Group theory 101: How to play a Rubik’s Cube like a piano - Michael Staff

1,638,984 views ・ 2015-11-02

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Milenka Okuka Lektor: Mile Živković
00:06
How can you play a Rubik's Cube?
0
6960
2640
Kako da svirate na Rubikovoj kocki?
00:09
Not play with it, but play it like a piano?
1
9600
3626
Ne da se igrate njom, već da svirate na njoj kao na klaviru?
00:13
That question doesn't make a lot of sense at first,
2
13226
2685
To pitanje na priv pogled nema mnogo smisla,
00:15
but an abstract mathematical field called group theory holds the answer,
3
15911
4729
ali apstraktna matematička oblast, zvana teorija skupova, ima odgovor,
00:20
if you'll bear with me.
4
20640
1969
ako ostanete sa mnom.
00:22
In math, a group is a particular collection of elements.
5
22609
4110
Skup je u matematici određeni zbir članova.
00:26
That might be a set of integers,
6
26719
1826
to može da bude niz celih brojeva,
00:28
the face of a Rubik's Cube,
7
28545
1928
naličje Rubikove kocke
00:30
or anything,
8
30473
1602
ili bilo šta,
00:32
so long as they follow four specific rules, or axioms.
9
32075
4496
dokle god su ispoštovana četiri naročita pravila iliti aksioma.
00:36
Axiom one:
10
36571
1488
Prvi aksiom:
sve operacije moraju biti zatvorene iliti ograničene samo na članove skupa.
00:38
all group operations must be closed or restricted to only group elements.
11
38059
5618
00:43
So in our square, for any operation you do,
12
43677
2924
Dakle, kod našeg kvadrata, koju god operaciju da izvršite,
00:46
like turn it one way or the other,
13
46601
2147
bilo da ga okrenete na jednu ili na drugu stranu,
00:48
you'll still wind up with an element of the group.
14
48748
3283
na kraju ćete ipak dobiti član skupa.
00:52
Axiom two:
15
52031
1635
Drugi aksiom:
00:53
no matter where we put parentheses when we're doing a single group operation,
16
53666
4330
Bez obzira na to gde stavili zagradu, dok radimo operaciju u skupu,
00:57
we still get the same result.
17
57996
2603
dobićemo isti rezultat.
01:00
In other words, if we turn our square right two times, then right once,
18
60599
4441
Drugim rečima, ako okrenemo naš kvadrat dva puta na desno, onda jednom na desno,
01:05
that's the same as once, then twice,
19
65040
3018
to je isto kao jednom, pa onda dva puta na desno,
01:08
or for numbers, one plus two is the same as two plus one.
20
68058
4528
ili u slučaju dva broja, jedan plus dva je isto kao dva plus jedan.
01:12
Axiom three:
21
72586
1668
Treći aksiom:
01:14
for every operation, there's an element of our group called the identity.
22
74254
4601
za svaku operaciju, postoji član skupa koji se zove identitet.
01:18
When we apply it to any other element in our group,
23
78855
2435
Kada ga primenimo na bilo koji drugi član skupa,
01:21
we still get that element.
24
81290
2159
opet dobijamo taj član.
01:23
So for both turning the square and adding integers,
25
83449
3408
Pa je i za okretanje kvadrata i dodavanje celih brojeva
01:26
our identity here is zero,
26
86857
2410
naš identitet ovde nula.
01:29
not very exciting.
27
89267
2510
Nije naročito uzbudljivo.
01:31
Axiom four:
28
91777
1448
Četvrti aksiom:
01:33
every group element has an element called its inverse also in the group.
29
93225
5077
svaki član skupa ima takođe svoj takozvani inverzni član skupa.
01:38
When the two are brought together using the group's addition operation,
30
98302
3951
Kada se ova dva člana spoje, koristeći operaciju sabiranja u skupu,
01:42
they result in the identity element, zero,
31
102253
2858
njihov rezultat je identitetski član - nula,
01:45
so they can be thought of as cancelling each other out.
32
105111
3732
te se mogu posmatrati kao da jedan drugog poništavaju.
01:48
So that's all well and good, but what's the point of any of it?
33
108843
3596
Dakle, sve ovo zvuči bajno, ali koja je svrha svega ovoga?
01:52
Well, when we get beyond these basic rules,
34
112439
2864
Pa, kada prevaziđemo ova osnovna pravila,
01:55
some interesting properties emerge.
35
115303
2539
neka zanimljiva svojstva se pojavljuju.
01:57
For example, let's expand our square back into a full-fledged Rubik's Cube.
36
117842
5199
Na primer, proširimo naš kvadrat na kompletnu Rubikovu kocku.
02:03
This is still a group that satisfies all of our axioms,
37
123041
3602
To je i dalje skup koji zadovoljava naša sva četiri aksioma,
02:06
though now with considerably more elements
38
126643
3178
iako sada ima značajno više članova
02:09
and more operations.
39
129821
2252
i više operacija.
02:12
We can turn each row and column of each face.
40
132073
4591
Možemo da okrećemo svaki red i svaki stubac svake strane.
02:16
Each position is called a permutation,
41
136664
2371
Svaka pozicija se naziva permutacijom
02:19
and the more elements a group has, the more possible permutations there are.
42
139035
4561
i što više skup ima članova, postoji više mogućih permutacija.
02:23
A Rubik's Cube has more than 43 quintillion permutations,
43
143596
4626
Rubikova kocka ima preko 43 kvintiliona permutacija,
02:28
so trying to solve it randomly isn't going to work so well.
44
148222
4228
pa ako pokušate da je rešite nasumično nećete daleko odmaći.
02:32
However, using group theory we can analyze the cube
45
152450
3414
Međutim, koristeći teoriju skupova, možemo da analiziramo kocku
02:35
and determine a sequence of permutations that will result in a solution.
46
155864
5140
i da utvrdimo redosled permutacija koje će da rezultiraju tačnim rešenjem.
02:41
And, in fact, that's exactly what most solvers do,
47
161004
3470
I zapravo to većina uspešnih igrača i radi,
02:44
even using a group theory notation indicating turns.
48
164474
5098
čak koriste oznake iz teorije skupova kako bi ukazali na okretanja.
02:49
And it's not just good for puzzle solving.
49
169572
2029
Ovo nije samo korisno u rešavanju slagalica.
02:51
Group theory is deeply embedded in music, as well.
50
171601
4974
Teorija skupova je i duboko ugrađena u muziku.
02:56
One way to visualize a chord is to write out all twelve musical notes
51
176575
4402
Jedan od načina da zamislite akord jeste da zapišete svih 12 nota
03:00
and draw a square within them.
52
180977
2665
i da nacrtate kvadrat unutar njih.
03:03
We can start on any note, but let's use C since it's at the top.
53
183642
4722
Možemo početi bilo kojom notom, ali uzećemo C jer je na vrhu.
03:08
The resulting chord is called a diminished seventh chord.
54
188364
4241
Novonastali akord se zove sniženi sedmi akord.
03:12
Now this chord is a group whose elements are these four notes.
55
192605
4588
Dakle, ovaj akord je skup čiji su članovi ove četiri note.
03:17
The operation we can perform on it is to shift the bottom note to the top.
56
197193
4688
Operacija koju možemo da izvedemo je da pomerimo poslednju notu na vrh.
03:21
In music that's called an inversion,
57
201881
2476
U muzici se to zove inverzijom
03:24
and it's the equivalent of addition from earlier.
58
204357
2890
i ekvivalent je prethodno pomenutom sabiranju.
03:27
Each inversion changes the sound of the chord,
59
207247
2922
Svaka inverzija menja zvuk akorda,
03:30
but it never stops being a C diminished seventh.
60
210169
3730
ali on nikada ne prestaje da bude sniženi sedmi C akord.
03:33
In other words, it satisfies axiom one.
61
213899
3762
Drugim rečima, zadovoljava prvi aksiom.
03:37
Composers use inversions to manipulate a sequence of chords
62
217661
3921
Kompozitori koriste inverziju da bi udešavali redosled akorda
03:41
and avoid a blocky, awkward sounding progression.
63
221582
9745
i da bi izbegli zaglušujuću progresiju koja ne zvuči tečno.
03:51
On a musical staff, an inversion looks like this.
64
231327
3441
Na notnim linijama, inverzija izgleda ovako.
03:54
But we can also overlay it onto our square and get this.
65
234768
5218
Ali takođe je možemo preslikati na naš kvadrat i dobiti sledeće.
03:59
So, if you were to cover your entire Rubik's Cube with notes
66
239986
4498
Pa, ako biste prekrili čitavu Rubikovu kocku notama,
04:04
such that every face of the solved cube is a harmonious chord,
67
244484
5054
tako da je svaka strana rešene kocke harmonijski akord,
04:09
you could express the solution as a chord progression
68
249538
3560
mogli biste da izrazite rešenje u vidu akordske progresije
04:13
that gradually moves from discordance to harmony
69
253098
3851
koja se postepeno pomera od disonance do harmonije
04:16
and play the Rubik's Cube, if that's your thing.
70
256949
3632
i možete da zasvirate na Rubikovoj kocki, ako ste u tom fazonu.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7