ืœ
05:41
a form of equilibrium with its environment.
137
341095
2861
ืื•ืชื” ืชืงื•ืคื” ืœืฉืžื•ืจ ืขืœ ืื™ื–ื•ืŸ ืขื ืกื‘ื™ื‘ืชื”.
05:43
You can reconstruct that journey,
138
343956
1248
ื ื™ืชืŸ ืœืฉื—ื–ืจ ืื•ืชื• ืžืกืข
05:45
visualize it in many different ways.
139
345204
2896
ื•ืœืฆืคื•ืช ื‘ื• ื‘ืื•ืคื ื™ื ืฉื•ื ื™ื.
05:48
But of course, you cannot understand Venice if you just look at the city.
140
348100
2699
ืื‘ืœ ื‘ืจื•ืจ ืฉืœื ื ื™ืชืŸ ืœื”ื‘ื™ืŸ ืืช ื•ื ืฆื™ื” ืจืง ืžืชื•ืš ืฆืคื™ื™ื” ื‘ืขื™ืจ.
05:50
You have to put it in a larger European context.
141
350799
2396
ื™ืฉ ืœืžืงื ืื•ืชื” ื‘ื”ืงืฉืจ ืื™ืจื•ืคืื™ ืจื—ื‘.
05:53
So the idea is also to document all the things
142
353195
2821
ืœื›ืŸ ื”ืจืขื™ื•ืŸ ื”ื•ื ืœืชืขื“ ืืช ื›ืœ ื”ื“ื‘ืจื™ื
05:56
that worked at the European level.
143
356016
2423
ืฉื”ืฆืœื™ื—ื• ื‘ืจืžื” ื”ืื™ืจื•ืคืื™ืช.
05:58
We can reconstruct also the journey
144
358439
1964
ืื ื• ื™ื›ื•ืœื™ื ืœืฉื—ื–ืจ ื’ื ืืช ืชื•ืœื“ื•ืช
06:00
of the Venetian maritime empire,
145
360403
1990
ื”ืื™ืžืคืจื™ื” ื”ื™ืžื™ืช ืฉืœ ื•ื ืฆื™ื”,
06:02
how it progressively controlled the Adriatic Sea,
146
362393
3166
ื›ื™ืฆื“ ื”ื™ื ื”ืœื›ื” ื•ื”ืฉืชืœื˜ื” ืขืœ ืื–ื•ืจ ื”ื™ื-ื”ืื“ืจื™ืื˜ื™,
06:05
how it became the most powerful medieval empire
147
365559
3746
ื›ื™ืฆื“ ื”ื™ื ื”ืคื›ื” ืœืื™ืžืคืจื™ื” ื”ื›ื™ ื—ื–ืงื” ืฉืœ ื™ืžื™-ื”ื‘ื™ื ื™ื™ื
06:09
of its time,
148
369305
1561
ื‘ืชืงื•ืคืชื”,
06:10
controlling most of the sea routes
149
370866
2172
ืฉื•ืœื˜ืช ืขืœ ืžืจื‘ื™ืช ื”ื ืชื™ื‘ื™ื ื”ื™ืžื™ื™ื
06:13
from the east to the south.
150
373038
2933
ืžื”ืžื–ืจื— ื“ืจื•ืžื”.
06:17
But you can even do other things,
151
377305
2316
ืื‘ืœ ื ื™ืชืŸ ืœื‘ืฆืข ืขื•ื“ ื“ื‘ืจื™ื ืื—ืจื™ื,
06:19
because in these maritime routes,
152
379621
2277
ื›ื™ ื‘ื ืชื™ื‘ื™ื ื”ื™ืžื™ื™ื ื”ืœืœื•,
06:21
there are regular patterns.
153
381898
1975
ื™ืฉ ืชื‘ื ื™ื•ืช ืงื‘ื•ืขื•ืช.
06:23
You can go one step beyond
154
383889
2493
ื ื™ืชืŸ ืœืขืฉื•ืช ืฆืขื“ ื ื•ืกืฃ
06:26
and actually create a simulation system,
155
386382
2120
ื•ืžืžืฉ ืœื™ืฆื•ืจ ืžืขืจื›ืช ื”ื“ืžื™ื”,
06:28
create a Mediterranean simulator
156
388502
2815
ืœื™ืฆื•ืจ ืกื™ืžื•ืœื˜ื•ืจ ืฉืœ ื”ื™ื-ื”ืชื™ื›ื•ืŸ
06:31
which is capable actually of reconstructing
157
391317
2593
ืฉื™ื”ื™ื” ืžืกื•ื’ืœ ืžืžืฉ ืœืฉื—ื–ืจ
06:33
even the information we are missing,
158
393910
2202
ืืคื™ืœื• ืืช ื”ืžื™ื“ืข ืฉื—ืกืจ,
06:36
which would enable us to have questions you could ask
159
396112
2988
ื“ื‘ืจ ืฉื™ืืคืฉืจ ืœื ื• ืœืฉืื•ืœ ืฉืืœื•ืช
06:39
like if you were using a route planner.
160
399100
2988
ื›ืื™ืœื• ืื ื• ืžืฉืชืžืฉื™ื ื‘ืžืชื›ื ืŸ ืžืกืœื•ืœื™ ืฉื™ื˜.
06:42
"If I am in Corfu in June 1323
161
402088
3071
"ืื ืื ื™ ื ืžืฆื ื‘ืงื•ืจืคื• ื‘ื™ื•ื ื™ 1,323
06:45
and want to go to Constantinople,
162
405159
2526
ื•ืจื•ืฆื” ืœื”ื’ื™ืข ืœืงื•ื ืกื˜ื ื˜ื™ื ื•ืคื•ืœื™ืก (ื”ื™ื•ื ืื™ืกื˜ื ื‘ื•ืœ),
06:47
where can I take a boat?"
163
407685
2143
ื”ื™ื›ืŸ ืื•ื›ืœ ืœืขืœื•ืช ืœืกืคื™ื ื”?"
06:49
Probably we can answer this question
164
409828
1367
ื›ื ืจืื” ืฉื ื•ื›ืœ ืœืขื ื•ืช
06:51
with one or two or three days' precision.
165
411195
4473
ืขืœ ื”ืฉืืœื” ื‘ื“ื™ื•ืง ืฉืœ ื™ื•ื ืื• ื™ื•ืžื™ื™ื ืื• ืฉืœื•ืฉื”.
06:55
"How much will it cost?"
166
415668
1607
"ื›ืžื” ื–ื” ื™ืขืœื”?"
06:57
"What are the chance of encountering pirates?"
167
417275
3592
"ืžื” ื”ืกื™ื›ื•ื™ื™ื ืœื”ื™ืชืงืœื•ืช ื‘ืฉื•ื“ื“ื™-ื™ื?"
07:00
Of course, you understand,
168
420867
1811
ืืชื ื‘ื˜ื— ืžื‘ื™ื ื™ื
07:02
the central scientific challenge of a project like this one
169
422678
2609
ืฉื”ืืชื’ืจ ื”ืžื“ืขื™ ื”ืžืจื›ื–ื™ ื‘ืžื™ื–ื ื›ืžื• ื–ื”
07:05
is qualifying, quantifying and representing
170
425287
3729
ื”ื•ื ืื™ืคื™ื•ืŸ, ื›ื™ืžื•ืช ื•ื”ืฆื’ื” ืฉืœ ืื™-ื”ื•ื“ืื•ืช
07:09
uncertainty and inconsistency at each step of this process.
171
429016
3330
ื•ื—ื•ืกืจ ื”ืขืงื‘ื™ื•ืช ื‘ื›ืœ ืฉืœื‘ ืฉืœ ื”ืชื”ืœื™ืš.
07:12
There are errors everywhere,
172
432346
2712
ื™ืฉื ืŸ ืฉื’ื™ืื•ืช ื‘ื›ืœ ืžืงื•ื,
07:15
errors in the document, it's the wrong name of the captain,
173
435058
2489
ืฉื’ื™ืื•ืช ื‘ืžืกืžืš, ืฉื ืœื ื ื›ื•ืŸ ืฉืœ ืจื‘-ื”ื—ื•ื‘ืœ,
07:17
some of the boats never actually took to sea.
174
437547
3213
ื—ืœืง ืžื”ืกืคื™ื ื•ืช ื›ืœืœ ืœื ื”ืคืœื™ื’ื• ื‘ื™ื.
07:20
There are errors in translation, interpretative biases,
175
440760
4857
ื™ืฉ ืฉื’ื™ืื•ืช ื‘ืชืจื’ื•ื, ื”ื˜ื™ื•ืช ื‘ืคืจืฉื ื•ืช,
07:25
and on top of that, if you add algorithmic processes,
176
445624
3466
ื•ืžืขืœ ื”ื›ืœ, ืื ืžื•ืกื™ืคื™ื ืขื™ื‘ื•ื“ ื ืชื•ื ื™ื ืืœื’ื•ืจื™ืชืžื™ ืžืžื•ื—ืฉื‘,
07:29
you're going to have errors in recognition,
177
449090
2949
ื™ื”ื™ื• ืฉื’ื™ืื•ืช ื‘ื–ื™ื”ื•ื™,
07:32
errors in extraction,
178
452039
1961
ืฉื’ื™ืื•ืช ื‘ืฉืœื™ืคืช ืžื™ื“ืข,
07:34
so you have very, very uncertain data.
179
454000
4481
ื›ืš ืฉื”ื ืชื•ื ื™ื ืžืื•ื“ ืœื ื•ื“ืื™ื™ื.
07:38
So how can we detect and correct these inconsistencies?
180
458481
3757
ืื ื›ืš, ื›ื™ืฆื“ ื ื•ื›ืœ ืœืืชืจ ื•ืœืชืงืŸ ืื™-ื”ืชืืžื•ืช ืืœื•?
07:42
How can we represent that form of uncertainty?
181
462238
3660
ื›ื™ืฆื“ ื ื™ืชืŸ ืœื‘ื˜ื ื—ื•ืกืจ ื•ื“ืื•ืช ื›ื–ื•?
07:45
It's difficult. One thing you can do
182
465898
2097
ื–ื” ืงืฉื”. ื“ื‘ืจ ืื—ื“ ืฉืืคืฉืจ ืœืขืฉื•ืช
07:47
is document each step of the process,
183
467995
2226
ื–ื” ืœืชืขื“ ื›ืœ ืฆืขื“ ื‘ืชื”ืœื™ืš,
07:50
not only coding the historical information
184
470221
2448
ืœื ืจืง ืœืชืขื“ ืืช ื”ืžื™ื“ืข ื”ื”ื™ืกื˜ื•ืจื™,
07:52
but what we call the meta-historical information,
185
472669
2679
ืืœื ืืช ืžื” ืฉืื ื• ืžื›ื ื™ื ื ืชื•ื ื™ ื”ืžื™ื“ืข ื”ื”ื™ืกื˜ื•ืจื™,
07:55
how is historical knowledge constructed,
186
475348
2663
ื›ืœื•ืžืจ ื›ื™ืฆื“ ื”ืžื™ื“ืข ื”ื”ื™ืกื˜ื•ืจื™ ื‘ื ื•ื™,
07:58
documenting each step.
187
478011
1998
ืชื•ืš ืชื™ืขื•ื“ ื›ืœ ืฉืœื‘.
08:00
That will not guarantee that we actually converge
188
480009
1645
ื–ื” ืœื ื™ื‘ื˜ื™ื— ืฉืื ื•
08:01
toward a single story of Venice,
189
481654
2450
ืžืชื›ื ืกื™ื ืœืขื‘ืจ ืกื™ืคื•ืจ ืื—ื“ ื•ื™ื—ื™ื“ ืฉืœ ื•ื ืฆื™ื”.
08:04
but probably we can actually reconstruct
190
484104
2138
ืื‘ืœ ืงืจื•ื‘ ืœื•ื“ืื™ ืฉื ื•ื›ืœ ืœืฉื—ื–ืจ
08:06
a fully documented potential story of Venice.
191
486242
3048
ืกื™ืคื•ืจ ืžืœื ื•ืžืชื•ืขื“ ืืคืฉืจื™ ืฉืœ ื•ื ืฆื™ื”.
08:09
Maybe there's not a single map.
192
489290
1459
ืื•ืœื™ ืื™ืŸ ืžืคื” ืื—ืช ื•ื™ื—ื™ื“ื”.
08:10
Maybe there are several maps.
193
490749
2120
ืื•ืœื™ ื™ืฉื ืŸ ื›ืžื” ืžืคื•ืช.
08:12
The system should allow for that,
194
492869
2216
ื”ืžืขืจื›ืช ืืžื•ืจื” ืœื”ืจืฉื•ืช ื–ืืช,
08:15
because we have to deal with a new form of uncertainty,
195
495085
2859
ืžื›ื™ื•ื•ืŸ ืฉืขืœื™ื ื• ืœื”ืชืžื•ื“ื“ ืขื ืฆื•ืจื” ื—ื“ืฉื” ืฉืœ ืื™-ื•ื“ืื•ืช,
08:17
which is really new for this type of giant databases.
196
497944
4641
ืฉื”ื™ื ื‘ืืžืช ื—ื“ืฉื” ื‘ืกื•ื’ ื›ื–ื” ืฉืœ ื‘ืกื™ืก ื ืชื•ื ื™ื ืขื ืงื™.
08:22
And how should we communicate
197
502585
2190
ื•ื›ื™ืฆื“ ืขืœื™ื ื• ืœื”ืฆื™ื’
08:24
this new research to a large audience?
198
504790
3979
ืžื—ืงืจ ื–ื” ืœืงื”ืœ ื”ืจื—ื‘?
08:28
Again, Venice is extraordinary for that.
199
508769
2663
ืฉื•ื‘, ื•ื ืฆื™ื” ื”ื™ื ื—ืจื™ื’ื”.
08:31
With the millions of visitors that come every year,
200
511432
2171
ืขื ืžื™ืœื™ื•ื ื™ ืžื‘ืงืจื™ื ื”ื‘ืื™ื ืืœื™ื” ื›ืœ ืฉื ื”,
08:33
it's actually one of the best places
201
513603
1763
ื–ื”ื• ื‘ืขืฆื ืื—ื“ ื”ืžืงื•ืžื•ืช
08:35
to try to invent the museum of the future.
202
515366
2988
ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื›ื“ื™ ืœื ืกื•ืช ืœื”ืžืฆื™ื ืืช ืžื•ื–ื™ืื•ืŸ ื”ืขืชื™ื“.
08:38
Imagine, horizontally you see the reconstructed map
203
518354
3304
ื“ืžื™ื™ื ื• ืฉืจื•ืื™ื ืื•ืคืงื™ืช ืืช ื”ืžืคื” ื”ืžืฉื•ื—ื–ืจืช
08:41
of a given year,
204
521658
1286
ืฉืœ ืฉื ื” ืžืกื•ื™ื™ืžืช,
08:42
and vertically, you see the document
205
522944
2958
ื•ืื ื›ื™ืช ืจื•ืื™ื ืืช ื”ืžืกืžืš ืฉืฉื™ืžืฉ
08:45
that served the reconstruction,
206
525902
1511
ืœืฉื™ื—ื–ื•ืจ,
08:47
paintings, for instance.
207
527413
3400
ืืช ื”ืื™ื•ืจื™ื, ืœื“ื•ื’ืžื.
08:50
Imagine an immersive system that permits
208
530813
2580
ื“ืžื™ื™ื ื• ืžืขืจื›ืช ื”ื™ืงืคื™ืช ืชืœืช-ืžื™ืžื“ื™ืช
08:53
to go and dive and reconstruct the Venice of a given year,
209
533393
3502
ื”ืžืืคืฉืจืช ืœืฆืœื•ืœ ืคื ื™ืžื” ื•ืœืฉื—ื–ืจ ืืช ื•ื ืฆื™ื” ืฉืœ ืฉื ื” ืžืกื•ื™ื™ืžืช,
08:56
some experience you could share within a group.
210
536895
2715
ื—ื•ื•ื™ื” ื›ืœืฉื”ื™ ืฉื ื™ืชืŸ ืœืฉืชืฃ ื‘ืงื‘ื•ืฆื”.
08:59
On the contrary, imagine actually that you start
211
539610
2246
ื•ืœื”ื™ืคืš, ื“ืžื™ื™ื ื• ืฉืžืชื—ื™ืœื™ื
09:01
from a document, a Venetian manuscript,
212
541856
2207
ืžืžืกืžืš, ื›ืชื‘-ื™ื“ ื•ื ืฆื™ืื ื™,
09:04
and you show, actually, what you can construct out of it,
213
544063
3049
ื•ืืชื ืžืจืื™ื ืžื” ืืคืฉืจ ืœื‘ื ื•ืช ืžืžื ื•,
09:07
how it is decoded,
214
547112
1772
ื›ื™ืฆื“ ื”ื•ื ืžืคื•ืขื ื—,
09:08
how the context of that document can be recreated.
215
548884
2415
ื›ื™ืฆื“ ื ื™ืชืŸ ืœืฉื—ื–ืจ ืืช ื”ื”ืงืฉืจื™ื ืฉื‘ืžืกืžืš.
09:11
This is an image from an exhibit
216
551299
1885
ื–ื•ื”ื™ ืชืžื•ื ื” ืžืชืขืจื•ื›ื”
09:13
which is currently conducted in Geneva
217
553184
2276
ื”ืžืชืงื™ื™ืžืช ื›ืขืช ื‘ื’'ื ื‘ื”
09:15
with that type of system.
218
555460
2354
ื‘ืขื–ืจืช ืžืขืจื›ืช ืžื”ืกื•ื’ ื”ื "ืœ.
09:17
So to conclude, we can say that
219
557814
2175
ืœืกื™ื•ื, ืืคืฉืจ ืœื•ืžืจ
09:19
research in the humanities is about to undergo
220
559989
3079
ืฉื”ืžื—ืงืจ ื‘ืžื“ืขื™-ื”ืจื•ื— ืขื•ืžื“ ืœืขื‘ื•ืจ ืื‘ื•ืœื•ืฆื™ื”
09:23
an evolution which is maybe similar
221
563068
1802
ืฉืขืฉื•ื™ื” ืœื”ื™ื“ืžื•ืช
09:24
to what happened to life sciences 30 years ago.
222
564870
4582
ืœืžื” ืฉืงืจื” ื‘ืžื“ืขื™-ื”ื—ื™ื™ื ืœืคื ื™ 30 ืฉื ื”.
09:29
It's really a question of scale.
223
569452
4676
ื–ื• ืจืง ืฉืืœื” ืฉืœ ืžื™ื“ื”.
09:34
We see projects which are
224
574130
3303
ืื ื• ืจื•ืื™ื ืžื™ื–ืžื™ื ืฉื”ื
09:37
much beyond any single research team can do,
225
577433
3843
ืžืขื‘ืจ ืœื™ื›ื•ืœืช ื”ื‘ื™ืฆื•ืข ืฉืœ ืงื‘ื•ืฆืช ืžื—ืงืจ ื‘ื•ื“ื“ืช,
09:41
and this is really new for the humanities,
226
581276
2243
ื•ื–ื” ื“ื‘ืจ ื‘ืืžืช ื—ื“ืฉ ื‘ืชื—ื•ื ืฉืœ ืžื“ืขื™-ื”ืจื•ื—,
09:43
which very often take the habit of working
227
583519
3869
ืฉืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืจื’ื™ืœื™ื ืœืขื‘ื•ื“ ื‘ื”ื
09:47
in small groups or only with a couple of researchers.
228
587388
4008
ื‘ืงื‘ื•ืฆื•ืช ืงื˜ื ื•ืช ืื• ืจืง ืขื ืžืก' ื—ื•ืงืจื™ื ื‘ื•ื“ื“ื™ื ื‘ื™ื—ื“.
09:51
When you visit the Archivio di Stato,
229
591396
2118
ื›ืืฉืจ ืžื‘ืงืจื™ื ื‘-Archivio di Stato,
09:53
you feel this is beyond what any single team can do,
230
593514
2822
ื—ืฉื™ื ืฉื–ื” ืžืฉื”ื• ืžืขื‘ืจ ืœื™ื›ื•ืœืชื” ืฉืœ ืงื‘ื•ืฆื” ื‘ื•ื“ื“ืช,
09:56
and that should be a joint and common effort.
231
596336
3834
ื•ืฉืฆืจื™ืš ืœื”ืชืงื™ื™ื ืžืืžืฅ ืžืฉื•ืชืฃ.
10:00
So what we must do for this paradigm shift
232
600170
3106
ืœื›ืŸ ืžื” ืฉืขืœื™ื ื• ืœืขืฉื•ืช ื‘ืฉื‘ื™ืœ ืฉื™ื ื•ื™ ืชืคื™ืกืชื™ ื–ื”
10:03
is actually foster a new generation
233
603276
1902
ื”ื•ื ืœื˜ืคื— ื“ื•ืจ ื—ื“ืฉ ืฉืœ
10:05
of "digital humanists"
234
605178
1537
"ืื ืฉื™-ืจื•ื— ื“ื™ื’ื™ื˜ืœื™ื™ื"
10:06
that are going to be ready for this shift.
235
606715
2090
ืฉื™ื”ื™ื• ืžื•ื›ื ื™ื ืœืฉื™ื ื•ื™ ื–ื”.
10:08
I thank you very much.
236
608805
1959
ืื ื™ ืžืื•ื“ ืžื•ื“ื” ืœื›ื.
10:10
(Applause)
237
610764
4000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7