Can you find the next number in this sequence? - Alex Gendler

Da li možete naći sledeći broj u ovom nizu? - Aleks Džendler (Alex Gendler)

561,889 views

2017-07-20 ・ TED-Ed


New videos

Can you find the next number in this sequence? - Alex Gendler

Da li možete naći sledeći broj u ovom nizu? - Aleks Džendler (Alex Gendler)

561,889 views ・ 2017-07-20

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Mirjana Čutura Lektor: Tijana Mihajlović
00:07
These are the first five elements of a number sequence.
0
7989
3302
Ovo su prvih pet elemenata u brojnom nizu.
00:11
Can you figure out what comes next?
1
11291
1740
Da li možete da odgonetnete koji je sledeći?
00:13
Pause here if you want to figure it out for yourself.
2
13031
1925
[Pauzirajte da sami odgonetnete]
00:14
Answer in: 3
3
14956
1074
[Odgovor za: 3]
[Odgovor za: 2]
00:16
Answer in: 2
4
16030
788
00:16
Answer in: 1
5
16818
913
[Odgovor za: 1]
00:17
There is a pattern here,
6
17731
1627
Ovde postoji obrazac,
ali možda nije ona vrsta obrasca koju očekujete.
00:19
but it may not be the kind of pattern you think it is.
7
19358
2695
00:22
Look at the sequence again and try reading it aloud.
8
22053
4118
Pogledajte niz opet i pokušajte da ga izgovorite naglas.
00:26
Now, look at the next number in the sequence.
9
26171
3080
Pogledajte sledeći broj u nizu -
00:29
3, 1, 2, 2, 1, 1.
10
29251
2631
312211.
00:31
Pause again if you'd like to think about it some more.
11
31882
5550
Pauzirajte opet ako biste želeli da još malo razmislite o tome.
00:37
Answer in: 3
12
37432
961
[Odgovor za: 3]
00:38
Answer in: 2
13
38393
899
[Odgovor za: 2]
00:39
Answer in: 1
14
39292
1159
[Odgovor za: 1]
00:40
This is what's known as a look and say sequence.
15
40451
3431
Ovo je takozvani niz „pogledaj i izgovori“.
00:43
Unlike many number sequences,
16
43882
1690
Za razliku od mnogih brojnih nizova,
00:45
this relies not on some mathematical property of the numbers themselves,
17
45572
3878
ovaj se ne zasniva na nekom matematičkom svojstvu samih brojeva,
00:49
but on their notation.
18
49450
2021
već na njihovom zapisu.
00:51
Start with the left-most digit of the initial number.
19
51471
2841
Počnite sa krajnje levom cifrom početnog broja.
00:54
Now, read out how many times it repeats in succession
20
54312
4381
Onda izgovorite koliko puta se zaredom ponavlja
00:58
followed by the name of the digit itself.
21
58693
2910
i nakon toga izgovorite sam taj broj.
01:01
Then move on to the next distinct digit and repeat until you reach the end.
22
61603
5291
Onda pređite na sledeću jedinstvenu cifru i ponovite postupak do kraja.
01:06
So the number 1 is read as "one one"
23
66894
3209
Broj 1 se čita kao „jedna jedinica“,
što se piše na isti način kao broj 11.
01:10
written down the same way we write eleven.
24
70103
3485
01:13
Of course, as part of this sequence, it's not actually the number eleven,
25
73588
4016
Naravno, kao deo ovog niza, to nije zapravo broj 11
01:17
but 2 ones,
26
77604
1549
već dve jedinice,
što onda zapisujemo kao 21.
01:19
which we then write as 2 1.
27
79153
2651
01:21
That number is then read out as 1 2 1 1,
28
81804
3610
Taj broj se onda izgovara kao „jedna dvojka, jedna jedinica“,
01:25
which written out we'd read as one one, one two, two ones, and so on.
29
85414
6570
koji ćemo tako zapisan izgovoriti
kao „jedna jedinica, jedna dvojka, dve jedinice“ i tako dalje.
01:31
These kinds of sequences were first analyzed by mathematician John Conway,
30
91984
5781
Ove vrste nizova je prvi analizirao matematičar Džon Konvej
01:37
who noted they have some interesting properties.
31
97765
2979
koji je primetio da imaju neke zanimljive osobine.
01:40
For instance, starting with the number 22, yields an infinite loop of two twos.
32
100744
5381
Na primer, ako počnemo sa brojem 22, stvara se beskonačan niz dve dvojke.
01:46
But when seeded with any other number,
33
106125
2268
Međutim, ako počnemo sa bilo kojim drugim brojem,
01:48
the sequence grows in some very specific ways.
34
108393
3262
niz raste na neke veoma posebne načine.
01:51
Notice that although the number of digits keeps increasing,
35
111655
3240
Primetite da, iako se broj cifara povećava,
01:54
the increase doesn't seem to be either linear or random.
36
114895
3990
povećanje ne izgleda ni linearno ni nasumično.
01:58
In fact, if you extend the sequence infinitely, a pattern emerges.
37
118885
5281
U stvari, ako beskonačno produžite niz, pojavljuje se obrazac.
Odnos između broja cifara u dva uzastopna člana
02:04
The ratio between the amount of digits in two consecutive terms
38
124166
3402
02:07
gradually converges to a single number known as Conway's Constant.
39
127568
5537
se postepeno spaja u jedan jedini broj poznat kao Konvejeva konstanta.
Ona iznosi nešto malo više od 1,3,
02:13
This is equal to a little over 1.3,
40
133105
2912
02:16
meaning that the amount of digits increases by about 30%
41
136017
3924
što znači da se broj cifara povećava za oko 30%
02:19
with every step in the sequence.
42
139941
2997
sa svakim korakom u nizu.
02:22
What about the numbers themselves?
43
142938
2779
A šta je sa samim brojevima?
02:25
That gets even more interesting.
44
145717
2280
To postaje još zanimljivije.
02:27
Except for the repeating sequence of 22,
45
147997
2299
Osim niza sa brojem 22 koji se ponavlja,
02:30
every possible sequence eventually breaks down into distinct strings of digits.
46
150296
5810
svaki mogući niz se na kraju svede na određeni niz cifara.
Bez obzira u kom redosledu se ovi nizovi pojave,
02:36
No matter what order these strings show up in,
47
156106
2281
02:38
each appears unbroken in its entirety every time it occurs.
48
158387
5270
svaki se javlja u neprekidnoj celini svaki put kada se pojavi.
02:43
Conway identified 92 of these elements,
49
163657
2911
Konvej je identifikovao 92 ovakva elementa -
02:46
all composed only of digits 1, 2, and 3,
50
166568
3718
koji se svi sastoje jedino od cifara 1, 2 i 3
02:50
as well as two additional elements
51
170286
1952
kao i od dva dodatna elementa
02:52
whose variations can end with any digit of 4 or greater.
52
172238
4731
čije varijacije se mogu završiti cifrom 4 ili većom cifrom.
02:56
No matter what number the sequence is seeded with,
53
176969
2478
Bez obzira sa kojim brojem niz počinje,
02:59
eventually, it'll just consist of these combinations,
54
179447
3394
na kraju, niz će sadržati samo ove kombinacije,
03:02
with digits 4 or higher only appearing at the end of the two extra elements,
55
182841
5698
a cifra 4 ili viša cifra će se pojaviti samo na kraju ova dva dodatna elementa,
03:08
if at all.
56
188539
2430
ako se uopšte pojave.
03:10
Beyond being a neat puzzle,
57
190969
1870
Osim što je zgodna zagonetka,
03:12
the look and say sequence has some practical applications.
58
192839
3820
niz „pogledaj i izgovori“ ima neke praktične primene.
03:16
For example, run-length encoding,
59
196659
2100
Na primer, šifrovanje dugih nizova,
03:18
a data compression that was once used for television signals and digital graphics,
60
198759
4350
kompresija podataka nekada korišćena za TV signal i digitalnu grafiku,
se zasniva na sličnoj ideji.
03:23
is based on a similar concept.
61
203109
2538
03:25
The amount of times a data value repeats within the code
62
205647
2943
Broj puta ponavljanja vrednosti podatka u okviru koda
03:28
is recorded as a data value itself.
63
208590
3002
se beleži kao vrednost samih podataka.
03:31
Sequences like this are a good example of how numbers and other symbols
64
211592
4437
Ovakvi nizovi su dobar primer kako brojevi i drugi simboli
mogu da prenesu značenje na višestrukim nivoima.
03:36
can convey meaning on multiple levels.
65
216029
2671
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7