Danny Hillis: Understanding cancer through proteomics

57,631 views ใƒป 2011-03-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Sigal Tifferet
00:15
I admit that I'm a little bit nervous here
0
15330
3000
ืื ื™ ืžื•ื“ื” ืฉืื ื™ ืงืฆืช ืœื ืฉืงื˜ ืขื›ืฉื™ื•
00:18
because I'm going to say some radical things,
1
18330
3000
ืžื›ื™ื•ื•ืŸ ืฉืื ื™ ื”ื•ืœืš ืœื•ืžืจ ื›ืžื” ื“ื‘ืจื™ื ืœื ืžืงื•ื‘ืœื™ื
00:21
about how we should think about cancer differently,
2
21330
3000
ืขืœ ื›ื™ืฆื“ ืขืœื™ื ื• ืœื—ืฉื•ื‘ ื‘ืื•ืคืŸ ืฉื•ื ื” ืขืœ ืกืจื˜ืŸ
00:24
to an audience that contains a lot of people
3
24330
2000
ืœืงื”ืœ ื”ืžื›ื™ืœ ื”ืจื‘ื” ืื ืฉื™ื
00:26
who know a lot more about cancer than I do.
4
26330
3000
ืฉื™ื•ื“ืขื™ื ืขืœ ืกืจื˜ืŸ ื”ืจื‘ื” ื™ื•ืชืจ ืžืžื ื™.
00:30
But I will also contest that I'm not as nervous as I should be
5
30330
3000
ืื‘ืœ ืื ื™ ื’ื ื˜ื•ืขืŸ ืฉืื ื™ ืœื ืขืฆื‘ื ื™ ื›ืคื™ ืฉื”ื™ื™ืชื™ ืฆืจื™ืš ืœื”ื™ื•ืช
00:33
because I'm pretty sure I'm right about this.
6
33330
2000
ืžื›ื™ื•ื•ืŸ ืฉืื ื™ ื“ื™ ื‘ื˜ื•ื— ืฉืื ื™ ืฆื•ื“ืง.
00:35
(Laughter)
7
35330
2000
(ืฆื—ื•ืง)
00:37
And that this, in fact, will be
8
37330
2000
ื•ืฉื–ื• ืœืžืขืฉื” ืชื”ื™ื” ื”ื“ืจืš
00:39
the way that we treat cancer in the future.
9
39330
3000
ืฉื‘ื” ื ื˜ืคืœ ื‘ืขืชื™ื“ ื‘ืกืจื˜ืŸ.
00:43
In order to talk about cancer,
10
43330
2000
ื›ื“ื™ ืœื“ื‘ืจ ืขืœ ืกืจื˜ืŸ,
00:45
I'm going to actually have to --
11
45330
3000
ืื ื™ ืœืžืขืฉื” ื”ื•ืœืš --
00:48
let me get the big slide here.
12
48330
3000
ืฉืจืง ืืฆืœื™ื— ืœื”ืจืื•ืช ืืช ื”ืฉืงื•ืคื™ืช ื”ื’ื“ื•ืœื”.
00:53
First, I'm going to try to give you a different perspective of genomics.
13
53330
3000
ืชื—ื™ืœื”, ืื ืกื” ืœืชืช ืœื›ื ื ืงื•ื“ืช ืžื‘ื˜ ืฉื•ื ื” ืขืœ ื—ืงืจ ื”ื’ื ื•ื.
00:56
I want to put it in perspective of the bigger picture
14
56330
2000
ื‘ืจืฆื•ื ื™ ืœืฉื™ื ืื•ืชื• ื‘ืคืจืกืคืงื˜ื™ื‘ื” ืฉืœ ืชืžื•ื ื” ื™ื•ืชืจ ืจื—ื‘ื”
00:58
of all the other things that are going on --
15
58330
3000
ื”ื›ื•ืœืœืช ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืื—ืจื™ื ืฉืžืชืจื—ืฉื™ื --
01:01
and then talk about something you haven't heard so much about, which is proteomics.
16
61330
3000
ื•ืื– ืœื“ื‘ืจ ืขืœ ืžืฉื”ื• ืฉืœื ืฉืžืขืชื ืขืœื™ื• ื”ืจื‘ื”, ืฉื–ื” ืคืจื•ื˜ืื•ืžื™ืงื”.
01:04
Having explained those,
17
64330
2000
ืœืื—ืจ ืฉื”ืกื‘ืจืชื™ ืื•ืชื,
01:06
that will set up for what I think will be a different idea
18
66330
3000
ื™ื•ื•ืฆืจ ื”ืจืงืข ืœืžื” ืฉืื ื™ ืกื‘ื•ืจ ืฉื™ื”ื™ื” ืจืขื™ื•ืŸ ืฉื•ื ื”
01:09
about how to go about treating cancer.
19
69330
2000
ืขืœ ื›ื™ืฆื“ ืœื”ืชืงื“ื ืขื ื˜ื™ืคื•ืœ ื‘ืกืจื˜ืŸ.
01:11
So let me start with genomics.
20
71330
2000
ื‘ืจืฉื•ืชื›ื ืืชื—ื™ืœ ืขื ื—ืงืจ ื”ื’ื ื•ื.
01:13
It is the hot topic.
21
73330
2000
ื–ื”ื• ื”ื ื•ืฉื ื”ื—ื.
01:15
It is the place where we're learning the most.
22
75330
2000
ื“ืจื›ื• ืื ื• ืœื•ืžื“ื™ื ื”ืžื•ืŸ.
01:17
This is the great frontier.
23
77330
2000
ื–ื•ื”ื™ ื—ื–ื™ืช ื ื”ื“ืจืช.
01:19
But it has its limitations.
24
79330
3000
ืื‘ืœ ื™ืฉ ืœื” ืžื’ื‘ืœื•ืช ืžืฉืœื”.
01:22
And in particular, you've probably all heard the analogy
25
82330
3000
ื•ื‘ืžื™ื•ื—ื“, ืื•ืœื™ ืฉืžืขืชื ืขืœ ื”ืื ืœื•ื’ื™ื”
01:25
that the genome is like the blueprint of your body,
26
85330
3000
ืฉื”ื’ื ื•ื ื”ื•ื ื›ืžื• ืฉืจื˜ื•ื˜ ืฉืœ ื’ื•ืคื ื•.
01:28
and if that were only true, it would be great,
27
88330
2000
ืื‘ืœ ืœื• ืจืง ื–ื” ื”ื™ื” ื ื›ื•ืŸ, ื–ื” ื”ื™ื” ื ืคืœื,
01:30
but it's not.
28
90330
2000
ืื‘ืœ ื–ื” ืœื.
01:32
It's like the parts list of your body.
29
92330
2000
ื–ื” ื›ืžื• ืจืฉื™ืžืช ื—ืœืงื™ื ืฉืœ ื’ื•ืคื ื•.
01:34
It doesn't say how things are connected,
30
94330
2000
ื–ื” ืœื ืื•ืžืจ ืœื ื• ื›ื™ืฆื“ ื”ื“ื‘ืจื™ื ืžืงื•ืฉืจื™ื,
01:36
what causes what and so on.
31
96330
3000
ืžื” ื’ื•ืจื ืœืžื”, ื•ื›ืš ื”ืœืื”.
01:39
So if I can make an analogy,
32
99330
2000
ืื– ืื ืื•ื›ืœ ืœืขืฉื•ืช ืื ืœื•ื’ื™ื”,
01:41
let's say that you were trying to tell the difference
33
101330
2000
ื‘ื•ื ื ืืžืจ ืฉืื ื• ืžื ืกื™ื ืœืžืฆื•ื ืืช ื”ื”ื‘ื“ืœ
01:43
between a good restaurant, a healthy restaurant
34
103330
3000
ื‘ื™ืŸ ืžืกืขื“ื” ื˜ื•ื‘ื”, ืžืกืขื“ื” ื‘ืจื™ืื”
01:46
and a sick restaurant,
35
106330
2000
ื•ืžืกืขื“ื” ืฉื™ืฉ ื‘ื” ืœื™ืงื•ื™ื™ื,
01:48
and all you had was the list of ingredients
36
108330
2000
ื•ื›ืœ ืžื” ืฉื™ืฉ ืœื ื• ื–ื• ืจืฉื™ืžืช ื”ืžืจื›ื™ื‘ื™ื
01:50
that they had in their larder.
37
110330
3000
ืฉื ืžืฆืื™ื ืืฆืœืŸ ื‘ืžื–ื•ื•ื”.
01:53
So it might be that, if you went to a French restaurant
38
113330
3000
ื›ืš ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉืื ื ืœืš ืœืžืกืขื“ื” ืฆืจืคืชื™ืช
01:56
and you looked through it and you found
39
116330
2000
ื•ื ืกืชื›ืœ ื‘ืชื•ื›ื” ื•ื ืžืฆื
01:58
they only had margarine and they didn't have butter,
40
118330
2000
ืฉื™ืฉ ืœื”ื ืžืจื’ืจื™ื ื” ื•ืื™ืŸ ืœื”ื ื—ืžืื”,
02:00
you could say, "Ah, I see what's wrong with them.
41
120330
2000
ื ื•ื›ืœ ืœื•ืžืจ, "ืื”, ืื ื• ืžื‘ื™ื ื™ื ืžื” ืœื ื‘ืกื“ืจ ื›ืืŸ.
02:02
I can make them healthy."
42
122330
2000
ื ื•ื›ืœ ืœื”ืคื›ื” ืœื‘ืจื™ืื”."
02:04
And there probably are special cases of that.
43
124330
2000
ื•ื›ื ืจืื” ื™ืฉ ืžืงืจื™ื ืžื™ื•ื—ื“ื™ื ื›ืืœื”.
02:06
You could certainly tell the difference
44
126330
2000
ื‘ื˜ื•ื— ืฉื ื•ื›ืœ ืœื”ื’ื™ื“ ืžื” ื”ื”ื‘ื“ืœ
02:08
between a Chinese restaurant and a French restaurant
45
128330
2000
ื‘ื™ืŸ ืžืกืขื“ื” ืกื™ื ื™ืช ืœืžืกืขื“ื” ืฆืจืคืชื™ืช
02:10
by what they had in a larder.
46
130330
2000
ืœืคื™ ืžื” ืฉื™ืฉ ืœื”ืŸ ื‘ืžื–ื•ื•ื”.
02:12
So the list of ingredients does tell you something,
47
132330
3000
ื›ืš ืฉืจืฉื™ืžืช ื”ืžืจื›ื™ื‘ื™ื ื›ืŸ ืื•ืžืจืช ืžืฉื”ื•,
02:15
and sometimes it tells you something that's wrong.
48
135330
3000
ื•ืœืคืขืžื™ื ื”ื™ื ืื•ืžืจืช ืžืฉื”ื• ืฉื”ื•ื ืœื ื ื›ื•ืŸ.
02:19
If they have tons of salt,
49
139330
2000
ืื ื™ืฉ ืœื”ื ื˜ื•ื ื•ืช ืฉืœ ืžืœื—,
02:21
you might guess they're using too much salt, or something like that.
50
141330
3000
ื ื™ืชืŸ ืื•ืœื™ ืœืฉืขืจ ืฉื”ื ืžืฉืชืžืฉื™ื ื‘ื™ื•ืชืจ ืžื“ื™ ืžืœื—, ืื• ืžืฉื”ื• ื“ื•ืžื”.
02:24
But it's limited,
51
144330
2000
ืื‘ืœ ื›ืœ ื–ื” ืžื•ื’ื‘ืœ,
02:26
because really to know if it's a healthy restaurant,
52
146330
2000
ื›ื™ ื›ื“ื™ ื‘ืืžืช ืœื“ืขืช ืื ื–ื• ืžืกืขื“ื” ื‘ืจื™ืื”,
02:28
you need to taste the food, you need to know what goes on in the kitchen,
53
148330
3000
ื™ืฉ ืฆื•ืจืš ืœื˜ืขื•ื ืืช ื”ืžื–ื•ืŸ, ื™ืฉ ืฆื•ืจืš ืœื“ืขืช ืžื” ืงื•ืจื” ื‘ืžื˜ื‘ื—,
02:31
you need the product of all of those ingredients.
54
151330
3000
ืฆืจื™ืš ืืช ื”ืžื•ืฆืจ ื”ืกื•ืคื™ ืฉืœ ื›ืœ ืื•ืชื ื”ืžืจื›ื™ื‘ื™ื.
02:34
So if I look at a person
55
154330
2000
ื›ืš ืฉืื ืื ื™ ืžืกืชื›ืœ ื‘ืžื™ืฉื”ื•
02:36
and I look at a person's genome, it's the same thing.
56
156330
3000
ื•ืžืกืชื›ืœ ื‘ื’ื ื•ื ืฉืœ ืื•ืชื• ืื“ื, ื–ื” ืื•ืชื• ืกื™ืคื•ืจ.
02:39
The part of the genome that we can read
57
159330
2000
ืื•ืชื• ื—ืœืง ืฉืœ ื’ื ื•ื ืฉืื ื• ื™ื›ื•ืœื™ื ืœืงืจื•ื
02:41
is the list of ingredients.
58
161330
2000
ื”ื•ื ืจืฉื™ืžืช ื”ืžืจื›ื™ื‘ื™ื.
02:43
And so indeed,
59
163330
2000
ื•ืื›ืŸ ื›ืš ื‘ืืžืช,
02:45
there are times when we can find ingredients
60
165330
2000
ื™ืฉ ืžืงืจื™ื ื‘ื”ื ืื ื• ื™ื›ื•ืœื™ื ืœืžืฆื•ื ืžืจื›ื™ื‘ื™ื
02:47
that [are] bad.
61
167330
2000
ืฉื”ื ืจืขื™ื.
02:49
Cystic fibrosis is an example of a disease
62
169330
2000
ืกื™ืกื˜ื™ืง ืคื™ื‘ืจื•ื–ื™ืก ื”ื™ื ื“ื•ื’ืžื ืœืžื—ืœื”
02:51
where you just have a bad ingredient and you have a disease,
63
171330
3000
ืฉื‘ื” ื™ืฉ ืจืง ืžืจื›ื™ื‘ ืจืข ื•ืื– ื™ืฉ ืžื—ืœื”,
02:54
and we can actually make a direct correspondence
64
174330
3000
ื•ืื ื• ื™ื›ื•ืœื™ื ืœืงืฉืจ ื™ืฉื™ืจื•ืช
02:57
between the ingredient and the disease.
65
177330
3000
ื‘ื™ืŸ ื”ืžืจื›ื™ื‘ ื•ื”ืžื—ืœื”.
03:00
But most things, you really have to know what's going on in the kitchen,
66
180330
3000
ืื‘ืœ ื‘ืจื•ื‘ ื”ืžืงืจื™ื, ืฆืจื™ืš ืœื“ืขืช ืžื” ื‘ืืžืช ืงื•ืจื” ื‘ืžื˜ื‘ื—,
03:03
because, mostly, sick people used to be healthy people --
67
183330
2000
ืžืคื ื™ ืฉืœืจื•ื‘, ืื ืฉื™ื ื—ื•ืœื™ื ื”ื™ื• ืคืขื ื‘ืจื™ืื™ื --
03:05
they have the same genome.
68
185330
2000
ื•ื™ืฉ ืœื”ื ืืช ืื•ืชื• ื”ื’ื ื•ื.
03:07
So the genome really tells you much more
69
187330
2000
ื›ืš ืฉื”ื’ื ื•ื ื‘ืขืฆื ืžืกืคืจ ืœื ื• ื”ืจื‘ื” ื™ื•ืชืจ
03:09
about predisposition.
70
189330
2000
ืขืœ ื”ื ื˜ื™ื” ื”ืžื•ืงื“ืžืช ืœืžื—ืœื”.
03:11
So what you can tell
71
191330
2000
ื›ืš ืฉืžื” ืฉื ื™ืชืŸ ืœื•ืžืจ
03:13
is you can tell the difference between an Asian person and a European person
72
193330
2000
ื”ื•ื ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ืื“ื ืืกื™ืืชื™ ืœืื“ื ืืจื•ืคืื™
03:15
by looking at their ingredients list.
73
195330
2000
ืขืœ-ื™ื“ื™ ื”ืกืชื›ืœื•ืช ื‘ืจืฉื™ืžืช ื”ืžืจื›ื™ื‘ื™ื ืฉืœื”ื.
03:17
But you really for the most part can't tell the difference
74
197330
3000
ืื‘ืœ ื‘ืจื•ื‘ ื”ืžืงืจื™ื ืœื ื ื™ืชืŸ ืœื”ื‘ื“ื™ืœ
03:20
between a healthy person and a sick person --
75
200330
3000
ื‘ื™ืŸ ืื“ื ื‘ืจื™ื ืœืื“ื ื—ื•ืœื” --
03:23
except in some of these special cases.
76
203330
2000
ืžืœื‘ื“ ืื•ืชื ืžืงืจื™ื ืžื™ื•ื—ื“ื™ื.
03:25
So why all the big deal
77
205330
2000
ืื– ืขืœ ืžื” ื›ืœ ื”ืจืขืฉ
03:27
about genetics?
78
207330
2000
ืขื ื’ื ื˜ื™ืงื”?
03:29
Well first of all,
79
209330
2000
ื•ื‘ื›ืŸ, ืงื•ื“ื ื›ืœ,
03:31
it's because we can read it, which is fantastic.
80
211330
3000
ืื ื• ื™ื›ื•ืœื™ื ืœืงืจื•ื ืื•ืชื”, ืฉื–ื” ื“ื‘ืจ ื ืคืœื.
03:34
It is very useful in certain circumstances.
81
214330
3000
ื”ื™ื ืžืื•ื“ ื™ืขื™ืœื” ื‘ื ืกื™ื‘ื•ืช ืžืกื•ื™ื™ืžื•ืช.
03:37
It's also the great theoretical triumph
82
217330
3000
ื”ื™ื ื’ื ื ื™ืฆื—ื•ืŸ ืชื™ืื•ืจื˜ื™ ื’ื“ื•ืœ
03:40
of biology.
83
220330
2000
ืฉืœ ื‘ื™ื•ืœื•ื’ื™ื”.
03:42
It's the one theory
84
222330
2000
ื–ื•ื”ื™ ื”ืชืื•ืจื™ื” ื”ื™ื—ื™ื“ื”
03:44
that the biologists ever really got right.
85
224330
2000
ืฉื‘ื™ื•ืœื•ื’ื™ื ื™ืฆืื• ื‘ื” ืฆื•ื“ืงื™ื.
03:46
It's fundamental to Darwin
86
226330
2000
ื”ื™ื ืžื”ื•ื•ื” ืื‘ืŸ ื™ืกื•ื“
03:48
and Mendel and so on.
87
228330
2000
ืืฆืœ ื“ืืจื•ื•ื™ืŸ ื•ืžื ื“ืœ ื•ื›ืš ื”ืœืื”.
03:50
And so it's the one thing where they predicted a theoretical construct.
88
230330
3000
ื”ื™ื ื”ืžืงืจื” ื”ื™ื—ื™ื“ ืฉื‘ื• ื”ืชืืžืช ืจืขื™ื•ืŸ ืฉื ื—ื–ื” ืชื™ืื•ืจื˜ื™ืช.
03:54
So Mendel had this idea of a gene
89
234330
2000
ืœืžื ื“ืœ ื”ื™ื” ื”ืจืขื™ื•ืŸ ืฉืœ ื’ืŸ
03:56
as an abstract thing,
90
236330
3000
ื‘ืชื•ืจ ื“ื‘ืจ ืžื•ืคืฉื˜.
03:59
and Darwin built a whole theory
91
239330
2000
ื•ื“ืืจื•ื•ื™ืŸ ื‘ื ื” ืชืื•ืจื™ื” ืฉืœืžื”
04:01
that depended on them existing,
92
241330
2000
ืฉื”ื™ืชื” ืชืœื•ื™ื” ื‘ืงื™ื•ืžื.
04:03
and then Watson and Crick
93
243330
2000
ื•ืื– ื•ืื˜ืกื•ืŸ ื•ืงืจื™ืง
04:05
actually looked and found one.
94
245330
2000
ื‘ืขืฆื ื”ืกืชื›ืœื• ื•ืžืฆืื• ื›ื–ื”.
04:07
So this happens in physics all the time.
95
247330
2000
ื“ื‘ืจ ื›ื–ื” ืงื•ืจื” ื‘ืคื™ื–ื™ืงื” ื›ืœ ื”ื–ืžืŸ.
04:09
You predict a black hole,
96
249330
2000
ื—ื•ื–ื™ื ื—ื•ืจ ืฉื—ื•ืจ,
04:11
and you look out the telescope and there it is, just like you said.
97
251330
3000
ื•ืื– ืžืชื‘ื•ื ื ื™ื ื“ืจืš ื˜ืœืกืงื•ืค ื•ื”ื ื” ื”ื•ื, ื‘ื“ื™ื•ืง ื›ืคื™ ืฉื ื—ื–ื”.
04:14
But it rarely happens in biology.
98
254330
2000
ืื‘ืœ ื‘ื‘ื™ื•ืœื•ื’ื™ื” ื–ื” ืงื•ืจื” ืœืขื™ืชื™ื ืจื—ื•ืงื•ืช.
04:16
So this great triumph -- it's so good,
99
256330
3000
ื›ืš ืฉื”ื ื™ืฆื—ื•ืŸ ื”ื’ื“ื•ืœ ื”ื–ื” -- ื”ื•ื ื›ืœ-ื›ืš ื˜ื•ื‘ --
04:19
there's almost a religious experience
100
259330
2000
ืฉื”ื•ื ื›ืžืขื˜ ื›ืžื• ื—ื•ื•ื™ื” ื“ืชื™ืช
04:21
in biology.
101
261330
2000
ื‘ื‘ื™ื•ืœื•ื’ื™ื”.
04:23
And Darwinian evolution
102
263330
2000
ื•ืžื”ืคื›ืช ื“ืืจื•ื•ื™ืŸ
04:25
is really the core theory.
103
265330
3000
ื”ื™ื ื‘ืืžืช ืชืื•ืจื™ื™ืช ื”ืœื™ื‘ื”.
04:30
So the other reason it's been very popular
104
270330
2000
ื”ืกื™ื‘ื” ื”ืฉื ื™ื” ืฉื”ื™ื ื”ืคื›ื” ืœืžืื•ื“ ืคื•ืคื•ืœืจื™ืช
04:32
is because we can measure it, it's digital.
105
272330
3000
ื”ื™ื ื‘ื’ืœืœ ืฉื ื™ืชืŸ ืœืžื“ื•ื“ ืื•ืชื”, ื”ื™ื ื“ื™ื’ื™ื˜ืœื™ืช.
04:35
And in fact,
106
275330
2000
ื•ืœืžืขืฉื”,
04:37
thanks to Kary Mullis,
107
277330
2000
ืชื•ื“ื•ืช ืœืงืืจื™ ืžื•ืœื™ืก,
04:39
you can basically measure your genome in your kitchen
108
279330
4000
ื ื™ืชืŸ ื‘ืขื™ืงืจื•ืŸ ืœืžื“ื•ื“ ืืช ื”ื’ื ื•ื ืฉืœื ื• ื‘ืžื˜ื‘ื—
04:43
with a few extra ingredients.
109
283330
3000
ื‘ืขื–ืจืช ื›ืžื” ืžืจื›ื™ื‘ื™ื ื ื•ืกืคื™ื.
04:46
So for instance, by measuring the genome,
110
286330
3000
ื›ืš ืœื“ื•ื’ืžื, ืขืœ-ื™ื“ื™ ืžื“ื™ื“ืช ื”ื’ื ื•ื,
04:49
we've learned a lot about how we're related to other kinds of animals
111
289330
4000
ืœืžื“ื ื• ื”ืžื•ืŸ ืขืœ ื›ื™ืฆื“ ืื ื• ืงืฉื•ืจื™ื ืœื—ื™ื•ืช ืžืžื™ื ื™ื ืื—ืจื™ื
04:53
by the closeness of our genome,
112
293330
3000
ื‘ืืžืฆืขื•ืช ื”ืงื™ืจื‘ื” ืฉืœ ื”ื’ื ื•ื ืฉืœื ื•,
04:56
or how we're related to each other -- the family tree,
113
296330
3000
ืื• ื›ื™ืฆื“ ืื ื• ืžื”ื•ื•ื™ื ืงืจื•ื‘ื™-ืžืฉืคื—ื” -- ืขืฅ ื”ืžืฉืคื—ื”,
04:59
or the tree of life.
114
299330
2000
ืื• ืขืฅ ื”ื—ื™ื™ื.
05:01
There's a huge amount of information about the genetics
115
301330
3000
ืงื™ื™ื ืžื™ื“ืข ืจื‘ ืขืœ ื’ื ื˜ื™ืงื”
05:04
just by comparing the genetic similarity.
116
304330
3000
ืคืฉื•ื˜ ืขืœ-ื™ื“ื™ ื”ืฉื•ื•ืืช ื“ืžื™ื•ืŸ ื’ื ื˜ื™.
05:07
Now of course, in medical application,
117
307330
2000
ืขื›ืฉื™ื•, ื›ืžื•ื‘ืŸ ืฉื–ื” ืžืื•ื“ ืฉื™ืžื•ืฉื™
05:09
that is very useful
118
309330
2000
ื‘ื™ื™ืฉื•ืžื™ื ืจืคื•ืื™ื™ื
05:11
because it's the same kind of information
119
311330
3000
ืžื›ื™ื•ื•ืŸ ืฉื–ื”ื• ืื•ืชื• ืกื•ื’ ืžื™ื“ืข
05:14
that the doctor gets from your family medical history --
120
314330
3000
ืฉื”ืจื•ืคืื™ื ืžืฉื™ื’ื™ื ืžื”ื”ื™ืกื˜ื•ืจื™ื” ื”ืจืคื•ืื™ืช ืฉืœ ื”ืžืฉืคื—ื” ืฉืœื ื• --
05:17
except probably,
121
317330
2000
ืืœื ืฉืงืจื•ื‘ ืœื•ื•ื“ืื™,
05:19
your genome knows much more about your medical history than you do.
122
319330
3000
ื”ื’ื ื•ื ืฉืœื ื• ื™ื•ื“ืข ื”ืจื‘ื” ื™ื•ืชืจ ืขืœ ื”ื”ื™ืกื˜ื•ืจื™ื” ื”ืจืคื•ืื™ืช ืฉืœื ื• ืžืžื” ืฉืื ื• ื™ื•ื“ืขื™ื.
05:22
And so by reading the genome,
123
322330
2000
ื•ื›ืš ืขืœ-ื™ื“ื™ ืงืจื™ืืช ื”ื’ื ื•ื,
05:24
we can find out much more about your family than you probably know.
124
324330
3000
ื ื™ืชืŸ ืœื“ืขืช ื”ืจื‘ื” ื™ื•ืชืจ ืขืœ ื”ืžืฉืคื—ื” ืฉืœื ื• ืžืžื” ืฉืื ื• ืขืฆืžื ื• ื™ื•ื“ืขื™ื.
05:27
And so we can discover things
125
327330
2000
ื•ืœื›ืŸ ืื ื• ื™ื›ื•ืœื™ื ืœื’ืœื•ืช ื“ื‘ืจื™ื
05:29
that probably you could have found
126
329330
2000
ืฉืงืจื•ื‘ ืœื•ื•ื“ืื™ ื”ื™ื” ื ื™ืชืŸ ืœื’ืœื•ืช
05:31
by looking at enough of your relatives,
127
331330
2000
ืขืœ-ื™ื“ื™ ื”ืกืชื›ืœื•ืช ืขืœ ืžืกืคื™ืง ืงืจื•ื‘ื™ื ืฉืœื ื•,
05:33
but they may be surprising.
128
333330
3000
ืื‘ืœ ื”ื“ื‘ืจื™ื ืขืฉื•ื™ื™ื ืœื”ื™ื•ืช ืžืคืชื™ืขื™ื.
05:36
I did the 23andMe thing
129
336330
2000
ืขืฉื™ืชื™ ื—ืงื™ืจื” ืขืฆืžืื™ืช ืฉืœ ื”ื’ื ื•ื ืฉืœื™ ื‘ืฉื™ื˜ืช ื”-23andMe
05:38
and was very surprised to discover that I am fat and bald.
130
338330
3000
ื•ืžืื•ื“ ื”ื•ืคืชืขืชื™ ืœืฉืžื•ืข ืฉืื ื™ ืฉืžืŸ ื•ืงืจื—.
05:41
(Laughter)
131
341330
7000
(ืฆื—ื•ืง)
05:48
But sometimes you can learn much more useful things about that.
132
348330
3000
ืื‘ืœ ืœืขื™ืชื™ื ื ื™ืชืŸ ืœืœืžื•ื“ ื“ื‘ืจื™ื ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืขื™ืœื™ื.
05:51
But mostly
133
351330
3000
ืื‘ืœ ืœืจื•ื‘
05:54
what you need to know, to find out if you're sick,
134
354330
2000
ืžื” ืฉืฆืจื™ืš ืœื“ืขืช ื›ื“ื™ ืœืžืฆื•ื ืื ืืชื” ื—ื•ืœื”
05:56
is not your predispositions,
135
356330
2000
ื–ื” ืœื ืืช ื”ื ื˜ื™ื•ืช ื”ื”ืชื—ืœืชื™ื•ืช ืฉืœืš,
05:58
but it's actually what's going on in your body right now.
136
358330
3000
ืืœื ืืช ืžื” ืฉืžืชืจื—ืฉ ื‘ื’ื•ืคืš ืžืžืฉ ื‘ืจื’ืข ื–ื”.
06:01
So to do that, what you really need to do,
137
361330
2000
ืœื›ืŸ ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืžื” ืฉื‘ืืžืช ืฆืจื™ืš ืœืขืฉื•ืช
06:03
you need to look at the things
138
363330
2000
ื–ื” ืœื”ืกืชื›ืœ ืขืœ ื”ื“ื‘ืจื™ื
06:05
that the genes are producing
139
365330
2000
ืฉื”ื’ื ื™ื ืžื™ื™ืฆืจื™ื
06:07
and what's happening after the genetics,
140
367330
2000
ื•ืขืœ ืžื” ืฉืงื•ืจื” ืœืื—ืจ ื”ื’ื ื˜ื™ืงื”.
06:09
and that's what proteomics is about.
141
369330
2000
ื•ื›ืืŸ ื ื›ื ืกืช ืœืชืžื•ื ื” ืคืจื•ื˜ืื•ืžื™ืงื”.
06:11
Just like genome mixes the study of all the genes,
142
371330
3000
ื‘ื“ื™ื•ืง ื›ืžื• ืฉื’ื ื•ื ืžืขืจื‘ื‘ ืืช ื”ื—ืงืจ ืฉืœ ื›ืœ ื”ื’ื ื™ื,
06:14
proteomics is the study of all the proteins.
143
374330
3000
ื”ืคืจื•ื˜ืื•ืžื™ืงื” ื”ื™ื ื—ืงืจ ืฉืœ ื›ืœ ื”ืคืจื•ื˜ืื™ื ื™ื (ื—ืœื‘ื•ื ื™ื).
06:17
And the proteins are all of the little things in your body
144
377330
2000
ื•ื”ืคืจื•ื˜ืื™ื ื™ื ื”ื ื›ืœ ื”ื“ื‘ืจื™ื ื”ืงื˜ื ื™ื ื‘ื’ื•ืคื ื•
06:19
that are signaling between the cells --
145
379330
3000
ืืฉืจ ืžืฉื’ืจื™ื ืื•ืชื•ืช ื‘ื™ืŸ ื”ืชืื™ื --
06:22
actually, the machines that are operating --
146
382330
2000
ืœืžืขืฉื” ื”ืžื›ื•ื ื•ืช ืืฉืจ ืคื•ืขืœื•ืช.
06:24
that's where the action is.
147
384330
2000
ืฉื ื›ืœ ื”ืืงืฉืŸ.
06:26
Basically, a human body
148
386330
3000
ื‘ืขื™ืงืจื•ืŸ, ื’ื•ืฃ ืื“ื
06:29
is a conversation going on,
149
389330
3000
ื–ื” ื“ื•-ืฉื™ื— ืžืชืžืฉืš,
06:32
both within the cells and between the cells,
150
392330
3000
ื”ืŸ ื‘ืชื•ืš ื”ืชืื™ื ื•ื”ืŸ ื‘ื™ืŸ ื”ืชืื™ื,
06:35
and they're telling each other to grow and to die,
151
395330
3000
ื•ื”ื ืื•ืžืจื™ื ื”ืื—ื“ ืœืฉื ื™ ืœื’ื“ื•ืœ ืื• ืœืžื•ืช.
06:38
and when you're sick,
152
398330
2000
ื•ื›ืืฉืจ ืื ื—ื ื• ื—ื•ืœื™ื,
06:40
something's gone wrong with that conversation.
153
400330
2000
ืกื™ืžืŸ ืฉืžืฉื”ื• ื”ืฉืชื‘ืฉ ื‘ืื•ืชื• ื“ื•-ืฉื™ื—.
06:42
And so the trick is --
154
402330
2000
ื•ืœื›ืŸ ื”ืชื›ืกื™ืก ื”ื•ื --
06:44
unfortunately, we don't have an easy way to measure these
155
404330
3000
ืœืฆืขืจื™, ืื™ืŸ ื“ืจืš ืงืœื”
06:47
like we can measure the genome.
156
407330
2000
ื”ื“ื•ืžื” ืœื–ื• ืฉืœ ืžื“ื™ื“ืช ื”ื’ื ื•ื.
06:49
So the problem is that measuring --
157
409330
3000
ืœื›ืŸ ื”ื‘ืขื™ื” ื”ื™ื ืฉืžื“ื™ื“ื” --
06:52
if you try to measure all the proteins, it's a very elaborate process.
158
412330
3000
ืื ืžื ืกื™ื ืœืžื“ื•ื“ ืืช ื›ืœ ื”ืคืจื•ื˜ืื™ื ื™ื, ื–ื” ืชื”ืœื™ืš ืžืื•ื“ ืžื•ืจื›ื‘.
06:55
It requires hundreds of steps,
159
415330
2000
ื–ื” ื“ื•ืจืฉ ืžืื•ืช ืฉืœื‘ื™ื,
06:57
and it takes a long, long time.
160
417330
2000
ื•ืœื•ืงื— ื”ืžื•ืŸ, ื”ืžื•ืŸ ื–ืžืŸ.
06:59
And it matters how much of the protein it is.
161
419330
2000
ื•ื–ื” ืžืฉื ื” ื‘ื›ืžื” ืžื”ืคืจื•ื˜ืื™ืŸ ืขืฆืžื• ืžื“ื•ื‘ืจ.
07:01
It could be very significant that a protein changed by 10 percent,
162
421330
3000
ื–ื” ืขืฉื•ื™ ืœื”ื™ื•ืช ืžืื•ื“ ืžืฉืžืขื•ืชื™ ืฉืคืจื•ื˜ืื™ืŸ ื”ืฉืชื ื” ื‘-10 ืื—ื•ื–,
07:04
so it's not a nice digital thing like DNA.
163
424330
3000
ืื‘ืœ ื–ื” ืœื ื“ื‘ืจ ื“ื™ื’ื™ื˜ืœื™ ืžืกื•ื“ืจ ื›ืžื• DNA.
07:07
And basically our problem is somebody's in the middle
164
427330
2000
ื•ื‘ืขื™ืงืจื•ืŸ ื”ื‘ืขื™ื” ืฉืœื ื• ื–ื” ืฉืžื™ืฉื”ื• ื‘ืืžืฆืข
07:09
of this very long stage,
165
429330
2000
ืฉืœ ื”ืฉืœื‘ ื”ืžืื•ื“ ืืจื•ืš ื”ื–ื”,
07:11
they pause for just a moment,
166
431330
2000
ื”ื•ื ืขื•ืฆืจ ืœืจื’ืข,
07:13
and they leave something in an enzyme for a second,
167
433330
2000
ื•ืžืฉืื™ืจ ืžืฉื”ื• ื‘ืื ื–ื™ื ืœืฉื ื™ื”,
07:15
and all of a sudden all the measurements from then on
168
435330
2000
ื•ืคืชืื•ื ื›ืœ ื”ืžื“ื™ื“ื•ืช ืžืฉื ื•ืื™ืœืš
07:17
don't work.
169
437330
2000
ืœื ื˜ื•ื‘ื•ืช.
07:19
And so then people get very inconsistent results
170
439330
2000
ื•ืœื›ืŸ ืžืงื‘ืœื™ื ืชื•ืฆืื•ืช ืžืื•ื“ ืœื ืขื™ืงื‘ื™ื•ืช
07:21
when they do it this way.
171
441330
2000
ื›ืืฉืจ ืžื‘ืฆืขื™ื ื”ื›ืœ ื‘ื“ืจืš ื–ืืช.
07:23
People have tried very hard to do this.
172
443330
2000
ืื ืฉื™ื ื ื™ืกื• ื‘ื›ืœ ืžืื•ื“ื ืœื‘ืฆืข ื–ืืช.
07:25
I tried this a couple of times
173
445330
2000
ืื ื™ ื ื™ืกื™ืชื™ ืžืกืคืจ ืคืขืžื™ื
07:27
and looked at this problem and gave up on it.
174
447330
2000
ื•ื ืชืงืœืชื™ ื‘ื‘ืขื™ื” ื–ื• ื•ื•ื™ืชืจืชื™.
07:29
I kept getting this call from this oncologist
175
449330
2000
ื”ืžืฉื›ืชื™ ืœืงื‘ืœ ื˜ืœืคื•ื ื™ื ืžืื•ื ืงื•ืœื•ื’
07:31
named David Agus.
176
451330
2000
ืฉืฉืžื• ื“ื™ื™ื•ื™ื“ ืื’ื•ืก.
07:33
And Applied Minds gets a lot of calls
177
453330
3000
Applied Minds ืžืงื‘ืœืช ื”ืžื•ืŸ ืฉื™ื—ื•ืช
07:36
from people who want help with their problems,
178
456330
2000
ืžืื ืฉื™ื ืฉืจื•ืฆื™ื ืขื–ืจื” ื‘ื‘ืขื™ื•ืชื™ื”ื,
07:38
and I didn't think this was a very likely one to call back,
179
458330
3000
ื•ืœื ื—ืฉื‘ืชื™ ืฉื™ืฉ ืกื™ื›ื•ื™ ื’ื“ื•ืœ ืฉื”ื•ื ื™ืชืงืฉืจ,
07:41
so I kept on giving him to the delay list.
180
461330
3000
ื•ื”ืžืฉื›ืชื™ ืœื”ืฉืื™ืจ ืื•ืชื• ื‘ืชื•ืจ ืœืžืžืชื™ื ื™ื.
07:44
And then one day,
181
464330
2000
ืื– ื™ื•ื ืื—ื“,
07:46
I get a call from John Doerr, Bill Berkman
182
466330
2000
ืงื™ื‘ืœืชื™ ืฉื™ื—ื” ืžื’'ื•ืŸ ื“ื•ืืจ, ื‘ื™ืœ ื‘ืจืงืžืŸ
07:48
and Al Gore on the same day
183
468330
2000
ื•ืืœ ื’ื•ืจ ื‘ืื•ืชื• ื”ื™ื•ื
07:50
saying return David Agus's phone call.
184
470330
2000
ื‘ืื•ืžืจื ืฉืื—ื–ื™ืจ ื˜ืœืคื•ืŸ ืœื“ื™ื™ื•ื™ื“ ืื’ื•ืก.
07:52
(Laughter)
185
472330
2000
(ืฆื—ื•ืง)
07:54
So I was like, "Okay. This guy's at least resourceful."
186
474330
2000
ืื– ืืžืจืชื™ ืœืขืฆืžื™, "ื˜ื•ื‘, ื–ื” ืื—ื“ ืฉืœืคื—ื•ืช ื™ืฉ ืœื• ืจืขื™ื•ื ื•ืช."
07:56
(Laughter)
187
476330
4000
(ืฆื—ื•ืง)
08:00
So we started talking,
188
480330
2000
ืื– ื”ืชื—ืœื ื• ืœื“ื‘ืจ,
08:02
and he said, "I really need a better way to measure proteins."
189
482330
3000
ื•ื”ื•ื ืืžืจ, "ืื ื™ ื‘ืืžืช ื–ืงื•ืง ืœื“ืจืš ื™ื•ืชืจ ื˜ื•ื‘ื” ืœืžื“ื™ื“ืช ืคืจื•ื˜ืื™ื ื™ื."
08:05
I'm like, "Looked at that. Been there.
190
485330
2000
ื•ืื ื™ ืืžืจืชื™, " ืจืื™ืชื™ ืืช ื–ื”. ื›ื‘ืจ ื”ื™ื™ืชื™ ืฉื.
08:07
Not going to be easy."
191
487330
2000
ื–ื” ืœื ื”ื•ืœืš ืœื”ื™ื•ืช ืงืœ."
08:09
He's like, "No, no. I really need it.
192
489330
2000
ื•ื”ื•ื ืืžืจ, "ืœื, ืœื. ืื ื™ ื‘ืืžืช ื–ืงื•ืง ืœื–ื”.
08:11
I mean, I see patients dying every day
193
491330
4000
ื›ืœื•ืžืจ, ืื ื™ ืจื•ืื” ื—ื•ืœื™ื ื ืคื˜ืจื™ื ื›ืœ ื™ื•ื
08:15
because we don't know what's going on inside of them.
194
495330
3000
ื‘ื’ืœืœ ืฉืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืžื” ืžืชืจื—ืฉ ื‘ืชื•ื›ื.
08:18
We have to have a window into this."
195
498330
2000
ืื ื—ื ื• ืžื•ื›ืจื—ื™ื ืฉื™ื”ื™ื” ืœื ื• ื—ืœื•ืŸ-ื’ื™ืฉื” ืœื–ื”."
08:20
And he took me through
196
500330
2000
ื•ื”ื•ื ืขื‘ืจ ืื™ืชื™
08:22
specific examples of when he really needed it.
197
502330
3000
ืขืœ ื“ื•ื’ืžืื•ืช ืกืคืฆื™ืคื™ื•ืช ืขืœ ื”ืฆื•ืจืš ื”ืืžื™ืชื™ ื‘ื–ื”.
08:25
And I realized, wow, this would really make a big difference,
198
505330
2000
ื•ืื ื™ ื”ื‘ื ืชื™ ืฉื–ื” ื‘ืืžืช ื™ืขืฉื” ืืช ื”ื”ื‘ื“ืœ,
08:27
if we could do it,
199
507330
2000
ืื ื ื•ื›ืœ ืœืขืฉื•ืช ื–ืืช.
08:29
and so I said, "Well, let's look at it."
200
509330
2000
ื•ืื– ืืžืจืชื™, "ื˜ื•ื‘, ื‘ื•ื ื ืจืื” ืžื” ืืคืฉืจ ืœืขืฉื•ืช."
08:31
Applied Minds has enough play money
201
511330
2000
ืœ-Applied Minds ื”ื™ื” ืžืกืคื™ืง ื›ืกืฃ ื–ืžื™ืŸ
08:33
that we can go and just work on something
202
513330
2000
ื›ืš ืฉื™ื›ื•ืœื ื• ืคืฉื•ื˜ ืœืฆืืช ื•ืœืขื‘ื•ื“ ืขืœ ืžืฉื”ื•
08:35
without getting anybody's funding or permission or anything.
203
515330
3000
ืœืœื ืงื‘ืœืช ืžื™ืžื•ืŸ ืื• ืื™ืฉื•ืจ ืžืžื™ืฉื”ื•.
08:38
So we started playing around with this.
204
518330
2000
ื”ืชื—ืœื ื• ืœืฉื—ืง ืขื ื–ื”.
08:40
And as we did it, we realized this was the basic problem --
205
520330
3000
ื•ื›ืืฉืจ ืขืฉื™ื ื• ื–ืืช, ื’ื™ืœื™ื ื• ืฉื–ื• ื”ื™ืชื” ื”ื‘ืขื™ื” ื”ื‘ืกื™ืกื™ืช --
08:43
that taking the sip of coffee --
206
523330
2000
ืฉืœื’ื™ืžืช ืœื’ื™ืžื” ืฉืœ ืงืคื” --
08:45
that there were humans doing this complicated process
207
525330
2000
ืฉืื ืฉื™ื ื‘ื™ืฆืขื• ืืช ื”ืชื”ืœื™ืš ื”ืžืกื•ื‘ืš
08:47
and that what really needed to be done
208
527330
2000
ื•ืžื” ืฉื”ื™ื” ืฆืจื™ืš ืœืขืฉื•ืช
08:49
was to automate this process like an assembly line
209
529330
3000
ื–ื” ืœื”ืคื•ืš ืืช ื”ืชื”ืœื™ืš ืœืื•ื˜ื•ืžื˜ื™ ื›ืžื• ื‘ืงื•-ื™ื™ืฆื•ืจ
08:52
and build robots
210
532330
2000
ื•ืœื‘ื ื•ืช ืจื•ื‘ื•ื˜ื™ื
08:54
that would measure proteomics.
211
534330
2000
ืฉื™ืžื“ื“ื• ืคืจื•ื˜ืื•ืžื™ืงื”.
08:56
And so we did that,
212
536330
2000
ื•ืื– ืขืฉื™ื ื• ื–ืืช.
08:58
and working with David,
213
538330
2000
ื•ื‘ืขื‘ื•ื“ื” ืขื ื“ื™ื™ื•ื™ื“,
09:00
we made a little company called Applied Proteomics eventually,
214
540330
3000
ื™ืฆืจื ื• ื—ื‘ืจื” ืงื˜ื ื” ื”ื ืงืจืืช Applied Proteomics,
09:03
which makes this robotic assembly line,
215
543330
3000
ืืฉืจ ืžื™ื™ืฆืจืช ืืช ืงื•-ื”ื™ื™ืฆื•ืจ ื”ืจื•ื‘ื•ื˜ื™ ื”ื–ื”,
09:06
which, in a very consistent way, measures the protein.
216
546330
3000
ืืฉืจ ืžื•ื“ื“ ื‘ืื•ืคืŸ ืจืฆื™ืฃ ื•ืขืงื‘ื™ ืคืจื•ื˜ืื™ื ื™ื.
09:09
And I'll show you what that protein measurement looks like.
217
549330
3000
ืืฆื™ื’ ืœื›ื ืื™ืš ื ืจืื™ืช ืื•ืชื” ืžื“ื™ื“ืช ืคืจื•ื˜ืื™ืŸ.
09:13
Basically, what we do
218
553330
2000
ื‘ืขื™ืงืจื•ืŸ, ืžื” ืฉืื ื• ืขื•ืฉื™ื
09:15
is we take a drop of blood
219
555330
2000
ื–ื” ืœื•ืงื—ื™ื ื˜ื™ืคืช ื“ื
09:17
out of a patient,
220
557330
2000
ืฉืœ ื—ื•ืœื”
09:19
and we sort out the proteins
221
559330
2000
ื•ืžืžื™ื™ื ื™ื ืืช ื”ืคืจื•ื˜ืื™ื ื™ื
09:21
in the drop of blood
222
561330
2000
ื‘ื˜ื™ืคืช ื”ื“ื
09:23
according to how much they weigh,
223
563330
2000
ืขืœ-ืคื™ ืžืฉืงืœื,
09:25
how slippery they are,
224
565330
2000
ืขืœ-ืคื™ ืžื™ื“ืช ื—ืœืงืœืงื•ืชื,
09:27
and we arrange them in an image.
225
567330
3000
ื•ืื ื• ืžืกื“ืจื™ื ืื•ืชื ื‘ืชืžื•ื ื”.
09:30
And so we can look at literally
226
570330
2000
ื•ืื– ืื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ืขืœ
09:32
hundreds of thousands of features at once
227
572330
2000
ืžืื•ืช ื•ืืœืคื™ ืžืืคื™ื™ื ื™ื ื‘ื•-ื–ืžื ื™ืช
09:34
out of that drop of blood.
228
574330
2000
ื”ืžืชืงื‘ืœื™ื ืžืื•ืชื” ื˜ื™ืคืช ื“ื.
09:36
And we can take a different one tomorrow,
229
576330
2000
ื•ืื ื ืงื— ืžื—ืจ ืขื•ื“ ื˜ื™ืคืช ื“ื,
09:38
and you will see your proteins tomorrow will be different --
230
578330
2000
ื”ืคืจื•ื˜ืื™ื ื™ื ืžื—ืจ ื™ื”ื™ื• ืฉื•ื ื™ื --
09:40
they'll be different after you eat or after you sleep.
231
580330
3000
ื”ื ื™ื”ื™ื• ืฉื•ื ื™ื ืœืื—ืจ ืฉืื•ื›ืœื™ื ืื• ืœืื—ืจ ืฉื™ื ื”.
09:43
They really tell us what's going on there.
232
583330
3000
ื”ื ื‘ืืžืช ืžืกืคืจื™ื ืœื ื• ืืช ืžื” ืฉืžืชืจื—ืฉ ื‘ืคื•ืขืœ.
09:46
And so this picture,
233
586330
2000
ื›ืš ืฉืชืžื•ื ื” ื–ื•,
09:48
which looks like a big smudge to you,
234
588330
2000
ื”ื ืจืื™ืช ื›ืžื• ื›ืชื ืื—ื“ ื’ื“ื•ืœ,
09:50
is actually the thing that got me really thrilled about this
235
590330
4000
ื”ื™ื ื‘ืขืฆื ื”ื“ื‘ืจ ืฉื’ืจื ืœื™ ื”ืชืจื’ืฉื•ืช ื’ื“ื•ืœื”
09:54
and made me feel like we were on the right track.
236
594330
2000
ื•ื ืชืŸ ืœื™ ืืช ื”ืชื—ื•ืฉื” ืฉืขืœื™ื ื• ืขืœ ื”ืžืกืœื•ืœ ื”ื ื›ื•ืŸ.
09:56
So if I zoom into that picture,
237
596330
2000
ืื ืืชืงืจื‘ ืœืชืžื•ื ื”,
09:58
I can just show you what it means.
238
598330
2000
ืื•ื›ืœ ืœื”ืจืื•ืช ืœื›ื ืžื” ืžืฉืžืขื•ืช ื”ื“ื‘ืจ.
10:00
We sort out the proteins -- from left to right
239
600330
3000
ืื ื—ื ื• ืžืžื™ื™ื ื™ื ืืช ื”ืคืจื•ื˜ืื™ื ื™ื -- ืžืฉืžืืœ ืœื™ืžื™ืŸ
10:03
is the weight of the fragments that we're getting,
240
603330
3000
ื–ื” ื”ืžืฉืงืœ ืฉืœ ื”ืžืงื˜ืขื™ื ืฉืื ื• ืžืงื‘ืœื™ื.
10:06
and from top to bottom is how slippery they are.
241
606330
3000
ื•ืžืœืžืขืœื” ืœืžื˜ื” ื–ื” ื›ืžื” ื”ื ื—ืœืงืœืงื™ื.
10:09
So we're zooming in here just to show you a little bit of it.
242
609330
3000
ืื ื• ืžืชืงืจื‘ื™ื ืœื›ืืŸ ื›ื“ื™ ืœื”ืจืื•ืช ืœื›ื ื—ืœืง ืงื˜ืŸ ืžื–ื”.
10:12
And so each of these lines
243
612330
2000
ื›ืœ ืื—ื“ ืžื”ืงื•ื™ื ื”ืืœื”
10:14
represents some signal that we're getting out of a piece of a protein.
244
614330
3000
ืžื™ื™ืฆื’ ืื•ืช ื›ืœืฉื”ื• ืฉืžืชืงื‘ืœ ืžื—ื•ืฅ ืœืžืงื˜ืข ืฉืœ ืคืจื•ื˜ืื™ืŸ.
10:17
And you can see how the lines occur
245
617330
2000
ื•ื ื™ืชืŸ ืœืจืื•ืช ื›ื™ืฆื“ ื”ืงื•ื™ื ื ื•ืฆืจื™ื
10:19
in these little groups of bump, bump, bump, bump, bump.
246
619330
4000
ื‘ืงื‘ื•ืฆื•ืช ื”ืงื˜ื ื•ืช ื”ืœืœื• ืฉืœ ื‘ื•ื, ื‘ื•ื, ื‘ื•ื, ื‘ื•ื, ื‘ื•ื.
10:23
And that's because we're measuring the weight so precisely that --
247
623330
3000
ื•ื–ื” ื‘ื’ืœืœ ืฉืื ื• ืžื•ื“ื“ื™ื ืืช ื”ืžืฉืงืœ ื‘ื“ื™ื•ืง ื›ื” ื’ื“ื•ืœ --
10:26
carbon comes in different isotopes,
248
626330
2000
ืคื—ืžืŸ ืžื•ืคื™ืข ื‘ืฆื•ืจืช ืื™ื–ื•ื˜ื•ืคื™ื ืฉื•ื ื™ื,
10:28
so if it has an extra neutron on it,
249
628330
3000
ื›ืš ืฉืื ื™ืฉ ื‘ื• ื ื™ื•ื˜ืจื•ืŸ ืขื•ื“ืฃ,
10:31
we actually measure it as a different chemical.
250
631330
4000
ืื ื• ืœืžืขืฉื” ืžื•ื“ื“ื™ื ืื•ืชื• ื›ื›ื™ืžื™ืงืœ ืฉื•ื ื”.
10:35
So we're actually measuring each isotope as a different one.
251
635330
3000
ื›ืš ืฉืื ื• ืžื•ื“ื“ื™ื ื›ืœ ืื™ื–ื•ื˜ื•ืค ื‘ืชื•ืจ ืžืฉื”ื• ืฉื•ื ื”.
10:38
And so that gives you an idea
252
638330
3000
ื•ื–ื” ื ื•ืชืŸ ืœื›ื ืžื•ืฉื’ ืขื“ ื›ืžื”
10:41
of how exquisitely sensitive this is.
253
641330
2000
ื–ื” ืจื’ื™ืฉ ื‘ืฆื•ืจื” ื™ื•ืฆืืช-ื“ื•ืคืŸ.
10:43
So seeing this picture
254
643330
2000
ืœืจืื•ืช ืชืžื•ื ื” ื–ื•
10:45
is sort of like getting to be Galileo
255
645330
2000
ื–ื” ื›ืžื• ืœื”ื™ื•ืช ื’ืœื™ืœืื•
10:47
and looking at the stars
256
647330
2000
ื•ืœื”ืกืชื›ืœ ืขืœ ื›ื•ื›ื‘ื™ื
10:49
and looking through the telescope for the first time,
257
649330
2000
ื•ืœื”ืชื‘ื•ื ืŸ ื‘ืืžืฆืขื•ืช ื”ื˜ืœืกืงื•ืค ื‘ืคืขื ื”ืจืืฉื•ื ื”,
10:51
and suddenly you say, "Wow, it's way more complicated than we thought it was."
258
651330
3000
ื•ืื– ืคืชืื•ื ืœื”ื’ื™ื“, "ื•ื•ืื•, ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืžืกื•ื‘ืš ืžืžื” ืฉื—ืฉื‘ื ื•."
10:54
But we can see that stuff out there
259
654330
2000
ืื‘ืœ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ื“ื‘ืจ ื”ื–ื” ืฉื
10:56
and actually see features of it.
260
656330
2000
ื•ืžืžืฉ ืœื”ื‘ื—ื™ืŸ ื‘ืžืืคื™ื™ื ื™ื•.
10:58
So this is the signature out of which we're trying to get patterns.
261
658330
3000
ืื– ื–ื•ื”ื™ ื”ื—ืชื™ืžื” ืฉืžืžื ื” ืื ื• ืžื ืกื™ื ืœื”ื•ืฆื™ื ืชื‘ื ื™ื•ืช.
11:01
So what we do with this
262
661330
2000
ืื– ืžื” ืฉืื ื• ืขื•ืฉื™ื ืขื ื–ื”,
11:03
is, for example, we can look at two patients,
263
663330
2000
ืœื“ื•ื’ืžื, ืื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ืขืœ ืฉื ื™ ื—ื•ืœื™ื,
11:05
one that responded to a drug and one that didn't respond to a drug,
264
665330
3000
ืื—ื“ ืฉื”ื’ื™ื‘ ืœืชืจื•ืคื” ื•ื”ืื—ืจ ืฉืœื ื”ื’ื™ื‘,
11:08
and ask, "What's going on differently
265
668330
2000
ื•ืœืฉืื•ืœ, "ืžื” ื”ืชืจื—ืฉ ืฉื•ื ื”
11:10
inside of them?"
266
670330
2000
ื‘ื›ืœ ืื—ื“ ืžื”ื?"
11:12
And so we can make these measurements precisely enough
267
672330
3000
ื•ื›ืš ืื ื• ื™ื›ื•ืœื™ื ืœื‘ืฆืข ืžื“ื™ื“ื•ืช ืžืกืคื™ืง ืžื“ื•ื™ื™ืงื•ืช
11:15
that we can overlay two patients and look at the differences.
268
675330
3000
ืฉืืคืฉืจ ืœื”ื ื™ื— ื”ืื—ื“ ืขืœ ื”ืฉื ื™ ืฉื ื™ ื—ื•ืœื™ื ื•ืœืจืื•ืช ืžื” ื”ื”ื‘ื“ืœื™ื.
11:18
So here we have Alice in green
269
678330
2000
ืื– ื™ืฉ ืœื ื• ื›ืืŸ ืืœื™ืก ื‘ื™ืจื•ืง
11:20
and Bob in red.
270
680330
2000
ื•ื‘ื•ื‘ ื‘ืื“ื•ื.
11:22
We overlay them. This is actual data.
271
682330
3000
ืื ื• ืžื ื™ื—ื™ื ืื•ืชื ื”ืื—ื“ ืขืœ ื”ืฉื ื™. ืืœื” ื ืชื•ื ื™ื ืืžื™ืชื™ื™ื.
11:25
And you can see, mostly it overlaps and it's yellow,
272
685330
3000
ื•ื ื™ืชืŸ ืœืจืื•ืช, ื‘ืจื•ื‘ื ื”ื ื—ื•ืคืคื™ื ื•ื”ื ื‘ืฆื‘ืข ืฆื”ื•ื‘,
11:28
but there's some things that just Alice has
273
688330
2000
ืื‘ืœ ื™ืฉ ื“ื‘ืจื™ื ืฉืจืง ืœืืœื™ืก ื™ืฉ ืื•ืชื
11:30
and some things that just Bob has.
274
690330
2000
ื•ื“ื‘ืจื™ื ืื—ืจื™ื ืฉืจืง ืœื‘ื•ื‘ ื™ืฉ ืื•ืชื.
11:32
And if we find a pattern of things
275
692330
3000
ื•ืื ืื ื• ืžื•ืฆืื™ื ืชื‘ื ื™ืช ืฉืœ ื“ื‘ืจื™ื
11:35
of the responders to the drug,
276
695330
3000
ืฉืœ ืืœื” ืฉื”ื’ื™ื‘ื• ืœืชืจื•ืคื”,
11:38
we see that in the blood,
277
698330
2000
ืื ื• ืžื‘ื™ื ื™ื ืฉื‘ืชื•ืš ื”ื“ื,
11:40
they have the condition
278
700330
2000
ืžืชืงื™ื™ืžื™ื ืืฆืœื ื”ืชื ืื™ื
11:42
that allows them to respond to this drug.
279
702330
2000
ื”ืžืืคืฉืจื™ื ืœื”ื ืœื”ื’ื™ื‘ ืœืชืจื•ืคื” ื–ื•.
11:44
We might not even know what this protein is,
280
704330
2000
ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉืืคื™ืœื• ืœื ื ื“ืข ืžื”ื• ืื•ืชื• ืคืจื•ื˜ืื™ืŸ,
11:46
but we can see it's a marker
281
706330
2000
ืื‘ืœ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื”ื•ื ืกื™ืžืŸ
11:48
for the response to the disease.
282
708330
2000
ืฉืœ ืชื’ื•ื‘ื” ืœืื•ืชื” ืžื—ืœื”.
11:53
So this already, I think,
283
713330
2000
ื›ืš ืฉื›ื‘ืจ ื–ื”, ืื ื™ ืกื‘ื•ืจ,
11:55
is tremendously useful in all kinds of medicine.
284
715330
3000
ืžื”ื•ื•ื” ื“ื‘ืจ ื›ื‘ื™ืจ ืœืฉื™ืžื•ืฉ ื‘ื›ืœ ืžื™ื ื™ ืชืจื•ืคื•ืช.
11:58
But I think this is actually
285
718330
2000
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืขืฆื
12:00
just the beginning
286
720330
2000
ื–ื•ื”ื™ ืจืง ื”ื”ืชื—ืœื”
12:02
of how we're going to treat cancer.
287
722330
2000
ืฉืœ ื”ืื•ืคืŸ ื‘ื• ืื ื• ื”ื•ืœื›ื™ื ืœื˜ืคืœ ื‘ืกืจื˜ืŸ.
12:04
So let me move to cancer.
288
724330
2000
ืื– ืืชืงื“ื ื‘ืจืฉื•ืชื›ื ืœืกืจื˜ืŸ.
12:06
The thing about cancer --
289
726330
2000
ื”ืขื ื™ื™ืŸ ืขื ื”ืกืจื˜ืŸ ื”ื•ื --
12:08
when I got into this,
290
728330
2000
ื›ืืฉืจ ื ื›ื ืกืชื™ ืืœ ืชื•ืš ื–ื”,
12:10
I really knew nothing about it,
291
730330
2000
ืœื ื™ื“ืขืชื™ ื›ืœื•ื ืขืœื™ื•,
12:12
but working with David Agus,
292
732330
2000
ืื‘ืœ ื›ืืฉืจ ืขื‘ื“ืชื™ ืขื ื“ื™ื™ื•ื™ื“ ืื’ื•ืก,
12:14
I started watching how cancer was actually being treated
293
734330
3000
ื”ืชื—ืœืชื™ ืœืฉื™ื ืœื‘ ื›ื™ืฆื“ ื‘ืขืฆื ืžื˜ืคืœื™ื ื‘ืกืจื˜ืŸ
12:17
and went to operations where it was being cut out.
294
737330
3000
ื•ื”ืœื›ืชื™ ืœื ื™ืชื•ื—ื™ื ืฉื‘ื• ื—ืชื›ื• ื•ื”ื•ืฆื™ืื• ืื•ืชื•.
12:20
And as I looked at it,
295
740330
2000
ื•ื›ื›ืœ ืฉืจืื™ืชื™ ืืช ื–ื”,
12:22
to me it didn't make sense
296
742330
2000
ืœื™ ื–ื” ื ืจืื” ืœื ื”ื’ื™ื•ื ื™,
12:24
how we were approaching cancer,
297
744330
2000
ื”ืื•ืคืŸ ื‘ื• ื ื™ื’ืฉื ื• ืœืกืจื˜ืŸ.
12:26
and in order to make sense of it,
298
746330
3000
ื•ื›ื“ื™ ืœื”ื‘ื™ืŸ ื–ืืช,
12:29
I had to learn where did this come from.
299
749330
3000
ื”ื™ื” ืขืœื™ ืœืœืžื•ื“ ืžื”ื™ื›ืŸ ื’ื™ืฉื” ื–ื• ื”ื’ื™ืขื”.
12:32
We're treating cancer almost like it's an infectious disease.
300
752330
4000
ืื ื• ืžื˜ืคืœื™ื ื‘ืกืจื˜ืŸ ื›ืžืขื˜ ื›ืื™ืœื• ื–ื• ืžื—ืœื” ืžื“ื‘ืงืช.
12:36
We're treating it as something that got inside of you
301
756330
2000
ืื ื• ืžื˜ืคืœื™ื ื‘ื• ื›ืžืฉื”ื• ืฉื ื›ื ืก ื‘ื ื•
12:38
that we have to kill.
302
758330
2000
ื•ืฉืื•ืชื• ืขืœื™ื ื• ืœื—ืกืœ.
12:40
So this is the great paradigm.
303
760330
2000
ื–ื•ื”ื™ ืชื‘ื ื™ืช ื”ื—ืฉื™ื‘ื” ื‘ื’ื“ื•ืœ.
12:42
This is another case
304
762330
2000
ื–ื”ื• ืขื•ื“ ืžืงืจื”
12:44
where a theoretical paradigm in biology really worked --
305
764330
2000
ื‘ื• ื—ืฉื™ื‘ื” ืชืื•ืจื˜ื™ืช ื‘ื‘ื™ื•ืœื•ื’ื™ื” ื‘ืืžืช ืขื‘ื“ื” --
12:46
was the germ theory of disease.
306
766330
3000
ื–ื• ื”ื™ืชื” ืชืื•ืจื™ื™ืช ื”ื—ื™ื™ื“ืงื™ื ืฉืœ ืžื—ืœื•ืช.
12:49
So what doctors are mostly trained to do
307
769330
2000
ื›ืš ืฉืžื” ืฉืจื•ืคืื™ื ื”ื•ื›ืฉืจื• ื‘ืขื™ืงืจ ืœืขืฉื•ืช
12:51
is diagnose --
308
771330
2000
ื–ื” ืœืื‘ื—ืŸ --
12:53
that is, put you into a category
309
773330
2000
ื›ืœื•ืžืจ ืœืงื˜ืœื’ --
12:55
and apply a scientifically proven treatment
310
775330
2000
ื•ืœื”ืคืขื™ืœ ื˜ื™ืคื•ืœ ื”ืžื•ื›ื— ืžื“ืขื™ืช
12:57
for that diagnosis --
311
777330
2000
ื‘ืขื‘ื•ืจ ืื•ืชื” ืื‘ื—ื ื”.
12:59
and that works great for infectious diseases.
312
779330
3000
ื•ื–ื” ืขื•ื‘ื“ ื ื”ื“ืจ ืขื ืžื—ืœื•ืช ืžื“ื‘ืงื•ืช.
13:02
So if we put you in the category
313
782330
2000
ื›ืš ืฉืื ื ืกื•ื•ื’ ืืชื›ื ื‘ืชื•ืจ
13:04
of you've got syphilis, we can give you penicillin.
314
784330
3000
ื›ืืœื” ืฉื™ืฉ ืœื”ื ืขื’ื‘ืช, ืืคืฉืจ ืœืชืช ืœื›ื ืคื ื™ืฆื™ืœื™ืŸ.
13:07
We know that that works.
315
787330
2000
ืื ื• ื™ื•ื“ืขื™ื ืฉื–ื” ื™ืขื™ืœ.
13:09
If you've got malaria, we give you quinine
316
789330
2000
ืื ื™ืฉ ืœื›ื ืžืœืจื™ื”, ืืคืฉืจ ืœืชืช ื›ื™ื ื™ืŸ,
13:11
or some derivative of it.
317
791330
2000
ืื• ืื™ื–ื• ืฉื”ื™ื ื ื’ื–ืจืช ืฉืœื”.
13:13
And so that's the basic thing doctors are trained to do,
318
793330
3000
ื•ื›ืš ื–ื” ื”ื“ื‘ืจ ื”ื‘ืกื™ืกื™ ืฉื”ืจื•ืคืื™ื ื”ื•ื›ืฉืจื• ืœืขืฉื•ืช.
13:16
and it's miraculous
319
796330
2000
ื•ื–ื” ืžื•ืคืœื,
13:18
in the case of infectious disease --
320
798330
3000
ื‘ืžืงืจื” ืฉืœ ืžื—ืœื” ืžื“ื‘ืงืช --
13:21
how well it works.
321
801330
2000
ืขื“ ื›ืžื” ืฉื–ื” ืขื•ื‘ื“ ื˜ื•ื‘.
13:23
And many people in this audience probably wouldn't be alive
322
803330
3000
ื•ื”ืจื‘ื” ืื ืฉื™ื ื‘ืงื”ืœ ืื•ืœื™ ืœื ื”ื™ื• ื‘ื—ื™ื™ื
13:26
if doctors didn't do this.
323
806330
2000
ืื ืจื•ืคืื™ื ืœื ืขืฉื• ื–ืืช.
13:28
But now let's apply that
324
808330
2000
ืื‘ืœ ืขื›ืฉื™ื• ื”ื‘ื” ื ื™ื™ืฉื ื–ืืช
13:30
to systems diseases like cancer.
325
810330
2000
ืœืžื—ืœื•ืช ืžืขืจื›ืชื™ื•ืช ื›ืžื• ืกืจื˜ืŸ.
13:32
The problem is that, in cancer,
326
812330
2000
ื”ื‘ืขื™ื” ื”ื™ื ืฉื‘ืกืจื˜ืŸ,
13:34
there isn't something else
327
814330
2000
ืื™ืŸ ืžืฉื”ื• ืื—ืจ
13:36
that's inside of you.
328
816330
2000
ืฉื ื›ื ืก ืœืชื•ื›ื ื•.
13:38
It's you; you're broken.
329
818330
2000
ื–ื” ืื ื—ื ื•, ืื ื—ื ื• ืžืงื•ืœืงืœื™ื.
13:40
That conversation inside of you
330
820330
4000
ื”ื“ื•-ืฉื™ื— ื‘ืชื•ื›ื ื•
13:44
got mixed up in some way.
331
824330
2000
ื™ืจื“ ืžื”ืคืกื™ื ืื™ื›ืฉื”ื•.
13:46
So how do we diagnose that conversation?
332
826330
2000
ืื– ื›ื™ืฆื“ ืื ื• ืžืื‘ื—ื ื™ื ื“ื•-ืฉื™ื— ื–ื”?
13:48
Well, right now what we do is we divide it by part of the body --
333
828330
3000
ื›ื™ื•ื ืžื” ืฉืขื•ืฉื™ื ื–ื” ืœืขืฉื•ืช ื—ืœื•ืงื” ืœืคื™ ืื™ื‘ืจื™ ื’ื•ืฃ --
13:51
you know, where did it appear? --
334
831330
3000
ืœืคื™ ืื™ืคื” ืฉื”ืกืจื˜ืŸ ืžื•ืคื™ืข --
13:54
and we put you in different categories
335
834330
2000
ื•ืฉืžื™ื ืืชื›ื ื‘ืงื˜ื’ื•ืจื™ื•ืช ืฉื•ื ื•ืช
13:56
according to the part of the body.
336
836330
2000
ืขืœ-ืคื™ ืื™ื‘ืจ ื”ื’ื•ืฃ.
13:58
And then we do a clinical trial
337
838330
2000
ื•ืื– ืขื•ืฉื™ื ื ื™ืกื•ื™ ืงืœื™ื ื™
14:00
for a drug for lung cancer
338
840330
2000
ืœืชืจื•ืคื” ืฉืœ ืกืจื˜ืŸ ืจื™ืื•ืช
14:02
and one for prostate cancer and one for breast cancer,
339
842330
3000
ื•ืฉืœ ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช ื•ืฉืœ ืกืจื˜ืŸ ื”ืฉื“,
14:05
and we treat these as if they're separate diseases
340
845330
3000
ื•ืื ื• ืžืชื™ื—ืกื™ื ืืœื™ื”ื ื›ืื™ืœื• ื”ื™ื• ืžื—ืœื•ืช ืฉื•ื ื•ืช
14:08
and that this way of dividing them
341
848330
2000
ื•ื›ืื™ืœื• ืœื“ืจืš ื–ื• ืฉืœ ื—ืœื•ืงื”
14:10
had something to do with what actually went wrong.
342
850330
2000
ื™ืฉ ืงืฉืจ ืขื ืžื” ืฉื‘ืืžืช ื”ืฉืชื‘ืฉ.
14:12
And of course, it really doesn't have that much to do
343
852330
2000
ืื‘ืœ ื‘ืจื•ืจ ืฉืื™ืŸ ืœื–ื” ื‘ืืžืช ืงืฉืจ
14:14
with what went wrong
344
854330
2000
ืขื ืžื” ืฉื”ืฉืชื‘ืฉ.
14:16
because cancer is a failure of the system.
345
856330
3000
ืžื›ื™ื•ื•ืŸ ืฉืกืจื˜ืŸ ื”ื•ื ื›ื™ืฉืœื•ืŸ ืฉืœ ื”ืžืขืจื›ืช.
14:19
And in fact, I think we're even wrong
346
859330
2000
ื•ื‘ืขืฆื, ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ืืฃ ื˜ื•ืขื™ื
14:21
when we talk about cancer as a thing.
347
861330
3000
ื›ืืฉืจ ืื ื• ืžื“ื‘ืจื™ื ืขืœ ืกืจื˜ืŸ ื‘ืชื•ืจ "ื“ื‘ืจ".
14:24
I think this is the big mistake.
348
864330
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื• ืฉื’ื™ืื” ื’ื“ื•ืœื”.
14:26
I think cancer should not be a noun.
349
866330
4000
ืื ื™ ื—ื•ืฉื‘ ืฉืกืจื˜ืŸ ืื™ื ื• ืฆืจื™ืš ืœื”ื™ื•ืช ืฉื-ืขืฆื.
14:30
We should talk about cancering
350
870330
2000
ืขืœื™ื ื• ืœื“ื‘ืจ ืขืœ ืกื™ืจื˜ื•ืŸ,
14:32
as something we do, not something we have.
351
872330
3000
ื‘ืชื•ืจ ืžืฉื”ื• ืฉืื ื• ืขื•ืฉื™ื, ืœื ืžืฉื”ื• ืฉื™ืฉ ืœื ื•.
14:35
And so those tumors,
352
875330
2000
ื•ื›ืš ื’ื ื”ื’ื™ื“ื•ืœื™ื,
14:37
those are symptoms of cancer.
353
877330
2000
ืืœื” ื”ื ื”ืชืกืžื™ื ื™ื ืฉืœ ืกืจื˜ืŸ.
14:39
And so your body is probably cancering all the time,
354
879330
3000
ื•ื›ืš ื’ื•ืคื ื• ื›ื›ืœ ื”ื ืจืื” ืขื•ื‘ืจ ืกื™ืจื˜ื•ืŸ ื›ืœ ื”ื–ืžืŸ.
14:42
but there are lots of systems in your body
355
882330
3000
ืื‘ืœ ืงื™ื™ืžื•ืช ื”ืžื•ืŸ ืžืขืจื›ื•ืช ื‘ื’ื•ืคื ื•
14:45
that keep it under control.
356
885330
2000
ืืฉืจ ืฉื•ืžืจื•ืช ืื•ืชื• ืชื—ืช ืฉืœื™ื˜ื”.
14:47
And so to give you an idea
357
887330
2000
ื›ื“ื™ ืœืชืช ืœื›ื ืžื•ืฉื’,
14:49
of an analogy of what I mean
358
889330
2000
ื”ื ื” ืื ืœื•ื’ื™ื” ืœืžื” ืื ื™ ืžืชื›ื•ื•ืŸ
14:51
by thinking of cancering as a verb,
359
891330
3000
ื‘ืœื—ืฉื•ื‘ ืขืœ ืกื™ืจื˜ื•ืŸ ื‘ืชื•ืจ ืคื•ืขืœ,
14:54
imagine we didn't know anything about plumbing,
360
894330
3000
ื ื“ืžื™ื™ืŸ ืฉืื ื• ืœื ื™ื•ื“ืขื™ื ื›ืœื•ื ืขืœ ืฉืจื‘ืจื‘ื•ืช,
14:57
and the way that we talked about it,
361
897330
2000
ื•ื›ืžื• ืฉื“ื™ื‘ืจื ื• ืขืœ ื–ื”,
14:59
we'd come home and we'd find a leak in our kitchen
362
899330
3000
ื ื‘ื•ื ื”ื‘ื™ืชื” ื•ื ืžืฆื ื ื–ื™ืœื” ื‘ืžื˜ื‘ื—
15:02
and we'd say, "Oh, my house has water."
363
902330
4000
ื•ืื– ื ืืžืจ, "ื™ืฉ ืžื™ื ื‘ื‘ื™ืช ืฉืœื™."
15:06
We might divide it -- the plumber would say, "Well, where's the water?"
364
906330
3000
ืื ื• ืขืฉื•ื™ื™ื ืœื—ืœืง -- ื”ืฉืจื‘ืจื‘ ื™ื’ื™ื“, "ื˜ื•ื‘, ืื™ืคื” ื”ืžื™ื?"
15:09
"Well, it's in the kitchen." "Oh, you must have kitchen water."
365
909330
3000
"ื•ื‘ื›ืŸ, ื”ื ื‘ืžื˜ื‘ื—." "ืื”, ืื– ื™ืฉ ืœื›ื ืžื™-ืžื˜ื‘ื—."
15:12
That's kind of the level at which it is.
366
912330
3000
ื–ื• ื‘ืขืจืš ื”ืฉื™ื˜ื” ืฉืื ื• ืžืืžืฆื™ื.
15:15
"Kitchen water,
367
915330
2000
"ืžื™-ืžื˜ื‘ื—?
15:17
well, first of all, we'll go in there and we'll mop out a lot of it.
368
917330
2000
ืื– ืงื•ื“ื ื›ืœ, ืื ื—ื ื• ื ื™ื›ื ืก ื•ื ื ื’ื‘ ื—ืœืง ื’ื“ื•ืœ ืžื”ืžื™ื.
15:19
And then we know that if we sprinkle Drano around the kitchen,
369
919330
3000
ืื—ืจ-ื›ืš, ืื ื• ื”ืจื™ ื™ื•ื“ืขื™ื ืฉืื ื ืฉืคืจื™ืฅ ืคื•ืชื—-ืกืชื™ืžื•ืช ื‘ืžื˜ื‘ื—,
15:22
that helps.
370
922330
3000
ื–ื” ืขื•ื–ืจ.
15:25
Whereas living room water,
371
925330
2000
ื‘ืขื•ื“ ืฉืขื‘ื•ืจ ืžื™-ืกืœื•ืŸ,
15:27
it's better to do tar on the roof."
372
927330
2000
ืขื“ื™ืฃ ืœืขืฉื•ืช ื–ื™ืคื•ืช ืขืœ ื”ื’ื’."
15:29
And it sounds silly,
373
929330
2000
ื•ื–ื” ื ืฉืžืข ื˜ืคืฉื™,
15:31
but that's basically what we do.
374
931330
2000
ืื‘ืœ ื‘ืขื™ืงืจื•ืŸ, ื–ื” ืžื” ืฉืื ื• ืขื•ืฉื™ื.
15:33
And I'm not saying you shouldn't mop up your water if you have cancer,
375
933330
3000
ื•ืื ื™ ืœื ืื•ืžืจ ืฉืืœ ืœื ื• ืœื ื’ื‘ ืžื™ื ืื ื™ืฉ ืœื ื• ืกืจื˜ืŸ.
15:36
but I'm saying that's not really the problem;
376
936330
3000
ืื‘ืœ ืื ื™ ืื•ืžืจ ืฉื–ื• ืœื ื”ื‘ืขื™ื” ื”ืืžื™ืชื™ืช;
15:39
that's the symptom of the problem.
377
939330
2000
ื–ื”ื• ืจืง ื”ืกื™ืžืคื˜ื•ื ืฉืœ ื”ื‘ืขื™ื”.
15:41
What we really need to get at
378
941330
2000
ืžื” ืฉื‘ืืžืช ืขืœื™ื ื• ืœื”ื’ื™ืข ืืœื™ื•
15:43
is the process that's going on,
379
943330
2000
ื”ื•ื ื”ืชื”ืœื™ืš ืฉืžืชืจื—ืฉ,
15:45
and that's happening at the level
380
945330
2000
ื•ื”ื•ื ืžืชืจื—ืฉ ื‘ืจืžืช
15:47
of the proteonomic actions,
381
947330
2000
ื”ืคืขื•ืœื•ืช ืฉืœ ืคืจื•ื˜ืื•ืžื™ืงื”,
15:49
happening at the level of why is your body not healing itself
382
949330
3000
ื”ืžืชืจื—ืฉื•ืช ื‘ืจืžื” ื”ื ื•ื’ืขืช ื‘ืฉืืœื” ืžื“ื•ืข ื’ื•ืคื ื• ืœื ืžืจืคื ืืช ืขืฆืžื•
15:52
in the way that it normally does?
383
952330
2000
ื‘ืื•ืคืŸ ืฉื”ื•ื ื‘ื“ืจืš-ื›ืœืœ ืขื•ืฉื”?
15:54
Because normally, your body is dealing with this problem all the time.
384
954330
3000
ืžืคื ื™ ืฉื‘ืžืฆื‘ ืจื’ื™ืœ ื’ื•ืคื ื• ื›ืŸ ืžืชืžื•ื“ื“ ืขื ื‘ืขื™ื” ื–ื• ื›ืœ ื”ื–ืžืŸ.
15:57
So your house is dealing with leaks all the time,
385
957330
3000
ื›ืš ื’ื ื‘ื™ืชื ื• ืžืชืžื•ื“ื“ ืขื ื ื–ื™ืœื•ืช ื›ืœ ื”ื–ืžืŸ.
16:00
but it's fixing them. It's draining them out and so on.
386
960330
4000
ืื‘ืœ ื”ื•ื ืžื˜ืคืœ ื‘ื”ืŸ. ื”ื•ื ืžื ืงื– ืื•ืชืŸ ื•ื›ื•'.
16:04
So what we need
387
964330
3000
ืื– ืžื” ืฉืื ื• ืฆืจื™ื›ื™ื
16:07
is to have a causative model
388
967330
4000
ืฉื™ื”ื™ื” ืœื ื• ืžื•ื“ืœ ืกื™ื‘ืชื™
16:11
of what's actually going on,
389
971330
2000
ืขืœ ืžื” ืฉืงื•ืจื” ื›ืืŸ.
16:13
and proteomics actually gives us
390
973330
3000
ื•ืคืจื•ื˜ืื•ืžื™ืงื” ื‘ืขืฆื ื ื•ืชื ืช ืœื ื•
16:16
the ability to build a model like that.
391
976330
3000
ืืช ื”ื™ื›ื•ืœืช ืœื‘ื ื•ืช ืžื•ื“ืœ ื›ื–ื”.
16:19
David got me invited
392
979330
2000
ื“ื™ื™ื•ื™ื“ ื”ืฆืœื™ื— ืœืกื“ืจ ืœื™ ื”ื–ืžื ื”
16:21
to give a talk at National Cancer Institute
393
981330
2000
ืœืžืชืŸ ื”ืจืฆืื” ื‘ืžื›ื•ืŸ ื”ืœืื•ืžื™ ืœืกืจื˜ืŸ
16:23
and Anna Barker was there.
394
983330
3000
ื•ืื ื” ื‘ืืจืงืจ ื”ื™ืชื” ืฉื.
16:27
And so I gave this talk
395
987330
2000
ื•ืื– ื ืชืชื™ ืืช ื”ื”ืจืฆืื”
16:29
and said, "Why don't you guys do this?"
396
989330
3000
ื•ืฉืืœืชื™, "ืžื“ื•ืข ืืชื ื‘ืขืฆืžื›ื ืœื ืขื•ืฉื™ื ื–ืืช?"
16:32
And Anna said,
397
992330
2000
ื•ืื ื” ืืžืจื”,
16:34
"Because nobody within cancer
398
994330
3000
"ืžืคื ื™ ืฉืืฃ ืื—ื“ ืžืชื—ื•ื ืฉืœ ื”ืกืจื˜ืŸ
16:37
would look at it this way.
399
997330
2000
ืœื ื™ืกืชื›ืœ ืขืœ ื–ื” ื›ืš.
16:39
But what we're going to do, is we're going to create a program
400
999330
3000
ืื‘ืœ ืžื” ืฉืื ื• ื”ื•ืœื›ื™ื ืœืขืฉื•ืช ื–ื” ืœื™ืฆื•ืจ ืชื•ื›ื ื™ืช
16:42
for people outside the field of cancer
401
1002330
2000
ืขื‘ื•ืจ ืื ืฉื™ื ืžื—ื•ืฅ ืœืชื—ื•ื ืฉืœ ืกืจื˜ืŸ
16:44
to get together with doctors
402
1004330
2000
ื•ืœืฉื‘ืช ื‘ื™ื—ื“ ืขื ืจื•ืคืื™ื
16:46
who really know about cancer
403
1006330
3000
ื”ืžืชืžืฆืื™ื ื”ื™ื˜ื‘ ื‘ืกืจื˜ืŸ
16:49
and work out different programs of research."
404
1009330
4000
ื•ืœื”ื›ื™ืŸ ืชื•ื›ื ื™ื•ืช ืžื—ืงืจ ืฉื•ื ื•ืช."
16:53
So David and I applied to this program
405
1013330
2000
ืื– ื“ื™ื™ื•ื™ื“ ื•ืื ื™ ื”ื’ืฉื ื• ื‘ืงืฉื” ืœืชื•ื›ื ื™ืช ื–ื•
16:55
and created a consortium
406
1015330
2000
ื•ื™ืฆืจื ื• ืื™ื—ื•ื“ ื—ื‘ืจื•ืช
16:57
at USC
407
1017330
2000
ื‘-USC
16:59
where we've got some of the best oncologists in the world
408
1019330
3000
ืฉืฉื ื™ืฉ ื›ืžื” ืžื”ืื•ื ืงื•ืœื•ื’ื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื
17:02
and some of the best biologists in the world,
409
1022330
3000
ื•ื›ืžื” ืžื”ื‘ื™ื•ืœื•ื’ื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื,
17:05
from Cold Spring Harbor,
410
1025330
2000
ืž-Cold Spring Harbor,
17:07
Stanford, Austin --
411
1027330
2000
ืกื˜ืื ืคื•ืจื“, ืื•ืกื˜ื™ืŸ --
17:09
I won't even go through and name all the places --
412
1029330
3000
ืœื ืืขื‘ื•ืจ ืขืœ ื›ืœ ื”ืฉืžื•ืช --
17:12
to have a research project
413
1032330
3000
ื›ื“ื™ ืœืงื™ื™ื ืžื™ื–ื ืžื—ืงืจ
17:15
that will last for five years
414
1035330
2000
ืฉื™ื™ืžืฉืš 5 ืฉื ื™ื
17:17
where we're really going to try to build a model of cancer like this.
415
1037330
3000
ืฉื‘ืžืกื’ืจืชื• ืื ื• ืžืžืฉ ื”ื•ืœื›ื™ื ืœื ืกื•ืช ื•ืœื‘ื ื•ืช ืžื•ื“ืœ ื›ื–ื” ืฉืœ ืกืจื˜ืŸ.
17:20
We're doing it in mice first,
416
1040330
2000
ืชื—ื™ืœื” ื ื ืกื” ืื•ืชื• ื‘ืขื›ื‘ืจื™ื.
17:22
and we will kill a lot of mice
417
1042330
2000
ื•ื ื’ืจื•ื ืœืžื•ืชื ืฉืœ ื”ืžื•ืŸ ืขื›ื‘ืจื™ื
17:24
in the process of doing this,
418
1044330
2000
ื‘ื‘ืฆืขื ื• ื–ืืช,
17:26
but they will die for a good cause.
419
1046330
2000
ืื‘ืœ ื”ื ื™ืžื•ืชื• ืœืžืขืŸ ืžื˜ืจื” ื˜ื•ื‘ื”.
17:28
And we will actually try to get to the point
420
1048330
3000
ื•ืื ื—ื ื• ื‘ื”ื—ืœื˜ ื ื ืกื” ืœื”ื’ื™ืข ืœื ืงื•ื“ื”
17:31
where we have a predictive model
421
1051330
2000
ื‘ื” ื™ืฉ ืœื ื• ืžื•ื“ืœ ื”ื™ื›ื•ืœ ืœื ื‘ื
17:33
where we can understand,
422
1053330
2000
ื•ืฉื‘ื• ื ื•ื›ืœ ืœื”ื‘ื™ืŸ,
17:35
when cancer happens,
423
1055330
2000
ืžืชื™ ืกืจื˜ืŸ ืงื•ืจื”,
17:37
what's actually happening in there
424
1057330
2000
ืžื” ื‘ืขืฆื ืงื•ืจื” ื‘ืชื•ื›ื•
17:39
and which treatment will treat that cancer.
425
1059330
3000
ื•ืื™ื–ื” ื˜ื™ืคื•ืœ ื™ื›ื•ืœ ืœื˜ืคืœ ื‘ืื•ืชื• ืกืจื˜ืŸ.
17:42
So let me just end with giving you a little picture
426
1062330
3000
ืื– ื‘ืจืฉื•ืชื›ื ืืกื™ื™ื ื‘ื›ืš ืฉืืชืŸ ืœื›ื ืชืžื•ื ื”
17:45
of what I think cancer treatment will be like in the future.
427
1065330
3000
ืฉืœ ืื™ืš ืœืคื™ ื“ืขืชื™ ื™ื™ืจืื” ื”ื˜ื™ืคื•ืœ ื”ืขืชื™ื“ื™ ื‘ืกืจื˜ืŸ.
17:48
So I think eventually,
428
1068330
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ,
17:50
once we have one of these models for people,
429
1070330
2000
ื‘ืจื’ืข ืฉื™ื”ื™ื” ื‘ื™ื“ื™ื ื• ืื—ื“ ื”ืžื•ื“ืœื™ื ื”ืœืœื• ื‘ืฉื‘ื™ืœ ืื ืฉื™ื,
17:52
which we'll get eventually --
430
1072330
2000
ืฉื ื’ื™ืข ืืœื™ื• ื‘ืกื•ืฃ --
17:54
I mean, our group won't get all the way there --
431
1074330
2000
ื›ื•ื•ื ืชื™, ืฉื”ืงื‘ื•ืฆื” ืฉืœื ื• ืœื ืชื’ื™ืข ืืœื™ื• ืžืžืฉ --
17:56
but eventually we'll have a very good computer model --
432
1076330
3000
ืื‘ืœ ื‘ืกื•ืฃ ื™ื”ื™ื” ืœื ื• ืžื•ื“ืœ ืžืžื•ื—ืฉื‘ ืžืฆื•ื™ื™ืŸ --
17:59
sort of like a global climate model for weather.
433
1079330
3000
ืžืฉื”ื• ื›ืžื• ืžื•ื“ืœ ื’ืœื•ื‘ืœื™ ืœืืงืœื™ื.
18:02
It has lots of different information
434
1082330
3000
ื™ื”ื™ื” ื‘ื• ื”ืžื•ืŸ ืžื™ื“ืข ืžื›ืœ ื”ืกื•ื’ื™ื
18:05
about what's the process going on in this proteomic conversation
435
1085330
3000
ืขืœ ืžื”ื• ื”ืชื”ืœื™ืš ื”ืžืชืจื—ืฉ ื‘ื“ื•-ืฉื™ื— ืฉืœ ื”ืคืจื•ื˜ืื•ืžื™ืงื”
18:08
on many different scales.
436
1088330
2000
ื‘ืจืžื•ืช ืจื‘ื•ืช ื•ืฉื•ื ื•ืช.
18:10
And so we will simulate
437
1090330
2000
ื•ื›ืš ื ืขืฉื” ื”ื“ืžื™ื”
18:12
in that model
438
1092330
2000
ื‘ืื•ืชื• ืžื•ื“ืœ
18:14
for your particular cancer --
439
1094330
3000
ื‘ืฉื‘ื™ืœ ืกืจื˜ืŸ ืžืกื•ื™ื™ื --
18:17
and this also will be for ALS,
440
1097330
2000
ื•ื–ื” ื™ื”ื™ื” ื’ื ื‘ืฉื‘ื™ืœ ALS,
18:19
or any kind of system neurodegenerative diseases,
441
1099330
3000
ืื• ื›ืœ ืกื•ื’ ืื—ืจ ืฉืœ ืžื—ืœื” ื”ื’ื•ืจืžืช ืœืคื’ื™ืขื” ื‘ืขืฆื‘ื™ื,
18:22
things like that --
442
1102330
2000
ื•ื“ื‘ืจื™ื ื“ื•ืžื™ื --
18:24
we will simulate
443
1104330
2000
ื ืขืฉื” ื”ื“ืžื™ื”
18:26
specifically you,
444
1106330
2000
ืฉืœื›ื ื‘ืื•ืคืŸ ืกืคืฆื™ืคื™,
18:28
not just a generic person,
445
1108330
2000
ืœื ืจืง ืฉืœ ื”ืื“ื ื›ื›ืœืœ,
18:30
but what's actually going on inside you.
446
1110330
2000
ืืœื ืฉืœ ืžื” ืฉื‘ืขืฆื ืžืชืจื—ืฉ ื‘ืชื•ื›ื›ื.
18:32
And in that simulation, what we could do
447
1112330
2000
ื•ื‘ืื•ืชื” ื”ื“ืžื™ื”, ืžื” ืฉื ื•ื›ืœ ืœืขืฉื•ืช
18:34
is design for you specifically
448
1114330
2000
ื–ื” ืœืชื›ื ืŸ ืขื‘ื•ืจื›ื ืกืคืฆื™ืคื™ืช
18:36
a sequence of treatments,
449
1116330
2000
ืจืฆืฃ ืฉืœ ื˜ื™ืคื•ืœื™ื,
18:38
and it might be very gentle treatments, very small amounts of drugs.
450
1118330
3000
ื•ืืœื” ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื˜ื™ืคื•ืœื™ื ืžืื•ื“ ืขื“ื™ื ื™ื, ื›ืžื•ื™ื•ืช ืžืื•ื“ ืงื˜ื ื•ืช ืฉืœ ืชืจื•ืคื•ืช.
18:41
It might be things like, don't eat that day,
451
1121330
3000
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ื“ื‘ืจื™ื ื›ืžื•, ืืœ ืชืื›ืœ ื”ื™ื•ื ืืช ื–ื”,
18:44
or give them a little chemotherapy,
452
1124330
2000
ืื• ืœืชืช ืœื”ื ื˜ื™ืคื•ืœ ื›ื™ืžื•ืชืจืคื™ ืงื˜ืŸ,
18:46
maybe a little radiation.
453
1126330
2000
ืื•ืœื™ ืงืฆืช ืงืจื™ื ื”.
18:48
Of course, we'll do surgery sometimes and so on.
454
1128330
3000
ื›ืžื•ื‘ืŸ ืฉื ื‘ืฆืข ืœืคืขืžื™ื ื ื™ืชื•ื— ืงื˜ืŸ ื•ื›ืš ื”ืœืื”.
18:51
But design a program of treatments specifically for you
455
1131330
3000
ืื‘ืœ ื ื‘ื ื” ืชื•ื›ื ื™ืช ื˜ื™ืคื•ืœื™ื ื‘ืžื™ื•ื—ื“ ื‘ืฉื‘ื™ืœืš
18:54
and help your body
456
1134330
3000
ื•ื ืกื™ื™ืข ืœื’ื•ืคืš
18:57
guide back to health --
457
1137330
3000
ืœืžืฆื•ื ืืช ื”ื“ืจืš ื‘ื—ื–ืจื” ืœื‘ืจื™ืื•ืช --
19:00
guide your body back to health.
458
1140330
2000
ืœื”ื“ืจื™ืš ืืช ื’ื•ืคืš ื‘ื“ืจื›ื• ื—ื–ืจื” ืœื‘ืจื™ืื•ืช.
19:02
Because your body will do most of the work of fixing it
459
1142330
4000
ืžืคื ื™ ืฉื’ื•ืคืš ื™ืขืฉื” ืืช ืžื™ืจื‘ ื”ืขื‘ื•ื“ื” ื‘ืชื™ืงื•ืŸ ืขืฆืžื•
19:06
if we just sort of prop it up in the ways that are wrong.
460
1146330
3000
ืื ืื ื• ืจืง ื ืฉืžืฉ ืœื• ืžืฉืขื ืช ื‘ื“ืจื›ื™ื ืฉื”ืŸ ืฉื’ื•ื™ื•ืช.
19:09
We put it in the equivalent of splints.
461
1149330
2000
ื ื›ื ื™ืก ืžืฉื”ื• ื“ืžื•ื™ ืœื•ื—-ืงื™ื‘ื•ืข.
19:11
And so your body basically has lots and lots of mechanisms
462
1151330
2000
ื‘ืขื™ืงืจื•ืŸ ื‘ื’ื•ืคื ื• ื™ืฉ ื”ืžื•ืŸ ืžื ื’ื ื•ื ื™ื
19:13
for fixing cancer,
463
1153330
2000
ืœืชื™ืงื•ืŸ ืกืจื˜ืŸ,
19:15
and we just have to prop those up in the right way
464
1155330
3000
ื•ืื ื• ืจืง ืฆืจื™ื›ื™ื ืœืชืžื•ืš ื‘ื’ื•ืคื ื• ื•ืœื›ื•ื•ืŸ ืื•ืชื• ืœื“ืจืš ื”ื ื›ื•ื ื”
19:18
and get them to do the job.
465
1158330
2000
ื•ืœื’ืจื•ื ืœื• ืœืขืฉื•ืช ืืช ื”ืขื‘ื•ื“ื”.
19:20
And so I believe that this will be the way
466
1160330
2000
ื•ืœื›ืŸ ืื ื™ ืžืืžื™ืŸ ืฉื–ื• ืชื”ื™ื” ื”ื“ืจืš
19:22
that cancer will be treated in the future.
467
1162330
2000
ื‘ื” ื™ื˜ืคืœื• ื‘ืกืจื˜ืŸ ื‘ืขืชื™ื“.
19:24
It's going to require a lot of work,
468
1164330
2000
ืชื™ื“ืจืฉ ืขื“ื™ื™ืŸ ืขื‘ื•ื“ื” ืจื‘ื”,
19:26
a lot of research.
469
1166330
2000
ื”ืžื•ืŸ ืžื—ืงืจ.
19:28
There will be many teams like our team
470
1168330
3000
ืชื”ื™ื™ื ื” ื”ืจื‘ื” ืงื‘ื•ืฆื•ืช ื›ืžื• ืฉืœื ื•
19:31
that work on this.
471
1171330
2000
ืฉืชืขื‘ื•ื“ื ื” ืขืœ ื–ื”.
19:33
But I think eventually,
472
1173330
2000
ืื‘ืœ ืื ื™ ืกื‘ื•ืจ ืฉื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ,
19:35
we will design for everybody
473
1175330
2000
ืื ื• ื ื‘ื ื” ืขื‘ื•ืจ ื›ืœ ืื—ื“
19:37
a custom treatment for cancer.
474
1177330
4000
ื˜ื™ืคื•ืœ ื‘ืกืจื˜ืŸ ื”ืชืคื•ืจ ืขื‘ื•ืจื•.
19:41
So thank you very much.
475
1181330
2000
ืื– ืชื•ื“ื” ืจื‘ื” ืœื›ื.
19:43
(Applause)
476
1183330
6000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7