Can you solve the demon dance party riddle? - Edwin Meyer

1,705,750 views ・ 2021-02-23

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Teresa Chen 校对人员: Helen Chang
00:07
Once each year, thousands of logicians descend into the desert for Learning Man,
0
7038
5833
每年一度,成千上万的逻辑学家 在沙漠中参加“ 学习者” 活动,
00:12
a week-long event they attend to share their ideas,
1
12871
3250
一个为期一周的活动, 参加以分享他们的想法,
00:16
think through tough problems... and mostly to party.
2
16121
3667
思考棘手的问题... 以及主要为了聚会。
00:19
And at the center of that gathering is the world’s most exclusive club,
3
19788
4250
而这个聚会的中心 是世界上最独特的俱乐部。
00:24
where under the full moon, the annual logician’s rave takes place.
4
24038
4458
满月的时候,一年一度的 逻辑学家狂欢在这里举行。
00:28
The entry is guarded by the Demon of Reason,
5
28496
3500
入口由 “理性之魔” 把守,
00:31
and the only way to get in is to solve one of his dastardly challenges.
6
31996
4875
进入的唯一方法 是解决他的一个卑鄙的挑战。
00:36
You’re attending with 23 of your closest logician friends,
7
36871
4125
你和你最亲密的23位 逻辑学家朋友一起参加,
00:40
but you got lost on the way to the rave and arrived late.
8
40996
3916
但你在去的路上迷路而迟到了。
00:44
They're already inside, so you must face down the demon alone.
9
44912
4459
他们已经在里面了, 所以你必须独自面对这个恶魔。
00:49
He poses you the following question:
10
49371
2166
他向你提出了如下问题:
00:52
When your friends arrived, the demon put masks on their faces
11
52079
3917
当你的朋友到达时, 恶魔给他们的脸上都戴了面具
00:55
and forbade them from communicating in any way.
12
55996
3541
并禁止他们以任何方式进行交流。
00:59
No one at any point could see their own masks,
13
59537
3709
没有人在任何时候 可以看到自己的面具,
01:03
but they stood in a circle where they could see everyone else’s.
14
63246
4292
但他们站成一个圈子, 可以看到所有其他人的面具。
01:07
The demon told the logicians that he distributed the masks in such a way
15
67538
4958
恶魔告诉逻辑学家们 以他分配面具的方式
01:12
that each person would eventually be able to figure out their mask’s color
16
72496
4792
每个人最终都能找出自己面具的颜色
01:17
using logic alone.
17
77288
2500
且只使用逻辑。
01:19
Then, once every two minutes, he rang a bell.
18
79788
3916
然后,每隔两分钟,他按一下铃。
01:23
At that point, anyone who could come to him
19
83704
2584
到时候,任何能来找他
01:26
and tell him the color of their mask would be admitted.
20
86288
2958
并告诉恶魔自己面具颜色的人 都会被接纳。
01:29
Here’s what happened:
21
89954
1500
这是发生的情况:
01:31
Four logicians got in at the first bell.
22
91454
3042
四位逻辑学家 在第一次铃响时就进了场。
01:34
Some number of logicians, all in red masks, got in at the second bell.
23
94496
5250
一些都戴着红色面具的逻辑学家, 在第二次铃响时进入了。
01:40
Nobody got in when the third bell rang.
24
100163
2458
第三次铃响时,无人进入。
01:43
Logicians wearing at least two different colors got in at the fourth bell.
25
103079
5292
至少两种不同颜色面具的逻辑学家们 在第四次铃响时进入了。
01:48
All 23 of your friends played the game perfectly logically
26
108371
4000
你所有的23位朋友 都完全符合逻辑地进行了游戏
01:52
and eventually got inside.
27
112371
1917
并最终进入了里面。
01:54
Your challenge, the demon explains,
28
114871
2250
你的挑战,恶魔解释道,
01:57
is to tell him how many people gained entry when the fifth bell rang.
29
117121
5083
是要告诉他 第五次铃响时有多少人进入。
02:02
Can you get into the rave?
30
122788
1875
你能进入狂欢吗?
02:05
Pause here to figure it out yourself.
31
125746
1125
在此暂停,自己想办法。
02:06
Answer in 3
32
126871
1125
答案三秒后揭晓
02:07
Answer in 2
33
127996
2500
答案两秒后揭晓
02:10
Answer in 1
34
130496
2208
答案一秒后揭晓
02:12
It’s initially difficult to imagine how anyone could,
35
132829
3417
起初很难想象任何人能够
02:16
using just logic and the colors they see on the other masks,
36
136246
3917
仅凭逻辑和他们在 别人面具上看到的颜色,
02:20
deduce their own mask color.
37
140163
2000
推断出自己的面具颜色。
02:22
But even before the first bell, everyone will realize something critical.
38
142163
4666
但在第一次铃响前, 每个人就会意识到一些关键的问题。
02:27
Let’s imagine a single logician with a silver mask.
39
147996
3625
让我们想象一下, 一个独自戴着银色面具的逻辑学家。
02:31
When she looks around, she’d see multiple colors, but no silver.
40
151621
4333
当她环顾四周时, 她会看到多种颜色,但没有银色。
02:35
So she couldn’t ever know that silver is an option,
41
155954
3709
所以她永远不可能知道 银色是一个选项,
02:39
making it impossible for her to logically deduce that she must be silver.
42
159663
4916
使她不可能在逻辑上 推断出她一定是银色的。
02:45
That contradicts rule five, so there must be at least two masks of each color.
43
165246
5958
这与第五条规则冲突, 所以每种颜色至少有两个面具。
02:51
Now, let’s think about what happens
44
171204
2000
现在,让我们思考一下
02:53
when there are exactly two people wearing the same color mask.
45
173204
4292
当两个人戴着同一颜色的面具时 会发生什么。
02:57
Each of them sees only one mask of that color.
46
177496
3500
他们每人只能看到 该颜色的一个面具。
03:00
But because they already know that it can’t be the only one,
47
180996
3750
但因为他们已经知道 该颜色的面具不可能是唯一。
03:04
they immediately know that their own mask is the other.
48
184746
3542
他们会立即知道, 自己的面具就是另一个。
03:09
This must be what happened before the first bell:
49
189288
2875
这一定发生在第一次铃响前:
03:12
two pairs of logicians each realized their own mask colors
50
192163
4458
两对逻辑学家各自意识到了 他们自己的面具颜色
03:16
when they saw a unique color in the room.
51
196621
2917
当他们在场上看到一种独特的颜色时。
03:19
What happens if there are three people wearing the same color?
52
199538
3583
那如果是三个人 戴着相同颜色的面具呢?
03:23
Each of them—A, B and C— sees two people with that color.
53
203121
4542
他们中的每个人—A、B和C— 都看到了该颜色面具的两个人。
03:27
From A’s perspective, B and C would be expected to behave the same way
54
207663
4875
从A的角度来看,B和C 会预计做出同样的行为
03:32
that the orange and purple pairs did, leaving at the first bell.
55
212538
3708
如橙色和紫色的两对一样, 在第一次铃响时离开。
03:36
When that doesn’t happen,
56
216746
1583
当该情况没有发生时,
03:38
each of the three realizes that they are the third person with that color,
57
218329
4334
三人都会各自意识到 他们是第三个有该颜色的人。
03:42
and all three leave at the next bell.
58
222663
2541
然后三人都会在下次铃响时离开。
03:45
That was what the people with red masks did—
59
225621
2667
这就是那些 戴着红色面具的人做的——
03:48
so there must have been three of them.
60
228288
2541
所以他们肯定有三个人。
03:50
We’ve now established a basis for inductive reasoning.
61
230829
3625
我们现在已经建立了一个 归纳推理的基础。
03:54
Induction is where we can solve the simplest case,
62
234496
3417
归纳法是 我们可以解决最简单的情况,
03:57
then find a pattern that will allow the same reasoning
63
237913
3166
然后找到一个模式 进行同样的推理
04:01
to apply to successively larger sets.
64
241079
3042
以适用于接下来的更大集合。
04:04
The pattern here is that everyone will know what group they’re in
65
244121
3708
这里的模式是 每个人都会知道自己在哪个组中,
04:07
as soon as the previously sized group has the opportunity to leave.
66
247829
4459
一旦前一个规模的组别 有机会离开。
04:12
After the second bell, there were 16 people.
67
252579
2875
第二次铃响过后, 剩16人。
04:15
No one left on the third bell,
68
255454
1792
第三次铃响时无人离开,
04:17
so everyone then knew there weren’t any groups of four.
69
257246
3792
所以大家都会知道 没有任何四人的组别。
04:21
Multiple groups, which must have been of five,
70
261038
3125
几个组别,一定是五人的,
04:24
left on the fourth bell.
71
264163
2083
在第四次铃响时离开。
04:26
Three groups would leave a solitary mask wearer,
72
266246
3167
若是三组五个人, 将留下单独戴面具的一人,
04:29
which isn’t possible, so it must’ve been two groups.
73
269413
3666
这是不可能的, 所以一定是两组。
04:33
And that leaves six logicians outside when the fifth bell rings:
74
273079
4459
那么在第五次铃响时, 会剩下六位逻辑学家:
04:37
the answer to the demon’s riddle.
75
277538
2375
便是恶魔谜题的答案。
04:39
Nothing left to do but join your friends and dance.
76
279913
3625
没有其他要做的了 加入你的朋友跳舞吧。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7