Why are manhole covers round? - Marc Chamberland

Zašto su poklopci šahtova okrugli? - Mark Čemberlend (Marc Chamberland)

650,761 views

2015-04-13 ・ TED-Ed


New videos

Why are manhole covers round? - Marc Chamberland

Zašto su poklopci šahtova okrugli? - Mark Čemberlend (Marc Chamberland)

650,761 views ・ 2015-04-13

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Mile Živković Lektor: Anja Saric
00:07
Why are most manhole covers round?
0
7022
3696
Zašto je većina šahtova okruglo?
00:10
Sure, it makes them easy to roll and slide into place in any alignment
1
10718
4331
Naravno da ih je lakše kotrljati i postaviti u bilo koji položaj
00:15
but there's another more compelling reason
2
15049
2736
ali postoji i ubedljiviji razlog
00:17
involving a peculiar geometric property of circles and other shapes.
3
17785
5345
koji ima veze sa posebnim geometrijskim svojstvom krugova i drugih oblika.
00:23
Imagine a square separating two parallel lines.
4
23130
3729
Zamislite kvadrat koji deli dve paralelne linije.
00:26
As it rotates, the lines first push apart, then come back together.
5
26859
5046
Dok se rotira, linije se prvo razdvajaju a onda se spajaju.
00:31
But try this with a circle
6
31905
1674
Ali pokušajte ovo sa krugom
00:33
and the lines stay exactly the same distance apart,
7
33579
3463
i linije će ostati na istoj razdaljini,
00:37
the diameter of the circle.
8
37042
1995
na prečniku kruga.
00:39
This makes the circle unlike the square,
9
39037
2575
Zbog ovoga krug ne liči na kvadrat,
00:41
a mathematical shape called a curve of constant width.
10
41612
5076
i to je matematički oblik koji se naziva krivom konstantne širine.
00:46
Another shape with this property is the Reuleaux triangle.
11
46688
3532
Ovo svojstvo ima i Roloov trougao.
00:50
To create one, start with an equilateral triangle,
12
50220
3089
Kako bi ga stvorili, počinjemo sa jednakostraničnim trouglom,
00:53
then make one of the vertices the center of a circle that touches the other two.
13
53309
5470
onda jedno od temena postavimo za centar kruga koji dotiče druga dva.
00:58
Draw two more circles in the same way, centered on the other two vertices,
14
58779
4807
Na isti način nacrtamo još dva kruga, sa centrom na druga dva temena,
01:03
and there it is, in the space where they all overlap.
15
63586
4118
i eto ga, u prostoru gde se preklapaju.
01:07
Because Reuleaux triangles can rotate between parallel lines
16
67704
3760
Kako Roloovi trouglovi mogu da se rotiraju između paralelnih linija
01:11
without changing their distance,
17
71464
2119
bez menjanja odstojanja,
01:13
they can work as wheels, provided a little creative engineering.
18
73583
4752
mogu da funkcionišu kao točkovi, uz malo kreativnog inženjerstva.
01:18
And if you rotate one while rolling its midpoint in a nearly circular path,
19
78335
4832
A ako jedan od njih okrenete na središtu u skoro kružnoj putanji,
01:23
its perimeter traces out a square with rounded corners,
20
83167
4843
njegov obim ocrtaće kvadrat sa zaobljenim ćoškovima,
01:28
allowing triangular drill bits to carve out square holes.
21
88010
4502
čime se omogućava trouglastim burgijama da izbuše rupe u obliku kvadrata.
01:32
Any polygon with an odd number of sides
22
92512
2474
Bilo koji mnogougao sa neparnim brojem strana
01:34
can be used to generate a curve of constant width
23
94986
3532
može se iskoristiti da se dobije kriva konstantne širine
01:38
using the same method we applied earlier,
24
98518
2697
koristeći isti metod od ranije,
01:41
though there are many others that aren't made in this way.
25
101215
3592
iako ima mnogo onih koji nisu urađeni na ovaj način.
01:44
For example, if you roll any curve of constant width around another,
26
104807
4985
Na primer, ako bilo koju krivu konstante okrenete oko ćoška,
01:49
you'll make a third one.
27
109792
1864
napravićete treću.
01:51
This collection of pointy curves fascinates mathematicians.
28
111656
4341
Ovaj zbir šiljatih kriva fascinira matematičare.
01:55
They've given us Barbier's theorem,
29
115997
1830
Dali su nam Barbijeovu teoremu,
01:57
which says that the perimeter of any curve of constant width,
30
117827
3403
koja kaže da je obim svake krive konstantne širine,
02:01
not just a circle, equals pi times the diameter.
31
121230
4400
ne samo kruga, jednak pi puta prečniku.
02:05
Another theorem tells us that if you had a bunch of curves of constant width
32
125630
4047
Druga teorema nam kaže da ako bismo imali gomilu kriva konstantne širine
02:09
with the same width,
33
129677
1860
sa istom širinom,
02:11
they would all have the same perimeter,
34
131537
2225
one bi sve imale isti obim,
02:13
but the Reuleaux triangle would have the smallest area.
35
133762
3884
ali Roloov trougao bi imao najmanju površinu.
02:17
The circle, which is effectively a Reuleaux polygon
36
137646
3180
Krug, koji je efektivno Roloov mnogougao,
02:20
with an infinite number of sides, has the largest.
37
140826
3530
sa beskonačnim brojem strana, ima najveću površinu.
02:24
In three dimensions, we can make surfaces of constant width,
38
144356
4439
U tri dimenzije, možemo napraviti površine konstatne širine,
02:28
like the Reuleaux tetrahedron,
39
148795
1891
poput Roloovog tetraedra,
02:30
formed by taking a tetrahedron,
40
150686
2029
koji se dobija tako što se uzme tetraedar
02:32
expanding a sphere from each vertex until it touches the opposite vertices,
41
152715
5238
i proširi sfera od svakog temena dok ne dotakne suprotno teme
02:37
and throwing everything away except the region where they overlap.
42
157953
5017
i odbaci sve osim područja gde se poklapaju.
02:42
Surfaces of constant width
43
162970
1702
Površine konstantne širine
02:44
maintain a constant distance between two parallel planes.
44
164672
4367
održavaju konstantnu udaljenost između dve paralelne ravni.
02:49
So you could throw a bunch of Reuleaux tetrahedra on the floor,
45
169039
3338
Tako biste mogli da bacite hrpu Roloovih tetraedara na pod
02:52
and slide a board across them as smoothly as if they were marbles.
46
172377
5237
i preko njih prevučete dasku glatko kao da su od klikera.
02:57
Now back to manhole covers.
47
177614
2829
Sada da se vratimo na šahtove.
03:00
A square manhole cover's short edge
48
180443
2305
Kratka ivica kvadratnog šahta
03:02
could line up with the wider part of the hole and fall right in.
49
182748
4563
mogla bi da se poravna sa širim delom rupe i šaht bi upao.
03:07
But a curve of constant width won't fall in any orientation.
50
187311
4794
Ali kriva konstantne širine neće pasti ni u kom položaju.
03:12
Usually they're circular, but keep your eyes open,
51
192105
2698
Obično su okrugli, ali obratite pažnju,
03:14
and you just might come across a Reuleaux triangle manhole.
52
194803
4270
i možda naletite na šaht oblika Roloovog trougla.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7