Why are manhole covers round? - Marc Chamberland

為什麼井蓋是圓型的?- 馬克.柏蘭

650,285 views ・ 2015-04-13

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: 陳 Chen 瑋佑 Wei Yu 審譯者: 盧 紀睿
00:07
Why are most manhole covers round?
0
7022
3696
為什麼大多數的井蓋是圓的?
00:10
Sure, it makes them easy to roll and slide into place in any alignment
1
10718
4331
當然,這使它們容易滾動和滑入任何的位置
00:15
but there's another more compelling reason
2
15049
2736
但是還有其他更令人信服的原因
00:17
involving a peculiar geometric property of circles and other shapes.
3
17785
5345
這涉及圓和其他形狀的一種特殊的幾何特性
00:23
Imagine a square separating two parallel lines.
4
23130
3729
想像一個正方形分開兩條平行線
00:26
As it rotates, the lines first push apart, then come back together.
5
26859
5046
當它旋轉時,線先是推動分開,然後復位
00:31
But try this with a circle
6
31905
1674
但是用圓來做嘗試
00:33
and the lines stay exactly the same distance apart,
7
33579
3463
線跟線之間會保持完全相同的距離
00:37
the diameter of the circle.
8
37042
1995
這就是圓的直徑
00:39
This makes the circle unlike the square,
9
39037
2575
這使得圓不同於正方形
00:41
a mathematical shape called a curve of constant width.
10
41612
5076
是一種稱作定寬曲線的數學型態
00:46
Another shape with this property is the Reuleaux triangle.
11
46688
3532
另外一種擁有此性質的形狀是魯洛三角形
00:50
To create one, start with an equilateral triangle,
12
50220
3089
第一步創建一個等邊三角形
00:53
then make one of the vertices the center of a circle that touches the other two.
13
53309
5470
然後以其中一個頂點為圓心 過其餘兩頂點作圖
00:58
Draw two more circles in the same way, centered on the other two vertices,
14
58779
4807
分別以其餘兩個頂點為圓心 按同樣的方式作出另外的兩個圓
01:03
and there it is, in the space where they all overlap.
15
63586
4118
它們的重疊區域就為魯洛三角形
01:07
Because Reuleaux triangles can rotate between parallel lines
16
67704
3760
因為魯洛三角形可以在平行線間旋轉
01:11
without changing their distance,
17
71464
2119
且不改變線的間距
01:13
they can work as wheels, provided a little creative engineering.
18
73583
4752
他們也可以作為輪子,只需要一點創意
01:18
And if you rotate one while rolling its midpoint in a nearly circular path,
19
78335
4832
如果你在旋轉它的同時 使它的中心在一個近圓形的路徑上轉動
01:23
its perimeter traces out a square with rounded corners,
20
83167
4843
它的周界軌跡會是一個圓角正方形
01:28
allowing triangular drill bits to carve out square holes.
21
88010
4502
這使三角形的鑽頭能夠挖出方形的孔
01:32
Any polygon with an odd number of sides
22
92512
2474
任何有奇數條邊的多邊形
01:34
can be used to generate a curve of constant width
23
94986
3532
都可以被用來生成等定寬曲線
01:38
using the same method we applied earlier,
24
98518
2697
使用與我們之前應用的同樣的方法
01:41
though there are many others that aren't made in this way.
25
101215
3592
不過,還有其他的定寬曲線 並不是用這種方式生成的
01:44
For example, if you roll any curve of constant width around another,
26
104807
4985
例如,如果你使任一定寬曲線繞另一定寬曲線轉動
01:49
you'll make a third one.
27
109792
1864
你將生成第三個定寬曲線
01:51
This collection of pointy curves fascinates mathematicians.
28
111656
4341
這組有尖頭的曲線使數學家著迷
01:55
They've given us Barbier's theorem,
29
115997
1830
他們把這個稱為巴比爾定律
01:57
which says that the perimeter of any curve of constant width,
30
117827
3403
任何定寬曲線的周長
02:01
not just a circle, equals pi times the diameter.
31
121230
4400
不僅僅是圓,等於 π *直徑
02:05
Another theorem tells us that if you had a bunch of curves of constant width
32
125630
4047
另外一個定理告訴我們:如果你有一堆定寬曲線
02:09
with the same width,
33
129677
1860
寬度相同
02:11
they would all have the same perimeter,
34
131537
2225
他們也會有同樣的周長
02:13
but the Reuleaux triangle would have the smallest area.
35
133762
3884
但是魯洛三角形會有最小的面積
02:17
The circle, which is effectively a Reuleaux polygon
36
137646
3180
圓是一個有效的魯洛正多邊形
02:20
with an infinite number of sides, has the largest.
37
140826
3530
有無數條邊,有最大的面積
02:24
In three dimensions, we can make surfaces of constant width,
38
144356
4439
在三維空間,我們可以生成定寬面
02:28
like the Reuleaux tetrahedron,
39
148795
1891
比如魯洛四面體
02:30
formed by taking a tetrahedron,
40
150686
2029
把一個四面體
02:32
expanding a sphere from each vertex until it touches the opposite vertices,
41
152715
5238
分別從每個頂點擴展一個觸及相對頂點的球面
02:37
and throwing everything away except the region where they overlap.
42
157953
5017
去除重疊部位以外的區域
02:42
Surfaces of constant width
43
162970
1702
定寬面
02:44
maintain a constant distance between two parallel planes.
44
164672
4367
使兩平面間保持恆定的距離
02:49
So you could throw a bunch of Reuleaux tetrahedra on the floor,
45
169039
3338
所以你可以在地上扔一堆魯洛四面體
02:52
and slide a board across them as smoothly as if they were marbles.
46
172377
5237
把它們當成彈珠一樣平滑地滑過它們
02:57
Now back to manhole covers.
47
177614
2829
現在回到井蓋
03:00
A square manhole cover's short edge
48
180443
2305
方形井蓋的短邊
03:02
could line up with the wider part of the hole and fall right in.
49
182748
4563
會與洞孔較寬的部分對其,掉進去
03:07
But a curve of constant width won't fall in any orientation.
50
187311
4794
但定寬曲線的井蓋不會從任何方向掉進去
03:12
Usually they're circular, but keep your eyes open,
51
192105
2698
它們通常是圓型的,但是留意身邊
03:14
and you just might come across a Reuleaux triangle manhole.
52
194803
4270
你可能會無意中發現一個魯洛三角形的檢修孔
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7