Danny Hillis: Understanding cancer through proteomics

57,631 views ใƒป 2011-03-16

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Jung-Eun Kim ๊ฒ€ํ† : JY Kang
00:15
I admit that I'm a little bit nervous here
0
15330
3000
์ข€ ๊ธด์žฅ๋˜๋Š”๊ตฐ์š”.
00:18
because I'm going to say some radical things,
1
18330
3000
์•”์„ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฐํ•ด์•ผ ํ•˜๋Š”์ง€์— ๊ด€ํ•œ
00:21
about how we should think about cancer differently,
2
21330
3000
๋‹ค์†Œ ๊ธ‰์ง„์ ์ธ ๋‚ด์šฉ๋“ค์„
00:24
to an audience that contains a lot of people
3
24330
2000
๋งŽ์€ ์‚ฌ๋žŒ๋“ค ์•ž์—์„œ ์–˜๊ธฐํ•˜๋ ค๋‹ˆ ๋ง์ž…๋‹ˆ๋‹ค.
00:26
who know a lot more about cancer than I do.
4
26330
3000
ํŠนํžˆ ์ €๋ณด๋‹ค ์•”์— ๋Œ€ํ•ด ํ›จ์”ฌ ์ž˜ ์•„๋Š” ๋ถ„๋“ค ์•ž์—์„œ์š”.
00:30
But I will also contest that I'm not as nervous as I should be
5
30330
3000
ํ•˜์ง€๋งŒ ์ œ๊ฐ€ ๊ผญ ๊ธด์žฅํ•ด์•ผ ํ•˜๋Š” ๊ฑด ์•„๋‹ˆ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
00:33
because I'm pretty sure I'm right about this.
6
33330
2000
์ œ ๊ด€์ ์ด ์˜ณ๋‹ค๊ณ  ํ™•์‹ ํ•˜๊ฑฐ๋“ ์š”.
00:35
(Laughter)
7
35330
2000
(์›ƒ์Œ)
00:37
And that this, in fact, will be
8
37330
2000
์‚ฌ์‹ค, ์ œ๊ฐ€ ์–˜๊ธฐํ•˜๋ ค๋Š” ๊ฑด
00:39
the way that we treat cancer in the future.
9
39330
3000
๋ฏธ๋ž˜์— ์•”์„ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฃฐ์ง€์— ๋Œ€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:43
In order to talk about cancer,
10
43330
2000
์•”์— ๋Œ€ํ•ด ์–˜๊ธฐํ•˜๊ธฐ ์ „์—
00:45
I'm going to actually have to --
11
45330
3000
ํ•ด์•ผํ•  ์–˜๊ธฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
00:48
let me get the big slide here.
12
48330
3000
์Šฌ๋ผ์ด๋“œ๋ฅผ ๋ณด์„ธ์š”.
00:53
First, I'm going to try to give you a different perspective of genomics.
13
53330
3000
๋จผ์ €, ์œ ์ „์ฒดํ•™์— ๋Œ€ํ•ด ์ข€ ๋‹ค๋ฅธ ์–˜๊ธธ ํ•ด๋ณด์ฃ .
00:56
I want to put it in perspective of the bigger picture
14
56330
2000
์œ ์ „์ฒดํ•™์—์„œ ์ง„ํ–‰ ์ค‘์ธ ๋ชจ๋“  ๊ฒƒ์„ ํฌํ•จํ•  ์ˆ˜ ์žˆ๋Š”
00:58
of all the other things that are going on --
15
58330
3000
ํฐ ๊ทธ๋ฆผ์œผ๋กœ์„œ์˜ ๊ด€์ ์„ ์–˜๊ธฐํ•œ ํ›„,
01:01
and then talk about something you haven't heard so much about, which is proteomics.
16
61330
3000
์กฐ๊ธˆ ์ƒ์†Œํ•  ์ˆ˜๋„ ์žˆ๋Š” ๋‹จ๋ฐฑ์ฒดํ•™์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
01:04
Having explained those,
17
64330
2000
์˜ค๋Š˜ ์–˜๊ธฐ๋ฅผ ๋“ค์œผ์‹œ๋ฉด
01:06
that will set up for what I think will be a different idea
18
66330
3000
์•”์„ ๋‹ค๋ฃจ๋Š” ๋ฐ ์žˆ์–ด์„œ ๋‹ค๋ฅธ ๊ด€์ ์„ ๊ฐ–๊ฒŒ ๋˜์‹œ๋ฆฌ๋ผ
01:09
about how to go about treating cancer.
19
69330
2000
๊ธฐ๋Œ€ํ•ฉ๋‹ˆ๋‹ค.
01:11
So let me start with genomics.
20
71330
2000
์œ ์ „์ฒดํ•™๋ถ€ํ„ฐ ์–˜๊ธฐํ•ด๋ณด์ฃ .
01:13
It is the hot topic.
21
73330
2000
์ •๋ง ํฅ๋ฏธ๋กœ์šด ์ฃผ์ œ์ž…๋‹ˆ๋‹ค.
01:15
It is the place where we're learning the most.
22
75330
2000
๊ฐ€์žฅ ๋งŽ์€ ๊ฑธ ๋ฐฐ์›Œ์•ผ ํ•˜๋Š” ํ•™๋ฌธ ๋ถ„์•ผ์ฃ .
01:17
This is the great frontier.
23
77330
2000
๋ฒ”์œ„๊ฐ€ ์ •๋ง ๊ด‘๋ฒ”์œ„ํ•˜์ง€๋งŒ,
01:19
But it has its limitations.
24
79330
3000
์—ฌ๊ธฐ์—๋„ ํ•œ๊ณ„๋Š” ์žˆ์Šต๋‹ˆ๋‹ค.
01:22
And in particular, you've probably all heard the analogy
25
82330
3000
๋‹ค๋“ค ์ด๋Ÿฐ ๋น„์œ ๋ฅผ ๋“ค์–ด๋ดค์„ ๊ฒ๋‹ˆ๋‹ค.
01:25
that the genome is like the blueprint of your body,
26
85330
3000
"์œ ์ „์ฒด๋Š” ์šฐ๋ฆฌ ๋ชธ์˜ ์ฒญ์‚ฌ์ง„๊ณผ ๊ฐ™๋‹ค."
01:28
and if that were only true, it would be great,
27
88330
2000
๋งŒ์ผ ์ด๊ฒŒ ์ง„์‹ค์ด๋ผ๋ฉด ์ •๋ง ๋Œ€๋‹จํ•˜๊ฒ ์ง€๋งŒ
01:30
but it's not.
28
90330
2000
๊ทธ๋ ‡์ง€๊ฐ€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
01:32
It's like the parts list of your body.
29
92330
2000
์šฐ๋ฆฌ ๋ชธ์˜ ๊ตฌ์„ฑ์š”์†Œ๋“ค์— ๋Œ€ํ•œ ๋ชฉ๋ก์— ๋ถˆ๊ณผํ•˜์ฃ .
01:34
It doesn't say how things are connected,
30
94330
2000
์œ ์ „์ฒด๋งŒ์œผ๋กœ๋Š” ์š”์†Œ๋“ค์ด ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜๋Š”์ง€,
01:36
what causes what and so on.
31
96330
3000
๋ฌด์—‡์„ ์œ ๋ฐœํ•˜๋Š”์ง€, ๋ญ๊ฐ€ ์ง„ํ–‰๋˜๋Š”์ง€ ์•Œ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
01:39
So if I can make an analogy,
32
99330
2000
์ €๋ผ๋ฉด ์œ ์ „์ฒด๋ฅผ ์ด๋ ‡๊ฒŒ ๋น„์œ ํ•  ๊ฒ๋‹ˆ๋‹ค.
01:41
let's say that you were trying to tell the difference
33
101330
2000
๊ฑด๊ฐ•์— ์ข‹์€ ์š”๋ฆฌ๋ฅผ ํŒŒ๋Š” ์‹๋‹น๊ณผ
01:43
between a good restaurant, a healthy restaurant
34
103330
3000
๊ทธ๋ ‡์ง€ ๋ชปํ•œ ์‹๋‹น์˜ ์ฐจ์ด์— ๋Œ€ํ•ด
01:46
and a sick restaurant,
35
106330
2000
์–˜๊ธฐํ•˜๋ ค๋Š”๋ฐ
01:48
and all you had was the list of ingredients
36
108330
2000
์‹๋‹น ์ฐฝ๊ณ ์— ์ €์žฅํ•ด๋‘” ์‹์žฌ๋ฃŒ ๋ชฉ๋ก๋งŒ์„
01:50
that they had in their larder.
37
110330
3000
๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์ด๋ผ๊ณ ์š”.
01:53
So it might be that, if you went to a French restaurant
38
113330
3000
ํ”„๋ž‘์Šค์‹ ์‹๋‹น์˜ ์˜ˆ๋ฅผ ๋“ค์–ด๋ณผ๊นŒ์š”?
01:56
and you looked through it and you found
39
116330
2000
์ฐฝ๊ณ  ๋ชฉ๋ก์„ ํ›‘์–ด๋ณด๊ณ ๋Š”
01:58
they only had margarine and they didn't have butter,
40
118330
2000
๋ฒ„ํ„ฐ๋Š” ์—†๊ณ  ๋งˆ๊ฐ€๋ฆฐ๋งŒ ์žˆ๋‹ค๋Š” ๊ฑธ ์•Œ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
02:00
you could say, "Ah, I see what's wrong with them.
41
120330
2000
๊ทธ๋ฆฌ๊ณค ์–˜๊ธฐํ•˜์ฃ . "์ด ์‹๋‹น์˜ ๋ฌธ์ œ์ ์„ ์••๋‹ˆ๋‹ค.
02:02
I can make them healthy."
42
122330
2000
์ œ๊ฐ€ ์—ฌ๊ธฐ ์š”๋ฆฌ๋ฅผ ๊ฑด๊ฐ•์— ์ข‹๊ฒŒ ๋ฐ”๊ฟ”๋“œ๋ฆฌ์ฃ ."
02:04
And there probably are special cases of that.
43
124330
2000
๊ฐ€๋” ํŠน๋ณ„ํ•œ ๊ฒฝ์šฐ์—๋Š”,
02:06
You could certainly tell the difference
44
126330
2000
์˜ˆ๋ฅผ ๋“ค์–ด ์ค‘ํ™”์š”๋ฆฌ์ ๊ณผ ํ”„๋ž‘์Šค์‹ ์‹๋‹น์„
02:08
between a Chinese restaurant and a French restaurant
45
128330
2000
๋น„๊ตํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š”, ๊ฐ ์‹๋‹น์˜ ์ฐฝ๊ณ ๋งŒ ๋ณด๊ณ ๋„
02:10
by what they had in a larder.
46
130330
2000
์ฐจ์ด๋ฅผ ํ™•์‹คํžˆ ์–˜๊ธฐํ•  ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
02:12
So the list of ingredients does tell you something,
47
132330
3000
์ €์žฅ๋œ ์žฌ๋ฃŒ์˜ ๋ชฉ๋ก์„ ๋ณด๋ฉด ๊ฐ ์‹๋‹น์˜ ํŠน์ง•์„ ์•Œ ์ˆ˜ ์žˆ์ฃ .
02:15
and sometimes it tells you something that's wrong.
48
135330
3000
ํ•˜์ง€๋งŒ ์ข…์ข… ์ž˜๋ชป๋œ ํŒ๋‹จ์„ ํ•˜๊ฒŒ ๋งŒ๋“ค ๋•Œ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
02:19
If they have tons of salt,
49
139330
2000
๋งŽ์€ ์–‘์˜ ์†Œ๊ธˆ์ด ์ €์žฅ๋ผ์žˆ๋‹ค๋ฉด,
02:21
you might guess they're using too much salt, or something like that.
50
141330
3000
์‹๋‹น์ด ๋„ˆ๋ฌด ๋งŽ์€ ์†Œ๊ธˆ์„ ์‚ฌ์šฉํ•œ๋‹ค๊ณ  ์ถ”์ธกํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
02:24
But it's limited,
51
144330
2000
์ด๋Ÿฐ ์ถ”์ธก์€ ํ•œ๊ณ„๊ฐ€ ์žˆ์ฃ .
02:26
because really to know if it's a healthy restaurant,
52
146330
2000
์ œ๋Œ€๋กœ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, ์š”๋ฆฌ์˜ ๋ง›์„ ๋ด์•ผ ํ•˜๊ณ 
02:28
you need to taste the food, you need to know what goes on in the kitchen,
53
148330
3000
๋ถ€์—Œ์—์„œ ๋ฌด์Šจ ์ผ์ด ์ง„ํ–‰ ์ค‘์ธ์ง€ ์•Œ์•„์•ผ ํ•˜๋ฉฐ,
02:31
you need the product of all of those ingredients.
54
151330
3000
์ตœ์ข… ๊ฒฐ๊ณผ๋ฌผ์„ ๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
02:34
So if I look at a person
55
154330
2000
์ œ๊ฐ€ ๋ˆ„๊ตฐ๊ฐ€์˜
02:36
and I look at a person's genome, it's the same thing.
56
156330
3000
์œ ์ „์ฒด๋ฅผ ๊ฒ€์‚ฌํ•  ๋•Œ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค.
02:39
The part of the genome that we can read
57
159330
2000
์œ ์ „์ฒด์˜ ํŠน์ • ๋ถ€๋ถ„์„ ํ†ตํ•ด ์šฐ๋ฆฌ๊ฐ€ ์•Œ ์ˆ˜ ์žˆ๋Š” ๊ฑด
02:41
is the list of ingredients.
58
161330
2000
๊ตฌ์„ฑ ์š”์†Œ๋“ค์˜ ๋ชฉ๋ก ๋ฟ์ž…๋‹ˆ๋‹ค.
02:43
And so indeed,
59
163330
2000
์†”์งํžˆ ๋งํ•˜์ž๋ฉด
02:45
there are times when we can find ingredients
60
165330
2000
๊ทธ ์š”์†Œ๋“ค์„ ์ฐพ๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์‹œ๊ฐ„์„ ๋ณด๋ƒˆ์ง€๋งŒ
02:47
that [are] bad.
61
167330
2000
๊ฒฐ๊ณผ๋Š” ๋ณ„๋กœ์˜€์ฃ .
02:49
Cystic fibrosis is an example of a disease
62
169330
2000
๋‚ญํฌ์„ฑ ์„ฌ์œ ์ฆ ํ™˜์ž์˜ ๊ฒฝ์šฐ์—๋Š”
02:51
where you just have a bad ingredient and you have a disease,
63
171330
3000
๊ทธ ํ™˜์ž๊ฐ€ ๋ณ‘์„ ์ผ์œผํ‚ค๋Š” ์š”์†Œ๋ฅผ ๊ฐ–๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ๋ณ‘ํ•ฉ๋‹ˆ๋‹ค.
02:54
and we can actually make a direct correspondence
64
174330
3000
์ด ๋ณ‘์— ์žˆ์–ด์„œ ์šฐ๋ฆฌ๋Š” ์š”์†Œ์™€ ์งˆ๋ณ‘๊ฐ„์˜
02:57
between the ingredient and the disease.
65
177330
3000
์ง์ ‘์  ๊ด€๋ จ์„ฑ์„ ์–˜๊ธฐํ•  ์ˆ˜ ์žˆ์ฃ .
03:00
But most things, you really have to know what's going on in the kitchen,
66
180330
3000
ํ•˜์ง€๋งŒ ๊ทธ ์™ธ์˜ ๋Œ€๋ถ€๋ถ„์€ ๋ถ€์—Œ์—์„œ ์ผ์–ด๋‚˜๋Š” ์ผ์„ ์•Œ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:03
because, mostly, sick people used to be healthy people --
67
183330
2000
๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ ์•„ํ”ˆ ์‚ฌ๋žŒ๋“ค์€ ๊ณผ๊ฑฐ์— ๊ฑด๊ฐ•ํ–ˆ๋˜ ์‚ฌ๋žŒ๋“ค์ด๊ณ ,
03:05
they have the same genome.
68
185330
2000
์œ ์ „์ฒด๋Š” ๊ทธ๋Œ€๋กœ์ด๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
03:07
So the genome really tells you much more
69
187330
2000
๋‹ค์‹œ ๋งํ•ด ์œ ์ „์ฒด๊ฐ€ ๋งํ•ด์ค„ ์ˆ˜ ์žˆ๋Š” ๊ฑด
03:09
about predisposition.
70
189330
2000
๋ณ‘์— ๋Œ€ํ•œ ์†Œ์ธ ๋ฟ์ž…๋‹ˆ๋‹ค.
03:11
So what you can tell
71
191330
2000
์š”์†Œ๋“ค์˜ ๋ชฉ๋ก๋งŒ์œผ๋กœ๋„
03:13
is you can tell the difference between an Asian person and a European person
72
193330
2000
์šฐ๋ฆฌ๋Š” ์•„์‹œ์•„์ธ๊ณผ ์œ ๋Ÿฝ์ธ์˜ ์ฐจ์ด๋ฅผ
03:15
by looking at their ingredients list.
73
195330
2000
์–˜๊ธฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:17
But you really for the most part can't tell the difference
74
197330
3000
ํ•˜์ง€๋งŒ ๊ฑด๊ฐ•ํ•œ ์‚ฌ๋žŒ๊ณผ ์•„ํ”ˆ ์‚ฌ๋žŒ์˜ ์ฐจ์ด๋Š”
03:20
between a healthy person and a sick person --
75
200330
3000
์š”์†Œ๋“ค์˜ ๋ชฉ๋ก๋งŒ์œผ๋ก  ์–˜๊ธฐํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
03:23
except in some of these special cases.
76
203330
2000
๋ช‡ ๋ช‡ ๊ฒฝ์šฐ๋“ค์„ ์ œ์™ธํ•˜๊ณ ๋Š” ๋ง์ž…๋‹ˆ๋‹ค.
03:25
So why all the big deal
77
205330
2000
๊ทธ๋ ‡๋‹ค๋ฉด ์œ ์ „์ฒดํ•™์˜ ๋ฌด์—‡์ด
03:27
about genetics?
78
207330
2000
๊ทธ๋ ‡๊ฒŒ ๋งค๋ ฅ์ ์ธ ๊ฑธ๊นŒ์š”?
03:29
Well first of all,
79
209330
2000
์ฒซ๋ฒˆ์งธ๋กœ ๊ผฝ์„ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€
03:31
it's because we can read it, which is fantastic.
80
211330
3000
๊ทธ ๋‚ด์šฉ์„ ์ฝ์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ํ™˜์ƒ์ ์ด์ฃ .
03:34
It is very useful in certain circumstances.
81
214330
3000
์ด๊ฒƒ์€ ํŠน์ • ์ƒํ™ฉ์—์„œ ์ •๋ง ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
03:37
It's also the great theoretical triumph
82
217330
3000
์ƒ๋ฌผํ•™์— ์žˆ์–ด์„œ ๋Œ€๋‹จํ•œ ํ•™๋ฌธ์  ์—…์ ์ด๋ผ
03:40
of biology.
83
220330
2000
ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:42
It's the one theory
84
222330
2000
์ƒ๋ฌผํ•™์ž๋“ค ์‚ฌ์ด์—
03:44
that the biologists ever really got right.
85
224330
2000
์ด๊ฒฌ์ด ์—†๋Š” ๋‹จ ํ•˜๋‚˜์˜ ์ด๋ก ์ž…๋‹ˆ๋‹ค.
03:46
It's fundamental to Darwin
86
226330
2000
๋ฉ˜๋ธ๊ณผ ๋‹ค์œˆ, ๋˜ ๋ช‡ ๋ช‡ ์‚ฌ๋žŒ๋“ค์ด
03:48
and Mendel and so on.
87
228330
2000
๊ทธ ๊ธฐ๋ฐ˜์ด์ฃ .
03:50
And so it's the one thing where they predicted a theoretical construct.
88
230330
3000
๊ทธ๋“ค์ด ์˜ˆ์ธกํ–ˆ๋˜ ์ด๋ก ์  ๊ตฌ์„ฑ์ด ํ•œ ๋ฐ ๋ชจ์•„์ง„ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
03:54
So Mendel had this idea of a gene
89
234330
2000
๋ฉ˜๋ธ์€ '์œ ์ „์ž'๋ผ๋Š” ํ•ต์‹ฌ ๊ฐœ๋…์„
03:56
as an abstract thing,
90
236330
3000
๋„์ถœํ–ˆ์Šต๋‹ˆ๋‹ค.
03:59
and Darwin built a whole theory
91
239330
2000
๋‹ค์œˆ์€ ๊ทธ ๊ฐœ๋… ์œ„์—์„œ
04:01
that depended on them existing,
92
241330
2000
์ด๋ก ์˜ ์ „์ฒด์ ์ธ ํ‹€์„ ์„ธ์› ์ฃ .
04:03
and then Watson and Crick
93
243330
2000
์ดํ›„ ์™“์Šจ๊ณผ ํฌ๋ฆญ์ด
04:05
actually looked and found one.
94
245330
2000
์œ ์ „์ž๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ณ  ์ง์ ‘ ๊ด€์ฐฐํ–ˆ์Šต๋‹ˆ๋‹ค.
04:07
So this happens in physics all the time.
95
247330
2000
์ด๊ฒƒ์€ ๋ฌผ๋ฆฌํ•™์—์„œ์•ผ ํ•ญ์ƒ ์ผ์–ด๋‚˜๋Š” ์ผ์ž…๋‹ˆ๋‹ค.
04:09
You predict a black hole,
96
249330
2000
๋ธ”๋ž™ํ™€์„ ์˜ˆ์ธกํ–ˆ๋‹ค๋ฉด,
04:11
and you look out the telescope and there it is, just like you said.
97
251330
3000
๋ง์›๊ฒฝ์„ ํ†ตํ•ด ๋ธ”๋ž™ํ™€์ด ์˜ˆ์ธก๋Œ€๋กœ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•˜๋Š” ์‹์ด์ฃ .
04:14
But it rarely happens in biology.
98
254330
2000
ํ•˜์ง€๋งŒ ์ƒ๋ฌผํ•™์—์„œ๋Š” ์ •๋ง ๋“œ๋ฌธ ์ผ์ž…๋‹ˆ๋‹ค.
04:16
So this great triumph -- it's so good,
99
256330
3000
์ด ์œ„๋Œ€ํ•œ ์—…์ ์€ -- ๋งค์šฐ ์ข‹์€ ์ด๋ก ์ด๊ณ  --
04:19
there's almost a religious experience
100
259330
2000
์ƒ๋ฌผํ•™์˜ ์—ญ์‚ฌ์— ์žˆ์–ด์„œ ๊ฑฐ์˜ ์ข…๊ต์ ์ธ
04:21
in biology.
101
261330
2000
๊ฒฝํ—˜์ด์—ˆ์Šต๋‹ˆ๋‹ค.
04:23
And Darwinian evolution
102
263330
2000
๋‹ค์œˆ์˜ ์ง„ํ™”์„ค์€
04:25
is really the core theory.
103
265330
3000
์ •๋ง ํ•ต์‹ฌ์ ์ธ ์ด๋ก ์ž…๋‹ˆ๋‹ค.
04:30
So the other reason it's been very popular
104
270330
2000
์ด ์ด๋ก ์ด ๊พธ์ค€ํžˆ ์ธ๊ธฐ์žˆ๋Š” ์ด์œ ๋Š”
04:32
is because we can measure it, it's digital.
105
272330
3000
๊ทธ๊ฒƒ์ด ์ธก์ • ๊ฐ€๋Šฅํ•œ, ๋””์ง€ํ„ธ ํ˜•์‹์ด๋ž€ ์ ์ž…๋‹ˆ๋‹ค.
04:35
And in fact,
106
275330
2000
์‚ฌ์‹ค
04:37
thanks to Kary Mullis,
107
277330
2000
์ผ€๋ฆฌ ๋ฉ€๋ฆฌ์Šค(์œ ์ „์ž์ฆํญ๋ฐ˜์‘ ๊ณ ์•ˆ์ž) ๋•๋ถ„์—
04:39
you can basically measure your genome in your kitchen
108
279330
4000
๊ทน๋ฏธ๋Ÿ‰์˜ ๊ตฌ์„ฑ ์š”์†Œ๋“ค๋งŒ์œผ๋กœ๋„ ์—ฌ๋Ÿฌ๋ถ„ ๋ถ€์—Œ์—์„œ ๋งŒ๋“ค์–ด์ง€๋Š”
04:43
with a few extra ingredients.
109
283330
3000
์œ ์ „์ฒด๋ฅผ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:46
So for instance, by measuring the genome,
110
286330
3000
์˜ˆ๋ฅผ ๋“ค์–ด ์œ ์ „์ฒด๋ฅผ ๋ถ„์„ํ•จ์œผ๋กœ์จ
04:49
we've learned a lot about how we're related to other kinds of animals
111
289330
4000
์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ฅธ ์ข…์˜ ๋™๋ฌผ๋“ค๊ณผ ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š”์ง€ ๋งŽ์€ ๊ฒƒ๋“ค์„ ์•Œ๊ฒŒ ๋˜์—ˆ์ฃ .
04:53
by the closeness of our genome,
112
293330
3000
์œ ์ „์ฒด์˜ ๊ทผ์›๊ด€๊ณ„(์œ ์‚ฌ๋„)๋ฅผ ๋”ฐ์ง์œผ๋กœ์จ,
04:56
or how we're related to each other -- the family tree,
113
296330
3000
๋˜๋Š” ๊ฐ€๊ณ„๋„ ๋˜๋Š” ๊ณ„ํ†ต ๋ถ„๋ฅ˜๋„๋ฅผ ํ†ตํ•ด
04:59
or the tree of life.
114
299330
2000
์„œ๋กœ ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜์–ด ์•Œ ์ˆ˜ ์žˆ์ฃ .
05:01
There's a huge amount of information about the genetics
115
301330
3000
์œ ์ „ํ•™์—๋Š” ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ์ •๋ณด๊ฐ€ ์žˆ๋Š”๋ฐ
05:04
just by comparing the genetic similarity.
116
304330
3000
์ด๋Š” ์œ ์ „ํ•™์  ์œ ์‚ฌ์„ฑ์„ ๋น„๊ตํ•ด์„œ ์–ป์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:07
Now of course, in medical application,
117
307330
2000
๋‹น์—ฐํžˆ, ์˜ํ•™์ ์ธ ๊ด€์ ์—์„œ
05:09
that is very useful
118
309330
2000
์ด๊ฒƒ์€ ๋งค์šฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
05:11
because it's the same kind of information
119
311330
3000
์˜์‚ฌ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„ ๊ฐ€์กฑ์˜ ์˜๋ฃŒ ๊ธฐ๋ก์„ ํ†ตํ•ด ์–ป๋Š” ์ •๋ณด์™€
05:14
that the doctor gets from your family medical history --
120
314330
3000
๊ฐ™์€ ์ข…๋ฅ˜์˜ ์ •๋ณด์— ํ•ด๋‹นํ•˜๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
05:17
except probably,
121
317330
2000
๋‹จ, ์—ฌ๋Ÿฌ๋ถ„์˜ ์œ ์ „์ฒด๋Š”
05:19
your genome knows much more about your medical history than you do.
122
319330
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ์˜ํ•™์  ์—ญ์‚ฌ๋ฅผ ์—ฌ๋Ÿฌ๋ถ„๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋งŽ์ด ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:22
And so by reading the genome,
123
322330
2000
๋”ฐ๋ผ์„œ ์œ ์ „์ฒด ํ•ด๋…์„ ํ†ตํ•ด์„œ
05:24
we can find out much more about your family than you probably know.
124
324330
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ๊ฐ€์กฑ์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ๋ถ„๋ณด๋‹ค ๋” ๋งŽ์€ ๊ฒƒ๋“ค์„ ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ์ฃ .
05:27
And so we can discover things
125
327330
2000
๋˜ํ•œ ์šฐ๋ฆฌ๋Š”
05:29
that probably you could have found
126
329330
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ์นœ์ฒ™๋“ค์— ๋Œ€ํ•ด์„œ๋„
05:31
by looking at enough of your relatives,
127
331330
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์•Œ๋˜ ๊ฒƒ๋ณด๋‹ค ๋งŽ์€ ๊ฒƒ๋“ค,
05:33
but they may be surprising.
128
333330
3000
๊ทธ๋“ค์ด ๋†€๋ผ์›Œํ•  ๋งŒํ•œ ๊ฒƒ๋“ค์„ ๋ฐํ˜€๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:36
I did the 23andMe thing
129
336330
2000
23andMe์‚ฌ์˜ DNA ํ…Œ์ŠคํŠธ๋ฅผ ํ–ˆ์„ ๋•Œ,
05:38
and was very surprised to discover that I am fat and bald.
130
338330
3000
์ œ๊ฐ€ ๋šฑ๋šฑํ•˜๊ณ  ๋Œ€๋จธ๋ฆฌ๋ผ๋Š” ๊ฒƒ์„ ๋ฐํ˜€๋‚ด์„œ ๊นœ์ง ๋†€๋ž์—ˆ์ฃ .
05:41
(Laughter)
131
341330
7000
(์›ƒ์Œ)
05:48
But sometimes you can learn much more useful things about that.
132
348330
3000
์ด๊ฒƒ ์™ธ์—๋„ ๊ฝค ์œ ์šฉํ•œ ๊ฒƒ๋“ค์„ ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:51
But mostly
133
351330
3000
ํ•˜์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ
05:54
what you need to know, to find out if you're sick,
134
354330
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์•„ํ”Œ ๋•Œ, ๋ฐํ˜€๋‚ด๊ณ  ์‹ถ์€ ๊ฒƒ์€
05:56
is not your predispositions,
135
356330
2000
'๋‹น์‹ ์˜ ๋ณ‘์  ์†Œ์ธ'์— ๋Œ€ํ•œ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ
05:58
but it's actually what's going on in your body right now.
136
358330
3000
'๋‹น์‹ ์˜ ๋ชธ์—์„œ ํ˜„์žฌ ๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š”๊ฐ€'ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
06:01
So to do that, what you really need to do,
137
361330
2000
์ด๋ฅผ ์œ„ํ•ด ์—ฌ๋Ÿฌ๋ถ„์ด ํ•ด์•ผ ํ•  ์ผ์€,
06:03
you need to look at the things
138
363330
2000
์œ ์‹ฌํžˆ ๋ด์•ผ ํ•  ๊ฒƒ๋“ค์€
06:05
that the genes are producing
139
365330
2000
์œ ์ „์ž๊ฐ€ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ,
06:07
and what's happening after the genetics,
140
367330
2000
์œ ์ „์ž ๋‹ค์Œ์— ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š” ์ผ๋“ค์ž…๋‹ˆ๋‹ค.
06:09
and that's what proteomics is about.
141
369330
2000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์ด ๋ฐ”๋กœ ๋‹จ๋ฐฑ์ฒดํ•™์ด์ฃ .
06:11
Just like genome mixes the study of all the genes,
142
371330
3000
์œ ์ „์ฒด๊ฐ€ ๋ชจ๋“  ์œ ์ „์ž๋“ค์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํฌ๊ด„ํ•˜๋“ฏ์ด
06:14
proteomics is the study of all the proteins.
143
374330
3000
๋‹จ๋ฐฑ์ฒดํ•™์€ ๋ชจ๋“  ๋‹จ๋ฐฑ์งˆ๋“ค์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค.
06:17
And the proteins are all of the little things in your body
144
377330
2000
์—ฌ๋Ÿฌ๋ถ„ ๋ชธ์˜ ์ž‘์€ ํ•˜๋‚˜๊นŒ์ง€ ๋ชจ๋‘๊ฐ€ ๋‹จ๋ฐฑ์งˆ์ž…๋‹ˆ๋‹ค.
06:19
that are signaling between the cells --
145
379330
3000
์‹ค์งˆ์ ์œผ๋กœ ๊ธฐ๊ณ„๋ฅผ ์ž‘๋™์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ผ์–ด๋‚˜๋Š”
06:22
actually, the machines that are operating --
146
382330
2000
์„ธํฌ๋“ค ์‚ฌ์ด์— ์ „๋‹ฌ๋˜๊ณ  ์žˆ๋Š” ์‹ ํ˜ธ๋“ค์ด์ž
06:24
that's where the action is.
147
384330
2000
์‹ค์ œ ํ™œ๋™์ด ์ผ์–ด๋‚˜๋Š” ๊ณณ์ž…๋‹ˆ๋‹ค.
06:26
Basically, a human body
148
386330
3000
๊ธฐ๋ณธ์ ์œผ๋กœ, ์ธ๊ฐ„์˜ ๋ชธ์€
06:29
is a conversation going on,
149
389330
3000
๋Œ€ํ™”๊ฐ€ ๊ณ„์† ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:32
both within the cells and between the cells,
150
392330
3000
์„ธํฌ ๋‚ด์—์„œ, ๋˜ ์„ธํฌ ์‚ฌ์ด์—์„œ ๋ง์ด์ฃ .
06:35
and they're telling each other to grow and to die,
151
395330
3000
์ด๋ฅผ ํ†ตํ•ด ์–ด๋–ค ๊ฒƒ์€ ์ž๋ผ๊ฒŒ ํ•˜๊ณ  ์–ด๋–ค ๊ฒƒ์€ ์ฃฝ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
06:38
and when you're sick,
152
398330
2000
๋‹น์‹ ์ด ์•„ํ”„๋‹ค๋Š” ๊ฒƒ์€,
06:40
something's gone wrong with that conversation.
153
400330
2000
์ด ๋Œ€ํ™” ์ค‘ ๋ฌด์—‡์ธ๊ฐ€๊ฐ€ ์ž˜๋ชป๋˜๊ณ  ์žˆ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.
06:42
And so the trick is --
154
402330
2000
๊ทธ๋Ÿฐ๋ฐ ๋ฌธ์ œ๊ฐ€ ํ•˜๋‚˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:44
unfortunately, we don't have an easy way to measure these
155
404330
3000
๋ถˆํ–‰ํžˆ๋„, ์œ ์ „์ฒด ๋ถ„์„์—์„œ์™€ ๊ฐ™์€ ๊ฐ„๋‹จํ•œ ์ธก์ •๋ฒ•์„
06:47
like we can measure the genome.
156
407330
2000
์ด ๋ถ„์•ผ์—์„  ๊ฐ–๊ณ  ์žˆ์ง€ ์•Š๋‹ค๋Š” ์ ์ด์ฃ .
06:49
So the problem is that measuring --
157
409330
3000
์ธก์ •๋ฒ•์˜ ๋ฌธ์ œ์ ์ด๋ž€ ์ด๋Ÿฐ ๊ฒ๋‹ˆ๋‹ค.
06:52
if you try to measure all the proteins, it's a very elaborate process.
158
412330
3000
๋ชจ๋“  ๋‹จ๋ฐฑ์งˆ๋“ค์„ ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค๋ฉด, ๊ทธ๊ฑด ์ •๋ง ๊ณ ๋œ ์ผ์ž…๋‹ˆ๋‹ค.
06:55
It requires hundreds of steps,
159
415330
2000
์ˆ˜๋ฐฑ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณ์•ผ ํ•˜๊ณ ,
06:57
and it takes a long, long time.
160
417330
2000
๊ธธ๊ณ  ๊ธด ์‹œ๊ฐ„์„ ํˆฌ์žํ•ด์•ผ ํ•˜์ฃ .
06:59
And it matters how much of the protein it is.
161
419330
2000
๋‹จ๋ฐฑ์งˆ ํ•˜๋‚˜์—์„œ๋„ ์–ด๋Š ์ •๋„๋ฅผ ๋ด์•ผ ํ•˜๋Š๋ƒ๋„ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
07:01
It could be very significant that a protein changed by 10 percent,
162
421330
3000
10%์ •๋„์˜ ๋‹จ๋ฐฑ์งˆ ๋ณ€์ด๋งŒ์œผ๋กœ๋„ ํ™•์—ฐํ•œ ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:04
so it's not a nice digital thing like DNA.
163
424330
3000
DNA ๊ฐ™์ด ๋””์ง€ํ„ธ์ ์ธ ๊ฒƒ์ด ์•„๋‹ˆ์ฃ .
07:07
And basically our problem is somebody's in the middle
164
427330
2000
๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฌธ์ œ๋Š” ๋ˆ„๊ตฐ๊ฐ€ ๋งค์šฐ ๊ธด ์ธก์ •๋‹จ๊ณ„์—์„œ
07:09
of this very long stage,
165
429330
2000
๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฌธ์ œ๋Š” ๋ˆ„๊ตฐ๊ฐ€ ๋งค์šฐ ๊ธด ์ธก์ •๋‹จ๊ณ„์—์„œ
07:11
they pause for just a moment,
166
431330
2000
๋„์ค‘์— ์ž ๊น์ด๋ผ๋„ ์ผ์„ ๋ฉˆ์ถ”๋ฉด,
07:13
and they leave something in an enzyme for a second,
167
433330
2000
ํšจ์†Œ์— ๋ฌด์—‡์ธ๊ฐ€๊ฐ€ ์ž ์‹œ ๋‚จ์„ ์ˆ˜ ์žˆ๊ณ 
07:15
and all of a sudden all the measurements from then on
168
435330
2000
๊ทธ ์ดํ›„๋ถ€ํ„ฐ์˜ ๋ชจ๋“  ์ธก์ • ์ž‘์—…์€ ์ˆœ์‹๊ฐ„์—
07:17
don't work.
169
437330
2000
๋ฌด๋„ˆ์ง‘๋‹ˆ๋‹ค.
07:19
And so then people get very inconsistent results
170
439330
2000
๋”ฐ๋ผ์„œ ์ด๋Ÿฐ ๋ฐฉ์‹์œผ๋กœ๋Š” ๊ฒฐ๊ตญ, ์ผ๊ด€์„ฑ์—†๋Š”
07:21
when they do it this way.
171
441330
2000
๊ฒฐ๊ณผ๋งŒ ๋‚˜์˜ฌ ๋ฟ์ž…๋‹ˆ๋‹ค.
07:23
People have tried very hard to do this.
172
443330
2000
์ €๋ฅผ ํฌํ•จํ•œ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ด ๋ฐฉ๋ฒ•์—
07:25
I tried this a couple of times
173
445330
2000
์ˆ˜๋งŽ์€ ์‹œ๊ฐ„์„ ํˆฌ์žํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:27
and looked at this problem and gave up on it.
174
447330
2000
๋ฌธ์ œ์ ์„ ๋ฐœ๊ฒฌํ•œ ํ›„์—๋Š” ํฌ๊ธฐํ•ด๋ฒ„๋ ธ์—ˆ์ฃ .
07:29
I kept getting this call from this oncologist
175
449330
2000
์ œ๊ฒŒ ๊ณ„์† ์ „ํ™”๋ฅผ ํ•˜๋Š” ๋ฐ์ด๋น„๋“œ ์•„๊ตฌ์Šค๋ผ๋Š”
07:31
named David Agus.
176
451330
2000
์ข…์–‘ํ•™์ž๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:33
And Applied Minds gets a lot of calls
177
453330
3000
Applied Minds์‚ฌ๋กœ๋„ ์ˆ˜๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด
07:36
from people who want help with their problems,
178
456330
2000
๋ฌธ์ œํ•ด๊ฒฐ์„ ๋„์™€๋‹ฌ๋ผ๋Š” ์—ฐ๋ฝ์„ ํ•ด์™”๊ธฐ ๋•Œ๋ฌธ์—
07:38
and I didn't think this was a very likely one to call back,
179
458330
3000
์ €๋Š” ์ด๊ฒƒ์ด ๊ทธ๋Ÿฐ ์ „ํ™”์˜ ํ•˜๋‚˜๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ ,
07:41
so I kept on giving him to the delay list.
180
461330
3000
๋‚˜์ค‘์— ์—ฐ๋ฝํ•˜๊ฒ ๋‹ค๊ณ ๋งŒ ํ–ˆ์ฃ .
07:44
And then one day,
181
464330
2000
๊ทธ๋Ÿฌ๋˜ ์–ด๋Š ๋‚ ,
07:46
I get a call from John Doerr, Bill Berkman
182
466330
2000
์ €๋Š” ์กด ๋„๋ฅด, ๋นŒ ๋ฒ„ํฌ๋งŒ, ์‹ฌ์ง€์–ด ์—˜ ๊ณ ์–ด๋กœ๋ถ€ํ„ฐ
07:48
and Al Gore on the same day
183
468330
2000
์ „ํ™”๋ฅผ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
07:50
saying return David Agus's phone call.
184
470330
2000
๋ฐ์ด๋น„๋“œ ์•„๊ตฌ์Šค์—๊ฒŒ ์—ฐ๋ฝํ•˜๋ผ๋”๊ตฐ์š”.
07:52
(Laughter)
185
472330
2000
(์›ƒ์Œ)
07:54
So I was like, "Okay. This guy's at least resourceful."
186
474330
2000
"๊ทธ๋ž˜. ์ด ์นœ๊ตฌ๋Š” ์ ์–ด๋„ ์ˆ˜์™„์€ ์žˆ๊ตฐ." ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค.
07:56
(Laughter)
187
476330
4000
(์›ƒ์Œ)
08:00
So we started talking,
188
480330
2000
์ด๋ ‡๊ฒŒ ์–˜๊ธฐ๊ฐ€ ์‹œ์ž‘๋์Šต๋‹ˆ๋‹ค.
08:02
and he said, "I really need a better way to measure proteins."
189
482330
3000
๊ทธ๊ฐ€ ๋งํ–ˆ์ฃ . "๋‹จ๋ฐฑ์งˆ์„ ์ธก์ •ํ•˜๋Š” ๋” ๋‚˜์€ ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค."
08:05
I'm like, "Looked at that. Been there.
190
485330
2000
์ œ๊ฐ€ ๋Œ€๋‹ตํ–ˆ์Šต๋‹ˆ๋‹ค. "๊ฒช์–ด๋ณธ ๋ฐ”๋กœ๋Š”,
08:07
Not going to be easy."
191
487330
2000
๊ฒฐ์ฝ” ์‰ฌ์šด ์ผ์ด ์•„๋‹๊ฒ๋‹ˆ๋‹ค."
08:09
He's like, "No, no. I really need it.
192
489330
2000
์•„๊ตฌ์Šค ์™ˆ, "์ „ ์ •๋ง ์ ˆ์‹คํ•ฉ๋‹ˆ๋‹ค.
08:11
I mean, I see patients dying every day
193
491330
4000
์ œ๊ฐ€ ํ™˜์ž๋“ค ๋ชธ ์†์—์„œ ๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚˜๋Š”์งˆ ๋ชจ๋ฅด๊ณ 
08:15
because we don't know what's going on inside of them.
194
495330
3000
๊ทธ ๋ฌด์ง€ ๋•Œ๋ฌธ์— ์ œ ํ™˜์ž๋“ค์ด ๋งค์ผ ์ฃฝ์–ด๊ฐ‘๋‹ˆ๋‹ค.
08:18
We have to have a window into this."
195
498330
2000
๋ชธ ์†์„ ๋“ค์—ฌ๋‹ค ๋ณผ ์ฐฝ๋ฌธ์ด ์ ˆ์‹คํ•ฉ๋‹ˆ๋‹ค."
08:20
And he took me through
196
500330
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋Š” ์ œ๊ฒŒ
08:22
specific examples of when he really needed it.
197
502330
3000
๊ทธ๊ฐ€ ์ ˆ์‹คํ•œ ์ด์œ ๋“ค์„ ์ด์•ผ๊ธฐํ–ˆ์Šต๋‹ˆ๋‹ค.
08:25
And I realized, wow, this would really make a big difference,
198
505330
2000
๊ทธ๋ฆฌ๊ณ  ์ €๋Š” ์ด ์ผ์ด ์ •๋ง ํฐ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ฒ ๊ตฌ๋‚˜๋ผ๊ณ  ๊นจ๋‹ฌ์•˜์Šต๋‹ˆ๋‹ค.
08:27
if we could do it,
199
507330
2000
ํ•ด๋‚ด๊ธฐ๋งŒ ํ•œ๋‹ค๋ฉด ๋ง์ด์ฃ .
08:29
and so I said, "Well, let's look at it."
200
509330
2000
๊ทธ๋ž˜์„œ ์ „ ์ด๋ ‡๊ฒŒ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค. "์ข‹์•„์š”. ํ•œ ๋ฒˆ ์‚ดํŽด๋ด…์‹œ๋‹ค."
08:31
Applied Minds has enough play money
201
511330
2000
Applied Minds์‚ฌ์—๋Š” ์—ฌ์œ ์ž๊ธˆ์ด ์ถฉ๋ถ„ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—
08:33
that we can go and just work on something
202
513330
2000
๊ณง์žฅ ๊ทธ๋ฆฌ๋กœ ๊ฐ€ ์ž‘์—…์„ ์‹œ์ž‘ํ–ˆ์ฃ .
08:35
without getting anybody's funding or permission or anything.
203
515330
3000
๋ˆ„๊ตฐ๊ฐ€์˜ ์ง€์›์ด๋‚˜ ์Šน์ธ ๋˜๋Š” ๊ทธ ์™ธ์˜ ์–ด๋–ค ๊ฒƒ๋“ค๋„ ๋ฐ›์ง€ ์•Š๊ณ ์š”.
08:38
So we started playing around with this.
204
518330
2000
์šฐ๋ฆฌ๋Š” ๋ฌธ์ œ์ ์„ ํƒ์ƒ‰ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
08:40
And as we did it, we realized this was the basic problem --
205
520330
3000
๊ทธ๋ฆฌ๊ณ  ํ•ด๋ƒˆ์ฃ . ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฌธ์ œ์ ์„ ๊นจ๋‹ฌ์€ ๊ฒ๋‹ˆ๋‹ค.
08:43
that taking the sip of coffee --
206
523330
2000
๋ฌธ์ œ์ ์€ ๊ต‰์žฅํžˆ ๋‹จ์ˆœํ•œ ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:45
that there were humans doing this complicated process
207
525330
2000
์ด ๋ณต์žกํ•œ ์ผ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒŒ ์ธ๊ฐ„์ด๋ž€ ๊ฒŒ ๋ฌธ์ œ์˜€๋˜ ๊ฒƒ์ด์—ˆ์ฃ .
08:47
and that what really needed to be done
208
527330
2000
์ •๋ง๋กœ ํ•ด์•ผ ํ–ˆ๋˜ ์ผ์€,
08:49
was to automate this process like an assembly line
209
529330
3000
๋ณต์žกํ•œ ๋‹จ๊ณ„๋“ค์„ ์ž๋™ํ™”์‹œํ‚ค๋Š” ๊ฒƒ,
08:52
and build robots
210
532330
2000
๋‹จ๋ฐฑ์งˆ์ฒด๋ฅผ ์ธก์ •ํ• 
08:54
that would measure proteomics.
211
534330
2000
๋กœ๋ด‡์„ ๋งŒ๋“œ๋Š” ์ผ์ด์—ˆ๋˜ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:56
And so we did that,
212
536330
2000
๊ทธ๋ž˜์„œ ๋กœ๋ด‡์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
08:58
and working with David,
213
538330
2000
๋ฐ์ด๋น—๊ณผ ํ•จ๊ป˜ ์ผํ•˜๋ฉด์„œ,
09:00
we made a little company called Applied Proteomics eventually,
214
540330
3000
์šฐ๋ฆฌ๋Š” ์ตœ์ข…์ ์œผ๋กœ Applied Proteomics๋ผ๋Š” ์ž‘์€ ํšŒ์‚ฌ๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
09:03
which makes this robotic assembly line,
215
543330
3000
๋กœ๋ด‡ ์กฐ๋ฆฝ ๋ผ์ธ์„ ๋งŒ๋“œ๋Š” ํšŒ์‚ฌ์˜€์Šต๋‹ˆ๋‹ค.
09:06
which, in a very consistent way, measures the protein.
216
546330
3000
๋งค์šฐ ์ผ๊ด€์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๋‹จ๋ฐฑ์งˆ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ ๊ฑฐ์ฃ .
09:09
And I'll show you what that protein measurement looks like.
217
549330
3000
์ด์ œ ์ด ๋‹จ๋ฐฑ์งˆ ์ธก์ •๋ฐฉ๋ฒ•์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
09:13
Basically, what we do
218
553330
2000
๊ธฐ๋ณธ์ ์œผ๋กœ ์šฐ๋ฆฌ๊ฐ€ ํ•œ ๊ฒƒ์€
09:15
is we take a drop of blood
219
555330
2000
ํ™˜์ž๋กœ๋ถ€ํ„ฐ
09:17
out of a patient,
220
557330
2000
ํ˜ˆ์•ก ํ•œ ๋ฐฉ์šธ์„ ์ฑ„์ทจํ•ด์„œ
09:19
and we sort out the proteins
221
559330
2000
๊ทธ ํ•œ ๋ฐฉ์šธ ์†์˜ ๋‹จ๋ฐฑ์งˆ๋“ค์„
09:21
in the drop of blood
222
561330
2000
๋ถ„๋ฆฌํ•ด๋‚ด๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
09:23
according to how much they weigh,
223
563330
2000
๊ทธ๋ฆฌ๊ณ  ๋ฌด๊ฒŒ์— ๋”ฐ๋ผ,
09:25
how slippery they are,
224
565330
2000
๋˜ ์–ผ๋งˆ๋‚˜ ๋ถˆ์•ˆ์ •ํ•œ ์ƒํƒœ์ธ์ง€์— ๋”ฐ๋ผ
09:27
and we arrange them in an image.
225
567330
3000
๋‹จ๋ฐฑ์งˆ๋“ค์„ ๋ฐฐ์—ด์‹œ์ผœ ์ด๋ฏธ์ง€๋ฅผ ๋งŒ๋“ค์—ˆ์ฃ .
09:30
And so we can look at literally
226
570330
2000
๋ง ๊ทธ๋Œ€๋กœ,
09:32
hundreds of thousands of features at once
227
572330
2000
ํ˜ˆ์•ก ํ•œ ๋ฐฉ์šธ์„ ํ†ตํ•ด ์ˆ˜์ฒœ, ์ˆ˜๋ฐฑ์˜ ํŠน์ง•๋“ค์„
09:34
out of that drop of blood.
228
574330
2000
ํ•œ ๋ˆˆ์— ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:36
And we can take a different one tomorrow,
229
576330
2000
๋‹ค์Œ ๋‚ ์ด๋ฉด, ์กฐ๊ธˆ ๋‹ค๋ฅธ ๊ฒƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:38
and you will see your proteins tomorrow will be different --
230
578330
2000
๋‚ ๋งˆ๋‹ค ๋‹ฌ๋ผ์ง„ ๋‹จ๋ฐฑ์งˆ๋“ค์ด ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋˜์ฃ .
09:40
they'll be different after you eat or after you sleep.
231
580330
3000
๋จน๊ฑฐ๋‚˜ ์ž ์„ ์ž” ํ›„์—๋„ ๋‹จ๋ฐฑ์งˆ๋“ค์ด ๋‹ฌ๋ผ์ง€๊ณ 
09:43
They really tell us what's going on there.
232
583330
3000
์ด๊ฒƒ์ด ๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š”์ง€ ๋งํ•ด์ฃผ๋Š” ๊ฑฐ์ฃ .
09:46
And so this picture,
233
586330
2000
๋”ฐ๋ผ์„œ ์ด ์‚ฌ์ง„์€,
09:48
which looks like a big smudge to you,
234
588330
2000
์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ๋Š” ์ปค๋‹ค๋ž€ ์–ผ๋ฃฉ์— ๋ถˆ๊ณผํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ
09:50
is actually the thing that got me really thrilled about this
235
590330
4000
์ œ๊ฒŒ๋Š” ์ •๋ง ์Šค๋ฆด ๋„˜์น˜๋Š” ๊ฒƒ์ด์ž
09:54
and made me feel like we were on the right track.
236
594330
2000
์šฐ๋ฆฌ๊ฐ€ ์ž˜ ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋Š๋ผ๊ฒŒ ํ•ด ์ฃผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:56
So if I zoom into that picture,
237
596330
2000
์ด์ œ ์ด ์‚ฌ์ง„์„ ํ™•๋Œ€ํ•ด์„œ
09:58
I can just show you what it means.
238
598330
2000
๊ทธ ์˜๋ฏธ๋“ค์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ด๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
10:00
We sort out the proteins -- from left to right
239
600330
3000
์šฐ๋ฆฌ๋Š” ์–ป์–ด๋‚ธ ๋‹จ๋ฐฑ์งˆ๋“ค์„
10:03
is the weight of the fragments that we're getting,
240
603330
3000
๋ฌด๊ฒŒ์— ๋”ฐ๋ผ ์™ผ์ชฝ์—์„œ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๋ถ„๋ฅ˜ํ–ˆ์Šต๋‹ˆ๋‹ค.
10:06
and from top to bottom is how slippery they are.
241
606330
3000
์œ„์—์„œ ์•„๋ž˜๋กœ๋Š” ์–ผ๋งˆ๋‚˜ ๋ถˆ์•ˆ์ •ํ•œ ์ƒํƒœ์ธ์ง€์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ํ–ˆ์ฃ .
10:09
So we're zooming in here just to show you a little bit of it.
242
609330
3000
์ด์ œ ์ด ๋ถ€๋ถ„์„ ํ™•๋Œ€ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
10:12
And so each of these lines
243
612330
2000
์—ฌ๊ธฐ ๊ฐ๊ฐ์˜ ์„ ๋“ค์€
10:14
represents some signal that we're getting out of a piece of a protein.
244
614330
3000
๋‹จ๋ฐฑ์งˆ ์กฐ๊ฐ์œผ๋กœ๋ถ€ํ„ฐ ์šฐ๋ฆฌ๊ฐ€ ์–ป์–ด๋‚ธ ์‹ ํ˜ธ๋“ค์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
10:17
And you can see how the lines occur
245
617330
2000
์—ฌ๊ธฐ ํฉ์–ด์ ธ ์žˆ๋Š” ์ž‘์€ ๋ฉ์–ด๋ฆฌ๋“ค ์•ˆ์—์„œ
10:19
in these little groups of bump, bump, bump, bump, bump.
246
619330
4000
์ด ์„ ๋“ค์ด ์–ด๋–ป๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ๋ณด์ด์‹œ์ฃ .
10:23
And that's because we're measuring the weight so precisely that --
247
623330
3000
์šฐ๋ฆฌ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ๋™์œ„์›์†Œ๊ฐ€ ๊ฐ–๋Š” ํƒ„์†Œ๋Ÿ‰์˜ ๋ฌด๊ฒŒ๋ฅผ
10:26
carbon comes in different isotopes,
248
626330
2000
๋งค์šฐ ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—,
10:28
so if it has an extra neutron on it,
249
628330
3000
๊ฑฐ๊ธฐ์— ์ถ”๊ฐ€์ ์ธ ์ค‘์„ฑ์ž๊ฐ€ ์žˆ๋‹ค๋ฉด
10:31
we actually measure it as a different chemical.
250
631330
4000
๊ทธ๊ฒƒ์„ ๋‹ค๋ฅธ ํ™”ํ•ฉ๋ฌผ๋กœ ๊ฐ„์ฃผํ•˜๊ณ  ์ธก์ •ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
10:35
So we're actually measuring each isotope as a different one.
251
635330
3000
๊ทธ๋ž˜์„œ ์ €ํฐ ๊ฐ ๋™์œ„์›์†Œ๋ฅผ ๊ฐ๊ฐ ๋‹ค๋ฅธ ๊ฒƒ์œผ๋กœ์„œ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.
10:38
And so that gives you an idea
252
638330
3000
์ด๊ฑธ ๋ณด์‹œ๋ฉด ์ด๊ฒŒ ์–ผ๋งˆ๋‚˜
10:41
of how exquisitely sensitive this is.
253
641330
2000
์ •๊ตํ•˜๊ณ  ์„ฌ์„ธํ•œ ์ง€ ์•Œ ์ˆ˜ ์žˆ์ฃ .
10:43
So seeing this picture
254
643330
2000
์ด ๊ทธ๋ฆผ์„ ๋ณด๊ฒŒ ๋˜๋ฉด
10:45
is sort of like getting to be Galileo
255
645330
2000
๋งˆ์น˜ ๊ฐˆ๋ฆด๋ ˆ์˜ค๊ฐ€
10:47
and looking at the stars
256
647330
2000
ํ•˜๋Š˜์— ๋–  ์žˆ๋Š” ๋ณ„๋งŒ ๋ฐ”๋ผ๋ณด๋‹ค๊ฐ€
10:49
and looking through the telescope for the first time,
257
649330
2000
์ฒ˜์Œ์œผ๋กœ ๋ง์›๊ฒฝ์„ ํ†ตํ•ด ๋ณ„์„ ๊ด€์ฐฐํ•˜๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค.
10:51
and suddenly you say, "Wow, it's way more complicated than we thought it was."
258
651330
3000
๊ทธ๋ฆฌ๊ณค ์ด๋ ‡๊ฒŒ ๋งํ•˜๊ฒ ์ฃ . "์„ธ์ƒ์—. ์ด๊ฑฐ ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ–ˆ๋˜ ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋ณต์žกํ•˜๋„ค."
10:54
But we can see that stuff out there
259
654330
2000
ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ ํฉ์–ด์ ธ ์žˆ๋Š” ๊ฒƒ๋“ค์ด
10:56
and actually see features of it.
260
656330
2000
์‹ค์ œ๋กœ๋Š” ๊ฐ๊ฐ์˜ ํŠน์ง•์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
10:58
So this is the signature out of which we're trying to get patterns.
261
658330
3000
์šฐ๋ฆฌ๊ฐ€ ์–ป๊ณ ์ž ํ–ˆ๋˜ ํŒจํ„ด๋“ค์„ ํ‘œ์‹œํ•ด ๋‘” ๊ฒƒ์ด์ฃ .
11:01
So what we do with this
262
661330
2000
๊ทธ๋Ÿผ ์šฐ๋ฆฌ๊ฐ€ ํ•œ ์ผ์ด ๋ฌด์—‡์ธ์ง€ ์˜ˆ๋ฅผ ๋“ค์–ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
11:03
is, for example, we can look at two patients,
263
663330
2000
์—ฌ๊ธฐ ๋‘ ๋ช…์˜ ํ™˜์ž๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
11:05
one that responded to a drug and one that didn't respond to a drug,
264
665330
3000
ํ•œ ๋ช…์€ ์•ฝ์ด ํšจ๊ณผ๋ฅผ ๋ณด์ด๋Š” ๋ฐ˜๋ฉด ๋‹ค๋ฅธ ํ•œ๋ช…์€ ๊ทธ๋ ‡์ง€ ์•Š๋„ค์š”.
11:08
and ask, "What's going on differently
265
668330
2000
"๋‘ ํ™˜์ž๋“ค ๋ชธ ์†์—์„œ ์–ด๋–ค ์ฐจ์ด๊ฐ€ ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š”๊ฑฐ์ง€?"
11:10
inside of them?"
266
670330
2000
ํ•˜๋Š” ์˜๋ฌธ์ด ์ƒ๊ธฐ๊ฒ ์ฃ .
11:12
And so we can make these measurements precisely enough
267
672330
3000
์ด์ œ ์šฐ๋ฆฐ ์†Œ๊ฐœ๋œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ถฉ๋ถ„ํžˆ ์ •ํ™•ํ•œ ์ธก์ • ๊ฒฐ๊ณผ๋“ค์„ ์–ป์–ด๋‚ด๊ณ ,
11:15
that we can overlay two patients and look at the differences.
268
675330
3000
๋‘ ํ™˜์ž๋“ค์˜ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•ด ํ™˜์ž๊ฐ„์˜ ์ฐจ์ด์ ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
11:18
So here we have Alice in green
269
678330
2000
๋…น์ƒ‰์ด ์•จ๋ฆฌ์Šค์˜ ๊ฒฐ๊ณผ๊ณ 
11:20
and Bob in red.
270
680330
2000
๋นจ๊ฐ„์ƒ‰์ด ๋ฐฅ์ž…๋‹ˆ๋‹ค.
11:22
We overlay them. This is actual data.
271
682330
3000
๋‘˜์„ ๊ฒน์ณ๋ณผ๊นŒ์š”? ์ด๊ฑด ์‹ค์ œ ๋ฐ์ดํ„ฐ์ž…๋‹ˆ๋‹ค.
11:25
And you can see, mostly it overlaps and it's yellow,
272
685330
3000
๋‘˜์—์„œ ๊ฒน์ณ์ง„ ๋ถ€๋ถ„์€ ๋…ธ๋ž€์ƒ‰์œผ๋กœ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
11:28
but there's some things that just Alice has
273
688330
2000
ํ•˜์ง€๋งŒ ์•จ๋ฆฌ์Šค๋งŒ ๊ฐ€์ง€๊ณ  ์žˆ๊ฑฐ๋‚˜
11:30
and some things that just Bob has.
274
690330
2000
๋ฐฅ๋งŒ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ฑด ์›๋ž˜์˜ ์ƒ‰๊น”์ž…๋‹ˆ๋‹ค.
11:32
And if we find a pattern of things
275
692330
3000
์šฐ๋ฆฌ๊ฐ€ ์•ฝ์— ๋ฐ˜์‘ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์˜
11:35
of the responders to the drug,
276
695330
3000
ํŠน์ • ํŒจํ„ด์„ ์ฐพ์•„๋‚ธ๋‹ค๋ฉด,
11:38
we see that in the blood,
277
698330
2000
ํ˜ˆ์•ก์„ ํ†ตํ•ด
11:40
they have the condition
278
700330
2000
๊ทธ๋“ค์˜ ์ƒํƒœ๋ฅผ ํ™•์ธํ•˜๊ณ 
11:42
that allows them to respond to this drug.
279
702330
2000
ํšจ๊ณผ์ ์ธ ์น˜๋ฃŒ์ œ๋ฅผ ์ฒ˜๋ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒ๋‹ˆ๋‹ค.
11:44
We might not even know what this protein is,
280
704330
2000
๋น„๋ก ์ด ๋‹จ๋ฐฑ์งˆ์ด ๋ฌด์—‡์ธ์ง€ ๋ชจ๋ฅด๋”๋ผ๋„,
11:46
but we can see it's a marker
281
706330
2000
์งˆ๋ณ‘์— ๋Œ€ํ•œ ๋ฐ˜์‘์ง€ํ‘œ๋Š”
11:48
for the response to the disease.
282
708330
2000
ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:53
So this already, I think,
283
713330
2000
์ œ๊ฐ€ ์ƒ๊ฐํ•˜๊ธฐ์— ์ด๊ฒƒ์€ ์ด๋ฏธ
11:55
is tremendously useful in all kinds of medicine.
284
715330
3000
๋ชจ๋“  ์ข…๋ฅ˜์˜ ์•ฝ๋“ค์— ๋Œ€ํ•ด ์—„์ฒญ๋‚˜๊ฒŒ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
11:58
But I think this is actually
285
718330
2000
ํ•˜์ง€๋งŒ ์ €๋Š” ์ด๊ฒƒ์ด
12:00
just the beginning
286
720330
2000
์•”์„ ์–ด๋–ป๊ฒŒ ๋‹ค๋ค„์•ผ ํ• ์ง€์˜
12:02
of how we're going to treat cancer.
287
722330
2000
์‹œ์ž‘์— ๋ถˆ๊ณผํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
12:04
So let me move to cancer.
288
724330
2000
์ž, ์•”์— ๋Œ€ํ•ด ์–˜๊ธฐํ•ด๋ด…์‹œ๋‹ค.
12:06
The thing about cancer --
289
726330
2000
์•”์ด๋ž€ ์ฃผ์ œ์— ์žˆ์–ด-
12:08
when I got into this,
290
728330
2000
์ œ๊ฐ€ ์ด๊ฒƒ์„ ๋“ค์—ฌ๋‹ค๋ณด๊ธฐ ์‹œ์ž‘ํ–ˆ์„ ๋•Œ
12:10
I really knew nothing about it,
291
730330
2000
์•”์— ๋Œ€ํ•ด ์•„๋Š” ๊ฒŒ ์ •๋ง ์—†์—ˆ์ฃ .
12:12
but working with David Agus,
292
732330
2000
ํ•˜์ง€๋งŒ ๋ฐ์ด๋น„๋“œ ์•„๊ตฌ์Šค์™€ ์ผํ•˜๋ฉด์„œ
12:14
I started watching how cancer was actually being treated
293
734330
3000
์•”์ด ์–ด๋–ป๊ฒŒ ๋‹ค๋ค„์ง€๋Š”์ง€, ๋˜ ์ œ๊ฑฐ ์ˆ˜์ˆ ์ด ์–ด๋–ป๊ฒŒ ์ด๋ค„์ง€๋Š”์ง€
12:17
and went to operations where it was being cut out.
294
737330
3000
์ œ๋Œ€๋กœ ๋ณผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
12:20
And as I looked at it,
295
740330
2000
์‚ฌ์‹ค ๋ณด๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š”
12:22
to me it didn't make sense
296
742330
2000
์–ด๋–ป๊ฒŒ ์•”์— ์ ‘๊ทผํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•ด
12:24
how we were approaching cancer,
297
744330
2000
์•„๋ฌด๋Ÿฐ ๊นจ๋‹ฌ์Œ๋„ ์–ป์„ ์ˆ˜ ์—†์—ˆ์ฃ .
12:26
and in order to make sense of it,
298
746330
3000
๊นจ๋‹ฌ์Œ์„ ์–ป๊ธฐ ์œ„ํ•ด์„œ ์ €๋Š”
12:29
I had to learn where did this come from.
299
749330
3000
์•”์˜ ์›์ธ์ด ๋ฌด์—‡์ธ์ง€๋ถ€ํ„ฐ ๋ฐฐ์›Œ์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
12:32
We're treating cancer almost like it's an infectious disease.
300
752330
4000
์šฐ๋ฆฌ๋Š” ์•”์„ ๋งˆ์น˜ ์„ธ๊ท ๊ฐ์—ผ์— ์˜ํ•œ ์งˆ๋ณ‘์ฒ˜๋Ÿผ ๋‹ค๋ฃจ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:36
We're treating it as something that got inside of you
301
756330
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋ชธ ์•ˆ์— ์ƒ๊ธด, ์ฃฝ์—ฌ ์—†์• ์•ผ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ
12:38
that we have to kill.
302
758330
2000
์ทจ๊ธ‰ํ•˜๊ณ  ์žˆ์ฃ .
12:40
So this is the great paradigm.
303
760330
2000
์ด๊ฒƒ์€ ์‹ฌ๊ฐํ•œ ๊ณ ์ •๊ด€๋…์ด๋ผ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:42
This is another case
304
762330
2000
์ƒ๋ฌผํ•™์—์„œ ์ด๋ก ์  ๊ณ ์ •๊ด€๋…์ธ
12:44
where a theoretical paradigm in biology really worked --
305
764330
2000
๋ณ‘์›๊ท  ์ด๋ก ์ด ์ž˜ ๋งž์•„ ๋–จ์–ด์ง€๊ธฐ๋Š” ํ•˜์ง€๋งŒ-
12:46
was the germ theory of disease.
306
766330
3000
๊ทธ ๊ฒƒ๊ณผ๋Š” ๋ณ„๊ฐœ์˜ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
12:49
So what doctors are mostly trained to do
307
769330
2000
์˜์‚ฌ๋“ค์ด ์ฃผ๋กœ ์ˆ˜๋ จํ•˜๋Š” ๊ฒƒ์€
12:51
is diagnose --
308
771330
2000
์ง„๋‹จ๋ฒ•์ž…๋‹ˆ๋‹ค.
12:53
that is, put you into a category
309
773330
2000
์—ฌ๋Ÿฌ๋ถ„์„ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ฑฐ์ฃ .
12:55
and apply a scientifically proven treatment
310
775330
2000
๊ทธ๋ฆฌ๊ณ  ์ง„๋‹จ๊ฒฐ๊ณผ์— ๋”ฐ๋ผ ๊ณผํ•™์ ์œผ๋กœ ์ž…์ฆ๋œ
12:57
for that diagnosis --
311
777330
2000
์น˜๋ฃŒ๋ฒ•์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
12:59
and that works great for infectious diseases.
312
779330
3000
์ด ๋ฐฉ๋ฒ•์€ ๊ฐ์—ผ์— ์˜ํ•œ ์งˆ๋ณ‘์—๋Š” ๋Œ€๋‹จํžˆ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค.
13:02
So if we put you in the category
313
782330
2000
๋งค๋…์— ๊ฑธ๋ฆฐ ๊ฑธ๋กœ ๋ถ„๋ฅ˜๋˜๋ฉด
13:04
of you've got syphilis, we can give you penicillin.
314
784330
3000
์˜์‚ฌ๋Š” ํŽ˜๋‹ˆ์‹ค๋ฆฐ์„ ์ฒ˜๋ฐฉํ•  ๊ฒ๋‹ˆ๋‹ค.
13:07
We know that that works.
315
787330
2000
๊ทธ ํšจ๊ณผ๋„ ์˜ˆ์ƒํ•˜๊ณ  ์žˆ์ฃ .
13:09
If you've got malaria, we give you quinine
316
789330
2000
๋ง๋ผ๋ฆฌ์•„์— ๊ฑธ๋ ธ๋‹ค๋ฉด ํ€ด๋‹Œ์ด๋‚˜
13:11
or some derivative of it.
317
791330
2000
๊ทธ ๋Œ€์ฒด์ œ๋“ค์„ ์ฒ˜๋ฐฉํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:13
And so that's the basic thing doctors are trained to do,
318
793330
3000
์ด๊ฒƒ์ด ์˜์‚ฌ๋“ค์ด ํ›ˆ๋ จ๋ฐ›์•„ ์˜จ ๊ธฐ๋ณธ์ ์ธ ๊ฒƒ๋“ค์ด์ฃ .
13:16
and it's miraculous
319
796330
2000
๊ฐ์—ผ์— ์˜ํ•œ ์งˆ๋ณ‘์— ์žˆ์–ด
13:18
in the case of infectious disease --
320
798330
3000
์ด๋Ÿฐ ๋ฐฉ์‹์€ ์–ด์ฐŒ๋‚˜ ํšจ๊ณผ์ ์ธ์ง€
13:21
how well it works.
321
801330
2000
๊ธฐ์ ์ฒ˜๋Ÿผ ๋ณด์ผ ์ •๋„์ž…๋‹ˆ๋‹ค.
13:23
And many people in this audience probably wouldn't be alive
322
803330
3000
๋งŒ์ผ ์˜์‚ฌ๊ฐ€ ์ด๋ ‡๊ฒŒ ํ•˜์ง€ ์•Š์•˜๋‹ค๋ฉด ์—ฌ๋Ÿฌ๋ถ„ ์ค‘ ๋Œ€๋‹ค์ˆ˜๋Š”
13:26
if doctors didn't do this.
323
806330
2000
์‚ด์•„์žˆ์ง€ ๋ชปํ–ˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:28
But now let's apply that
324
808330
2000
ํ•˜์ง€๋งŒ ์ด์ œ ์•”์„,
13:30
to systems diseases like cancer.
325
810330
2000
์‹œ์Šคํ…œ์ ์ธ ์งˆ๋ณ‘์œผ๋กœ ์ƒ๊ฐํ•ด๋ด…์‹œ๋‹ค.
13:32
The problem is that, in cancer,
326
812330
2000
์•”์— ์žˆ์–ด์„œ ๋ฌธ์ œ์ ์€,
13:34
there isn't something else
327
814330
2000
๋ฌด์–ธ๊ฐ€ ์นจ์ž…ํ•œ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ
13:36
that's inside of you.
328
816330
2000
์—ฌ๋Ÿฌ๋ถ„ ๋ชธ ์ž์ฒด๋ผ๋Š” ์ ์ž…๋‹ˆ๋‹ค.
13:38
It's you; you're broken.
329
818330
2000
๋ฐ”๋กœ ์—ฌ๋Ÿฌ๋ถ„ ๋•Œ๋ฌธ์ด๊ณ , ์ž์‹ ์˜ ๋ชธ์ด ๋ง๊ฐ€์กŒ๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
13:40
That conversation inside of you
330
820330
4000
์—ฌ๋Ÿฌ๋ถ„ ๋ชธ ์•ˆ์˜ ๋Œ€ํ™”๊ฐ€
13:44
got mixed up in some way.
331
824330
2000
์–ด๋–ค ๋ถ€๋ถ„์—์„œ ๋งˆ๊ตฌ ๋’ค์„ž์ธ ๊ฑฐ์ฃ .
13:46
So how do we diagnose that conversation?
332
826330
2000
์ด๋Ÿฐ ๋Œ€ํ™”๋ฅผ ์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ง„๋‹จํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
13:48
Well, right now what we do is we divide it by part of the body --
333
828330
3000
ํ˜„์žฌ ์šฐ๋ฆฌ๊ฐ€ ํ•˜๊ณ  ์žˆ๋Š” ์ผ์€
13:51
you know, where did it appear? --
334
831330
3000
์•”์ด ๋ฐœ์ƒํ•œ ์‹ ์ฒด์  ๋ถ€๋ถ„์— ๋”ฐ๋ผ
13:54
and we put you in different categories
335
834330
2000
ํ™˜์ž๋ฅผ ๋‹ค์–‘ํ•œ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋ถ„๋ฅ˜ํ•˜๋“ฏ์ด
13:56
according to the part of the body.
336
836330
2000
์‹ ์ฒด๋ฅผ ์—ฌ๋Ÿฌ ๋ถ€์œ„๋กœ ๋‚˜๋ˆ„๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:58
And then we do a clinical trial
337
838330
2000
๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ ์ž„์ƒ์‹คํ—˜๋“ค์„ ์ˆ˜ํ–‰ํ•˜์ฃ 
14:00
for a drug for lung cancer
338
840330
2000
ํ์•”์ด๋ผ๋ฉด ๊ทธ์— ํ•ด๋‹นํ•˜๋Š” ์•ฝ์„
14:02
and one for prostate cancer and one for breast cancer,
339
842330
3000
์ „๋ฆฝ์„ ์•”, ์œ ๋ฐฉ์•”์ด๋ผ๋ฉด ๋˜ ๊ฐ๊ฐ์— ํ•ด๋‹นํ•˜๋Š” ์•ฝ์„ ์จ๋ณด๋Š” ๊ฒ๋‹ˆ๋‹ค.
14:05
and we treat these as if they're separate diseases
340
845330
3000
์•”๋“ค์„ ์„œ๋กœ ๋‹ค๋ฅธ ์งˆ๋ณ‘์œผ๋กœ ์ทจ๊ธ‰ํ•˜๊ณ ,
14:08
and that this way of dividing them
341
848330
2000
๋ชธ์•ˆ์˜ ์ž˜๋ชป๋œ ๋ถ€๋ถ„๊ณผ ๊ด€๋ จ์žˆ๋Š” ๊ฒƒ๋“ค์„
14:10
had something to do with what actually went wrong.
342
850330
2000
๊ตฌ๋ถ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ทจํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:12
And of course, it really doesn't have that much to do
343
852330
2000
๋ฌผ๋ก , ๋ฌด์—‡์ด ์ž˜๋ชป๋˜์—ˆ๋Š”์ง€ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์€
14:14
with what went wrong
344
854330
2000
์–ด๋ ค์šด ์ผ์€ ์•„๋‹™๋‹ˆ๋‹ค.
14:16
because cancer is a failure of the system.
345
856330
3000
์•”์€ ์‹œ์Šคํ…œ์ƒ์˜ ์˜ค๋ฅ˜์ด๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
14:19
And in fact, I think we're even wrong
346
859330
2000
๊ทธ๋ฆฌ๊ณ  ์‚ฌ์‹ค, ์•”์„ ํ•˜๋‚˜๋กœ ์ง€์นญํ•˜๋Š” ๊ฒƒ์ด์•ผ ๋ง๋กœ
14:21
when we talk about cancer as a thing.
347
861330
3000
์ •๋ง ์ž˜๋ชป๋œ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
14:24
I think this is the big mistake.
348
864330
2000
์ •๋ง ํฐ ์‹ค์ˆ˜๋ผ๊ณ  ์ƒ๊ฐํ•ด์š”.
14:26
I think cancer should not be a noun.
349
866330
4000
์ €๋Š” ์•”์„ ํ•˜๋‚˜์˜ ๋ช…์‚ฌ๋กœ ํ†ต์นญํ•ด์„œ๋Š” ์•ˆ ๋œ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
14:30
We should talk about cancering
350
870330
2000
์•”์— ๋Œ€ํ•ด ์–˜๊ธฐํ•  ๋•Œ๋Š”
14:32
as something we do, not something we have.
351
872330
3000
๊ฒฐ๊ณผ๊ฐ€ ์•„๋‹Œ ์ง„ํ–‰๊ณผ์ •์„ ์–˜๊ธฐํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
14:35
And so those tumors,
352
875330
2000
์ข…์–‘์ด๋ผ๋Š” ๊ฒƒ๋„
14:37
those are symptoms of cancer.
353
877330
2000
์•”์˜ ์ฆ์ƒ์— ๋ถˆ๊ณผํ•œ ๊ฑฐ์ฃ .
14:39
And so your body is probably cancering all the time,
354
879330
3000
๋”ฐ๋ผ์„œ ์—ฌ๋Ÿฌ๋ถ„ ๋ชธ์€ ํ•ญ์ƒ ์•”์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:42
but there are lots of systems in your body
355
882330
3000
ํ•˜์ง€๋งŒ ๋ชธ ์•ˆ์—๋Š” ์ˆ˜๋งŽ์€ ์‹œ์Šคํ…œ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—
14:45
that keep it under control.
356
885330
2000
์•”์„ ํ†ต์ œํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:47
And so to give you an idea
357
887330
2000
์‹ค์งˆ์ ์ธ ์ดํ•ด๋ฅผ ๋•๊ธฐ ์œ„ํ•ด
14:49
of an analogy of what I mean
358
889330
2000
์ œ๊ฐ€ ์•”์ด๋ผ๋Š” ๊ฒƒ์„ ๋™์‚ฌ๋กœ ์ทจ๊ธ‰ํ•จ์œผ๋กœ์จ
14:51
by thinking of cancering as a verb,
359
891330
3000
์ œ๊ฐ€ ์˜๋ฏธํ•˜๋Š” ๋ฐ”๊ฐ€ ๋ฌด์—‡์ธ์ง€ ๋น„์œ ํ•ด๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
14:54
imagine we didn't know anything about plumbing,
360
894330
3000
์šฐ๋ฆฌ๊ฐ€ ๋ฐฐ๊ด€์‹œ์„ค์— ๋Œ€ํ•ด ์ „ํ˜€ ์•„๋Š” ๊ฒŒ ์—†์„ ๋•Œ,
14:57
and the way that we talked about it,
361
897330
2000
์ด๊ฒƒ์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ์–˜๊ธฐํ•˜๋Š”์ง€ ์ƒ์ƒํ•ด๋ณด์ฃ .
14:59
we'd come home and we'd find a leak in our kitchen
362
899330
3000
์ง‘์— ์™”๋Š”๋ฐ ๋ถ€์—Œ์—์„œ ๋ฌผ์ด ์ƒˆ๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค.
15:02
and we'd say, "Oh, my house has water."
363
902330
4000
"์ด๋Ÿฐ, ์ง‘ ์•ˆ์— ๋ฌผ์ด ๊ณ ์—ฌ ์žˆ๋„ค." ๋ผ๊ณ  ๋งํ•˜๊ฒ ์ฃ .
15:06
We might divide it -- the plumber would say, "Well, where's the water?"
364
906330
3000
์ƒํ™ฉ์„ ๋‚˜๋ˆ ๋ณด์ฃ . ๋ฐฐ๊ด€๊ณต์ด ๋ฌป์Šต๋‹ˆ๋‹ค "๋ฌผ์ด ์–ด๋””์— ์žˆ๋‚˜์š”?"
15:09
"Well, it's in the kitchen." "Oh, you must have kitchen water."
365
909330
3000
"๋ถ€์—Œ์ด์š”." "์•„, ๋ถ€์—Œ์—์„œ ๋ฌผ์ด ์ƒˆ๋Š”๊ตฐ์š”."
15:12
That's kind of the level at which it is.
366
912330
3000
๋ฐ”๋กœ ์ด๋Ÿฐ ์ƒํ™ฉ์ž…๋‹ˆ๋‹ค.
15:15
"Kitchen water,
367
915330
2000
"๋ถ€์—Œ์—์„œ ๋ฌผ์ด ์ƒˆ๋ฉด์š”?"
15:17
well, first of all, we'll go in there and we'll mop out a lot of it.
368
917330
2000
๋จผ์ €, ์šฐ๋ฆฌ๋Š” ๊ทธ ์•ˆ์— ๋“ค์–ด๊ฐ€ ๊ฑธ๋ ˆ์งˆ์„ ํ•  ๊ฒ๋‹ˆ๋‹ค.
15:19
And then we know that if we sprinkle Drano around the kitchen,
369
919330
3000
์ฃผ๋ณ€์— ๋“œ๋ ˆ์ด๋…ธ(์–ผ๋ฃฉ์ œ๊ฑฐ์ œ)๋ฅผ ๋ฟŒ๋ฆฌ๋Š” ๊ฒŒ
15:22
that helps.
370
922330
3000
๋„์›€์ด ๋œ๋‹ค๋Š” ๊ฒƒ๋„ ์•Œ๊ณ  ์žˆ์ฃ .
15:25
Whereas living room water,
371
925330
2000
๊ทธ์— ๋ฐ˜ํ•ด ๊ฑฐ์‹ค์— ๋ฌผ์ด ์ƒˆ๋Š” ๊ฒฝ์šฐ์—๋Š”
15:27
it's better to do tar on the roof."
372
927330
2000
์ฒœ์žฅ์— ๋ฐฉ์ˆ˜์ œ๋ฅผ ๋ฐ”๋ฅด๋Š” ๊ฒƒ์ด ๋‚ซ์Šต๋‹ˆ๋‹ค.
15:29
And it sounds silly,
373
929330
2000
์–ด๋ฆฌ์„๊ฒŒ ๋“ค๋ฆด ์ˆ˜๋„ ์žˆ์ง€๋งŒ,
15:31
but that's basically what we do.
374
931330
2000
๊ทธ๊ฒƒ์ด ์šฐ๋ฆฌ๊ฐ€ ๊ธฐ๋ณธ์ ์œผ๋กœ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:33
And I'm not saying you shouldn't mop up your water if you have cancer,
375
933330
3000
๋‹น์‹ ์ด ์•”์ผ ๋•Œ ๊ฑธ๋ ˆ์งˆ๋กœ ์—†์• ๋ ค ํ•ด์„œ๋Š” ์•ˆ๋œ๋‹ค๋Š” ์–˜๊ธฐ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
15:36
but I'm saying that's not really the problem;
376
936330
3000
๋‹ค๋งŒ ๊ทธ๊ฒƒ์ด ์ง„์งœ ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ž€ ์ ์„ ๋งํ•˜๊ณ  ์‹ถ์€๊ฑฐ์ฃ .
15:39
that's the symptom of the problem.
377
939330
2000
๋ฌธ์ œ์˜ ์ฆ์ƒ์„ ๋ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
15:41
What we really need to get at
378
941330
2000
์šฐ๋ฆฌ๊ฐ€ ์ •๋ง๋กœ ํ•ด์•ผํ•  ์ผ์€
15:43
is the process that's going on,
379
943330
2000
๋ณ‘์ด ์ง„ํ–‰๋˜๋Š” ๊ณผ์ •์„ ์‚ดํ”ผ๊ณ ,
15:45
and that's happening at the level
380
945330
2000
๊ทธ ์ •๋„ ์ง„ํ–‰๋‹จ๊ณ„์—์„œ๋Š” ๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚ ์ง€๋ฅผ
15:47
of the proteonomic actions,
381
947330
2000
๋‹จ๋ฐฑ์ฒดํ•™์  ํ™œ๋™์œผ๋กœ ํŒŒ์•…ํ•˜๊ณ ,
15:49
happening at the level of why is your body not healing itself
382
949330
3000
์ •์ƒ์ ์ธ ์ƒํƒœ์—์„œ๋Š” ๋ชธ ์Šค์Šค๋กœ ์น˜๋ฃŒํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ๊ณ„์ธ๋ฐ๋„
15:52
in the way that it normally does?
383
952330
2000
์–ด์งธ์„œ ์ž์—ฐ์น˜์œ ๊ฐ€ ๋˜์ง€ ์•Š๋Š”์ง€๋ฅผ ๋ฌผ์–ด์•ผ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:54
Because normally, your body is dealing with this problem all the time.
384
954330
3000
๋ณดํ†ต ์šฐ๋ฆฌ ๋ชธ์€ ํ•ญ์ƒ ์ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ๊ฒช๊ณ  ์žˆ๊ฑฐ๋“ ์š”.
15:57
So your house is dealing with leaks all the time,
385
957330
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ง‘๋„ ๋ฌผ์ด ์ƒˆ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ญ์ƒ ์•ˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
16:00
but it's fixing them. It's draining them out and so on.
386
960330
4000
ํ•˜์ง€๋งŒ ๊ทธ๊ฑธ ๊ณ ์น˜์ž–์•„์š”. ๋‹ฆ์•„๋‚ธ๋‹ค๋“ ์ง€ ํ•ด์„œ์š”.
16:04
So what we need
387
964330
3000
์šฐ๋ฆฌ์—๊ฒŒ ํ•„์š”ํ•œ ๊ฒƒ์€
16:07
is to have a causative model
388
967330
4000
๋ชธ์•ˆ์— ์‹ค์ œ ์ผ์–ด๋‚˜๋Š” ์ผ์„ ๋ณผ ์ˆ˜ ์žˆ๋Š”
16:11
of what's actually going on,
389
971330
2000
์ธ๊ณผ๊ด€๊ณ„ ๋ชจ๋ธ์„ ๊ฐ–๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:13
and proteomics actually gives us
390
973330
3000
๋‹จ๋ฐฑ์ฒดํ•™์ด ์ด ์ธ๊ณผ๊ด€๊ณ„ ๋ชจ๋ธ์„
16:16
the ability to build a model like that.
391
976330
3000
๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค๋‹ˆ๋‹ค.
16:19
David got me invited
392
979330
2000
๋ฐ์ด๋น—์ด ๊ตญ๋ฆฝ์•”์„ผํ„ฐ ๊ฐ•์˜์ž๋กœ
16:21
to give a talk at National Cancer Institute
393
981330
2000
์ €๋ฅผ ์ดˆ๋Œ€ํ•œ ์ ์ด ์žˆ๋Š”๋ฐ์š”.
16:23
and Anna Barker was there.
394
983330
3000
๊ฑฐ๊ธฐ ์• ๋‚˜ ๋ฐ”์ปค๋„ ์ฐธ์„ํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
16:27
And so I gave this talk
395
987330
2000
๊ทธ ๋•Œ ๊ฐ™์€ ๋‚ด์šฉ์˜ ๊ฐ•์—ฐ์„ ํ•˜๊ณ  ๋ฌผ์–ด๋ดค์ฃ .
16:29
and said, "Why don't you guys do this?"
396
989330
3000
"์™œ ๋‹น์‹ ๋“ค์€ ์ด๋ ‡๊ฒŒ ํ•˜์ง€ ์•Š๋‚˜์š”?"
16:32
And Anna said,
397
992330
2000
์• ๋‚˜๊ฐ€ ๋Œ€๋‹ตํ–ˆ์Šต๋‹ˆ๋‹ค.
16:34
"Because nobody within cancer
398
994330
3000
"์•”์„ ์—ฐ๊ตฌํ•˜๋Š” ์‚ฌ๋žŒ์ค‘์— ๋ˆ„๊ตฌ๋„
16:37
would look at it this way.
399
997330
2000
๊ทธ๋Ÿฐ ์‹์œผ๋กœ ์ ‘๊ทผํ•˜์ง€ ์•Š์•˜๊ฑฐ๋“ ์š”.
16:39
But what we're going to do, is we're going to create a program
400
999330
3000
ํ•˜์ง€๋งŒ ์ด์ œ ํŠน์ • ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“ค์–ด์„œ ์ง„ํ–‰ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
16:42
for people outside the field of cancer
401
1002330
2000
์•” ์ด์™ธ์˜ ๋ถ„์•ผ์— ์žˆ๋Š” ์—ฐ๊ตฌ์ž๋“ค์ด
16:44
to get together with doctors
402
1004330
2000
์•”์— ๋Œ€ํ•ด ์ž˜ ์•Œ๊ณ  ์žˆ๋Š”
16:46
who really know about cancer
403
1006330
3000
์˜์‚ฌ๋“ค๊ณผ ํ•จ๊ป˜
16:49
and work out different programs of research."
404
1009330
4000
์ฐจ๋ณ„ํ™”๋œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋ ค๊ณ  ํ•ด์š”."
16:53
So David and I applied to this program
405
1013330
2000
๊ทธ๋ž˜์„œ ๋ฐ์ด๋น—๊ณผ ์ œ๊ฐ€ ๊ทธ ํ”„๋กœ๊ทธ๋žจ์— ์ง€์›ํ–ˆ์ฃ .
16:55
and created a consortium
406
1015330
2000
๊ทธ๋ฆฌ๊ณ  ๋‚จ๋ถ€์บ˜๋ฆฌํฌ๋‹ˆ์•„๋Œ€ํ•™์— ์—ฐ๊ตฌ๋‹จ์„
16:57
at USC
407
1017330
2000
๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
16:59
where we've got some of the best oncologists in the world
408
1019330
3000
์Šคํƒ ํฌ๋“œ๋Œ€, ํ…์‚ฌ์Šค์ฃผ๋ฆฝ๋Œ€, ์ฝœ๋“œ ์Šคํ”„๋ง ํ•˜๋ฒ„ ์—ฐ๊ตฌ์†Œ์—์„œ ์˜จ
17:02
and some of the best biologists in the world,
409
1022330
3000
์„ธ๊ณ„์ ์œผ๋กœ ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ์ข…์–‘ํ•™์ž๋“ค,
17:05
from Cold Spring Harbor,
410
1025330
2000
์„ธ๊ณ„์ ์œผ๋กœ ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ์ƒ๋ฌผํ•™์ž๋“ค์ด
17:07
Stanford, Austin --
411
1027330
2000
์—ฐ๊ตฌ์— ๋™์ฐธํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
17:09
I won't even go through and name all the places --
412
1029330
3000
์ €๋Š” 5๋…„ ์ •๋„ ๊ฑธ๋ฆด ์—ฐ๊ตฌ ํ”„๋กœ์ ํŠธ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด
17:12
to have a research project
413
1032330
3000
์—ฌ๊ธฐ ์ €๊ธฐ ๊ฑฐ์น˜๋ฉด์„œ
17:15
that will last for five years
414
1035330
2000
์ด๋ฆ„๋งŒ ์จ๋„ฃ๊ธธ ๋ฐ”๋ผ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
17:17
where we're really going to try to build a model of cancer like this.
415
1037330
3000
์•” ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด ๋‚ด๊ธฐ ์œ„ํ•œ ์ผ์„ ํ•˜๊ณ  ์‹ถ์„ ๋ฟ์ด์ฃ .
17:20
We're doing it in mice first,
416
1040330
2000
์ง€๊ธˆ์€ ์ฅ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
17:22
and we will kill a lot of mice
417
1042330
2000
์ด ์ผ์„ ํ•˜๋Š” ๊ณผ์ •์—์„œ
17:24
in the process of doing this,
418
1044330
2000
๊ต‰์žฅํžˆ ๋งŽ์€ ์ฅ๋“ค์„ ์ฃฝ์—ฌ์•ผ ๊ฒ ์ฃ .
17:26
but they will die for a good cause.
419
1046330
2000
ํ•˜์ง€๋งŒ ๊ฐ’์ง„ ํฌ์ƒ์ด ๋  ๊ฒ๋‹ˆ๋‹ค.
17:28
And we will actually try to get to the point
420
1048330
3000
์šฐ๋ฆฌ๋Š” ์–ธ์ œ ์•”์ด ๋ฐœ์ƒํ•˜๋Š”์ง€
17:31
where we have a predictive model
421
1051330
2000
์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๋ชจ๋ธ์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š”,
17:33
where we can understand,
422
1053330
2000
์šฐ๋ฆฌ๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š”
17:35
when cancer happens,
423
1055330
2000
ํ•ต์‹ฌ์„ ์–ป๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
17:37
what's actually happening in there
424
1057330
2000
๊ทธ ์•ˆ์—์„œ ์‹ค์ œ๋กœ ์–ด๋–ค ์ผ์ด ์ผ์–ด๋‚˜๋Š”์ง€
17:39
and which treatment will treat that cancer.
425
1059330
3000
์–ด๋–ค ์น˜๋ฃŒ๊ฐ€ ์•”์„ ์น˜์œ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๋“ฑ์„ ๋ง์ž…๋‹ˆ๋‹ค.
17:42
So let me just end with giving you a little picture
426
1062330
3000
์ด์ œ ๊ฐ„๋‹จํ•œ ๊ทธ๋ฆผ์œผ๋กœ ๊ฐ•์—ฐ์„ ๋๋‚ด๊ธฐ๋กœ ํ•˜์ฃ .
17:45
of what I think cancer treatment will be like in the future.
427
1065330
3000
๋ฏธ๋ž˜์—๋Š” ์•” ์น˜๋ฃŒ๊ฐ€ ์ด๋ ‡๊ฒŒ ๋˜๋ฆฌ๋ผ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
17:48
So I think eventually,
428
1068330
2000
๊ทธ๋ฆฌ๊ณ  ๊ถ๊ทน์ ์œผ๋กœ ์ €๋Š”
17:50
once we have one of these models for people,
429
1070330
2000
์‚ฌ๋žŒ๋“ค์„ ์œ„ํ•œ ์ด๋Ÿฐ ๋ชจ๋ธ๋“ค ์ค‘ ํ•˜๋‚˜๋ฅผ ๋งŒ๋“ค๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
17:52
which we'll get eventually --
430
1072330
2000
๊ถ๊ทน์ ์œผ๋กœ ์šฐ๋ฆฌ๊ฐ€ ์–ป์–ด์•ผ ํ•˜๋Š” ๊ฒƒ์€ --
17:54
I mean, our group won't get all the way there --
431
1074330
2000
์—ฌ๊ธฐ์„œ ๋ชจ๋“  ๋ฐฉ๋ฒ•์„ ์–ป๊ธธ ๋ฐ”๋ผ๋Š” ๊ฒŒ ์•„๋‹™๋‹ˆ๋‹ค.
17:56
but eventually we'll have a very good computer model --
432
1076330
3000
๋‹ค๋งŒ ์„ธ๊ณ„ ๊ธฐํ›„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ๊ณผ ๊ฐ™์ด
17:59
sort of like a global climate model for weather.
433
1079330
3000
๋งค์šฐ ์ข‹์€ ์ปดํ“จํ„ฐ ๋ชจ๋ธ์„ ๊ฐ–๊ฒŒ ๋˜๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
18:02
It has lots of different information
434
1082330
3000
๋งค์šฐ ๋‹ค์–‘ํ•œ ์ •๋ณด๋“ค์ด ๊ทธ ์•ˆ์— ์žˆ์„ ๊ฒƒ์ด๊ณ ,
18:05
about what's the process going on in this proteomic conversation
435
1085330
3000
๋‹จ๋ฐฑ์ฒด ์•ˆ์˜ ๋Œ€ํ™”๋“ค์ด ์–ด๋–ป๊ฒŒ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š”์ง€
18:08
on many different scales.
436
1088330
2000
์ˆ˜๋งŽ์€ ์ˆ˜์ค€์—์„œ ์—ฐ๊ตฌ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:10
And so we will simulate
437
1090330
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ๋ชจ๋ธ์„ ํ†ตํ•ด
18:12
in that model
438
1092330
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ํŠน์ • ์•”์„
18:14
for your particular cancer --
439
1094330
3000
์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:17
and this also will be for ALS,
440
1097330
2000
์ด๊ฑด ๋ฃจ๊ฒŒ๋ฆญ๋ณ‘๋ฅผ ์œ„ํ•œ ๊ฒŒ ๋  ์ˆ˜๋„ ์žˆ๊ณ 
18:19
or any kind of system neurodegenerative diseases,
441
1099330
3000
๋ชจ๋“  ์ข…๋ฅ˜์˜ ์‹ ๊ฒฝ๊ณ„ ๋ณ€์„ฑ ์งˆํ™˜์ด๋‚˜ ๊ธฐํƒ€ ๋‹ค๋ฅธ ์งˆ๋ณ‘๋“ค์—๋„
18:22
things like that --
442
1102330
2000
์“ฐ์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:24
we will simulate
443
1104330
2000
์šฐ๋ฆฌ๋Š” ์ผ๋ฐ˜์ธ ๋ฟ๋งŒ์•„๋‹ˆ๋ผ
18:26
specifically you,
444
1106330
2000
ํŠนํžˆ ํ•œ ์‚ฌ๋žŒ์„ ๋Œ€์ƒ์œผ๋กœ,
18:28
not just a generic person,
445
1108330
2000
๊ฐœ์ธ์˜ ๋ชธ ์•ˆ์—์„œ
18:30
but what's actually going on inside you.
446
1110330
2000
์‹ค์ œ๋กœ ์ผ์–ด๋‚˜๋Š” ์ผ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:32
And in that simulation, what we could do
447
1112330
2000
๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์šฐ๋ฆฌ๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์€
18:34
is design for you specifically
448
1114330
2000
ํ•œ ์‚ฌ๋žŒ๋งŒ์„ ์œ„ํ•ด ํŠนํ™”๋œ ์ผ๋ จ์˜ ์น˜๋ฃŒ๊ณผ์ •์„
18:36
a sequence of treatments,
449
1116330
2000
๋””์ž์ธํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:38
and it might be very gentle treatments, very small amounts of drugs.
450
1118330
3000
๋ถ€์ž‘์šฉ๋„ ์ ๊ณ  ๋งค์šฐ ์ ์€ ์–‘์˜ ์•ฝ์„ ์‚ฌ์šฉํ•˜๋Š” ์น˜๋ฃŒ๊ฐ€ ๋˜๊ฒ ์ฃ .
18:41
It might be things like, don't eat that day,
451
1121330
3000
์–ด๋–ค ๋‚ ์€ ๋จน์ง€ ๋ง๋ผ๊ฑฐ๋‚˜
18:44
or give them a little chemotherapy,
452
1124330
2000
์†Œ๋Ÿ‰์˜ ํ™”ํ•™์  ์น˜๋ฃŒ๋งŒ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:46
maybe a little radiation.
453
1126330
2000
์•„์ฃผ ์ ์€ ๋ฐฉ์‚ฌ์„ ์„ ์ด์šฉํ•  ์ˆ˜๋„ ์žˆ๊ฒ ์ฃ .
18:48
Of course, we'll do surgery sometimes and so on.
454
1128330
3000
๋ฌผ๋ก , ๊ฐ€๋”์€ ์ˆ˜์ˆ ๋„ ํ•ด์•ผ ํ•  ๊ฒ๋‹ˆ๋‹ค.
18:51
But design a program of treatments specifically for you
455
1131330
3000
ํ•˜์ง€๋งŒ ๊ฐœ์ธ๋ณ„๋กœ ํŠนํ™”๋œ ์น˜๋ฃŒ ํ”„๋กœ๊ทธ๋žจ์ด
18:54
and help your body
456
1134330
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋ชธ์ด
18:57
guide back to health --
457
1137330
3000
๋‹ค์‹œ ๊ฑด๊ฐ•ํ•˜๊ฒŒ ๋Œ์•„๊ฐˆ ์ˆ˜ ์žˆ๋„๋ก
19:00
guide your body back to health.
458
1140330
2000
๋„์™€์ฃผ๊ณ  ์ด๋Œ์–ด์ค„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:02
Because your body will do most of the work of fixing it
459
1142330
4000
์—ฌ๋Ÿฌ๋ถ„ ๋ชธ์ด ๋Œ€๋ถ€๋ถ„์˜ ๋ฌธ์ œ์ ์„ ์Šค์Šค๋กœ ๊ณ ์น  ์ˆ˜ ์žˆ๋„๋ก
19:06
if we just sort of prop it up in the ways that are wrong.
460
1146330
3000
์ž˜๋ชป๋œ ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ€๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ๋ฐ”๋กœ ์žก์•„์ฃผ๊ธฐ๋งŒ ํ•˜๋Š” ๊ฑฐ์ฃ .
19:09
We put it in the equivalent of splints.
461
1149330
2000
๋ชธ์ด ๊ท ํ˜•์„ ์ด๋ฃฐ ์ˆ˜ ์žˆ๋„๋ก ๋’ท๋ฐ›์นจ์„ ํ•ด์ฃผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:11
And so your body basically has lots and lots of mechanisms
462
1151330
2000
์—ฌ๋Ÿฌ๋ถ„ ๋ชธ์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์•”์„ ์น˜๋ฃŒํ•˜๊ธฐ ์œ„ํ•œ
19:13
for fixing cancer,
463
1153330
2000
๋งŽ์€ ๋ฐฉํŽธ๋“ค์„ ๊ฐ–๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์—,
19:15
and we just have to prop those up in the right way
464
1155330
3000
์šฐ๋ฆฌ๋Š” ๊ทธ๋Ÿฐ ์น˜์œ  ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์ œ ์ž๋ฆฌ๋ฅผ ์ฐพ๊ณ 
19:18
and get them to do the job.
465
1158330
2000
์ œ ์—ญํ• ์„ ํ•˜๋„๋ก ๋งŒ๋“ค์–ด ์ฃผ๋Š” ๊ฒƒ์œผ๋กœ ์ถฉ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
19:20
And so I believe that this will be the way
466
1160330
2000
์ €๋Š” ๋ฏธ๋ž˜์—๋Š” ์•”์ด ์ด๋Ÿฐ ๋ฐฉ์‹์œผ๋กœ
19:22
that cancer will be treated in the future.
467
1162330
2000
์น˜์œ ๋  ๊ฒƒ์ด๋ผ๊ณ  ๋ฏฟ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
19:24
It's going to require a lot of work,
468
1164330
2000
์ด๋ฅผ ์œ„ํ•ด ์ˆ˜๋งŽ์€ ์ž‘์—…๋“ค๊ณผ
19:26
a lot of research.
469
1166330
2000
๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๊ฒ ์ง€๋งŒ,
19:28
There will be many teams like our team
470
1168330
3000
์ €ํฌ์™€ ๊ฐ™์€ ๋งŽ์€ ์—ฐ๊ตฌ์ง„๋“ค์ด
19:31
that work on this.
471
1171330
2000
์ด ์ผ์„ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
19:33
But I think eventually,
472
1173330
2000
ํ•˜์ง€๋งŒ, ์–ธ์  ๊ฐ€๋Š”
19:35
we will design for everybody
473
1175330
2000
๋ˆ„๊ตฌ๋‚˜ ์ฃผ๋ฌธ์ œ์ž‘ ๋ฐฉ์‹์˜ ์•”์น˜๋ฃŒ ๊ณ„ํš์„
19:37
a custom treatment for cancer.
474
1177330
4000
์„ธ์šธ ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋ฆฌ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
19:41
So thank you very much.
475
1181330
2000
์ง„์‹ฌ์œผ๋กœ ๊ฐ์‚ฌ๋“œ๋ฆฌ๋ฉฐ, ๋งˆ์น˜๊ฒ ์Šต๋‹ˆ๋‹ค.
19:43
(Applause)
476
1183330
6000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7