Can you find the next number in this sequence? - Alex Gendler

561,889 views ・ 2017-07-20

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Liyu Liu 校对人员: Lipeng Chen
00:07
These are the first five elements of a number sequence.
0
7989
3302
这些是一个数列最开始的五个数字。
00:11
Can you figure out what comes next?
1
11291
1740
你能想出下一个数字是什么吗?
00:13
Pause here if you want to figure it out for yourself.
2
13031
1925
如果你想要自己先想清楚的话 就在这里暂停一下。
00:14
Answer in: 3
3
14956
1074
答案倒数 3
00:16
Answer in: 2
4
16030
788
00:16
Answer in: 1
5
16818
913
答案倒数 2
答案倒数 1
00:17
There is a pattern here,
6
17731
1627
这个数列有一个规律,
00:19
but it may not be the kind of pattern you think it is.
7
19358
2695
然而这个规律可能不是你所想的那样。
00:22
Look at the sequence again and try reading it aloud.
8
22053
4118
重新再看一下这个数列。
并尝试读出声来。
00:26
Now, look at the next number in the sequence.
9
26171
3080
现在,让我们来看这一数列的下一个数字。
00:29
3, 1, 2, 2, 1, 1.
10
29251
2631
3,1,2,2,1,1
00:31
Pause again if you'd like to think about it some more.
11
31882
5550
如果你需要多思考一下的话 可以再暂停一下。
00:37
Answer in: 3
12
37432
961
答案倒数 3
00:38
Answer in: 2
13
38393
899
答案倒数 2
00:39
Answer in: 1
14
39292
1159
答案倒数 1
00:40
This is what's known as a look and say sequence.
15
40451
3431
这就是所谓的外观数列,
00:43
Unlike many number sequences,
16
43882
1690
和其它的数字数列不同,
00:45
this relies not on some mathematical property of the numbers themselves,
17
45572
3878
这个数列的规律并不依靠于 数字自身的的数学属性,
00:49
but on their notation.
18
49450
2021
而是数字的表示法。
00:51
Start with the left-most digit of the initial number.
19
51471
2841
从初始数字的最左数位开始读起。
00:54
Now, read out how many times it repeats in succession
20
54312
4381
现在读出它连续重复的次数,
00:58
followed by the name of the digit itself.
21
58693
2910
然后再读出这一数字。
01:01
Then move on to the next distinct digit and repeat until you reach the end.
22
61603
5291
下一个数位的读法也是依此类推。
直到读完最后一位。
01:06
So the number 1 is read as "one one"
23
66894
3209
所以数字1读作“一个一”,
和我们写数字十一的方法一样。
01:10
written down the same way we write eleven.
24
70103
3485
01:13
Of course, as part of this sequence, it's not actually the number eleven,
25
73588
4016
自然,作为这个数列的一部分,
11并不是真正的数字十一,
01:17
but 2 ones,
26
77604
1549
而是“两个一”,
因此我们又写作21。
01:19
which we then write as 2 1.
27
79153
2651
01:21
That number is then read out as 1 2 1 1,
28
81804
3610
而这个数字读出来是1 2 1 1,
01:25
which written out we'd read as one one, one two, two ones, and so on.
29
85414
6570
而1211写出来又可读作 一个一、一个二、二个一,
以此类推。
01:31
These kinds of sequences were first analyzed by mathematician John Conway,
30
91984
5781
这个数列最初是由数学家 John Conway 所发现,
01:37
who noted they have some interesting properties.
31
97765
2979
他注意到了这一数列一些很有趣的属性。
01:40
For instance, starting with the number 22, yields an infinite loop of two twos.
32
100744
5381
比如从数字22开始, 这一数列会生成的“二个二”的无穷循环。
01:46
But when seeded with any other number,
33
106125
2268
但如果我们从其他数字开始的话,
01:48
the sequence grows in some very specific ways.
34
108393
3262
这个数列就会以一些特殊的方式展开。
01:51
Notice that although the number of digits keeps increasing,
35
111655
3240
请注意,虽然这些数字的位数数量在不断增长,
01:54
the increase doesn't seem to be either linear or random.
36
114895
3990
这些增长似乎并不是线性的或随机的。
01:58
In fact, if you extend the sequence infinitely, a pattern emerges.
37
118885
5281
事实上,如果你把这个数列无限扩大,
规律就会浮现出来。
02:04
The ratio between the amount of digits in two consecutive terms
38
124166
3402
相邻两个数字的数位数量之间的比例,
02:07
gradually converges to a single number known as Conway's Constant.
39
127568
5537
会逐渐趋近 一个被称为“Conway常数”的数字。
02:13
This is equal to a little over 1.3,
40
133105
2912
这一数字会比1.3稍大一点,
02:16
meaning that the amount of digits increases by about 30%
41
136017
3924
也就是说,数列中每生成下一项数字,
02:19
with every step in the sequence.
42
139941
2997
数位的数量大约增长30%。
02:22
What about the numbers themselves?
43
142938
2779
那么,那些数字本身如何呢?
02:25
That gets even more interesting.
44
145717
2280
这就更加有趣了。
02:27
Except for the repeating sequence of 22,
45
147997
2299
除了22这一无限循环的数列,
02:30
every possible sequence eventually breaks down into distinct strings of digits.
46
150296
5810
每一个可能的数列最终会 被分解成不同的数位字符串。
02:36
No matter what order these strings show up in,
47
156106
2281
不论这些字符串以怎样的顺序出现,
02:38
each appears unbroken in its entirety every time it occurs.
48
158387
5270
它们都会不断延续下去。
02:43
Conway identified 92 of these elements,
49
163657
2911
Conway 分析了92个字符串,
02:46
all composed only of digits 1, 2, and 3,
50
166568
3718
所有的字符串只包含数字1、2和 3
02:50
as well as two additional elements
51
170286
1952
以及其他两个变化的字符串,
02:52
whose variations can end with any digit of 4 or greater.
52
172238
4731
它们以大于或等于4的数字结尾。
02:56
No matter what number the sequence is seeded with,
53
176969
2478
无论从哪一个数字开始这一数列,
02:59
eventually, it'll just consist of these combinations,
54
179447
3394
数列最终都会包含以上这些字符串的组合。
03:02
with digits 4 or higher only appearing at the end of the two extra elements,
55
182841
5698
大于或等于4的数字 只出现在两个变化字符串的末尾,
03:08
if at all.
56
188539
2430
如果出现的话。
03:10
Beyond being a neat puzzle,
57
190969
1870
除了作为一个工整有序的数字谜题之外,
03:12
the look and say sequence has some practical applications.
58
192839
3820
外观数列也被应用到实际中。
03:16
For example, run-length encoding,
59
196659
2100
以游程编码为例,
03:18
a data compression that was once used for television signals and digital graphics,
60
198759
4350
它从前被运用到电视信号和 数码图像的数据压缩上。
03:23
is based on a similar concept.
61
203109
2538
游程编码也是建立在一个相似的概念上,
03:25
The amount of times a data value repeats within the code
62
205647
2943
在编码中, 数据出现的次数被记作数据值。
03:28
is recorded as a data value itself.
63
208590
3002
03:31
Sequences like this are a good example of how numbers and other symbols
64
211592
4437
这样的数列就是一个很好的例子,
表现数字和其他符号是 怎样在多层次方面传达含义的。
03:36
can convey meaning on multiple levels.
65
216029
2671
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7