Group theory 101: How to play a Rubik’s Cube like a piano - Michael Staff
1,636,630 views ・ 2015-11-02
請雙擊下方英文字幕播放視頻。
譯者: Adrienne Lin
審譯者: 瑞文Eleven 林Lim
00:06
How can you play a Rubik's Cube?
0
6960
2640
你會如何玩魔術方塊呢?
00:09
Not play with it,
but play it like a piano?
1
9600
3626
你可知道玩魔術方塊
與彈鋼琴有相同的原理
00:13
That question doesn't
make a lot of sense at first,
2
13226
2685
聽起來似乎不太合理
00:15
but an abstract mathematical field
called group theory holds the answer,
3
15911
4729
但是可以在一個名為
群論的數學領域找到答案
00:20
if you'll bear with me.
4
20640
1969
請容我好好解釋
00:22
In math, a group is a particular
collection of elements.
5
22609
4110
在數學裡,「群」指的是
特定元素的集合
00:26
That might be a set of integers,
6
26719
1826
可以是一組整數
00:28
the face of a Rubik's Cube,
7
28545
1928
也可以是一組魔術方塊的面板
00:30
or anything,
8
30473
1602
或任何東西
00:32
so long as they follow
four specific rules, or axioms.
9
32075
4496
只要他們符合以下四個公理
00:36
Axiom one:
10
36571
1488
公理1:封閉性
00:38
all group operations must be closed
or restricted to only group elements.
11
38059
5618
任兩個元素作用後
仍屬於這個集合內
00:43
So in our square,
for any operation you do,
12
43677
2924
以魔術方塊為例
無論你怎麼轉動
00:46
like turn it one way or the other,
13
46601
2147
像是讓它朝一邊轉
或另一邊轉
00:48
you'll still wind up with
an element of the group.
14
48748
3283
最終結果仍為群內的元素
00:52
Axiom two:
15
52031
1635
公理2:結合律
00:53
no matter where we put parentheses
when we're doing a single group operation,
16
53666
4330
當進行操作時
不管將括號放在哪裡
00:57
we still get the same result.
17
57996
2603
結果會依舊相同
01:00
In other words, if we turn our square
right two times, then right once,
18
60599
4441
換種說法, 若我們將魔術方塊
順時針轉兩次,然後再轉一次
01:05
that's the same as once, then twice,
19
65040
3018
結果會與順時針轉一次
然後再轉兩次相同
01:08
or for numbers, one plus two
is the same as two plus one.
20
68058
4528
以數字來說 1+2=2+1
01:12
Axiom three:
21
72586
1668
公理3:單位元素
01:14
for every operation, there's an element
of our group called the identity.
22
74254
4601
「群」必須有一個單位元素
01:18
When we apply it
to any other element in our group,
23
78855
2435
當「群」中的任一個元素
與此單位元素作用時
01:21
we still get that element.
24
81290
2159
依舊會得到原本的元素
01:23
So for both turning the square
and adding integers,
25
83449
3408
所以對轉方塊或數字加法來說
01:26
our identity here is zero,
26
86857
2410
這個單位元素稱為 0
01:29
not very exciting.
27
89267
2510
聽起來不怎麼特別
01:31
Axiom four:
28
91777
1448
公理4:反元素
01:33
every group element has an element
called its inverse also in the group.
29
93225
5077
群中的每一個元素
都必須有一個反元素
01:38
When the two are brought together
using the group's addition operation,
30
98302
3951
當這兩個元素一起作用時
01:42
they result in the identity element, zero,
31
102253
2858
都會得到單位元素 0
01:45
so they can be thought of
as cancelling each other out.
32
105111
3732
所以他們是被彼此消除的
01:48
So that's all well and good,
but what's the point of any of it?
33
108843
3596
一切都很順利
但是這些有什麼關聯呢?
01:52
Well, when we get beyond
these basic rules,
34
112439
2864
嗯,在深入這些基本規則後
01:55
some interesting properties emerge.
35
115303
2539
一些有趣的性質漸漸浮現
01:57
For example, let's expand our square
back into a full-fledged Rubik's Cube.
36
117842
5199
例如當我們把群論
還原回魔術方塊
02:03
This is still a group
that satisfies all of our axioms,
37
123041
3602
將發現它仍然符合四個基本公理
02:06
though now
with considerably more elements
38
126643
3178
只是增加了適當的元素
02:09
and more operations.
39
129821
2252
和適當的操作
02:12
We can turn each row
and column of each face.
40
132073
4591
我們可以旋轉各面的行及列
02:16
Each position is called a permutation,
41
136664
2371
每種狀態都稱為是一種「排列」
02:19
and the more elements a group has,
the more possible permutations there are.
42
139035
4561
一個群有更越多元素
就有更多種排列方式
02:23
A Rubik's Cube has more
than 43 quintillion permutations,
43
143596
4626
一個普通魔術方塊裡
排列方式就有4千3百億兆種
02:28
so trying to solve it randomly
isn't going to work so well.
44
148222
4228
所以要隨意破解它並不容易
02:32
However, using group theory
we can analyze the cube
45
152450
3414
然而,利用群論
我們可以分析魔術方塊的運作
02:35
and determine a sequence of permutations
that will result in a solution.
46
155864
5140
而且確定有特別的公式可以破解
02:41
And, in fact, that's exactly
what most solvers do,
47
161004
3470
事實上,那就是大部分人所用的技巧
02:44
even using a group theory notation
indicating turns.
48
164474
5098
甚至用群論一一解釋
02:49
And it's not just good for puzzle solving.
49
169572
2029
而群論不只有利於解謎
02:51
Group theory is deeply embedded
in music, as well.
50
171601
4974
群論也深深嵌入音樂中
02:56
One way to visualize a chord
is to write out all twelve musical notes
51
176575
4402
辨識和弦的一個辦法
就是寫出12個音名
03:00
and draw a square within them.
52
180977
2665
然後把他們圍成一圈
03:03
We can start on any note,
but let's use C since it's at the top.
53
183642
4722
從任何一個音開始都行
但我先用第一個C來示範
03:08
The resulting chord is called
a diminished seventh chord.
54
188364
4241
連成的和弦叫做減七和弦
03:12
Now this chord is a group
whose elements are these four notes.
55
192605
4588
那現在這個和弦變成一群
以四個音組成的元素
03:17
The operation we can perform on it
is to shift the bottom note to the top.
56
197193
4688
我們可以將最底下的音符移到最上方
03:21
In music that's called an inversion,
57
201881
2476
在音樂上被稱作轉位
03:24
and it's the equivalent
of addition from earlier.
58
204357
2890
這與我們之前做的加法是ㄧ樣的
03:27
Each inversion changes
the sound of the chord,
59
207247
2922
每次轉位都改變了和弦的聲音
03:30
but it never stops being
a C diminished seventh.
60
210169
3730
但它從來不改變減七和弦的本質
03:33
In other words, it satisfies axiom one.
61
213899
3762
換句話說,它滿足公理1
03:37
Composers use inversions to manipulate
a sequence of chords
62
217661
3921
作曲家利用轉位來操縱和弦的序列
03:41
and avoid a blocky,
awkward sounding progression.
63
221582
9745
並避免不均勻或不和諧的和弦
03:51
On a musical staff,
an inversion looks like this.
64
231327
3441
在樂譜上,轉位看起來像這樣
03:54
But we can also overlay it onto our square
and get this.
65
234768
5218
我們還可以套用在魔術方塊上
變成這樣
03:59
So, if you were to cover your entire
Rubik's Cube with notes
66
239986
4498
如果你將整個魔術方塊
都賦予音名
04:04
such that every face of the solved cube
is a harmonious chord,
67
244484
5054
使得魔術方塊的每一面
都是和諧的和弦
04:09
you could express the solution
as a chord progression
68
249538
3560
你就可以將解出的方式
以「和弦」的方式呈現
04:13
that gradually moves
from discordance to harmony
69
253098
3851
逐漸由不協調轉為和諧
04:16
and play the Rubik's Cube,
if that's your thing.
70
256949
3632
如果你喜歡
就來「演奏」魔術方塊吧!
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。