Why are manhole covers round? - Marc Chamberland

为什么井盖是圆的?- Marc Chamberland

650,532 views ・ 2015-04-13

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Cissy Yun 校对人员: Jenny Yang
00:07
Why are most manhole covers round?
0
7022
3696
为什么大多数井盖是圆的?
00:10
Sure, it makes them easy to roll and slide into place in any alignment
1
10718
4331
当然,这使它们容易滚动和滑入任何对齐的位置;
00:15
but there's another more compelling reason
2
15049
2736
但是还有其它的更令人信服的原因
00:17
involving a peculiar geometric property of circles and other shapes.
3
17785
5345
涉及圆和其他形状的一种特殊的几何属性
想象一个正方形分开两条平行线,
00:23
Imagine a square separating two parallel lines.
4
23130
3729
00:26
As it rotates, the lines first push apart, then come back together.
5
26859
5046
当它旋转时,线先是推动分开,然后复位
00:31
But try this with a circle
6
31905
1674
但是用圆来做尝试
00:33
and the lines stay exactly the same distance apart,
7
33579
3463
线间保持完全相同的距离
00:37
the diameter of the circle.
8
37042
1995
--为圆的直径
00:39
This makes the circle unlike the square,
9
39037
2575
这使得圆不同于正方形,
00:41
a mathematical shape called a curve of constant width.
10
41612
5076
是一种称作定宽曲线的数学形态
00:46
Another shape with this property is the Reuleaux triangle.
11
46688
3532
另外一种拥有此性质的形状是鲁洛三角形
00:50
To create one, start with an equilateral triangle,
12
50220
3089
第一步创建一个等边三角形,
00:53
then make one of the vertices the center of a circle that touches the other two.
13
53309
5470
然后以其中一个顶点为圆心,过其余两个顶点作圆
00:58
Draw two more circles in the same way, centered on the other two vertices,
14
58779
4807
分别以其余两个顶点为圆心,按同样的方式作出另外的两个圆,
01:03
and there it is, in the space where they all overlap.
15
63586
4118
它们的重叠区域为鲁洛三角
01:07
Because Reuleaux triangles can rotate between parallel lines
16
67704
3760
因为鲁洛三角形可以在平行线间旋转,
01:11
without changing their distance,
17
71464
2119
且不改变线的间距,
01:13
they can work as wheels, provided a little creative engineering.
18
73583
4752
它们可以作为轮子,只要一点创造性的工程
01:18
And if you rotate one while rolling its midpoint in a nearly circular path,
19
78335
4832
如果你旋转它同时使它的中心在一个近圆形的路径上转动,
01:23
its perimeter traces out a square with rounded corners,
20
83167
4843
它的周界轨迹为一个圆角正方形,
01:28
allowing triangular drill bits to carve out square holes.
21
88010
4502
这使三角形的钻头能够剜出方形的孔
01:32
Any polygon with an odd number of sides
22
92512
2474
任何有奇数条边的多边形
01:34
can be used to generate a curve of constant width
23
94986
3532
都可以被用来生成等定宽曲线,
01:38
using the same method we applied earlier,
24
98518
2697
使用与我们之前应用的同样的方法
01:41
though there are many others that aren't made in this way.
25
101215
3592
不过,还有其他的一些(定宽曲线)并不是用这种方式生成的
01:44
For example, if you roll any curve of constant width around another,
26
104807
4985
例如,如果你使任一定宽曲线绕另一定宽曲线转动,
01:49
you'll make a third one.
27
109792
1864
你将生成第三个定宽曲线
01:51
This collection of pointy curves fascinates mathematicians.
28
111656
4341
这组有尖头的曲线使数学家着迷
01:55
They've given us Barbier's theorem,
29
115997
1830
他们给出了巴比尔定理,
01:57
which says that the perimeter of any curve of constant width,
30
117827
3403
-- 任何定宽曲线的周长,
02:01
not just a circle, equals pi times the diameter.
31
121230
4400
不仅仅是圆,等于 π * 直径。
02:05
Another theorem tells us that if you had a bunch of curves of constant width
32
125630
4047
另外一个定理告诉我们:如果你有一群定宽曲线,
02:09
with the same width,
33
129677
1860
宽度相同,
02:11
they would all have the same perimeter,
34
131537
2225
他们会有同样的周长,
02:13
but the Reuleaux triangle would have the smallest area.
35
133762
3884
但是鲁洛三角形会有最小的面积;
02:17
The circle, which is effectively a Reuleaux polygon
36
137646
3180
圆是一个有效的鲁洛正多边形,
02:20
with an infinite number of sides, has the largest.
37
140826
3530
有无数条的边,有最大的面积
02:24
In three dimensions, we can make surfaces of constant width,
38
144356
4439
在三维空间,我们可以生成定宽面,
02:28
like the Reuleaux tetrahedron,
39
148795
1891
比如鲁洛四面体,
02:30
formed by taking a tetrahedron,
40
150686
2029
由把一个四面体,
02:32
expanding a sphere from each vertex until it touches the opposite vertices,
41
152715
5238
分别从每个顶点扩展一个触及相对顶点的球面,
02:37
and throwing everything away except the region where they overlap.
42
157953
5017
去除重叠部位以外的区域。
02:42
Surfaces of constant width
43
162970
1702
定宽面
02:44
maintain a constant distance between two parallel planes.
44
164672
4367
使两平面间保持恒定的距离
02:49
So you could throw a bunch of Reuleaux tetrahedra on the floor,
45
169039
3338
所以你可以在地上扔一堆鲁洛四面体,
02:52
and slide a board across them as smoothly as if they were marbles.
46
172377
5237
就像它们是弹珠一样平滑地滑板通过它们
02:57
Now back to manhole covers.
47
177614
2829
现在回到井盖
03:00
A square manhole cover's short edge
48
180443
2305
方形井盖的短边
03:02
could line up with the wider part of the hole and fall right in.
49
182748
4563
会与洞孔较宽的部分对齐,掉进去
03:07
But a curve of constant width won't fall in any orientation.
50
187311
4794
但定宽曲线(该形状的井盖)不会从任何方向掉进去
03:12
Usually they're circular, but keep your eyes open,
51
192105
2698
它们通常是圆形的,但是留意身边,
03:14
and you just might come across a Reuleaux triangle manhole.
52
194803
4270
你可能会无意中发现一个鲁洛三角形的检修孔
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7