Can you find the next number in this sequence? - Alex Gendler
この数列の次の数は何? — アレックス・ジェンドラー
562,851 views ・ 2017-07-20
下の英語字幕をダブルクリックすると動画を再生できます。
翻訳: Yasushi Aoki
校正: Tomoyuki Suzuki
00:07
These are the first five elements
of a number sequence.
0
7989
3302
これはある数列の
最初の5つの要素です
00:11
Can you figure out what comes next?
1
11291
1740
この次にくる数が
何か分かりますか?
00:13
Pause here if you want
to figure it out for yourself.
2
13031
1925
[自分で解きたければ
ビデオを止めましょう]
00:14
Answer in: 3
3
14956
1074
[解答まであと3秒]
[解答まであと2秒]
00:16
Answer in: 2
4
16030
788
00:16
Answer in: 1
5
16818
913
[解答まであと1秒]
00:17
There is a pattern here,
6
17731
1627
ここにはパターンがありますが
00:19
but it may not be the kind
of pattern you think it is.
7
19358
2695
あなたが考えるようなパターンでは
ないかもしれません
00:22
Look at the sequence again
and try reading it aloud.
8
22053
4118
数列をもう一度見て
声に出して読んでみましょう
00:26
Now, look at the next number
in the sequence.
9
26171
3080
数列の次の数は
00:29
3, 1, 2, 2, 1, 1.
10
29251
2631
312211です
00:31
Pause again if you'd like to think
about it some more.
11
31882
5550
もう少し考えてみたかったら
ビデオを止めてください
00:37
Answer in: 3
12
37432
961
[解答まであと3秒]
00:38
Answer in: 2
13
38393
899
[解答まであと2秒]
00:39
Answer in: 1
14
39292
1159
[解答まであと1秒]
00:40
This is what's known as
a look and say sequence.
15
40451
3431
これは「ルック&セイ数列」として
知られているものです
00:43
Unlike many number sequences,
16
43882
1690
多くの数列とは違って
00:45
this relies not on some mathematical
property of the numbers themselves,
17
45572
3878
この数列は
数の数学的性質にではなく
00:49
but on their notation.
18
49450
2021
数の表記によって定義されています
[11 = 2個の1]
00:51
Start with the left-most digit
of the initial number.
19
51471
2841
最初の数の左端の数字から
始めます
00:54
Now, read out how many times
it repeats in succession
20
54312
4381
同じ数字が
続けて現れる回数と
00:58
followed by the name of the digit itself.
21
58693
2910
その数字を
読み上げましょう
01:01
Then move on to the next distinct digit
and repeat until you reach the end.
22
61603
5291
あとの数字でも同じことを繰り返していきます
[1個の3、1個の2、2個の1]
01:06
So the number 1 is read as "one one"
23
66894
3209
数1は「1個の1」と読んで
11と書き記されます
01:10
written down the same way
we write eleven.
24
70103
3485
01:13
Of course, as part of this sequence,
it's not actually the number eleven,
25
73588
4016
この数列の中でそれは
「じゅういち」ではなく
01:17
but 2 ones,
26
77604
1549
「2個の1」を表し
01:19
which we then write as 2 1.
27
79153
2651
21と書き記されます
01:21
That number is then read out
as 1 2 1 1,
28
81804
3610
それはまた「1個の2、1個の1」を意味して
1211と書かれ
01:25
which written out we'd read as
one one, one two, two ones, and so on.
29
85414
6570
それがさらに「1個の1、1個の2、2個の1」
を意味して・・・という具合です
01:31
These kinds of sequences were first
analyzed by mathematician John Conway,
30
91984
5781
このような種類の数列を初めて分析したのは
数学者のジョン・コンウェイで
01:37
who noted they have
some interesting properties.
31
97765
2979
この数列の持つ
興味深い性質に気付きました
01:40
For instance, starting with the number 22,
yields an infinite loop of two twos.
32
100744
5381
たとえば数22で始めると
22が無限に続きますが
他の数で始めると
01:46
But when seeded with any other number,
33
106125
2268
01:48
the sequence grows in some
very specific ways.
34
108393
3262
数は特徴的なやり方で
大きくなっていきます
01:51
Notice that although the number
of digits keeps increasing,
35
111655
3240
桁数は増えていきますが
01:54
the increase doesn't seem
to be either linear or random.
36
114895
3990
その増え方は一定にも
ランダムにも見えません
01:58
In fact, if you extend the sequence
infinitely, a pattern emerges.
37
118885
5281
実際 この数列を無限に展開していくと
パターンが現れます
2つの連続する項の
桁数の比は
02:04
The ratio between the amount of digits
in two consecutive terms
38
124166
3402
02:07
gradually converges to a single number
known as Conway's Constant.
39
127568
5537
コンウェイ数として知られる値に
収束します
その数は1.3より
少し大きい値です
02:13
This is equal to a little over 1.3,
40
133105
2912
02:16
meaning that the amount of digits
increases by about 30%
41
136017
3924
数列中の数の桁数は
約30%ずつ長くなっていく
ということです
02:19
with every step in the sequence.
42
139941
2997
02:22
What about the numbers themselves?
43
142938
2779
数自体はどうなのでしょう?
02:25
That gets even more interesting.
44
145717
2280
そこにはさらに興味深い
性質が見られます
02:27
Except for the repeating sequence of 22,
45
147997
2299
22の繰り返しの数列を
別にすると
02:30
every possible sequence eventually breaks
down into distinct strings of digits.
46
150296
5810
どの数列も やがては一連の数字列に
分解できるようになります
数字列の現れる順番は
まちまちですが
02:36
No matter what order these strings
show up in,
47
156106
2281
02:38
each appears unbroken in its entirety
every time it occurs.
48
158387
5270
それぞれの数字列が分断されずに
そのままの形で現れます
02:43
Conway identified 92 of these elements,
49
163657
2911
コンウェイはそのような数字列を
すべて同定しました
02:46
all composed only of digits 1, 2, and 3,
50
166568
3718
1, 2, 3だけからなる
数字列92個に加え
02:50
as well as two additional elements
51
170286
1952
最後の桁が4以上の任意の数字となる
バリエーションを持った
02:52
whose variations
can end with any digit of 4 or greater.
52
172238
4731
2種類の数字列があります
02:56
No matter what number the sequence
is seeded with,
53
176969
2478
どんな数から始めようと
02:59
eventually, it'll just consist
of these combinations,
54
179447
3394
やがてこれらの数字列の
組み合わせだけになり
03:02
with digits 4 or higher only appearing
at the end of the two extra elements,
55
182841
5698
4以上の数字は
2種の数字列の最後の数字としてしか
現れません
03:08
if at all.
56
188539
2430
03:10
Beyond being a neat puzzle,
57
190969
1870
ルック&セイ数列は
気の利いたパズルというだけでなく
03:12
the look and say sequence
has some practical applications.
58
192839
3820
実用的な応用もあります
03:16
For example, run-length encoding,
59
196659
2100
たとえば「連長圧縮」は
03:18
a data compression that was once used for
television signals and digital graphics,
60
198759
4350
テレビ信号やグラフィックスで使われていた
データ圧縮法ですが
03:23
is based on a similar concept.
61
203109
2538
似た考え方に基づいています
03:25
The amount of times a data value repeats
within the code
62
205647
2943
信号の中でデータ値が
繰り返す回数を
03:28
is recorded as a data value itself.
63
208590
3002
データ値の記述に
使うのです
03:31
Sequences like this are a good example
of how numbers and other symbols
64
211592
4437
このような数列は
数やその他の記号が
複数のレベルの意味を持ちうることの良い例です
03:36
can convey meaning on multiple levels.
65
216029
2671
New videos
このウェブサイトについて
このサイトでは英語学習に役立つYouTube動画を紹介します。世界中の一流講師による英語レッスンを見ることができます。各ビデオのページに表示される英語字幕をダブルクリックすると、そこからビデオを再生することができます。字幕はビデオの再生と同期してスクロールします。ご意見・ご要望がございましたら、こちらのお問い合わせフォームよりご連絡ください。