Danny Hillis: Understanding cancer through proteomics

58,182 views ใƒป 2011-03-16

TED


ูŠุฑุฌู‰ ุงู„ู†ู‚ุฑ ู†ู‚ุฑู‹ุง ู…ุฒุฏูˆุฌู‹ุง ููˆู‚ ุงู„ุชุฑุฌู…ุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุฃุฏู†ุงู‡ ู„ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ.

ุงู„ู…ุชุฑุฌู…: Wafa Alnasayan ุงู„ู…ุฏู‚ู‘ู‚: Faisal Jeber
00:15
I admit that I'm a little bit nervous here
0
15330
3000
ุฃุนุชุฑู ุฃู†ู†ูŠ ู…ุฑุชุจูƒ ู‚ู„ูŠู„ุง ู‡ู†ุง
00:18
because I'm going to say some radical things,
1
18330
3000
ู„ุฃู†ู†ูŠ ุณุฃู‚ูˆู… ุจู‚ูˆู„ ุจุนุถ ุงู„ุฃุดูŠุงุก ุงู„ู…ุชุทุฑูุฉ
00:21
about how we should think about cancer differently,
2
21330
3000
ุนู† ูƒูŠู ูŠุชูˆุฌุจ ุนู„ูŠู†ุง ุฃู† ู†ููƒุฑ ุจุงู„ุณุฑุทุงู† ุจุทุฑูŠู‚ุฉ ู…ุฎุชู„ูุฉ
00:24
to an audience that contains a lot of people
3
24330
2000
ู„ุฌู…ู‡ูˆุฑ ูŠุญุชูˆูŠ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ู†ุงุณ
00:26
who know a lot more about cancer than I do.
4
26330
3000
ุงู„ุฐูŠู† ูŠุนุฑููˆู† ุนู† ุงู„ุณุฑุทุงู† ุฃูƒุซุฑ ู…ู†ูŠ.
00:30
But I will also contest that I'm not as nervous as I should be
5
30330
3000
ู„ูƒู† ุณุฃุนุชุฑู ุจุฃู†ู†ูŠ ู„ุณุช ู…ุฑุชุจูƒุง ุจุงู„ู‚ุฏุฑ ุงู„ุฐูŠ ูŠูุชุฑุถ ุนู„ูŠ ุฃู† ุฃูƒูˆู†ู‡
00:33
because I'm pretty sure I'm right about this.
6
33330
2000
ู„ุฃู†ู†ูŠ ู…ุชุฃูƒุฏ ุฌุฏุง ุฃู†ู†ูŠ ุนู„ู‰ ุญู‚ ุจู‡ุฐุง.
00:35
(Laughter)
7
35330
2000
(ุถุญูƒ)
00:37
And that this, in fact, will be
8
37330
2000
ูˆ ู‡ุฐู‡ ู‡ูŠุŒ ุจุงู„ูุนู„ุŒ ุณุชูƒูˆู†
00:39
the way that we treat cancer in the future.
9
39330
3000
ุงู„ุทุฑูŠู‚ุฉ ุงู„ุชูŠ ู†ุนุงู„ุฌ ููŠู‡ุง ุงู„ุณุฑุทุงู† ููŠ ุงู„ู…ุณุชู‚ุจู„.
00:43
In order to talk about cancer,
10
43330
2000
ู…ู† ุฃุฌู„ ุงู„ุญุฏูŠุซ ุนู† ุงู„ุณุฑุทุงู†ุŒ
00:45
I'm going to actually have to --
11
45330
3000
ุณุฃู‚ูˆู… ุจุงู„ูุนู„ ุจุนู…ู„ --
00:48
let me get the big slide here.
12
48330
3000
ุฏุนูˆู†ูŠ ุฃุญุถุฑ ุงู„ุดุฑูŠุญุฉ ุงู„ูƒุจูŠุฑุฉ ู‡ู†ุง.
00:53
First, I'm going to try to give you a different perspective of genomics.
13
53330
3000
ุฃูˆู„ุงุŒ ุณุฃุญุงูˆู„ ุฃู† ุฃุนุทูŠูƒู… ู…ู†ุธูˆุฑุง ู…ุฎุชู„ูุง ู„ุนู„ู… ุงู„ุฌูŠู†ูˆู… (ุนู„ู… ุฏุฑุงุณุฉ ูƒุงู…ู„ ุงู„ู…ุงุฏุฉ ุงู„ูˆุฑุงุซูŠุฉ)
00:56
I want to put it in perspective of the bigger picture
14
56330
2000
ุฃุฑูŠุฏ ุฃู† ุฃุถุนู‡ ุจู…ู†ุธูˆุฑ ุงู„ุตูˆุฑุฉ ุงู„ุนุงู…ุฉ
00:58
of all the other things that are going on --
15
58330
3000
ู„ูƒู„ ุงู„ุฃู…ูˆุฑ ุงู„ุฃุฎุฑู‰ ุงู„ุชูŠ ุชุฌุฑูŠ --
01:01
and then talk about something you haven't heard so much about, which is proteomics.
16
61330
3000
ูˆ ุจุนุฏู‡ุง ุฃุชุญุฏุซ ุนู† ุดุฆ ู„ู… ุชุณู…ุนูˆุง ุนู†ู‡ ุงู„ูƒุซูŠุฑุŒ ุงู„ุฐูŠ ู‡ูˆ ุงู„ุจุฑูˆุชูŠูˆู…ูŠุงุช (ุฏุฑุงุณุฉ ุฃู†ูˆุงุน ุงู„ุจุฑูˆุชูŠู†ุงุช).
01:04
Having explained those,
17
64330
2000
ุจูƒูˆู†ูŠ ูุณุฑุช ู‡ุฐูŠู†ุŒ
01:06
that will set up for what I think will be a different idea
18
66330
3000
ุณูˆู ูŠู…ู‡ุฏ ู„ู…ุง ุฃุธู† ุฃู†ู‡ ุณูŠูƒูˆู† ููƒุฑุฉ ู…ุฎุชู„ูุฉ
01:09
about how to go about treating cancer.
19
69330
2000
ุนู† ูƒูŠู ุณู†ู‚ูˆู… ุจุนู„ุงุฌ ุงู„ุณุฑุทุงู†.
01:11
So let me start with genomics.
20
71330
2000
ุฏุนูˆู†ูŠ ุฃุจุฏุฃ ุจุนู„ู… ุงู„ุฌูŠู†ูˆู….
01:13
It is the hot topic.
21
73330
2000
ุฅู†ู‡ ู…ูˆุถูˆุน ู…ุชุฏุงูˆู„.
01:15
It is the place where we're learning the most.
22
75330
2000
ุฅู†ู‡ ุฃูƒุซุฑ ู…ูƒุงู† ู†ุชุนู„ู… ู…ู†ู‡.
01:17
This is the great frontier.
23
77330
2000
ุฅู†ู‡ ุนุธูŠู… ุงู„ุญุฏูˆุฏ.
01:19
But it has its limitations.
24
79330
3000
ู„ูƒู† ู„ุฏูŠู‡ ู‚ูŠูˆุฏู‡.
01:22
And in particular, you've probably all heard the analogy
25
82330
3000
ูˆ ุจุงู„ุชุญุฏูŠุฏุŒ ูƒู„ูƒู… ู…ู† ุงู„ู…ู…ูƒู† ุฃู†ูƒู… ุณู…ุนุชู… ุนู† ุงู„ู…ู…ุงุซู„ุฉ
01:25
that the genome is like the blueprint of your body,
26
85330
3000
ุงู„ุชูŠ ู‡ูŠ ุนู„ู… ุงู„ุฌูŠู†ูˆู… ู‡ูˆ ู…ุซู„ ุงู„ู…ุฎุทุทุงุช ุงู„ุฃูˆู„ูŠุฉ ู„ุฃุฌุณุงู…ูƒู….
01:28
and if that were only true, it would be great,
27
88330
2000
ูˆ ู„ูˆ ูƒุงู†ุช ูู‚ุท ุตุญูŠุญุฉุŒ ุณูŠูƒูˆู† ุฑุงุฆุนุงุŒ
01:30
but it's not.
28
90330
2000
ู„ูƒู†ู‡ุง ู„ูŠุณุช ูƒุฐู„ูƒ.
01:32
It's like the parts list of your body.
29
92330
2000
ุฅู†ู‡ุง ูƒู‚ุงุฆู…ุฉ ุฃุนุถุงุก ุฃุฌุณุงู…ูƒู….
01:34
It doesn't say how things are connected,
30
94330
2000
ุฅู†ู‡ุง ู„ุง ุชู‚ูˆู„ ูƒูŠู ุชุชุฑุงุจุท ุงู„ุฃุดูŠุงุกุŒ
01:36
what causes what and so on.
31
96330
3000
ู…ุงุฐุง ูŠุณุจุจ ุงู„ุขุฎุฑ ูˆ ู‡ูƒุฐุง.
01:39
So if I can make an analogy,
32
99330
2000
ูˆ ุฅุฐุง ูƒุงู† ุจุงุณุชุทุงุนุชูŠ ูˆุถุน ู…ู‚ุงุฑุจุฉุŒ
01:41
let's say that you were trying to tell the difference
33
101330
2000
ุณู†ู‚ู„ ุฃู†ูƒู… ุชุญุงูˆู„ูˆู† ุฅูŠุฌุงุฏ ุงู„ูุฑู‚
01:43
between a good restaurant, a healthy restaurant
34
103330
3000
ุจูŠู† ู…ุทุนู… ุฌูŠุฏุŒ ู…ุทุนู… ุตุญูŠุŒ
01:46
and a sick restaurant,
35
106330
2000
ูˆ ู…ุทุนู… ู…ุฑูŠุถุŒ
01:48
and all you had was the list of ingredients
36
108330
2000
ูˆ ูƒู„ ู…ุง ูƒุงู† ุจุญูˆุฒุชูƒู… ู‡ูˆ ู‚ุงุฆู…ุฉ ุงู„ู…ู‚ุงุฏูŠุฑ
01:50
that they had in their larder.
37
110330
3000
ุงู„ุชูŠ ู„ุฏูŠู‡ู… ููŠ ุญุงูุธุชู‡ู….
01:53
So it might be that, if you went to a French restaurant
38
113330
3000
ูู‚ุฏ ูŠูƒูˆู† ุฃู†ุŒ ุฅุฐุง ุฐู‡ุจุชู… ุฅู„ู‰ ู…ุทุนู… ูุฑู†ุณูŠ
01:56
and you looked through it and you found
39
116330
2000
ูˆ ุจุญุซุชู… ู„ุชุฌุฏูˆุง ุฃู†
01:58
they only had margarine and they didn't have butter,
40
118330
2000
ู„ุฏูŠู‡ู… ูู‚ุท ุงู„ุณู…ู†ุฉ ุงู„ุตู†ุงุนุณุฉ ูˆ ู„ูŠุณ ู„ุฏูŠู‡ู… ุฒุจุฏุฉุŒ
02:00
you could say, "Ah, I see what's wrong with them.
41
120330
2000
ู‚ุฏ ุชู‚ูˆู„ูˆู†ุŒ "ุขู‡ุŒ ุฑุฃูŠู†ุง ู…ุง ู‡ูŠ ู…ุดูƒู„ุชู‡ู….
02:02
I can make them healthy."
42
122330
2000
ุฃุณุชุทูŠุน ุฃู† ุฃุฌุนู„ู‡ู… ุตุญูŠูŠู†."
02:04
And there probably are special cases of that.
43
124330
2000
ูˆ ู‚ุฏ ุชูƒูˆู† ู‡ู†ุงูƒ ุญุงู„ุงุช ุฎุงุตุฉ ู„ู‡ุฐุง.
02:06
You could certainly tell the difference
44
126330
2000
ุชุณุชุทูŠุนูˆู† ุจุงู„ุชุฃูƒูŠุฏ ู…ุนุฑูุฉ ุงู„ูุฑู‚
02:08
between a Chinese restaurant and a French restaurant
45
128330
2000
ุจูŠู† ู…ุทุนู… ุตูŠู†ูŠ ูˆ ู…ุทุนู… ูุฑู†ุณูŠ
02:10
by what they had in a larder.
46
130330
2000
ุนู† ุทุฑูŠู‚ ู…ุนุฑูุฉ ู…ุงู„ุฏูŠู‡ู… ููŠ ุญุงูุธุชู‡ู….
02:12
So the list of ingredients does tell you something,
47
132330
3000
ูู‚ุงุฆู…ุฉ ุงู„ู…ู‚ุงุฏูŠุฑ ุชุฎุจุฑูƒู… ุจุดุฆุŒ
02:15
and sometimes it tells you something that's wrong.
48
135330
3000
ูˆ ุฃุญูŠุงู†ุง ุชุฎุจุฑูƒู… ุจุดุฆ ุฎุงุทุฆ.
02:19
If they have tons of salt,
49
139330
2000
ู„ูˆ ูƒุงู† ู„ุฏูŠู‡ู… ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ู…ู„ุญุŒ
02:21
you might guess they're using too much salt, or something like that.
50
141330
3000
ู‚ุฏ ุชุฎู…ู†ูˆู† ุฃู†ู‡ู… ูŠุณุชุนู…ู„ูˆู† ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ู…ู„ุญุŒ ูˆ ุดูŠุฆุง ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„.
02:24
But it's limited,
51
144330
2000
ู„ูƒู† ู‡ุฐุง ู‚ุงุตุฑุŒ
02:26
because really to know if it's a healthy restaurant,
52
146330
2000
ู„ุฃู†ูƒู… ู„ุชุนุฑููˆุง ุจุงู„ูุนู„ ุฃู†ู‡ ู…ุทุนู… ุตุญูŠุŒ
02:28
you need to taste the food, you need to know what goes on in the kitchen,
53
148330
3000
ูŠุฌุจ ุนู„ูŠูƒู… ุฃู† ุชุชุฐูˆู‚ูˆุง ุงู„ุทุนุงู…ุŒ ูŠุฌุจ ุฃู† ุชุนุฑููˆุง ู…ุง ูŠุฏูˆุฑ ููŠ ุงู„ู…ุทุจุฎุŒ
02:31
you need the product of all of those ingredients.
54
151330
3000
ุชุญุชุงุฌูˆู† ู…ู†ุชูˆุฌ ูƒู„ ู‡ุฐู‡ ุงู„ู…ู‚ุงุฏูŠุฑ.
02:34
So if I look at a person
55
154330
2000
ูู„ูˆ ู†ุธุฑุช ุฅู„ู‰ ุฅู†ุณุงู†
02:36
and I look at a person's genome, it's the same thing.
56
156330
3000
ูˆ ู†ุธุฑุช ุฅู„ู‰ ุฌู†ูŠูˆู… ู‡ุฐุง ุงู„ุฅู†ุณุงู†ุŒ ุฅู†ู‡ู…ุง ุงู„ุดุฆ ู†ูุณู‡.
02:39
The part of the genome that we can read
57
159330
2000
ุฌุฒุก ุงู„ุฌู†ูŠูˆู… ุงู„ุฐูŠ ุจุงุณุชุทุงุนุชู†ุง ู‚ุฑุขุชู‡
02:41
is the list of ingredients.
58
161330
2000
ู‡ูˆ ู‚ุงุฆู…ุฉ ุงู„ู…ู‚ุงุฏูŠุฑ.
02:43
And so indeed,
59
163330
2000
ูˆ ููŠ ุงู„ูˆุงู‚ุนุŒ
02:45
there are times when we can find ingredients
60
165330
2000
ู‡ู†ุงูƒ ุฃูˆู‚ุงุช ู†ุฌุฏ ููŠู‡ุง ู…ู‚ุงุฏูŠุฑ
02:47
that [are] bad.
61
167330
2000
ุณูŠุฆุฉ.
02:49
Cystic fibrosis is an example of a disease
62
169330
2000
ุงู„ุชู„ูŠู ุงู„ูƒูŠุณูŠ ู‡ูˆ ู…ุซุงู„ ู„ู…ุฑุถ
02:51
where you just have a bad ingredient and you have a disease,
63
171330
3000
ุงู„ุฐูŠ ูŠูƒูˆู† ู„ุฏูŠูƒู… ุฃุญุฏ ุงู„ู…ู‚ุงุฏูŠุฑ ุงู„ุณูŠุฆุฉ ุงู„ุชูŠ ุชุณุจุจ ุงู„ู…ุฑุถุŒ
02:54
and we can actually make a direct correspondence
64
174330
3000
ูˆ ูŠู…ูƒู† ุฃู† ู†ูƒูˆู† ุนู„ุงู‚ุงุช ู…ุจุงุดุฑุฉ ุจูŠู†
02:57
between the ingredient and the disease.
65
177330
3000
ุฃุญุฏ ุงู„ู…ู‚ุงุฏูŠุฑ ูˆ ุงู„ู…ุฑุถ.
03:00
But most things, you really have to know what's going on in the kitchen,
66
180330
3000
ู„ูƒู† ู…ุนุธู… ุงู„ุฃุดูŠุงุกุŒ ูŠุฌุจ ุฃู† ู†ุนุฑู ุจุงู„ูุนู„ ู…ุง ูŠุฏูˆู† ุจุงู„ู…ุทุจุฎุŒ
03:03
because, mostly, sick people used to be healthy people --
67
183330
2000
ู„ุฃู†ุŒ ููŠ ุงู„ุบุงู„ุจูŠุฉุŒ ุงู„ู†ุงุณ ุงู„ู…ุฑูŠุถูŠู† ูƒุงู†ูˆ ุฃู†ุงุณุง ุฃุตุญุงุก --
03:05
they have the same genome.
68
185330
2000
ู„ุฏูŠู‡ู… ู†ูุณ ุงู„ุฌู†ูŠูˆู….
03:07
So the genome really tells you much more
69
187330
2000
ูุงู„ุฌู†ูŠูˆู… ูŠุฎุจุฑูƒู… ูุนู„ุง ุงู„ูƒุซูŠุฑ
03:09
about predisposition.
70
189330
2000
ุนู† ุงู„ุชุฑูƒูŠุจ ุงู„ูˆุฑุงุซูŠ.
03:11
So what you can tell
71
191330
2000
ูู…ุง ุชุณุชุทูŠุนูˆู† ู…ุนุฑูุชู‡
03:13
is you can tell the difference between an Asian person and a European person
72
193330
2000
ู‡ูˆ ุฃู† ูŠูƒูˆู† ุจู…ู‚ุฏุฑุชูƒู… ู…ุนุฑูุชู‡ ุงู„ูุฑู‚ ุจูŠู† ุงู„ุดุฎุต ุงู„ุขุณูŠูˆูŠ ูˆ ุงู„ุดุฎุต ุงู„ุฃูˆุฑุจูŠ
03:15
by looking at their ingredients list.
73
195330
2000
ุจุงู„ู†ุธุฑ ูู‚ุท ุฅู„ู‰ ู‚ุงุฆู…ุฉ ู…ู‚ุงุฏูŠุฑู‡ู….
03:17
But you really for the most part can't tell the difference
74
197330
3000
ู„ูƒู† ููŠ ู…ุนุธู… ุงู„ุฃูˆู‚ุงุช ู„ุง ุชุณุชุทูŠุนูˆู† ู…ุนุฑูุฉ ุงู„ูุฑู‚
03:20
between a healthy person and a sick person --
75
200330
3000
ุจูŠู† ุดุฎุต ู…ุฑูŠุถ ูˆ ุดุฎุต ุตุญูŠุญ--
03:23
except in some of these special cases.
76
203330
2000
ูู‚ุท ููŠ ุจุนุถ ู‡ุฐู‡ ุงู„ุญุงู„ุงุช ุงู„ุฎุงุตุฉ.
03:25
So why all the big deal
77
205330
2000
ูู…ุงู‡ูŠ ุฃู‡ู…ูŠุฉ
03:27
about genetics?
78
207330
2000
ุนู„ู… ุงู„ูˆุฑุงุซุฉุŸ
03:29
Well first of all,
79
209330
2000
ุญุณู†ุง ู‚ุจู„ ูƒู„ ุดุฆ,
03:31
it's because we can read it, which is fantastic.
80
211330
3000
ู„ุฃู†ู†ุง ู†ุณุชุทูŠุน ู‚ุฑุฃุชู‡ุง, ูˆ ู‡ูˆ ุฃู…ุฑ ู‡ุงุฆู„.
03:34
It is very useful in certain circumstances.
81
214330
3000
ุฅู†ู‡ ุนู…ู„ูŠ ุฌุฏุง ููŠ ุญุงู„ุงุช ู…ุนูŠู†ุฉ.
03:37
It's also the great theoretical triumph
82
217330
3000
ุฅู†ู‡ ุฃูŠุถุง ุงู„ุงู†ุชุตุงุฑ ุงู„ู†ุธุฑูŠ ุงู„ุฑุงุฆุน
03:40
of biology.
83
220330
2000
ู„ุนู„ู… ุงู„ุฃุญูŠุงุก.
03:42
It's the one theory
84
222330
2000
ุฅู†ู‡ุง ุงู„ู†ุธุฑูŠุฉ ุงู„ูˆุญูŠุฏุฉ
03:44
that the biologists ever really got right.
85
224330
2000
ุงู„ุชูŠ ุนุฑู ุนู„ู…ุงุก ุงู„ุฃุญูŠุงุก ุตุญุชู‡ุง.
03:46
It's fundamental to Darwin
86
226330
2000
ุฅู†ู‡ุง ุฃุณุงุณูŠุฉ ู„ุฏุงุฑูˆูŠู†
03:48
and Mendel and so on.
87
228330
2000
ูˆ ู…ู†ุฏู„ ูˆ ุบูŠุฑู‡ู….
03:50
And so it's the one thing where they predicted a theoretical construct.
88
230330
3000
ูˆ ุฅู†ู‡ุง ุงู„ุดุฆ ุงู„ูˆุญูŠุฏ ุงู„ุฐูŠ ุชูˆู‚ุนูˆุง ููŠู‡ ุตู†ุน ู†ุธุฑูŠุฉ.
03:54
So Mendel had this idea of a gene
89
234330
2000
ู…ู†ุฏู„ ูƒุงู†ุช ู„ุฏูŠู‡ ููƒุฑุฉ ุงู„ุฌูŠู†
03:56
as an abstract thing,
90
236330
3000
ูƒุดุฆ ู…ุฌุฑุฏ.
03:59
and Darwin built a whole theory
91
239330
2000
ูˆ ุฏุงุฑูˆู† ุจู†ูŠ ู†ุธุฑูŠุฉ ุจุฃูƒู…ู„ู‡ุง
04:01
that depended on them existing,
92
241330
2000
ู…ุจู†ูŠุฉ ุนู„ู‰ ูˆุฌูˆุฏู‡ุง.
04:03
and then Watson and Crick
93
243330
2000
ูˆ ู…ู† ุซู… ูˆุงุณุชู† ูˆ ูƒุฑูŠูƒ
04:05
actually looked and found one.
94
245330
2000
ูุนู„ุง ุจุญุซูˆุง ูˆ ูˆุฌุฏูˆุง ูˆุงุญุฏุฉ.
04:07
So this happens in physics all the time.
95
247330
2000
ูู‡ุฐุง ูŠุญุตู„ ููŠ ุงู„ููŠุฒูŠุงุก ูƒู„ ุงู„ูˆู‚ุช.
04:09
You predict a black hole,
96
249330
2000
ูุฃู†ุช ุชุชู†ุจุฃ ุจุซู‚ุจ ุฃุณูˆุฏ,
04:11
and you look out the telescope and there it is, just like you said.
97
251330
3000
ูˆ ุชู†ุธุฑ ุนุจุฑ ุงู„ุชู„ุณูƒูˆุจ ู„ุชุฌุฏู‡, ู…ุซู„ู…ุง ู‚ู„ุช.
04:14
But it rarely happens in biology.
98
254330
2000
ู„ูƒู† ู†ุงุฏุฑุง ู…ุง ูŠุญุฏุซ ู‡ุฐุง ููŠ ุนู„ู… ุงู„ุฃุญูŠุงุก.
04:16
So this great triumph -- it's so good,
99
256330
3000
ูู‡ุฐุง ุงู†ุชุตุงุฑ ุฑุงุฆุน --ุฅู†ู‡ ุฌูŠุฏ--
04:19
there's almost a religious experience
100
259330
2000
ู‡ู†ุงูƒ ุชู‚ุฑูŠุจุง ุฎุจุฑุฉ ุนู‚ุงุฆุฏูŠุฉ
04:21
in biology.
101
261330
2000
ููŠ ุนู„ู… ุงู„ุฃุญูŠุงุก.
04:23
And Darwinian evolution
102
263330
2000
ูˆ ู†ุธุฑูŠุฉ ุงู„ุชุทูˆุฑ ู„ุฏุงุฑูˆูŠู†
04:25
is really the core theory.
103
265330
3000
ู‡ูŠ ูุนู„ุง ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃุณุงุณูŠุฉ.
04:30
So the other reason it's been very popular
104
270330
2000
ูˆ ุงู„ุณุจุจ ุงู„ุขุฎุฑ ู„ูƒูˆู†ู‡ุง ู…ุดู‡ูˆุฑุฉ
04:32
is because we can measure it, it's digital.
105
272330
3000
ู„ุฃู†ู†ุง ู†ุณุชุทูŠุน ู‚ูŠุงุณู‡ุง, ุฅู†ู‡ุง ุฑู‚ู…ูŠุฉ.
04:35
And in fact,
106
275330
2000
ูˆ ููŠ ุงู„ูˆุงู‚ุน,
04:37
thanks to Kary Mullis,
107
277330
2000
ุงู„ุดูƒุฑ ู„ูƒุงุฑูŠ ู…ูˆู„ูŠุณ,
04:39
you can basically measure your genome in your kitchen
108
279330
4000
ู†ุชุณุทูŠุน ู‚ูŠุงุณ ุงู„ุฌู†ูŠูˆู… ููŠ ู…ุทุงุจุฎู†ุง
04:43
with a few extra ingredients.
109
283330
3000
ุจุฒุจุงุฏุฉ ุจุนุถ ุงู„ู…ู‚ุงุฏูŠุฑ.
04:46
So for instance, by measuring the genome,
110
286330
3000
ูุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„, ุจู…ู‚ูŠุงุณู†ุง ู„ู„ุฌู†ูŠูˆู…
04:49
we've learned a lot about how we're related to other kinds of animals
111
289330
4000
ูุชุนู„ู…ู†ุง ุงู„ูƒุซูŠุฑ ุนู† ุตู„ุชู†ุง ุจุฃู†ูˆุงุน ุงู„ุญูŠูˆุงู†ุงุช
04:53
by the closeness of our genome,
112
293330
3000
ุนู† ุทุฑูŠู‚ ุชู‚ุงุฑุจ ุงู„ุฌู†ูŠูˆู…,
04:56
or how we're related to each other -- the family tree,
113
296330
3000
ุฃูˆ ูƒูŠู ู†ุชุตู„ ุจุจุนุถู†ุง ุงู„ุจุนุถ-- ุดุฌุฑุฉ ุงู„ุนุงุฆู„ุฉ,
04:59
or the tree of life.
114
299330
2000
ุฃูˆ ุดุฌุฑุฉ ุงู„ุญูŠุงุฉ.
05:01
There's a huge amount of information about the genetics
115
301330
3000
ู‡ู†ุงูƒ ูƒู… ู‡ุงุฆู„ ู…ู† ุงู„ู…ุนู„ูˆู…ุงุช ุนู† ุงู„ุฌูŠู†ุงุช
05:04
just by comparing the genetic similarity.
116
304330
3000
ูู‚ุท ุจู…ู‚ุงุฑู†ุฉ ุชุดุงุจู‡ ุงู„ุฌูŠู†ุงุช.
05:07
Now of course, in medical application,
117
307330
2000
ุงู„ุขู† ุจุงู„ุทุจุน, ููŠ ุงู„ุชุทุจูŠู‚ุงุช ุงู„ุทุจูŠุฉ,
05:09
that is very useful
118
309330
2000
ู‡ุฐุง ุฌุฏุง ู…ููŠุฏ
05:11
because it's the same kind of information
119
311330
3000
ู„ุฃู†ู‡ุง ู†ูุณ ู†ูˆุน ุงู„ู…ุนู„ูˆู…ุงุช
05:14
that the doctor gets from your family medical history --
120
314330
3000
ุงู„ุชูŠ ูŠุญุตู„ ุนู„ูŠู‡ุง ุงู„ุทุจูŠุจ ู…ู† ุชุงุฑูŠุฎ ุงู„ุนุงุฆู„ุฉ ุงู„ุทุจูŠ --
05:17
except probably,
121
317330
2000
ุฑุจู…ุง ุจุงุณุชุซู†ุงุก,
05:19
your genome knows much more about your medical history than you do.
122
319330
3000
ุงู„ุฌู†ูŠูˆู… ูŠุนุฑู ุชุงุฑูŠุฎ ุนุงุฆู„ุชูƒ ุงู„ุทุจูŠ ุฃูƒุซุฑ ู…ู…ุง ุชุนุฑูู‡ ุฃู†ุช.
05:22
And so by reading the genome,
123
322330
2000
ูˆ ุจู‚ุฑุงุกุฉ ุงู„ุฌู†ุจูŠูˆู…,
05:24
we can find out much more about your family than you probably know.
124
324330
3000
ุฑุจู…ุง ู†ุชุณุทูŠุน ู…ุนุฑูุฉ ุงู„ูƒุซูŠุฑ ุนู† ุนุงุฆู„ุชูƒ ู…ู…ุง ุชุนุฑูู‡ ุฃู†ุช.
05:27
And so we can discover things
125
327330
2000
ูˆ ู†ุชุณุทูŠุน ุงูƒุชุดุงู ุฃุดูŠุงุก
05:29
that probably you could have found
126
329330
2000
ุงู„ุชูŠ ุฑุจู…ุง ู‚ุฏ ุนุฑูุชู‡ุง
05:31
by looking at enough of your relatives,
127
331330
2000
ุนุจุฑ ู†ุธุฑูƒ ุฅู„ู‰ ุฃู‚ุฑุงุจุฆูƒ,
05:33
but they may be surprising.
128
333330
3000
ูˆ ู„ูƒู† ู‚ุฏ ุชูƒูˆู† ู…ูุงุฌุขุฉ.
05:36
I did the 23andMe thing
129
336330
2000
ุนู…ู„ุช ุงู„ุชุฌุฑุจุฉ ุนู„ู‰ ู†ูุณูŠ
05:38
and was very surprised to discover that I am fat and bald.
130
338330
3000
ูˆ ุชูุขุฌุฃุช ุฌุฏุง ู„ุฃูƒุชุดู ุจุฃู†ู†ูŠ ุณู…ูŠู† ูˆ ุฃุตู„ุน.
05:41
(Laughter)
131
341330
7000
(ุถุญูƒ)
05:48
But sometimes you can learn much more useful things about that.
132
348330
3000
ู„ูƒู† ุฃุญูŠุงู†ุง ุชุณุชุทูŠุน ู…ุนุฑูุฉ ุฃุดูŠุงุก ู…ู‚ูŠุฏุฉ ุฃูƒุซุฑ ุจูƒุซูŠุฑ ุนู† ู‡ุฐุง.
05:51
But mostly
133
351330
3000
ู„ูƒู† ุบุงู„ุจุง
05:54
what you need to know, to find out if you're sick,
134
354330
2000
ู…ุง ุชุญุชุงุฌ ู…ุนุฑูุชู‡ ู„ุชูƒุชุดู ุฅู† ูƒู†ุช ู…ุฑูŠุถุง
05:56
is not your predispositions,
135
356330
2000
ู‡ูˆ ู„ูŠุณ ู…ูŠู„ ุฌุณู…ูƒ ู„ุชูƒูˆูŠู† ุงู„ู…ุฑุถ,
05:58
but it's actually what's going on in your body right now.
136
358330
3000
ู„ูƒู† ูุนู„ูŠุง ู‡ูˆ ู…ุง ูŠุญุฏุซ ููŠ ุฌุณู…ูƒ ุงู„ุขู†.
06:01
So to do that, what you really need to do,
137
361330
2000
ูˆ ู„ุนู…ู„ ู‡ุฐุง, ู…ุง ุชุญุชุงุฌ ุญู‚ุง ูุนู„ู‡ ู‡ูˆ,
06:03
you need to look at the things
138
363330
2000
ุชุญุชุงุฌ ุงู„ู†ุธุฑ ุฅู„ู‰ ุงู„ุฃุดูŠุงุก
06:05
that the genes are producing
139
365330
2000
ุงู„ุชูŠ ุชู†ุชุฌู‡ุง ุงู„ุฌูŠู†ุงุช
06:07
and what's happening after the genetics,
140
367330
2000
ูˆ ู…ุง ูŠุญุฏุซ ุจุนุฏ ุงู„ุฌูŠู†ุงุช.
06:09
and that's what proteomics is about.
141
369330
2000
ูˆ ู‡ุฐุง ู‡ูˆ ุฏูˆุฑ ุงู„ุจุฑูˆุชูŠูˆู…ูŠุงุช.
06:11
Just like genome mixes the study of all the genes,
142
371330
3000
ู…ุซู„ู…ุง ู…ุง ูŠุฎู„ุท ุงู„ุฌู†ูŠูˆู… ุฏุฑุงุณุฉ ูƒู„ ุงู„ุฌูŠู†ุงุช,
06:14
proteomics is the study of all the proteins.
143
374330
3000
ุงู„ุจุฑูˆุชูŠูˆู…ูŠุงุช ู‡ูˆ ุฏุฑุงุณุฉ ูƒู„ ุงู„ุจุฑูˆุชูŠู†ุงุช.
06:17
And the proteins are all of the little things in your body
144
377330
2000
ูˆ ุงู„ุจุฑูˆุชูŠูˆู…ูŠุงุช ู‡ูŠ ูƒู„ ุงู„ุฃุดูŠุงุก ุงู„ุตุบูŠุฑุฉ ููŠ ุฌุณู…ูƒ
06:19
that are signaling between the cells --
145
379330
3000
ุงู„ุชูŠ ุชุคุฏูŠ ุฅู„ู‰ ุฅุดุงุฑุงุช ุจูŠู† ุงู„ุฎู„ุงูŠุง--
06:22
actually, the machines that are operating --
146
382330
2000
ููŠ ุงู„ูˆุงู‚ุน ู‡ูŠ ุงู„ุขู„ุงุช ุงู„ุนุงู…ู„ุฉ.
06:24
that's where the action is.
147
384330
2000
ูˆ ู‡ู†ุง ุชูƒู…ู† ุงู„ุญุฑูƒุฉ.
06:26
Basically, a human body
148
386330
3000
ุฃุณุงุณุง, ุฌุณู… ุงู„ุฅู†ุณุงู†
06:29
is a conversation going on,
149
389330
3000
ู‡ูˆ ู…ุญุงูˆุฑุฉ ู…ุณุชู…ุฑุฉ,
06:32
both within the cells and between the cells,
150
392330
3000
ุฏุงุฎู„ ุงู„ุฎู„ุงูŠุง ูˆ ุจูŠู† ุงู„ุฎู„ุงูŠุง,
06:35
and they're telling each other to grow and to die,
151
395330
3000
ูˆ ู‡ู… ูŠุทู„ุจูˆู† ู…ู† ุจุนุถู‡ู… ุงู„ุจุนุถ ุงู„ู†ู…ูˆ ูˆ ุงู„ู…ูˆุช.
06:38
and when you're sick,
152
398330
2000
ูˆ ุนู†ุฏู…ุง ุชู…ุฑุถ,
06:40
something's gone wrong with that conversation.
153
400330
2000
ูŠุญุฏุซ ุฎุทุฃ ู…ุง ููŠ ู‡ุฐู‡ ุงู„ู…ุญุงูˆุฑุฉ.
06:42
And so the trick is --
154
402330
2000
ูˆ ุงู„ููƒุฑุฉ ู‡ูŠ--
06:44
unfortunately, we don't have an easy way to measure these
155
404330
3000
ู„ู„ุฃุณู, ู„ูŠุณุช ู‡ู†ุงูƒ ุทุฑูŠู‚ุฉ ุณู‡ู„ุฉ ู„ู‚ูŠุงุณ ู‡ุฐู‡
06:47
like we can measure the genome.
156
407330
2000
ู…ุซู„ ุงู„ุชูŠ ู†ู‚ูŠุณ ููŠู‡ุง ุงู„ุฌู†ูŠูˆู….
06:49
So the problem is that measuring --
157
409330
3000
ูุงู„ู…ุดูƒู„ุฉ ู‡ูŠ ุฐู„ูƒ ุงู„ู‚ูŠุงุณ--
06:52
if you try to measure all the proteins, it's a very elaborate process.
158
412330
3000
ู„ูˆ ุฌุฑุจุช ุฃู† ุชู‚ูŠุณ ูƒู„ ุงู„ุจุฑูˆุชูŠู†ุงุช, ูุฅู†ู‡ุง ุนู…ู„ูŠุฉ ุฌุฏุง ู…ุนู‚ุฏุฉ.
06:55
It requires hundreds of steps,
159
415330
2000
ุฅู†ู‡ุง ุชุชุทู„ุจ ู…ุฆุงุช ุงู„ุฎุทูˆุงุช,
06:57
and it takes a long, long time.
160
417330
2000
ูˆ ุชุฃุฎุฐ ูˆู‚ุชุง ุทูˆูŠู„ุง ุฌุฏุง.
06:59
And it matters how much of the protein it is.
161
419330
2000
ูˆ ู…ู‚ุฏุงุฑ ุงู„ุจุฑูˆุชูŠู† ุงู„ู…ุชูˆุงุฌุฏ ุฐูˆ ุฃู‡ู…ูŠุฉ.
07:01
It could be very significant that a protein changed by 10 percent,
162
421330
3000
ู‚ุฏ ูŠูƒูˆู† ุฐุง ุฃู‡ู…ูŠุฉ ูƒุจูŠุฑุฉ ุฅุฐุง ุชุบูŠุฑ ุงู„ุจุฑูˆุชูŠู† ุจู†ุณุจุฉ 10 ููŠ ุงู„ู…ุงุฆุฉ,
07:04
so it's not a nice digital thing like DNA.
163
424330
3000
ูู‡ูŠ ู„ูŠุณุช ุงู„ุฏูŠ ุฅู† ุฃูŠ ุงู„ุฑู‚ู…ูŠุฉ ุงู„ู„ุทูŠูุฉ.
07:07
And basically our problem is somebody's in the middle
164
427330
2000
ูˆ ุฃุณุงุณุง ู…ุดูƒู„ุชู†ุง ู‡ูŠ ูˆุฌูˆุฏ ุฃุญุฏู‡ู… ููŠ ูˆุณุท
07:09
of this very long stage,
165
429330
2000
ู‡ุฐู‡ ุงู„ู…ุฑุญู„ุฉ ุงู„ุทูˆูŠู„ุฉ,
07:11
they pause for just a moment,
166
431330
2000
ูŠุชูˆู‚ููˆู† ูู‚ุท ู„ู„ุญุธุฉ,
07:13
and they leave something in an enzyme for a second,
167
433330
2000
ูˆ ูŠุชุฑูƒูˆู† ุดูŠุฆุง ููŠ ุงู„ุฃู†ุฒูŠู… ู„ุซุงู†ูŠุฉ,
07:15
and all of a sudden all the measurements from then on
168
435330
2000
ูˆ ูุฌุฃุฉ ูƒู„ ุงู„ู‚ูŠุงุณุงุช ุจุนุฏ ู‡ุฐุง
07:17
don't work.
169
437330
2000
ู„ุง ุชุนู…ู„.
07:19
And so then people get very inconsistent results
170
439330
2000
ูˆ ุจู‡ุฐุง ูŠุฌุฏ ุงู„ู†ุงุณ ู†ุชุงุฆุฌ ุบูŠุฑ ู…ุชู†ุงุณู‚ุฉ
07:21
when they do it this way.
171
441330
2000
ุญูŠู† ูŠุนู…ู„ูˆู† ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ.
07:23
People have tried very hard to do this.
172
443330
2000
ุงู„ู†ุงุณ ุญุงูˆู„ูˆุง ุจุชุตู…ูŠู… ู„ุนู…ู„ ู‡ุฐุง.
07:25
I tried this a couple of times
173
445330
2000
ุฃู†ุง ุญุงูˆู„ุช ู‡ุฐุง ู…ุฑุชูŠู†
07:27
and looked at this problem and gave up on it.
174
447330
2000
ูˆ ู†ุธุฑุช ุฅู„ู‰ ู‡ุฐู‡ ุงู„ู…ุดูƒู„ุฉ ูˆ ุชุฎู„ูŠุช ุนู†ู‡ุง.
07:29
I kept getting this call from this oncologist
175
449330
2000
ุฃุชุชู†ูŠ ุงุชุตุงู„ุงุช ู…ุณุชู…ุฑุฉ ู…ู† ุทุจูŠุจ ุฃูˆุฑุงู…
07:31
named David Agus.
176
451330
2000
ุงุณู…ู‡ ุฏุงูŠูุฏ ุฃูˆู‚ุณ.
07:33
And Applied Minds gets a lot of calls
177
453330
3000
ูˆ "ุฃุจู„ุงูŠุฏ ู…ุงูŠู†ุฏุฒ" ุชุตู„ู‡ุง ุงุชุตุงู„ุงุช ูƒุซูŠุฑุฉ
07:36
from people who want help with their problems,
178
456330
2000
ู…ู† ุฃู†ุงุณ ูŠุฑูŠุฏูˆู† ู…ุณุงุนุฏุฉ ููŠ ู…ุดุงูƒู„ู‡ู…,
07:38
and I didn't think this was a very likely one to call back,
179
458330
3000
ูˆ ุฃู†ุง ู„ู… ุฃุธู† ุฃู† ู‡ู†ุงูƒ ุงุญุชู…ุงู„ุง ุฃู† ู‡ุฐุง ุงู„ุดุฎุต ุณูŠุนูŠุฏ ุงู„ุงุชุตุงู„,
07:41
so I kept on giving him to the delay list.
180
461330
3000
ูุงุณุชู…ุฑูŠุช ุงุถุนู‡ ุนู„ู‰ ู‚ุงุฆู…ุฉ ุงู„ุชุฃุฌูŠู„.
07:44
And then one day,
181
464330
2000
ูˆ ููŠ ูŠูˆู… ู…ุง,
07:46
I get a call from John Doerr, Bill Berkman
182
466330
2000
ูˆุตู„ู†ูŠ ุงุชุตุงู„ ู…ู† ุฌูˆู† ุฏูˆูŠุฑ, ุจูŠู„ ุจุฑูƒู…ุงู†
07:48
and Al Gore on the same day
183
468330
2000
ูˆ ุฃู„ ู‚ูˆุฑ ููŠ ู†ูุณ ุงู„ูŠูˆู…
07:50
saying return David Agus's phone call.
184
470330
2000
ูŠู‚ูˆู„ูˆู† ุฑุฏ ุนู„ู‰ ุงุชุตุงู„ ุฏูŠููŠุฏ ุฃูˆู‚ุณ.
07:52
(Laughter)
185
472330
2000
(ุถุญูƒ)
07:54
So I was like, "Okay. This guy's at least resourceful."
186
474330
2000
ูˆ ูƒู†ุช ุฃููƒุฑ "ุญุณู†ุง. ุนู„ู‰ ุงู„ุฃู‚ู„ ู‡ุฐุง ุฑุฌู„ ูˆุงุตู„."
07:56
(Laughter)
187
476330
4000
(ุถุญูƒ)
08:00
So we started talking,
188
480330
2000
ูุจุฏุฃู†ุง ู†ุชูƒู„ู…,
08:02
and he said, "I really need a better way to measure proteins."
189
482330
3000
ูˆ ู‚ุงู„, " ุฃู†ุง ูุนู„ุง ุฃุญุชุงุฌ ุทุฑูŠู‚ุฉ ุฃูุถู„ ู„ู‚ูŠุงุณ ุงู„ุจุฑูˆุชูŠู†ุงุช."
08:05
I'm like, "Looked at that. Been there.
190
485330
2000
ูˆ ุฃู†ุง ูƒู†ุช ู…ุซู„, "ุงู†ุธุฑ ุฅู„ู‰ ู‡ุฐุง. ู„ู‚ุฏ ูƒู†ุช ู‡ู†ุงูƒ.
08:07
Not going to be easy."
191
487330
2000
ู„ู† ูŠูƒูˆู† ุณู‡ู„ุง."
08:09
He's like, "No, no. I really need it.
192
489330
2000
ูˆ ู‡ูˆ ูƒุงู† ูŠู‚ูˆู„ " ู„ุง ู„ุง . ุฃู†ุง ูุนู„ุง ุจุญุงุฌุฉ ู„ู‡ุง.
08:11
I mean, I see patients dying every day
193
491330
4000
ู‚ุตุฏูŠ, ุฅู†ูŠ ุฃุฑู‰ ู…ุฑุถู‰ ูŠู…ูˆุชูˆู† ูƒู„ ูŠูˆู…
08:15
because we don't know what's going on inside of them.
194
495330
3000
ู„ุฃู†ู†ุง ู„ุง ู†ุนุฑู ู…ุง ูŠุฏูˆุฑ ููŠ ุฏุงุฎู„ู‡ู….
08:18
We have to have a window into this."
195
498330
2000
ูŠุชูˆุฌุจ ุนู„ูŠู†ุง ุฃู† ู†ุฌุฏ ู…ู†ูุฐุง ู„ู‡ุฐุง."
08:20
And he took me through
196
500330
2000
ูˆ ุฃุฎุฐู†ุง ุนุจุฑ
08:22
specific examples of when he really needed it.
197
502330
3000
ุฃู…ุซู„ุฉ ู…ุนูŠู†ุฉ ู„ู„ุฃูˆู‚ุงุช ุงู„ุชูŠ ูƒุงู† ูุนู„ุง ุจุญุงุฌุฉ ุฅู„ูŠู‡ุง.
08:25
And I realized, wow, this would really make a big difference,
198
505330
2000
ุจุนุฏู‡ุง ุงุณุชูˆุนุจุช, ุชุนุฌุจุช, ุฅู† ู‡ุฐุง ุณูŠุญุฏุซ ูุนู„ุง ูุฑู‚ุง ูƒุจูŠุฑุง
08:27
if we could do it,
199
507330
2000
ู„ูˆ ุงุณุชุทุนู†ุง ูุนู„ู‡.
08:29
and so I said, "Well, let's look at it."
200
509330
2000
ุซู… ู‚ู„ุช, "ุญุณู†ุง, ู„ู†ู†ุธุฑ ุฅู„ูŠู‡ุง."
08:31
Applied Minds has enough play money
201
511330
2000
ุฃุจู„ุงูŠุฏ ู…ุงูŠู†ุฏุฒ ู„ุฏูŠู‡ุง ู†ู‚ูˆุฏ ูƒุงููŠุฉ ู„ู„ุชุฌุงุฑุจ
08:33
that we can go and just work on something
202
513330
2000
ู†ุณุชุทูŠุน ุฃู† ู†ู‚ูˆู… ุจุงู„ุนู…ู„ ุนู„ู‰ ุฃู…ุฑ ู…ุง
08:35
without getting anybody's funding or permission or anything.
203
515330
3000
ู…ู† ุฏูˆู† ุณู…ุงุญ ู„ู„ุชู…ูˆูŠู„ ุฃูˆ ู…ุง ุดุงุจู‡ ู…ู† ุฃูŠ ุฃุญุฏ.
08:38
So we started playing around with this.
204
518330
2000
ูุจุฏุฃู†ุง ุจุงู„ุชุฌุงุฑุจ ุนู„ู‰ ู‡ุฐุง.
08:40
And as we did it, we realized this was the basic problem --
205
520330
3000
ูˆ ููŠ ุฎู„ุงู„ ุนู…ู„ู†ุง, ุงุณุชูˆุนุจู†ุง ุฃู† ู‡ู†ุงูƒ ู…ุดูƒู„ุฉ ุฃุณุงุณูŠุฉ--
08:43
that taking the sip of coffee --
206
523330
2000
ุฃุฎุฐ ุฑุดูุฉ ู…ู† ุงู„ู‚ู‡ูˆุฉ--
08:45
that there were humans doing this complicated process
207
525330
2000
ูŠุชุทู„ุจ ูˆุฌูˆุฏ ุฃุดุฎุงุต ูŠู‚ูˆู…ูˆู† ูŠู‡ุฐู‡ ุงู„ุนู…ู„ูŠุฉ ุงู„ู…ุนู‚ุฏุฉ
08:47
and that what really needed to be done
208
527330
2000
ูˆ ุจู‡ุฐุง, ู…ุง ุงุญุชุฌู†ุง ูุนู„ุง ุฃู† ู†ู‚ูˆู… ุจู‡,
08:49
was to automate this process like an assembly line
209
529330
3000
ู‡ูˆ ุฃุชู…ุชุฉ ุงู„ุนู…ู„ูŠุฉ ู…ุซู„ ุฎุท ุงู†ุชุงุฌ
08:52
and build robots
210
532330
2000
ูˆ ุจู†ุงุก ุฑุฌุงู„ ุขู„ูŠูŠู†
08:54
that would measure proteomics.
211
534330
2000
ู„ูƒูŠ ูŠู‚ูŠุณูˆุง ุงู„ุจุฑูˆุชูŠูˆู…ูŠุงุช.
08:56
And so we did that,
212
536330
2000
ูˆ ู‚ุฏ ู‚ู…ู†ุง ุจุฐู„ูƒ.
08:58
and working with David,
213
538330
2000
ูˆ ุนู…ู„ุช ู…ุน ุฏูŠููŠุฏ,
09:00
we made a little company called Applied Proteomics eventually,
214
540330
3000
ู‚ู…ู†ุง ุชุฏุฑุฌูŠุง ุจุฅู†ุดุงุก ุดุฑูƒุฉ ุตุบูŠุฑุฉ ุชุฏุนู‰ ุฃุจู„ุงูŠุฏ ุจุฑูˆุชูŠูˆู…ูŠุงุช,
09:03
which makes this robotic assembly line,
215
543330
3000
ุงู„ุชูŠ ุชุตู†ุน ุฎุท ุงู†ุชุงุฌ ุขู„ูŠ,
09:06
which, in a very consistent way, measures the protein.
216
546330
3000
ู‡ูŠ , ุจุทุฑูŠู‚ุฉ ุดุงู…ู„ุฉ, ุชู‚ูŠุณ ุงู„ุจุฑูˆุชูŠู†
09:09
And I'll show you what that protein measurement looks like.
217
549330
3000
ูˆ ุณุฃุฑูŠูƒู… ู…ุง ู‡ูˆ ุดูƒู„ ู‚ูŠุงุณ ุงู„ุจุฑูˆุชูŠู†.
09:13
Basically, what we do
218
553330
2000
ุฃุณุงุณุง, ู…ุง ู†ุนู…ู„ู‡
09:15
is we take a drop of blood
219
555330
2000
ู‡ูˆ ุฃุฎุฐ ู†ู‚ุทุฉ ู…ู† ุงู„ุฏู…
09:17
out of a patient,
220
557330
2000
ู…ู† ู…ุฑูŠุถ,
09:19
and we sort out the proteins
221
559330
2000
ูˆ ู†ูุฑุฒ ุงู„ุจุฑูˆุชูŠู†ุงุช
09:21
in the drop of blood
222
561330
2000
ููŠ ู†ู‚ุทุฉ ุงู„ุฏู….
09:23
according to how much they weigh,
223
563330
2000
ุญุณุจ ู…ู‚ุฏุงุฑ ูˆุฒู†ู‡ุง,
09:25
how slippery they are,
224
565330
2000
ูˆ ุฏุฑุฌุฉ ุณูŠูˆู„ุชู‡ุง,
09:27
and we arrange them in an image.
225
567330
3000
ูˆ ู†ุฑุชุจู‡ู… ููŠ ุตูˆุฑุฉ.
09:30
And so we can look at literally
226
570330
2000
ูˆ ู„ู†ุชุณุชุทูŠุน ุงู„ู†ุธุฑ ุจุญู‚ ุฅู„ู‰
09:32
hundreds of thousands of features at once
227
572330
2000
ู…ุฆุงุช ุงู„ุขู„ู ู…ู† ุงู„ุตูุงุช ู…ุฑุฉ ูˆุงุญุฏุฉ
09:34
out of that drop of blood.
228
574330
2000
ู…ู† ุชู„ูƒ ุงู„ู†ู‚ุทุฉ ู…ู† ุงู„ุฏู….
09:36
And we can take a different one tomorrow,
229
576330
2000
ูˆ ู†ุณุชุทูŠุน ุฃุฎุฐ ูˆุงุญุฏุฉ ู…ุฎุชู„ูุฉ ุบุฏุง,
09:38
and you will see your proteins tomorrow will be different --
230
578330
2000
ูˆ ู†ุณุชุทูŠุน ุฑุคูŠุฉ ุฃู† ุจุฑูˆุชูŠู† ุงู„ูŠูˆู… ุงู„ุชุงู„ูŠ ุณุชูƒูˆู† ู…ุฎุชู„ูุฉ --
09:40
they'll be different after you eat or after you sleep.
231
580330
3000
ุณุชุฎู„ู ุจุนุฏ ุฃู† ุชุฃูƒู„ ูˆ ุจุนุฏ ุฃู† ุชู†ุงู….
09:43
They really tell us what's going on there.
232
583330
3000
ุชุฎุจุฑู†ุง ุงู„ุจุฑูˆุชูŠู†ุงุช ูุนู„ุง ู…ุงุฐุง ูŠุญุฏุซ ู‡ู†ุงูƒ.
09:46
And so this picture,
233
586330
2000
ูˆ ููŠ ู‡ุฐู‡ ุงู„ุตูˆุฑุฉ,
09:48
which looks like a big smudge to you,
234
588330
2000
ุงู„ุชูŠ ุชุจุฏูˆ ูƒุจู‚ุนุฉ ู„ูƒ,
09:50
is actually the thing that got me really thrilled about this
235
590330
4000
ู‡ูŠ ุญู‚ุง ุงู„ุดุฆ ุงู„ุฐูŠ ุฌุนู„ู†ูŠ ู…ู†ุฏู‡ุดุง ุจู‡ุฐุง
09:54
and made me feel like we were on the right track.
236
594330
2000
ูˆ ุฌุนู„ู†ูŠ ุฃุดุนุฑ ูƒุฃู†ู†ูŠ ุนู„ู‰ ุฎุท ุงู„ุณูŠุฑ ุงู„ุตุญูŠุญ.
09:56
So if I zoom into that picture,
237
596330
2000
ูุฅุฐุง ู‚ุฑุจุช ู‡ุฐู‡ ุงู„ุตูˆุฑุฉ,
09:58
I can just show you what it means.
238
598330
2000
ุฃุณุชุทูŠุน ุฃู† ุฃุฑูŠูƒู… ู…ุงุฐุง ุชุนู†ูŠ.
10:00
We sort out the proteins -- from left to right
239
600330
3000
ู†ูุฑุฒ ุงู„ุจุฑูˆุชูŠู†-- ู…ู† ุงู„ูŠุณุงุฑ ุฅู„ู‰ ุงู„ูŠู…ูŠู†
10:03
is the weight of the fragments that we're getting,
240
603330
3000
ู‡ูˆ ูˆุฒู† ุงู„ุฃุฌุฒุงุก ุงู„ุชูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง.
10:06
and from top to bottom is how slippery they are.
241
606330
3000
ูˆ ู…ู† ุงู„ุฃุนู„ู‰ ุฅู„ู‰ ุงู„ุฃุณูู„ ู…ุฏู‰ ุณูŠูˆู„ุชู‡ุง.
10:09
So we're zooming in here just to show you a little bit of it.
242
609330
3000
ูˆ ู†ุญู† ู†ู‚ุฑุจ ุงู„ุตูˆุฑุฉ ุฅู„ู‰ ู‡ู†ุง ู„ู†ุฑูŠูƒ ุฃู† ุฌุฒุกุง ุตุบูŠุฑุง ู…ู†ู‡ุง.
10:12
And so each of these lines
243
612330
2000
ูˆ ูƒู„ ู…ู† ู‡ุฐู‡ ุงู„ุฎุทูˆุท
10:14
represents some signal that we're getting out of a piece of a protein.
244
614330
3000
ุชู…ุซู„ ู†ูˆุนุง ู…ู† ุงู„ุฅุดุงุฑุฉ ุงู„ุชูŠ ุชุฎุฑุฌ ู…ู† ุฌุฒุก ู…ู† ุงู„ุจุฑูˆุชูŠู†.
10:17
And you can see how the lines occur
245
617330
2000
ูˆ ุชุณุชุทูŠุนูˆู† ุฑุคูŠุฉ ูƒูŠู ุชุชุดูƒู„ ุงู„ุฎุทูˆุท
10:19
in these little groups of bump, bump, bump, bump, bump.
246
619330
4000
ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ุตุบูŠุฑุฉ ุฎุทุŒ ุฎุทุŒ ุฎุทุŒ ุฎุท.
10:23
And that's because we're measuring the weight so precisely that --
247
623330
3000
ูˆ ู‡ุฐุง ู„ุฃู†ู†ุง ู†ู‚ูŠุณ ุงู„ูˆุฒู† ุจุฏู‚ุฉ ุดุฏูŠุฏุฉ ุจุฐู„ูƒ--
10:26
carbon comes in different isotopes,
248
626330
2000
ูŠุฃุชูŠ ุงู„ูƒุฑุจูˆู† ุจุนุฏุฉ ู†ุธุงุฆุฑ ูƒูŠู…ูŠุงุฆูŠุฉุŒ
10:28
so if it has an extra neutron on it,
249
628330
3000
ุจู‡ุฐุง ุงุฐุง ูƒุงู† ุนู„ูŠู‡ ู†ูŠูˆุชุฑูˆู† ุฒุงุฆุฏุŒ
10:31
we actually measure it as a different chemical.
250
631330
4000
ูู†ุญู† ูุนู„ุง ู†ู‚ูŠุณู‡ ูƒู…ุฑูƒุจ ูƒูŠู…ูŠุงุฆูŠ ู…ุฎุชู„ู.
10:35
So we're actually measuring each isotope as a different one.
251
635330
3000
ูู†ุญู† ูุนู„ุง ู†ู‚ูŠุณ ูƒู„ ู†ุธูŠุฑ ูƒูŠู…ูŠุงุฆูŠ ูƒู†ุธูŠุฑ ู…ุฎุชู„ู ุนู† ุงู„ุซุงู†ูŠ.
10:38
And so that gives you an idea
252
638330
3000
ูˆ ู‡ุฐุง ูŠุนุทูŠูƒู… ููƒุฑุฉ
10:41
of how exquisitely sensitive this is.
253
641330
2000
ุนู† ุงู„ุญุณุงุณูŠุฉ ุงู„ูุงุฆู‚ุฉ ู„ู‡ุฐุง.
10:43
So seeing this picture
254
643330
2000
ุจุฑุคูŠุฉ ู‡ุฐู‡ ุงู„ุตูˆุฑุฉ
10:45
is sort of like getting to be Galileo
255
645330
2000
ู…ุซู„ ุฃู† ู†ูƒูˆู† ุฌุงู„ูŠู„ูŠูˆ
10:47
and looking at the stars
256
647330
2000
ูˆ ู†ู†ุธุฑ ุฅู„ู‰ ุงู„ู†ุฌูˆู…
10:49
and looking through the telescope for the first time,
257
649330
2000
ุนุจุฑ ุงู„ุชู„ุณูƒูˆุจ ู„ู„ู…ุฑุฉ ุงู„ุฃูˆู„ู‰ุŒ
10:51
and suddenly you say, "Wow, it's way more complicated than we thought it was."
258
651330
3000
ูˆ ูุฌุฃุฉ ู†ู‚ูˆู„ "ูŠุงู‡ุŒ ุฃู†ู‡ุง ุฃูƒุซุฑ ุชุนู‚ูŠุฏุง ุจูƒุซูŠุฑ ุนู† ู…ุง ูƒู†ุง ู†ุธู†."
10:54
But we can see that stuff out there
259
654330
2000
ู„ูƒู† ู†ุณุชุทูŠุน ุฃู† ู†ุฑู‰ ุงู„ุฃุดูŠุงุก ููŠ ุงู„ุฎุงุฑุฌ
10:56
and actually see features of it.
260
656330
2000
ูˆ ููŠ ุงู„ูˆุงู‚ุน ู†ุฑู‰ ู…ูŠุฒุงุชู‡ุง.
10:58
So this is the signature out of which we're trying to get patterns.
261
658330
3000
ูˆ ุจู‡ุฐุง ุฅู† ู†ุณุชุทูŠุน ุฃู† ู†ุณุชู†ุชุฌ ู…ู† ู…ุญุงูˆู„ู†ุง ุฅูŠุฌุงุฏ ุงู„ุฃู†ู…ุงุท.
11:01
So what we do with this
262
661330
2000
ูู…ุงุฐุง ู†ูุนู„ ุจู‡ุฐุง
11:03
is, for example, we can look at two patients,
263
663330
2000
ู‡ูˆุŒ ู…ุซู„ุงุŒ ู†ุณุชุทูŠุน ุงู„ู†ุธุฑ ุฅู„ู‰ ู…ุฑูŠุถูŠู†ุŒ
11:05
one that responded to a drug and one that didn't respond to a drug,
264
665330
3000
ูˆุงุญุฏ ุงุณุชุฌุงุจ ู„ุฏูˆุงุก ูˆ ุงู„ุขุฎุฑ ู„ู… ูŠุณุชุฌูŠุจ ู„ุฏูˆุงุกุŒ
11:08
and ask, "What's going on differently
265
668330
2000
ูˆ ู†ุณุฃู„ุŒ " ู…ุง ุงู„ุฐูŠ ุงุฎุชู„ู
11:10
inside of them?"
266
670330
2000
ุฏุงุฎู„ู‡ู…ุŸ"
11:12
And so we can make these measurements precisely enough
267
672330
3000
ูู†ุณุชุทูŠุน ุฃู† ู†ุฃุฎุฐ ู‚ูŠุงุณุงุช ู…ุญุฏุฏุฉ ูƒูุงูŠุฉ
11:15
that we can overlay two patients and look at the differences.
268
675330
3000
ู„ุฃู† ู†ุทุงุจู‚ ุงู„ู…ุฑูŠุถูŠู† ูˆ ู†ู†ุธุฑ ุฅู„ู‰ ุงู„ุงุฎุชู„ุงูุงุช.
11:18
So here we have Alice in green
269
678330
2000
ู‡ู†ุง ู„ุฏูŠู†ุง ุฃู„ูŠุณ ุจุงู„ู„ูˆู† ุงู„ุฃุฎุถุฑ
11:20
and Bob in red.
270
680330
2000
ูˆ ุจูˆุจ ุจุงู„ุฃุญู…ุฑ.
11:22
We overlay them. This is actual data.
271
682330
3000
ู†ุทุงุจู‚ู‡ู…. ู‡ู†ุงูƒ ู…ุนู„ูˆู…ุงุช ูˆุงู‚ุนูŠุฉ.
11:25
And you can see, mostly it overlaps and it's yellow,
272
685330
3000
ูˆ ุชุณุชุทูŠุนูˆู† ุฃู† ุชุฑูˆู†ุŒ ุฃุบู„ุจู‡ุง ุชุชุทุงุจู‚ ูˆ ุฅู†ู‡ุง ุตูุฑุงุกุŒ
11:28
but there's some things that just Alice has
273
688330
2000
ู„ูƒู† ู‡ู†ุงูƒ ุฃุดูŠุงุก ุนู†ุฏ ุฃู„ูŠุณ ูู‚ุท
11:30
and some things that just Bob has.
274
690330
2000
ูˆ ุฃุดูŠุงุก ุนู†ุฏ ุจูˆุจ ูู‚ุท.
11:32
And if we find a pattern of things
275
692330
3000
ูˆ ุฅุฐุง ูˆุฌุฏู†ุง ู†ู…ุท ู…ู† ุงู„ุฃุดูŠุงุก
11:35
of the responders to the drug,
276
695330
3000
ุงู„ู…ุณุชุฌูŠุจุฉ ู„ู„ุฏูˆุงุกุŒ
11:38
we see that in the blood,
277
698330
2000
ู†ุฑุงู‡ุง ููŠ ุฐู„ูƒ ุงู„ุฏู…ุŒ
11:40
they have the condition
278
700330
2000
ู„ุฏูŠู‡ุง ุงู„ุญุงู„ุฉ
11:42
that allows them to respond to this drug.
279
702330
2000
ุงู„ุชูŠ ุชู…ูƒู†ู‡ุง ู…ู† ุงู„ุงุณุชุฌุงุจุฉ ู„ู‡ุฐุง ุงู„ุฏูˆุงุก.
11:44
We might not even know what this protein is,
280
704330
2000
ู‚ุฏ ู„ุง ูŠู…ูƒู†ู†ุง ู…ุนุฑูุฉ ู…ุง ู‡ุฐุง ุงู„ุจุฑูˆุชูŠู†ุŒ
11:46
but we can see it's a marker
281
706330
2000
ู„ูƒู†ู†ุง ู†ุณุชุทูŠุน ุฑุคูŠุฉ ุฃู†ู‡ ุนู„ุงู…ุฉ
11:48
for the response to the disease.
282
708330
2000
ู„ู„ุงุณุชุฌุงุจุฉ ู„ู„ู…ุฑุถ.
11:53
So this already, I think,
283
713330
2000
ู„ุฐู„ูƒ ุฅู† ู‡ุฐุง ุจุงู„ูุนู„ุŒ ุฃุธู†ู‡
11:55
is tremendously useful in all kinds of medicine.
284
715330
3000
ู†ุงูุน ุจุดูƒู„ ูƒุจูŠุฑ ููŠ ุฌู…ูŠุน ุฃู†ูˆุงุน ุงู„ุทุจ.
11:58
But I think this is actually
285
718330
2000
ู„ูƒู†ู†ูŠ ุฃุธู† ุฃู† ู‡ุฐุง ููŠ ุงู„ูˆุงู‚ุน
12:00
just the beginning
286
720330
2000
ู‡ูˆ ูู‚ุท ุงู„ุจุฏุงูŠุฉ
12:02
of how we're going to treat cancer.
287
722330
2000
ู„ูƒูŠู ุณู†ุนุงู„ุฌ ุงู„ุณุฑุทุงู†.
12:04
So let me move to cancer.
288
724330
2000
ุฏุนูˆู†ูŠ ุงู†ุชู‚ู„ ุฅู„ู‰ ุงู„ุณุฑุทุงู†.
12:06
The thing about cancer --
289
726330
2000
ุงู„ุฃู…ุฑ ููŠ ุงู„ุณุฑุทุงู†--
12:08
when I got into this,
290
728330
2000
ุนู†ุฏู…ุง ุฏุฎู„ุช ู‡ุฐุง ุงู„ู…ุฌุงู„ุŒ
12:10
I really knew nothing about it,
291
730330
2000
ู„ู… ุฃูƒู† ุฃุนุฑู ุฃูŠ ุดุฆ ุนู†ู‡ุŒ
12:12
but working with David Agus,
292
732330
2000
ู„ูƒู† ุจุงู„ุนู…ู„ ู…ุน ุฏูŠููŠุฏ ุฃูˆู‚ุณุŒ
12:14
I started watching how cancer was actually being treated
293
734330
3000
ุจุฏุฃุช ุจู…ุดุงู‡ุฏุฉ ูƒูŠู ููŠ ุงู„ูˆุงู‚ุน ูŠุนุงู„ุฌ ุงู„ุณุฑุทุงู†
12:17
and went to operations where it was being cut out.
294
737330
3000
ูˆ ุฐู‡ุจุช ุฅู„ู‰ ุนู…ู„ูŠุงุช ูŠู‚ุงู… ููŠู‡ุง ุงุณุชุฆุตุงู„ู‡.
12:20
And as I looked at it,
295
740330
2000
ูุนู†ุฏู…ุง ู†ุธุฑุช ุฅู„ูŠู‡ุงุŒ
12:22
to me it didn't make sense
296
742330
2000
ู„ู… ูŠูƒู† ู…ู†ุทู‚ูŠุง ุจุงู„ู†ุณุจุฉ ู„ูŠ
12:24
how we were approaching cancer,
297
744330
2000
ูƒูŠู ู†ุชุนุงู…ู„ ู…ุน ุงู„ุณุฑุทุงู†.
12:26
and in order to make sense of it,
298
746330
3000
ูˆ ู„ุฃุตู†ุน ุดูŠุฆุง ู…ู†ุทู‚ูŠุง ู…ู†ู‡ุŒ
12:29
I had to learn where did this come from.
299
749330
3000
ุนู„ูŠ ุฃู† ุฃุชุนู„ู… ู…ู† ุฃูŠู† ุฃุชู‰ ู‡ุฐุง.
12:32
We're treating cancer almost like it's an infectious disease.
300
752330
4000
ู†ุญู† ู†ุนุงู…ู„ ุงู„ุณุฑุทุงู† ุชู‚ุฑูŠุจุง ูƒุฃู†ู‡ ู…ุฑุถ ู…ุนุฏูŠ.
12:36
We're treating it as something that got inside of you
301
756330
2000
ู†ุญู† ู†ุนุงู…ู„ู‡ ูƒุงู„ุดู‰ุก ุงู„ุฐูŠ ูˆุตู„ ุจุฏุงุฎู„ู†ุง
12:38
that we have to kill.
302
758330
2000
ูˆ ุนู„ูŠู†ุง ุฃู† ู†ู‚ุชู„ู‡.
12:40
So this is the great paradigm.
303
760330
2000
ูู‡ุฐุง ู‡ูˆ ุงู„ู†ู…ูˆุฐุฌ ุงู„ุงุฏุฑุงูƒูŠ ุงู„ูƒุจูŠุฑ.
12:42
This is another case
304
762330
2000
ุฅู†ู‡ุง ุญุงู„ุฉ ุฃุฎุฑู‰
12:44
where a theoretical paradigm in biology really worked --
305
764330
2000
ุงู„ุชูŠ ุญู‚ุง ู†ุฌุญุช ููŠู‡ุง ู†ุธุฑูŠุฉ ู†ู…ูˆุฐุฌ ุงู„ุฅุฏุฑุงูƒูŠ--
12:46
was the germ theory of disease.
306
766330
3000
ู‡ูŠ ู†ุธุฑูŠุฉ ุฌุฑุซูˆู… ุงู„ู…ุฑุถ.
12:49
So what doctors are mostly trained to do
307
769330
2000
ูุฃุบู„ุจ ู…ุง ูŠุฏุฑุจ ุนู„ูŠู‡ ุงู„ุฃุทุจุงุก
12:51
is diagnose --
308
771330
2000
ู‡ูˆ ุงู„ุชุดุฎูŠุต --
12:53
that is, put you into a category
309
773330
2000
ูŠุนู†ูŠ ุชุตู†ูŠููƒู… ุชุญุช ูุฆุฉ --
12:55
and apply a scientifically proven treatment
310
775330
2000
ูˆ ุชุทุจูŠู‚ ุนู„ุงุฌ ุฃุซุจุช ุนู„ู…ูŠุง
12:57
for that diagnosis --
311
777330
2000
ู„ุฐู„ูƒ ุงู„ุชุดุฎูŠุต.
12:59
and that works great for infectious diseases.
312
779330
3000
ูˆ ู‡ุฐุง ูŠุนู…ู„ ุจุดูƒู„ ุฑุงุฆุน ู„ู„ุฃู…ุฑุงุถ ุงู„ู…ุนุฏูŠุฉ.
13:02
So if we put you in the category
313
782330
2000
ูุฅุฐุง ูˆุถุนู†ุงูƒู… ููŠ ูุฆุฉ
13:04
of you've got syphilis, we can give you penicillin.
314
784330
3000
ู„ู…ู† ุญุตู„ ู„ู‡ู… ุงู„ุฒู‡ุฑูŠุŒ ู†ุณุชุทูŠุน ุฅุนุทุงุฆูƒู… ุงู„ุจู†ุณู„ูŠู†.
13:07
We know that that works.
315
787330
2000
ู†ุนุฑู ุฃู†ู‡ ูŠุนู…ู„.
13:09
If you've got malaria, we give you quinine
316
789330
2000
ุฅุฐุง ุฃุตุงุจุชูƒู… ุงู„ู…ู„ุงุฑูŠุงุŒ ู†ุนุทูŠูƒู… ุงู„ูƒูŠู†ูŠู†ุŒ
13:11
or some derivative of it.
317
791330
2000
ุฃูˆ ู…ุดุชู‚ ู…ู†ู‡ุง.
13:13
And so that's the basic thing doctors are trained to do,
318
793330
3000
ูˆ ู‡ุฐุง ู‡ูˆ ุงู„ุดุฆ ุงู„ุฃุณุงุณูŠ ุงู„ุฐูŠ ูŠุฏุฑุจ ุนู„ูŠู‡ ุงู„ุฃุทุจุงุก.
13:16
and it's miraculous
319
796330
2000
ูˆ ู‡ูˆ ู…ุนุฌุฒุฉ
13:18
in the case of infectious disease --
320
798330
3000
ููŠ ุญุงู„ุฉ ุงู„ุฃู…ุฑุงุถ ุงู„ู…ุนุฏูŠุฉ--
13:21
how well it works.
321
801330
2000
ูŠุนู…ู„ ุจุดูƒู„ ุฌูŠุฏ.
13:23
And many people in this audience probably wouldn't be alive
322
803330
3000
ูˆ ูŠุญุชู…ู„ ุฃู† ูƒุซูŠุฑุง ู…ู† ุงู„ู†ุงุณ ููŠ ู‡ุฐุง ุงู„ุฌู…ู‡ูˆุฑ ู„ู… ูŠูƒู† ู„ูŠุตุจุญูˆุง ุนู„ู‰ ู‚ูŠุฏ ุงู„ุญูŠุงุฉ
13:26
if doctors didn't do this.
323
806330
2000
ู„ูˆ ุฃู† ุงู„ุฃุทุจุงุก ู„ู… ูŠุนู…ู„ูˆุง ู‡ุฐุง.
13:28
But now let's apply that
324
808330
2000
ุงู„ุขู† ู„ู†ุทุจู‚ ู‡ุฐุง
13:30
to systems diseases like cancer.
325
810330
2000
ู„ุฃู…ุฑุงุถ ุงู„ุฃู†ุธู…ุฉ ู…ุซู„ ุงู„ุณุฑุทุงู†.
13:32
The problem is that, in cancer,
326
812330
2000
ุงู„ู…ุดูƒู„ุฉ ู‡ูŠุŒ ููŠ ุงู„ุณุฑุทุงู†ุŒ
13:34
there isn't something else
327
814330
2000
ุฃู†ู‡ ู„ูŠุณ ู‡ู†ุงูƒ ุดุฆ
13:36
that's inside of you.
328
816330
2000
ููŠ ุฏุงุฎู„ูƒู….
13:38
It's you; you're broken.
329
818330
2000
ุฃู†ู‡ ุฃู†ุชู…ุŒ ุงู„ุฐูŠู† ูƒุณุฑุชู….
13:40
That conversation inside of you
330
820330
4000
ุชู„ูƒ ุงู„ู…ุญุงุฏุซุฉ ููŠ ุฏุงุฎู„ูƒู…
13:44
got mixed up in some way.
331
824330
2000
ุชุฎุจุทุช ุจุทุฑูŠู‚ุฉ ู…ุง.
13:46
So how do we diagnose that conversation?
332
826330
2000
ููƒูŠู ู†ุดุฎุต ุชู„ูƒ ุงู„ู…ุญุงุฏุซุฉุŸ
13:48
Well, right now what we do is we divide it by part of the body --
333
828330
3000
ุญุณู†ุง ุงู„ุขู† ุงู„ุฐูŠ ู†ูุนู„ู‡ ู‡ูˆ ุฃู†ู†ุง ู†ู‚ุณู…ู‡ุง ุญุณุจ ุฅุฌุฒุงุก ุงู„ุฌุณู…--
13:51
you know, where did it appear? --
334
831330
3000
ุชุนุฑููˆู†ุŒ ุฃูŠู† ุธู‡ุฑุช--
13:54
and we put you in different categories
335
834330
2000
ูˆ ู†ุถุนู‡ุง ููŠ ูุฆุงุช ู…ุฎุชู„ูุฉ
13:56
according to the part of the body.
336
836330
2000
ูˆูู‚ุง ู„ุฃุฌุฒุงุก ุงู„ุฌุณู….
13:58
And then we do a clinical trial
337
838330
2000
ูˆ ุจุนุฏู‡ุง ู†ู‚ูˆู… ุจุงู„ุชุฌุฑุจุฉ ุงู„ุณุฑูŠุฑูŠุฉ
14:00
for a drug for lung cancer
338
840330
2000
ู„ุนู„ุงุฌ ุณุฑุทุงู† ุงู„ุฑุฆุฉ
14:02
and one for prostate cancer and one for breast cancer,
339
842330
3000
ูˆ ูˆุงุญุฏุฉ ู„ุณุฑุทุงู† ุงู„ุจุฑูˆุณุชุงุช ูˆ ุฃุฎุฑู‰ ู„ุณุฑุทุงู† ุงู„ุซุฏูŠุŒ
14:05
and we treat these as if they're separate diseases
340
845330
3000
ูˆ ู†ุนุงู„ุฌ ู‡ุฐู‡ ูˆ ูƒุฃู†ู‡ุง ุฃู…ุฑุงุถ ู…ุณุชู‚ู„ุฉ
14:08
and that this way of dividing them
341
848330
2000
ูˆ ุทุฑูŠู‚ุฉ ุชู‚ุณูŠู…ู‡ู… ู‡ุฐู‡
14:10
had something to do with what actually went wrong.
342
850330
2000
ูƒุงู†ุช ู„ู‡ุง ุนู„ุงู‚ุฉ ููŠ ุงู„ุฎุทุฃ ุงู„ุฐูŠ ุญุฏุซ ูุนู„ุง.
14:12
And of course, it really doesn't have that much to do
343
852330
2000
ูˆ ุจุงู„ุทุจุนุŒ ู„ู… ุชูƒู† ู…ุคุซุฑุฉ ุจุดูƒู„ ูƒุจูŠุฑ
14:14
with what went wrong
344
854330
2000
ููŠ ุงู„ุฎุทุฃ ุงู„ุฐูŠ ุญุตู„.
14:16
because cancer is a failure of the system.
345
856330
3000
ู„ุฃู† ุงู„ุณุฑุทุงู† ู‡ูˆ ูุดู„ ุงู„ู†ุธุงู….
14:19
And in fact, I think we're even wrong
346
859330
2000
ูˆ ููŠ ูˆุงู‚ุน ุงู„ุฃู…ุฑุŒ ุฃุธู† ุฃู†ู†ุง ู…ุฎุทุฆูˆู†
14:21
when we talk about cancer as a thing.
347
861330
3000
ุนู†ุฏู…ุง ู†ุชูƒู„ู… ุนู† ุงู„ุณุฑุทุงู† ูƒุดุฆ.
14:24
I think this is the big mistake.
348
864330
2000
ุฃุธู† ุฃู† ู‡ุฐู‡ ุบู„ุทุฉ ูƒุจูŠุฑุฉ.
14:26
I think cancer should not be a noun.
349
866330
4000
ุฃุธู† ุฃู† ุงู„ุณุฑุทุงู† ู„ุง ูŠุชูˆุฌุจ ุฃู† ูŠูƒูˆู† ุฃุณู…ุง.
14:30
We should talk about cancering
350
870330
2000
ูŠุฌุจ ุฃู† ู†ุชูƒู„ู… ุนู† ุงู„ุณุฑุทู†ุฉ (ูุนู„)
14:32
as something we do, not something we have.
351
872330
3000
ูƒุดุฆ ู†ูุนู„ู‡ุŒ ู„ุง ุดุฆ ู†ู…ุชูƒู„ู‡.
14:35
And so those tumors,
352
875330
2000
ูˆ ู‡ุฐู‡ ุงู„ุฃูˆุฑุงู…ุŒ
14:37
those are symptoms of cancer.
353
877330
2000
ู‡ูŠ ุฃุนุฑุงุถ ุงู„ุณุฑุทุงู†.
14:39
And so your body is probably cancering all the time,
354
879330
3000
ูˆ ูŠุญุชู…ู„ ุฃู† ุฃุฌุณุงู…ูƒู… ุชุณุฑุทู† ูƒู„ ุงู„ูˆู‚ุช.
14:42
but there are lots of systems in your body
355
882330
3000
ู„ูƒู† ู‡ู†ุงูƒ ุฃู†ุธู…ุฉ ูƒุซูŠุฑุฉ ููŠ ุฃุฌุณุงู…ูƒู…
14:45
that keep it under control.
356
885330
2000
ุงู„ุชูŠ ุชุณูŠุทุฑ ุนู„ูŠู‡ุง.
14:47
And so to give you an idea
357
887330
2000
ูˆ ู„ุฃุนุทูŠูƒู… ููƒุฑุฉ
14:49
of an analogy of what I mean
358
889330
2000
ู…ู…ุงุซู„ุฉ ู„ู…ุง ุฃู‚ุตุฏ
14:51
by thinking of cancering as a verb,
359
891330
3000
ููŠ ุงู„ุชููƒูŠุฑ ุจุงู„ุณุฑุทุงู† ูƒูุนู„ุŒ
14:54
imagine we didn't know anything about plumbing,
360
894330
3000
ุชุฎูŠู„ูˆุง ุฃู†ู†ุง ู„ู… ู†ุนุฑู ุฃูŠ ุดู‰ุก ุนู† ุงู„ุณุจุงูƒุฉุŒ
14:57
and the way that we talked about it,
361
897330
2000
ูˆุทุฑูŠู‚ุฉ ุชูƒู„ู…ู†ุง ุนู†ู‡ุงุŒ
14:59
we'd come home and we'd find a leak in our kitchen
362
899330
3000
ู„ู†ุญุถุฑ ุฅู„ู‰ ุงู„ู…ู†ุฒู„ ูˆ ู†ุฌุฏ ุชุณุฑุจ ููŠ ุงู„ู…ุทุจุฎ
15:02
and we'd say, "Oh, my house has water."
363
902330
4000
ูˆ ุณู†ู‚ูˆู„ุŒ " ุงู‡ุŒ ู…ู†ุฒู„ูŠ ููŠู‡ ู…ุงุก"
15:06
We might divide it -- the plumber would say, "Well, where's the water?"
364
906330
3000
ูˆ ู‚ุฏ ู†ู‚ุณู…ู‡-- ุงู„ุณุจุงูƒ ุณูŠู‚ูˆู„ุŒ "ุญุณู†ุง ุฃูŠู† ุงู„ู…ุงุกุŸ"
15:09
"Well, it's in the kitchen." "Oh, you must have kitchen water."
365
909330
3000
"ุญุณู†ุงุŒ ุฃู†ู‡ ููŠ ุงู„ู…ุทุจุฎ." "ุงู‡ุŒ ุฅู†ู‡ ู…ุงุก ู…ู† ุงู„ู…ุทุจุฎ."
15:12
That's kind of the level at which it is.
366
912330
3000
ู‡ุฐุง ู†ูˆุน ุงู„ู…ุณุชูˆู‰ ุงู„ุฐูŠ ู‡ูˆ ุนู„ูŠู‡.
15:15
"Kitchen water,
367
915330
2000
"ู…ุงุก ู…ุทุจุฎุŸ
15:17
well, first of all, we'll go in there and we'll mop out a lot of it.
368
917330
2000
ุญุณู†ุงุŒ ู‚ุจู„ ูƒู„ ุดู‰ุกุŒ ู„ู†ุฐู‡ุจ ุฅู„ู‰ ู‡ู†ุงูƒ ูˆ ู†ู…ุณุญ ุงู„ูƒุซูŠุฑ ู…ู†ู‡
15:19
And then we know that if we sprinkle Drano around the kitchen,
369
919330
3000
ูˆ ู†ุนุฑู ุฃู†ู†ุง ุฅุฐุง ุฑุดูŠู†ุง ุฏุฑุงูŠู†ูˆ (ู…ู†ุชุฌ ูŠุฒูŠู„ ุงู„ุงู†ุณุฏุงุฏ ููŠ ุงู„ู…ุฌุงุฑูŠ) ููŠ ุฃู†ุญุงุก ุงู„ู…ุทุจุฎุŒ
15:22
that helps.
370
922330
3000
ูุฅู†ู‡ ูŠุณุงุนุฏ.
15:25
Whereas living room water,
371
925330
2000
ููŠ ุญูŠู† ุฃู† ู…ุงุก ุบุฑูุฉ ุงู„ู…ุนูŠุดุฉุŒ
15:27
it's better to do tar on the roof."
372
927330
2000
ุงู„ุฃูุถู„ ู„ู‡ ู‡ูˆ ูˆุถุน ุงู„ู‚ุงุฑ ุนู„ู‰ ุงู„ุณู‚ู."
15:29
And it sounds silly,
373
929330
2000
ูˆ ู‚ุฏ ูŠุจุฏูˆ ู‡ุฐุง ุณุฎูŠูุงุŒ
15:31
but that's basically what we do.
374
931330
2000
ู„ูƒู† ู‡ุฐุง ู‡ูˆ ู…ุง ูุนู„ุง ู†ู‚ูˆู… ุจู‡.
15:33
And I'm not saying you shouldn't mop up your water if you have cancer,
375
933330
3000
ูˆ ุฃู†ุง ู„ุง ุฃู‚ูˆู„ ุฃู†ู‡ ู„ุง ูŠุชูˆุฌุจ ุนู„ูŠูƒู… ู…ุณุญ ุงู„ุฃุฑุถ ุฅุฐุง ูƒุงู† ู„ุฏูŠูƒู… ุงู„ุณุฑุทุงู†.
15:36
but I'm saying that's not really the problem;
376
936330
3000
ู„ูƒู† ู…ุง ุฃู‚ูˆู„ู‡ ู‡ูˆ ุฃู†ู‡ ู„ูŠุณุช ุนู† ูุนู„ุง ุงู„ู…ุดูƒู„ุฉ
15:39
that's the symptom of the problem.
377
939330
2000
ู„ูƒู† ุฃุนุฑุงุถ ุงู„ู…ุดูƒู„ุฉ.
15:41
What we really need to get at
378
941330
2000
ู‡ูŠ ุงู„ุชูŠ ุชูˆุฌุจ ุนู„ูŠู†ุง ุฃู† ู†ุตู„ ุฅู„ูŠู‡ุง
15:43
is the process that's going on,
379
943330
2000
ุฃู†ู‡ุง ุงู„ุนู…ู„ูŠุฉ ุงู„ุชูŠ ุชุญุฏุซุŒ
15:45
and that's happening at the level
380
945330
2000
ูˆ ุงู„ุชูŠ ุชุญุฏุซ ุนู„ู‰ ู…ุณุชูˆู‰
15:47
of the proteonomic actions,
381
947330
2000
ุฃูุนุงู„ ูˆ ุชูˆุงุตู„ ุงู„ุจุฑูˆุชูŠู†ุงุช
15:49
happening at the level of why is your body not healing itself
382
949330
3000
ุงู„ุญุงุตู„ุฉ ุนู„ู‰ ู…ุณุชูˆู‰ ุนุฏู… ู‚ุฏุฑุฉ ุงู„ุฌุณู… ู„ุนู„ุงุฌ ู†ูุณู‡
15:52
in the way that it normally does?
383
952330
2000
ูƒู…ุง ููŠ ุนุงุฏุชู‡ุŸ
15:54
Because normally, your body is dealing with this problem all the time.
384
954330
3000
ู„ูƒู† ููŠ ุงู„ุนุงุฏุฉ ุงุฌุณุงู…ู†ุง ุชุชุนุงู…ู„ ู…ุน ู‡ุฐู‡ ุงู„ู…ุดูƒู„ุฉ ููŠ ูƒู„ ุงู„ุฃูˆู‚ุงุช
15:57
So your house is dealing with leaks all the time,
385
957330
3000
ูˆ ุจูŠูˆุชูƒู… ุชุชุนุงู…ู„ ู…ุน ุงู„ุชุณุฑุจ ููŠ ูƒู„ ุงู„ุฃูˆู‚ุงุช
16:00
but it's fixing them. It's draining them out and so on.
386
960330
4000
ู„ูƒู† ุฅุตู„ุงุญู‡ู…. ู‡ูˆ ุชุฌููŠูู‡ู… ูˆ ู…ู† ุฐู„ูƒ ุงู„ู‚ุจูŠู„.
16:04
So what we need
387
964330
3000
ูู…ุง ู†ุญุชุงุฌู‡
16:07
is to have a causative model
388
967330
4000
ู‡ูˆ ุฃู† ูŠูƒูˆู† ู„ุฏูŠู†ุง ู†ู…ูˆุฐุฌ ู„ู„ู…ุณุจุจุงุช
16:11
of what's actually going on,
389
971330
2000
ู„ู…ุง ูŠุญุตู„ ูุนู„ุงุŒ
16:13
and proteomics actually gives us
390
973330
3000
ูˆ ุงู„ุจุฑูˆุชูŠูˆู…ูŠุงุช ุงู„ุชูŠ ุชู†ุชุฌ ู„ู†ุง
16:16
the ability to build a model like that.
391
976330
3000
ุงู„ู‚ุฏุฑุฉ ุนู„ู‰ ุจู†ุงุก ู†ู…ูˆุฐุฌ ู…ุซู„ ู‡ุฐุง.
16:19
David got me invited
392
979330
2000
ุฏูŠููŠุฏ ุญุตู„ ู„ูŠ ุนู„ู‰ ุฏุนูˆุฉ
16:21
to give a talk at National Cancer Institute
393
981330
2000
ู„ุฃุนุทูŠ ู…ุญุงุถุฑุฉ ููŠ ู…ุนู‡ุฏ ุงู„ุณุฑุทุงู† ุงู„ุฏูˆู„ูŠ
16:23
and Anna Barker was there.
394
983330
3000
ูˆ ุขู†ุง ุจุงุฑูƒุฑ ูƒุงู†ุช ู‡ู†ุงูƒ.
16:27
And so I gave this talk
395
987330
2000
ูุฃุนุทูŠุช ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ
16:29
and said, "Why don't you guys do this?"
396
989330
3000
ูˆ ู‚ู„ุช. "ู„ู…ุง ุชู‚ูˆู…ูˆู† ุจู‡ุฐุงุŸ"
16:32
And Anna said,
397
992330
2000
ูˆ ุขู†ุง ู‚ุงู„ุชุŒ
16:34
"Because nobody within cancer
398
994330
3000
"ู„ุฃู† ู„ุง ุฃุญุฏ ููŠ ู…ุฌุงู„ ุงู„ุณุฑุทุงู†
16:37
would look at it this way.
399
997330
2000
ูŠู†ุธุฑ ุฅู„ูŠู‡ ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ.
16:39
But what we're going to do, is we're going to create a program
400
999330
3000
ู„ูƒู† ู…ุง ุณู†ุนู…ู„ู‡ ู‡ูˆุŒ ุฅู†ู‡ ุณู†ู‚ูˆู… ุจุนู…ู„ ุจุฑู†ุงู…ุฌ
16:42
for people outside the field of cancer
401
1002330
2000
ู„ู„ุฃุดุฎุงุต ุงู„ุฐูŠู† ุฎุงุฑุฌ ู…ุฌุงู„ ุงู„ุณุฑุทุงู†
16:44
to get together with doctors
402
1004330
2000
ู„ูŠุฌุชู…ุนูˆุง ู…ุน ุงู„ุฃุทุจุงุก
16:46
who really know about cancer
403
1006330
3000
ุงู„ุฐูŠู† ุญู‚ุง ูŠุนุฑููˆู† ุงู„ูƒุซูŠุฑ ุนู† ุงู„ุณุฑุทุงู†
16:49
and work out different programs of research."
404
1009330
4000
ูˆ ูŠุนู…ู„ูˆู† ุนู„ู‰ ุจุฑุงู…ุฌ ู…ุฎุชู„ูุฉ ู…ู† ุงู„ุฃุจุญุงุซ."
16:53
So David and I applied to this program
405
1013330
2000
ูู‚ุฏู…ู†ุง ุฃู†ุง ูˆ ุฏูŠููŠุฏ ุนู„ู‰ ู‡ุฐุง ุงู„ุจุฑู†ุงู…ุฌ
16:55
and created a consortium
406
1015330
2000
ูˆ ุฃู†ุดุฃู†ุง ุฅุฆุชู„ุงู ุชุฌุงุฑูŠ
16:57
at USC
407
1017330
2000
ููŠ ุฌุงู…ุนุฉ ุฌู†ูˆุจ ูƒู„ุงูŠููˆุฑู†ูŠุง
16:59
where we've got some of the best oncologists in the world
408
1019330
3000
ุญูŠุซ ูŠูˆุฌุฏ ู„ุฏูŠู†ุง ุฃูุตู„ ุฃุทุจุงุก ุงู„ุฃูˆุฑุงู… ููŠ ุงู„ุนุงู„ู…
17:02
and some of the best biologists in the world,
409
1022330
3000
ูˆ ุจุนุถ ุฃูุถู„ ุนู„ู…ุงุก ุงู„ุฃุญูŠุงุก ููŠ ุงู„ุนุงู„ู…ุŒ
17:05
from Cold Spring Harbor,
410
1025330
2000
ู…ู† ูƒูˆู„ุฏ ุณุจุฑู†ุฌ ู‡ุงุฑุจุฑุŒ
17:07
Stanford, Austin --
411
1027330
2000
ุณุชุงู†ููˆุฑุฏุŒ ุฃุณุชู†--
17:09
I won't even go through and name all the places --
412
1029330
3000
ู„ู† ุฃู‚ูˆู… ุญุชู‰ ุจุงู„ู…ุฑูˆุฑ ุนู„ู‰ ุฃุณู…ุงุก ูƒู„ ุงู„ุฃู…ุงูƒู†
17:12
to have a research project
413
1032330
3000
ู„ุฃุญุตู„ ุนู„ู‰ ู…ุดุฑูˆุน ุจุญุซ
17:15
that will last for five years
414
1035330
2000
ู„ูŠุณุชู…ุฑ ุฎู…ุณ ุณู†ูˆุงุช
17:17
where we're really going to try to build a model of cancer like this.
415
1037330
3000
ุญูŠุซ ุณู†ู‚ูˆู… ูุนู„ุง ุจุจู†ุงุก ู†ู…ูˆุฐุฌ ู„ู„ุณุฑุทุงู† ู…ุซู„ ู‡ุฐุง.
17:20
We're doing it in mice first,
416
1040330
2000
ุณู†ูุนู„ู‡ ููŠ ุงู„ูุฆุฑุงู† ุฃูˆู„ุง.
17:22
and we will kill a lot of mice
417
1042330
2000
ูˆ ุณู†ู‚ุชู„ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ูุฆุฑุงู†
17:24
in the process of doing this,
418
1044330
2000
ููŠ ุงู†ุฌุงุฒ ู‡ุฐุงุŒ
17:26
but they will die for a good cause.
419
1046330
2000
ู„ูƒู†ู‡ู… ุณูŠู…ูˆุชูˆู† ู…ู† ุฃุฌู„ ุณุจุจ ุฌูŠุฏ.
17:28
And we will actually try to get to the point
420
1048330
3000
ูˆ ู†ุญู† ู†ุญุงูˆู„ ุจุงู„ูุนู„ุง ุงู„ูˆุตูˆู„ ุฅู„ู‰ ู†ู‚ุทุฉ
17:31
where we have a predictive model
421
1051330
2000
ูŠูƒูˆู† ู„ุฏูŠู†ุง ููŠู‡ุง ู†ุธุงู… ุชู†ุจุค
17:33
where we can understand,
422
1053330
2000
ุญูŠุซ ู†ุณุชุทูŠุน ูู‡ู…ุŒ
17:35
when cancer happens,
423
1055330
2000
ู…ุชู‰ ูŠุญุตู„ ุงู„ุณุฑุทุงู†ุŒ
17:37
what's actually happening in there
424
1057330
2000
ู…ุง ูŠุญุตู„ ุญู‚ุง ููŠู‡ุŒ
17:39
and which treatment will treat that cancer.
425
1059330
3000
ูˆ ุฃูŠ ุนู„ุงุฌ ุณูŠุนุงู„ุฌ ุฐู„ูƒ ุงู„ุณุฑุทุงู†.
17:42
So let me just end with giving you a little picture
426
1062330
3000
ุฏุนูˆู†ูŠ ุงู†ู‡ูŠ ู‡ุฐุง ุจุฅุนุทุงุฆูƒู… ุตูˆุฑุฉ ุตุบูŠุฑุฉ
17:45
of what I think cancer treatment will be like in the future.
427
1065330
3000
ู„ู…ุง ุณูŠูƒูˆู† ุนู„ูŠู‡ ุนู„ุงุฌ ุงู„ุณุฑุทุงู† ููŠ ุงู„ู…ุณุชู‚ุจู„.
17:48
So I think eventually,
428
1068330
2000
ูุฃุธู† ุฃู†ู‡ ุชุฏุฑูŠุฌูŠุงุŒ
17:50
once we have one of these models for people,
429
1070330
2000
ุญูŠู† ูŠูƒูˆู† ู„ุฏูŠู†ุง ูˆุงุญุฏ ู…ู† ู‡ุฐู‡ ุงู„ู†ู…ุงุฐุฌ ู„ู„ู†ุงุณุŒ
17:52
which we'll get eventually --
430
1072330
2000
ุงู„ุชูŠ ุณู†ุตู„ ุฅู„ูŠู‡ุง ุชุฏุฑูŠุฌูŠุง --
17:54
I mean, our group won't get all the way there --
431
1074330
2000
ุฃู‚ุตุฏุŒ ู…ุฌุชู…ูˆุนุชู†ุง ู„ู† ุชุตู„ ุฅู„ูŠู‡ ูƒู„ู‡ --
17:56
but eventually we'll have a very good computer model --
432
1076330
3000
ู„ูƒู† ุชุฏุฑูŠุฌูŠุง ุณูŠุตุจุญ ู„ุฏูŠู†ุง ู†ู…ูˆุฐุฌ ุฌูŠุฏ ุนู„ู‰ ุงู„ุญุงุณูˆุจ
17:59
sort of like a global climate model for weather.
433
1079330
3000
ู…ุซู„ ู†ู…ูˆุฐุฌ ุงู„ู…ู†ุงุฎ ุงู„ุนุงู„ู…ูŠ ู„ู„ุฃุฌูˆุงุก.
18:02
It has lots of different information
434
1082330
3000
ู„ุฏูŠู‡ุง ู…ุนู„ูˆู…ุงุช ูƒุซูŠุฑุง ู…ุฎุชู„ูุฉ
18:05
about what's the process going on in this proteomic conversation
435
1085330
3000
ุนู† ู…ุง ู‡ูŠ ุงู„ุนู…ู„ูŠุฉ ุงู„ุชูŠ ุชุฌุฑูŠ ููŠ ู…ุญุงุฏุซุงุช ุงู„ุจุฑูˆุชูŠูˆู…ูŠุงุช
18:08
on many different scales.
436
1088330
2000
ุนู„ู‰ ู…ู‚ุงูŠูŠุณ ูƒุซูŠุฑุฉ ู…ุฎุชู„ูุฉ.
18:10
And so we will simulate
437
1090330
2000
ูˆ ุจู‡ุฐุง ุณู†ู‚ูˆู… ุจู…ุญุงูƒุงุฉ
18:12
in that model
438
1092330
2000
ููŠ ู‡ุฐุง ุงู„ู†ู…ูˆุฐุฌ
18:14
for your particular cancer --
439
1094330
3000
ู†ูˆุนุง ู…ุนูŠู†ุง ู…ู† ุงู„ุณุฑุทุงู†--
18:17
and this also will be for ALS,
440
1097330
2000
ูˆ ู‡ุฐุง ุณูŠูƒูˆู† ุฃูŠุถุง ู„ู„ุฃูŠ ุฃู„ ุฃุณุŒ
18:19
or any kind of system neurodegenerative diseases,
441
1099330
3000
ุฃูˆ ู„ุฃูŠ ู†ุธุงู… ู…ู† ุฃู…ุฑุงุถ ุฎุณุงุฑุฉ ุฎุงุตูŠุฉ ุงู„ู†ูŠูˆุฑู†ุงุช
18:22
things like that --
442
1102330
2000
ุฃุดูŠุงุก ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„
18:24
we will simulate
443
1104330
2000
ุณุชู‚ูˆู… ุจู…ุญุงูƒุงุฉ
18:26
specifically you,
444
1106330
2000
ุจุงู„ุฎุตูˆุต ุฃู†ุชู…
18:28
not just a generic person,
445
1108330
2000
ู„ูŠุณ ุดุฎุตุง ุนุงู…ุงุŒ
18:30
but what's actually going on inside you.
446
1110330
2000
ู„ูƒู† ู…ุง ูŠุญุตู„ ุจุฏุงุฎู„ูƒู….
18:32
And in that simulation, what we could do
447
1112330
2000
ูˆ ููŠ ู‡ุฐู‡ ุงู„ู…ุญุงูƒุงุฉุŒ ู…ุง ู†ุณุชุทูŠุน ุนู…ู„ู‡
18:34
is design for you specifically
448
1114330
2000
ู‡ูˆ ุงู„ุชุตู…ูŠู… ู„ูƒู… ุจุงู„ุชุญุฏูŠุฏ
18:36
a sequence of treatments,
449
1116330
2000
ุณู„ุณู„ุฉ ู…ู† ุงู„ุนู„ุงุฌุŒ
18:38
and it might be very gentle treatments, very small amounts of drugs.
450
1118330
3000
ูˆ ู‚ุฏ ูŠูƒูˆู† ุนู„ุงุฌ ุฎููŠูุงุŒ ูƒู…ูŠุฉ ู‚ู„ูŠู„ุฉ ู…ู† ุงู„ุฏูˆุงุก.
18:41
It might be things like, don't eat that day,
451
1121330
3000
ู‚ุฏ ูŠูƒูˆู† ุฃุดูŠุงุก ู…ุซู„ ู„ุง ุชุฃูƒู„ูˆู† ู‡ุฐุง ุงู„ูŠูˆู…
18:44
or give them a little chemotherapy,
452
1124330
2000
ุฃูˆ ุฃุนุทูŠู‡ู… ุจุนุถ ู…ู† ุงู„ุนู„ุงุฌ ุงู„ูƒู…ูŠุงุฆูŠุŒ
18:46
maybe a little radiation.
453
1126330
2000
ู‚ุฏ ูŠูƒูˆู† ุงู„ู‚ู„ูŠู„ ู…ู† ุงู„ุงุดุนุงุน.
18:48
Of course, we'll do surgery sometimes and so on.
454
1128330
3000
ูˆ ุจุงู„ุทุจุนุŒ ุณู†ุนู…ู„ ุงู„ู‚ู„ูŠู„ ู…ู† ุงู„ุฌุฑุงุญุฉ ุจุนุถ ุงู„ุฃุญูŠุงู† ูˆ ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„.
18:51
But design a program of treatments specifically for you
455
1131330
3000
ู„ูƒู† ุชุตู…ูŠู… ุจุฑู†ุงู…ุฌ ู„ูƒู… ุจุงู„ุชุญุฏูŠุฏ
18:54
and help your body
456
1134330
3000
ูˆ ู…ุณุงุนุฏุฉ ุฃุฌุณุงู…ูƒู…
18:57
guide back to health --
457
1137330
3000
ู„ู†ู‚ูˆุฏู‡ุง ุฅู„ู‰ ุตุญุชู‡ุง--
19:00
guide your body back to health.
458
1140330
2000
ู†ู‚ูˆุฏ ุฃุฌุณุงู…ูƒู… ุฅู„ู‰ ุตุญุชู‡ุง.
19:02
Because your body will do most of the work of fixing it
459
1142330
4000
ู„ุฃู† ุฃุฌุณุงู…ูƒู… ุณุชู‚ูˆู… ุจุบุงู„ุจูŠุฉ ุงู„ุนู…ู„ ู„ุงุตู„ุงุญู‡ุง
19:06
if we just sort of prop it up in the ways that are wrong.
460
1146330
3000
ู„ูˆ ูู‚ุท ุฌุนู„ู†ุงู‡ุง ุชุนู…ู„ ุจุงู„ุทุฑู‚ ุงู„ุฎุทุฃ.
19:09
We put it in the equivalent of splints.
461
1149330
2000
ู†ุถุนู‡ุง ููŠ ุงู„ู…ูƒุงูุฆ ู…ู† ุงู„ุฌุจุงุฆุฑ.
19:11
And so your body basically has lots and lots of mechanisms
462
1151330
2000
ูˆ ุงู„ุฌุณู… ุฃุณุงุณุง ู„ุฏูŠู‡ ุงู„ูƒุซูŠุฑ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ู…ูƒูŠู†ูŠูƒูŠุงุช
19:13
for fixing cancer,
463
1153330
2000
ู„ุงุตู„ุงุญ ุงู„ุณุฑุทุงู†
19:15
and we just have to prop those up in the right way
464
1155330
3000
ู„ูƒู† ูŠุฌุจ ุนู„ูŠู†ุง ุฃู† ู†ูุนู„ู‡ุง ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ุตุญูŠุญุฉ
19:18
and get them to do the job.
465
1158330
2000
ูˆ ู†ุฌุนู„ู‡ุง ุชู‚ูˆู… ุจูˆุธูŠูุชู‡ุง.
19:20
And so I believe that this will be the way
466
1160330
2000
ูุฃู†ุง ุฃุนุชู‚ุฏ ุฃู†ู‡ ุณุชูƒูˆู† ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ
19:22
that cancer will be treated in the future.
467
1162330
2000
ุงู„ุชูŠ ูŠุนุงู„ุฌ ููŠู‡ุง ุงู„ุณุฑุทุงู† ุจุงู„ู…ุณุชู‚ุจู„.
19:24
It's going to require a lot of work,
468
1164330
2000
ุณุชุชุทู„ุจ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ุนู…ู„ุŒ
19:26
a lot of research.
469
1166330
2000
ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ุจุญุซ.
19:28
There will be many teams like our team
470
1168330
3000
ุณูŠูƒูˆู† ู‡ู†ุงูƒ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ูุฑู‚ ู…ุซู„ ูุฑูŠู‚ู†ุง
19:31
that work on this.
471
1171330
2000
ูŠุนู…ู„ูˆู† ุนู„ู‰ ู‡ุฐุง.
19:33
But I think eventually,
472
1173330
2000
ุฃุธู† ุฃู†ู†ุง ุชุฏุฑูŠุฌูŠุงุŒ
19:35
we will design for everybody
473
1175330
2000
ุณู†ุตู…ู… ู„ู„ูƒู„
19:37
a custom treatment for cancer.
474
1177330
4000
ุนู„ุงุฌุง ุฎุงุตุง ู„ู„ุณุฑุทุงู†.
19:41
So thank you very much.
475
1181330
2000
ุดูƒุฑุง ุฌุฒูŠู„ุง ู„ูƒู….
19:43
(Applause)
476
1183330
6000
(ุชุตููŠู‚)
ุญูˆู„ ู‡ุฐุง ุงู„ู…ูˆู‚ุน

ุณูŠู‚ุฏู… ู„ูƒ ู‡ุฐุง ุงู„ู…ูˆู‚ุน ู…ู‚ุงุทุน ููŠุฏูŠูˆ YouTube ุงู„ู…ููŠุฏุฉ ู„ุชุนู„ู… ุงู„ู„ุบุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ. ุณุชุฑู‰ ุฏุฑูˆุณ ุงู„ู„ุบุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุงู„ุชูŠ ูŠุชู… ุชุฏุฑูŠุณู‡ุง ู…ู† ู‚ุจู„ ู…ุฏุฑุณูŠู† ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ู…ู† ุฌู…ูŠุน ุฃู†ุญุงุก ุงู„ุนุงู„ู…. ุงู†ู‚ุฑ ู†ู‚ุฑู‹ุง ู…ุฒุฏูˆุฌู‹ุง ููˆู‚ ุงู„ุชุฑุฌู…ุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุงู„ู…ุนุฑูˆุถุฉ ุนู„ู‰ ูƒู„ ุตูุญุฉ ููŠุฏูŠูˆ ู„ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ ู…ู† ู‡ู†ุงูƒ. ูŠุชู… ุชู…ุฑูŠุฑ ุงู„ุชุฑุฌู…ุงุช ุจุงู„ุชุฒุงู…ู† ู…ุน ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ. ุฅุฐุง ูƒุงู† ู„ุฏูŠูƒ ุฃูŠ ุชุนู„ูŠู‚ุงุช ุฃูˆ ุทู„ุจุงุช ุŒ ูŠุฑุฌู‰ ุงู„ุงุชุตุงู„ ุจู†ุง ุจุงุณุชุฎุฏุงู… ู†ู…ูˆุฐุฌ ุงู„ุงุชุตุงู„ ู‡ุฐุง.

https://forms.gle/WvT1wiN1qDtmnspy7