Why are manhole covers round? - Marc Chamberland

為什麼井蓋是圓型的?- 馬克.柏蘭

652,233 views ・ 2015-04-13

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: 陳 Chen 瑋佑 Wei Yu 審譯者: 盧 紀睿
00:07
Why are most manhole covers round?
0
7022
3696
為什麼大多數的井蓋是圓的?
00:10
Sure, it makes them easy to roll and slide into place in any alignment
1
10718
4331
當然,這使它們容易滾動和滑入任何的位置
00:15
but there's another more compelling reason
2
15049
2736
但是還有其他更令人信服的原因
00:17
involving a peculiar geometric property of circles and other shapes.
3
17785
5345
這涉及圓和其他形狀的一種特殊的幾何特性
00:23
Imagine a square separating two parallel lines.
4
23130
3729
想像一個正方形分開兩條平行線
00:26
As it rotates, the lines first push apart, then come back together.
5
26859
5046
當它旋轉時,線先是推動分開,然後復位
00:31
But try this with a circle
6
31905
1674
但是用圓來做嘗試
00:33
and the lines stay exactly the same distance apart,
7
33579
3463
線跟線之間會保持完全相同的距離
00:37
the diameter of the circle.
8
37042
1995
這就是圓的直徑
00:39
This makes the circle unlike the square,
9
39037
2575
這使得圓不同於正方形
00:41
a mathematical shape called a curve of constant width.
10
41612
5076
是一種稱作定寬曲線的數學型態
00:46
Another shape with this property is the Reuleaux triangle.
11
46688
3532
另外一種擁有此性質的形狀是魯洛三角形
00:50
To create one, start with an equilateral triangle,
12
50220
3089
第一步創建一個等邊三角形
00:53
then make one of the vertices the center of a circle that touches the other two.
13
53309
5470
然後以其中一個頂點為圓心 過其餘兩頂點作圖
00:58
Draw two more circles in the same way, centered on the other two vertices,
14
58779
4807
分別以其餘兩個頂點為圓心 按同樣的方式作出另外的兩個圓
01:03
and there it is, in the space where they all overlap.
15
63586
4118
它們的重疊區域就為魯洛三角形
01:07
Because Reuleaux triangles can rotate between parallel lines
16
67704
3760
因為魯洛三角形可以在平行線間旋轉
01:11
without changing their distance,
17
71464
2119
且不改變線的間距
01:13
they can work as wheels, provided a little creative engineering.
18
73583
4752
他們也可以作為輪子,只需要一點創意
01:18
And if you rotate one while rolling its midpoint in a nearly circular path,
19
78335
4832
如果你在旋轉它的同時 使它的中心在一個近圓形的路徑上轉動
01:23
its perimeter traces out a square with rounded corners,
20
83167
4843
它的周界軌跡會是一個圓角正方形
01:28
allowing triangular drill bits to carve out square holes.
21
88010
4502
這使三角形的鑽頭能夠挖出方形的孔
01:32
Any polygon with an odd number of sides
22
92512
2474
任何有奇數條邊的多邊形
01:34
can be used to generate a curve of constant width
23
94986
3532
都可以被用來生成等定寬曲線
01:38
using the same method we applied earlier,
24
98518
2697
使用與我們之前應用的同樣的方法
01:41
though there are many others that aren't made in this way.
25
101215
3592
不過,還有其他的定寬曲線 並不是用這種方式生成的
01:44
For example, if you roll any curve of constant width around another,
26
104807
4985
例如,如果你使任一定寬曲線繞另一定寬曲線轉動
01:49
you'll make a third one.
27
109792
1864
你將生成第三個定寬曲線
01:51
This collection of pointy curves fascinates mathematicians.
28
111656
4341
這組有尖頭的曲線使數學家著迷
01:55
They've given us Barbier's theorem,
29
115997
1830
他們把這個稱為巴比爾定律
01:57
which says that the perimeter of any curve of constant width,
30
117827
3403
任何定寬曲線的周長
02:01
not just a circle, equals pi times the diameter.
31
121230
4400
不僅僅是圓,等於 π *直徑
02:05
Another theorem tells us that if you had a bunch of curves of constant width
32
125630
4047
另外一個定理告訴我們:如果你有一堆定寬曲線
02:09
with the same width,
33
129677
1860
寬度相同
02:11
they would all have the same perimeter,
34
131537
2225
他們也會有同樣的周長
02:13
but the Reuleaux triangle would have the smallest area.
35
133762
3884
但是魯洛三角形會有最小的面積
02:17
The circle, which is effectively a Reuleaux polygon
36
137646
3180
圓是一個有效的魯洛正多邊形
02:20
with an infinite number of sides, has the largest.
37
140826
3530
有無數條邊,有最大的面積
02:24
In three dimensions, we can make surfaces of constant width,
38
144356
4439
在三維空間,我們可以生成定寬面
02:28
like the Reuleaux tetrahedron,
39
148795
1891
比如魯洛四面體
02:30
formed by taking a tetrahedron,
40
150686
2029
把一個四面體
02:32
expanding a sphere from each vertex until it touches the opposite vertices,
41
152715
5238
分別從每個頂點擴展一個觸及相對頂點的球面
02:37
and throwing everything away except the region where they overlap.
42
157953
5017
去除重疊部位以外的區域
02:42
Surfaces of constant width
43
162970
1702
定寬面
02:44
maintain a constant distance between two parallel planes.
44
164672
4367
使兩平面間保持恆定的距離
02:49
So you could throw a bunch of Reuleaux tetrahedra on the floor,
45
169039
3338
所以你可以在地上扔一堆魯洛四面體
02:52
and slide a board across them as smoothly as if they were marbles.
46
172377
5237
把它們當成彈珠一樣平滑地滑過它們
02:57
Now back to manhole covers.
47
177614
2829
現在回到井蓋
03:00
A square manhole cover's short edge
48
180443
2305
方形井蓋的短邊
03:02
could line up with the wider part of the hole and fall right in.
49
182748
4563
會與洞孔較寬的部分對其,掉進去
03:07
But a curve of constant width won't fall in any orientation.
50
187311
4794
但定寬曲線的井蓋不會從任何方向掉進去
03:12
Usually they're circular, but keep your eyes open,
51
192105
2698
它們通常是圓型的,但是留意身邊
03:14
and you just might come across a Reuleaux triangle manhole.
52
194803
4270
你可能會無意中發現一個魯洛三角形的檢修孔
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog