Group theory 101: How to play a Rubik’s Cube like a piano - Michael Staff

1,633,614 views ・ 2015-11-02

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Mingyu Cui 校对人员: Vivi Dai
00:06
How can you play a Rubik's Cube?
0
6960
2640
你怎样玩魔方呢?
00:09
Not play with it, but play it like a piano?
1
9600
3626
我指的不是简单地摆弄它,而是像弹钢琴一样“演奏”它。
00:13
That question doesn't make a lot of sense at first,
2
13226
2685
这个问题起初看起来不符合常理,
00:15
but an abstract mathematical field called group theory holds the answer,
3
15911
4729
但在一个被称为“群论”的抽象数学领域中有这个问题的答案,
00:20
if you'll bear with me.
4
20640
1969
容我好好解释——
00:22
In math, a group is a particular collection of elements.
5
22609
4110
在数学中,一个“群”指的是一些元素的特定集合。
00:26
That might be a set of integers,
6
26719
1826
可能是一组整数,
00:28
the face of a Rubik's Cube,
7
28545
1928
或是魔方的面,
00:30
or anything,
8
30473
1602
亦或是任何东西,
00:32
so long as they follow four specific rules, or axioms.
9
32075
4496
只要他们符合特定的四条原则,或公理。
00:36
Axiom one:
10
36571
1488
公理一:封闭性。
00:38
all group operations must be closed or restricted to only group elements.
11
38059
5618
群的所有“动作”必须仅限于组内的元素。
00:43
So in our square, for any operation you do,
12
43677
2924
在图中的框里,你所做的任何操作,
00:46
like turn it one way or the other,
13
46601
2147
比如将其转向一个方向,
00:48
you'll still wind up with an element of the group.
14
48748
3283
得到的最终结果仍是组内的一个元素。
00:52
Axiom two:
15
52031
1635
公理二:结合律。
00:53
no matter where we put parentheses when we're doing a single group operation,
16
53666
4330
当我们在对群做一个操作时,无论我们在哪里加括号,
00:57
we still get the same result.
17
57996
2603
结果都不会变化。
01:00
In other words, if we turn our square right two times, then right once,
18
60599
4441
换种说法,如果我们把魔方的一个面向右转动两次,再向右转动一次,
01:05
that's the same as once, then twice,
19
65040
3018
这和先向右转动一次再转动两次得到的结果是一样的。
01:08
or for numbers, one plus two is the same as two plus one.
20
68058
4528
从数字上来说,就像一加二等于二加一。
01:12
Axiom three:
21
72586
1668
公理三:单位元。
01:14
for every operation, there's an element of our group called the identity.
22
74254
4601
针对每一个操作,组中都有一个元素被称为“单位元”。
01:18
When we apply it to any other element in our group,
23
78855
2435
当我们将其特征赋予组中任何一个元素,
01:21
we still get that element.
24
81290
2159
我们仍然得到原来的那个元素。
01:23
So for both turning the square and adding integers,
25
83449
3408
针对于魔方的面和整数这两个组合,
01:26
our identity here is zero,
26
86857
2410
他们的单位元都是 0。
01:29
not very exciting.
27
89267
2510
听起来并不是挺令人激动。
01:31
Axiom four:
28
91777
1448
公理四:逆元。
01:33
every group element has an element called its inverse also in the group.
29
93225
5077
群组中的任何一个元素都能在同一群组中找到一个“逆元”。
01:38
When the two are brought together using the group's addition operation,
30
98302
3951
当这两个相反的元素相加后,
01:42
they result in the identity element, zero,
31
102253
2858
得到的结果是单位元(零)。
01:45
so they can be thought of as cancelling each other out.
32
105111
3732
所以可以说他们抵消对方。
01:48
So that's all well and good, but what's the point of any of it?
33
108843
3596
这就是四条针对群组的公理,可是意义在哪里呢?
01:52
Well, when we get beyond these basic rules,
34
112439
2864
当我们越过这些四条基本的规则,
01:55
some interesting properties emerge.
35
115303
2539
一些有趣的现象就涌现了出来。
01:57
For example, let's expand our square back into a full-fledged Rubik's Cube.
36
117842
5199
举个例子,我们把方块拓展至一个标准的魔方。
02:03
This is still a group that satisfies all of our axioms,
37
123041
3602
这是一个符合我们所有公理的“群”―—
02:06
though now with considerably more elements
38
126643
3178
尽管我们现在有了相当多的元素,
02:09
and more operations.
39
129821
2252
以及更多的操作选择。
02:12
We can turn each row and column of each face.
40
132073
4591
我们可以转动每一面的各行各列。
02:16
Each position is called a permutation,
41
136664
2371
每一种不同的情况叫做一种排列,
02:19
and the more elements a group has, the more possible permutations there are.
42
139035
4561
当群中的元素越多,可能的排列就越多。
02:23
A Rubik's Cube has more than 43 quintillion permutations,
43
143596
4626
一个魔方拥有超过43×10的21次幂种排列可能。
02:28
so trying to solve it randomly isn't going to work so well.
44
148222
4228
所以尝试胡乱地解开它可行不通。
02:32
However, using group theory we can analyze the cube
45
152450
3414
然而,我们可以利用群论来分析魔方,
02:35
and determine a sequence of permutations that will result in a solution.
46
155864
5140
然后尝试找出一组特定的排列最终来解开魔方。
02:41
And, in fact, that's exactly what most solvers do,
47
161004
3470
事实上,这正是大多数复原魔方的人所干的事,
02:44
even using a group theory notation indicating turns.
48
164474
5098
他们甚至用一种群论标记来记录转动的次数。
02:49
And it's not just good for puzzle solving.
49
169572
2029
群论不仅仅局限于解开谜题。
02:51
Group theory is deeply embedded in music, as well.
50
171601
4974
群论也被深深地嵌入音乐中。
02:56
One way to visualize a chord is to write out all twelve musical notes
51
176575
4402
把一个和弦可视化的方法之一是写出全部十二个音符,
03:00
and draw a square within them.
52
180977
2665
并使他们围成一圈。
03:03
We can start on any note, but let's use C since it's at the top.
53
183642
4722
我们可以从任何一个音符开始,比如从最上边的C开始。
03:08
The resulting chord is called a diminished seventh chord.
54
188364
4241
所得到的和弦叫做“减七和弦”。
03:12
Now this chord is a group whose elements are these four notes.
55
192605
4588
这个和弦是一个由这四个音符元素组成的群。
03:17
The operation we can perform on it is to shift the bottom note to the top.
56
197193
4688
我们所能对其进行的操作是将最底部的音符放置到最顶端。
03:21
In music that's called an inversion,
57
201881
2476
在音乐中,我们称之为“转位”。
03:24
and it's the equivalent of addition from earlier.
58
204357
2890
这与我们之前所做的加法是等价的。
03:27
Each inversion changes the sound of the chord,
59
207247
2922
每一个转位都改变了和弦的声音,
03:30
but it never stops being a C diminished seventh.
60
210169
3730
但它一直是减七和弦。
03:33
In other words, it satisfies axiom one.
61
213899
3762
换句话说,它符合公理一。
03:37
Composers use inversions to manipulate a sequence of chords
62
217661
3921
作曲家们用和弦转位来操作一个和弦序列,
03:41
and avoid a blocky, awkward sounding progression.
63
221582
9745
用于避免不匀称或是不和谐的和声。
03:51
On a musical staff, an inversion looks like this.
64
231327
3441
在乐谱上,和弦转位看起来是这样,
03:54
But we can also overlay it onto our square and get this.
65
234768
5218
但我们还可以将其覆盖在这些方块上。
03:59
So, if you were to cover your entire Rubik's Cube with notes
66
239986
4498
如果你将整个魔方都赋予音符,
04:04
such that every face of the solved cube is a harmonious chord,
67
244484
5054
每一面复原后的魔方都是和声的和弦,
04:09
you could express the solution as a chord progression
68
249538
3560
将解魔方的步骤以“和声的进行”的形式表现出来,
04:13
that gradually moves from discordance to harmony
69
253098
3851
音色会逐渐地由不和谐转为悦耳。
04:16
and play the Rubik's Cube, if that's your thing.
70
256949
3632
“演奏”魔方吧!如果你喜欢。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7