Why are manhole covers round? - Marc Chamberland

651,128 views ใƒป 2015-04-13

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Tal Dekkers
00:07
Why are most manhole covers round?
0
7022
3696
ืœืžื” ืจื•ื‘ ืžื›ืกื™ ื”ื‘ื•ืจื•ืช ืขื’ื•ืœื™ื?
00:10
Sure, it makes them easy to roll and slide into place in any alignment
1
10718
4331
ื‘ืจื•ืจ, ื–ื” ืžืงืœ ืขืœ ื”ื’ืœื’ื•ืœ ืฉืœื”ื ื•ืœื”ื—ืœื™ืง ืื•ืชื ืœืžืงื•ื ืžื™ื•ืฉืจื™ื
00:15
but there's another more compelling reason
2
15049
2736
ืื‘ืœ ื™ืฉื ื” ืกื™ื‘ื” ื™ื•ืชืจ ืžื•ืฉื›ืช
00:17
involving a peculiar geometric property of circles and other shapes.
3
17785
5345
ืฉื›ื•ืœืœืช ืชื›ื•ื ื” ื’ืื•ืžื˜ืจื™ืช ืžืขื ื™ื™ื ืช ืฉืœ ืžืขื’ืœื™ื ื•ืฆื•ืจื•ืช ืื—ืจื•ืช.
00:23
Imagine a square separating two parallel lines.
4
23130
3729
ื“ืžื™ื™ื ื• ืžืจื•ื‘ืข ืฉืžืคืจื™ื“ ืฉื ื™ ืงื•ื™ื ืžืงื‘ื™ืœื™ื.
00:26
As it rotates, the lines first push apart, then come back together.
5
26859
5046
ื›ืฉื”ื•ื ืžืกืชื•ื‘ื‘, ื”ืงื•ื•ื™ื ืจืืฉื™ืช ื ื“ื—ืคื™ื, ื•ืื– ืžืชืงืจื‘ื™ื.
00:31
But try this with a circle
6
31905
1674
ืื‘ืœ ื ืกื• ื–ืืช ืขื ื”ืขื™ื’ื•ืœ
00:33
and the lines stay exactly the same distance apart,
7
33579
3463
ื•ื”ืงื•ื•ื™ื ื ืฉืืจื™ื ื‘ื“ื™ื•ืง ื‘ืื•ืชื• ืžืจื—ืง,
00:37
the diameter of the circle.
8
37042
1995
ื”ืงื•ื˜ืจ ืฉืœ ื”ืขื™ื’ื•ืœ.
00:39
This makes the circle unlike the square,
9
39037
2575
ื–ื” ืขื•ืฉื” ืืช ื”ืขื™ื’ื•ืœ ื‘ืฉื•ื ื” ืžื”ืจื™ื‘ื•ืข,
00:41
a mathematical shape called a curve of constant width.
10
41612
5076
ืฆื•ืจื” ืžืชืžื˜ื™ืช ืฉื ืงืจืืช ืขืงื•ืžื” ืฉืœ ืจื•ื—ื‘ ืงื‘ื•ืข.
00:46
Another shape with this property is the Reuleaux triangle.
11
46688
3532
ืฆื•ืจื” ื ื•ืกืคืช ืขื ื”ืชื›ื•ื ื” ื”ื–ื• ื”ื™ื ืžืฉื•ืœืฉ ื”ืจืื•ืœื™ืื•.
00:50
To create one, start with an equilateral triangle,
12
50220
3089
ื›ื“ื™ ืœื™ืฆื•ืจ ืื—ื“, ื”ืชื—ื™ืœื• ืขื ืžืฉื•ืœืฉ ืฉื•ื•ื” ืฆืœืขื•ืช,
00:53
then make one of the vertices the center of a circle that touches the other two.
13
53309
5470
ืื– ื”ืคื›ื• ืื—ืช ื”ืฆืœืขื•ืช ืœืžืจื›ื– ืžืขื’ืœ ืฉื ื•ื’ืข ื‘ืื—ืจื™ื.
00:58
Draw two more circles in the same way, centered on the other two vertices,
14
58779
4807
ืฆื™ื™ืจื• ืขื•ื“ ืฉื ื™ ืขื™ื’ื•ืœื™ื ื‘ืื•ืชื” ื“ืจืš, ืžืžื•ืจื›ื–ื™ื ืขืœ ืฉืชื™ ื”ืฆืœืขื•ืช ื”ืื—ืจื•ืช,
01:03
and there it is, in the space where they all overlap.
15
63586
4118
ื•ื”ื ื” ื”ื•ื, ื‘ืจื•ื•ื— ื‘ื• ื›ื•ืœื ื—ื•ืคืคื™ื.
01:07
Because Reuleaux triangles can rotate between parallel lines
16
67704
3760
ืžืคื ื™ ืฉืžืฉื•ืœืฉื™ ืจืื•ืœื™ืื• ื™ื›ื•ืœื™ื ืœื”ืกืชื•ื‘ื‘ ื‘ื™ืŸ ืงื•ื™ื ืžืงื‘ื™ืœื™ื
01:11
without changing their distance,
17
71464
2119
ื‘ืœื™ ืœืฉื ื•ืช ืืช ื”ืžืจื—ืง ื‘ื™ื ื”ื,
01:13
they can work as wheels, provided a little creative engineering.
18
73583
4752
ื”ื ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ื›ื’ืœื’ืœื™ื, ื‘ื”ื ืชืŸ ืžืขื˜ ื”ื ื“ืกื” ื™ืฆื™ืจืชื™ืช.
01:18
And if you rotate one while rolling its midpoint in a nearly circular path,
19
78335
4832
ื•ืื ืืชื ืžืกื•ื‘ื‘ื™ื ืื—ื“ ื‘ื–ืžืŸ ืฉืืชื ืžื’ืœื’ืœื™ื ืืช ื ืงื•ื“ืช ื”ืืžืฆืข ืฉืœื• ื‘ื ืชื™ื‘ ื›ืžืขื˜ ืžืขื’ืœื™,
01:23
its perimeter traces out a square with rounded corners,
20
83167
4843
ื”ืงืฆื” ืฉืœื• ืžืชื•ื•ื” ืจื™ื‘ื•ืข ืขื ืคื™ื ื•ืช ืžืขื•ื’ืœื•ืช,
01:28
allowing triangular drill bits to carve out square holes.
21
88010
4502
ืžื” ืฉืžืืคืฉืจ ืœืจืืฉื™ ืžืงื“ื— ืžืฉื•ืœืฉื™ื ืœืงื“ื•ื— ื—ื•ืจื™ื ืžืจื•ื‘ืขื™ื.
01:32
Any polygon with an odd number of sides
22
92512
2474
ื›ืœ ืคื•ืœื™ื’ื•ืŸ ืขื ืžืกืคืจ ืื™ ื–ื•ื’ื™ ืฉืœ ืคืื•ืช
01:34
can be used to generate a curve of constant width
23
94986
3532
ื™ื›ื•ืœ ืœื”ื™ื•ืช ื‘ืฉื™ืžื•ืฉ ื›ื“ื™ ืœื™ืฆื•ืจ ืขืงื•ืžื” ืฉืœ ืจื•ื—ื‘ ืงื‘ื•ืข
01:38
using the same method we applied earlier,
24
98518
2697
ื‘ืฉื™ืžื•ืฉ ื‘ืื•ืชื” ืฉื™ื˜ื” ื‘ื” ื”ืฉืชืžืฉื ื• ืงื•ื“ื,
01:41
though there are many others that aren't made in this way.
25
101215
3592
ืœืžืจื•ืช ืฉื™ืฉ ื”ืจื‘ื” ืื—ืจื™ื ืฉืœื ื ื•ืฆืจื™ื ื›ืš.
01:44
For example, if you roll any curve of constant width around another,
26
104807
4985
ืœื“ื•ื’ืžื”, ืื ืืชื ืžื’ืœื’ืœื™ื ื›ืœ ืขืงื•ืžื” ืขื ืจื•ื—ื‘ ืงื‘ื•ืข ืกื‘ื™ื‘ ืื—ืจืช,
01:49
you'll make a third one.
27
109792
1864
ืืชื ืชื™ืฆืจื• ืฉืœื™ืฉื™ืช.
01:51
This collection of pointy curves fascinates mathematicians.
28
111656
4341
ื”ืื•ืกืฃ ื”ื–ื” ืฉืœ ืขืงื•ืžื•ืช ื—ื“ื•ืช ืžืจืชืง ืžืชืžื˜ื™ืงืื™ื.
01:55
They've given us Barbier's theorem,
29
115997
1830
ื”ื ื ืชื ื• ืœื ื• ืืช ืชืื•ืจื™ื™ืช ื‘ืจื‘ื™ื™ืจ,
01:57
which says that the perimeter of any curve of constant width,
30
117827
3403
ืฉืื•ืžืจืช ืฉื”ืžืชื—ื ืฉืœ ื›ืœ ืขืงื•ืžื” ื‘ืจื•ื—ื‘ ืงื‘ื•ืข,
02:01
not just a circle, equals pi times the diameter.
31
121230
4400
ืœื ืจืง ืขื™ื’ื•ืœ, ืฉื•ื•ื” ืœืคืื™ ื›ืคื•ืœ ื”ืงื•ื˜ืจ.
02:05
Another theorem tells us that if you had a bunch of curves of constant width
32
125630
4047
ืชืื•ืจื™ื” ืื—ืจืช ืื•ืžืจืช ืœื ื• ืฉืื ื”ื™ื• ืœื›ื ืงื‘ื•ืฆื” ืฉืœ ืขืงื•ืžื•ืช ื‘ืจื•ื—ื‘ ืงื‘ื•ืข
02:09
with the same width,
33
129677
1860
ืขื ืื•ืชื• ืจื•ื—ื‘,
02:11
they would all have the same perimeter,
34
131537
2225
ืœื›ื•ืœื ื”ื™ื” ืื•ืชื• ื”ื™ืงืฃ,
02:13
but the Reuleaux triangle would have the smallest area.
35
133762
3884
ืื‘ืœ ืœืžืฉื•ืœืฉ ืจืื•ืœื™ืื• ื”ื™ื” ืืช ื”ืฉื˜ื— ื”ื›ื™ ืงื˜ืŸ.
02:17
The circle, which is effectively a Reuleaux polygon
36
137646
3180
ืœืขื™ื’ื•ืœ, ืฉื”ื•ื ืขืงืจื•ื ื™ืช ืคื•ืœื™ื’ื•ืŸ ืจืื•ืœื™ืื•
02:20
with an infinite number of sides, has the largest.
37
140826
3530
ืขื ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ืคื ื™ื, ื™ืฉ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ.
02:24
In three dimensions, we can make surfaces of constant width,
38
144356
4439
ื‘ืฉืœื•ืฉื” ืžื™ืžื“ื™ื, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืžืฉื˜ื—ื™ื ืฉืœ ืจื•ื—ื‘ ืงื‘ื•ืข,
02:28
like the Reuleaux tetrahedron,
39
148795
1891
ื›ืžื• ื”ื˜ื˜ืจื”ื“ืจื•ืŸ ืฉืœ ืจืื•ืœื™ืื•,
02:30
formed by taking a tetrahedron,
40
150686
2029
ืฉื ื•ืฆืจ ืขืœ ื™ื“ื™ ืœืงื™ื—ืช ื˜ื˜ืจื”ื“ืจื•ืŸ,
02:32
expanding a sphere from each vertex until it touches the opposite vertices,
41
152715
5238
ื”ืจื—ื‘ืช ื›ื“ื•ืจ ืžื›ืœ ืงื• ืขื“ ืฉื”ื•ื ื ื•ื’ืข ื‘ืงื•ื™ื ื”ืžื ื•ื’ื“ื™ื,
02:37
and throwing everything away except the region where they overlap.
42
157953
5017
ื•ืœื–ืจื•ืง ื”ื›ืœ ื—ื•ืฅ ืžื”ืื–ื•ืจ ืฉื”ื ื—ื•ืคืคื™ื.
02:42
Surfaces of constant width
43
162970
1702
ืžืฉื˜ื—ื™ื ืฉืœ ืจื•ื—ื‘ ืงื‘ื•ืข
02:44
maintain a constant distance between two parallel planes.
44
164672
4367
ืฉื•ืžืจื™ื ืขืœ ืžืจื—ืง ืงื‘ื•ืข ื‘ื™ืŸ ืฉื ื™ ืžืฉื˜ื—ื™ื ืžืงื‘ื™ืœื™ื.
02:49
So you could throw a bunch of Reuleaux tetrahedra on the floor,
45
169039
3338
ืื– ืืชื ื™ื›ื•ืœื™ื ืœื–ืจื•ืง ืžืกืคืจ ื˜ื˜ืจื”ื“ืจื™ื ืฉืœ ืจืื•ืœื™ืื• ืขืœ ื”ืจืฆืคื”,
02:52
and slide a board across them as smoothly as if they were marbles.
46
172377
5237
ื•ืœื”ื—ืœื™ืง ืœื•ื— ืขืœื™ื”ื ื‘ืื•ืชื” ื—ืœืงื•ืช ื›ืžื• ืขืœ ื’ื•ืœื•ืช.
02:57
Now back to manhole covers.
47
177614
2829
ืขื›ืฉื™ื• ื—ื–ืจื” ืœื›ื™ืกื•ื™ื™ ื‘ื•ืจื•ืช.
03:00
A square manhole cover's short edge
48
180443
2305
ื”ืฆื“ ื”ืงืฆืจ ืฉืœ ื›ื™ืกื•ื™ ื‘ื•ืจ ืžืจื•ื‘ืข
03:02
could line up with the wider part of the hole and fall right in.
49
182748
4563
ื™ื›ื•ืœ ืœื”ืชื™ื™ืฉืจ ืขื ื”ื—ืœืง ื”ืจื—ื‘ ื™ื•ืชืจ ืฉืœ ื”ื‘ื•ืจ ื•ืœื™ืคื•ืœ ืคื ื™ืžื”.
03:07
But a curve of constant width won't fall in any orientation.
50
187311
4794
ืื‘ืœ ืขืงื•ืžื” ืขื ืจื•ื—ื‘ ืงื‘ื•ืข ืœื ืชื™ืคื•ืœ ื‘ื›ืœ ื›ื™ื•ื•ืŸ.
03:12
Usually they're circular, but keep your eyes open,
51
192105
2698
ื‘ื“ืจืš ื›ืœืœ ื”ื ืขื’ื•ืœื™ื, ืื‘ืœ ืชืžืฉื™ื›ื• ืœื”ืกืชื›ืœ,
03:14
and you just might come across a Reuleaux triangle manhole.
52
194803
4270
ื•ืื•ืœื™ ืชืจืื• ื‘ื•ืจ ื‘ืฆื•ืจืช ืžืฉื•ืœืฉ ืจืื•ืœื™ืื•.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7