Should you donate your DNA to help cure diseases? - Greg Foot

173,679 views ใƒป 2021-05-13

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Naama Lieberman
00:06
So hereโ€™s the thing: developing a new drug and getting it to you
0
6621
4375
ืื– ื”ื ื” ื”ืขื ื™ื™ืŸ: ืคื™ืชื•ื— ืชืจื•ืคื” ื—ื“ืฉื” ื•ื”ื‘ืืชื” ืืœื™ื›ื
00:10
can take a long time.
1
10996
1625
ื™ื›ื•ืœ ืœื”ื™ืžืฉืš ื”ืจื‘ื” ื–ืžืŸ.
00:12
When we have to work out the cause of a conditionโ€”
2
12954
2792
ื›ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื‘ื™ืŸ ืžื” ื’ื•ืจื ืœืžืฆื‘ --
00:15
for example, with multiple sclerosis or heart diseaseโ€”
3
15746
3250
ืœื“ื•ื’ืžื”, ืขื ื˜ืจืฉืช ื ืคื•ืฆื” ืื• ืžื—ืœื•ืช ืœื‘ --
00:18
developing a new drug takes significant trial and error and lots of money.
4
18996
6333
ืคื™ืชื•ื— ืชืจื•ืคื” ื—ื“ืฉื” ื“ื•ืจืฉ ื”ืจื‘ื” ื ื™ืกื•ื™ ื•ื˜ืขื™ื™ื” ื•ื”ืจื‘ื” ื›ืกืฃ.
00:26
Which is why we only have drugs for a small proportion of diseases.
5
26746
4417
ืœื›ืŸ ื™ืฉ ืœื ื• ืชืจื•ืคื•ืช ืจืง ืœืžืกืคืจ ืžื•ืขื˜ ืฉืœ ืžื—ืœื•ืช.
00:32
But you could change all this.
6
32121
2125
ืื‘ืœ ืืชื ืชื•ื›ืœื• ืœืฉื ื•ืช ืืช ื–ื”.
00:34
You could help discover new, cheaper drugs for currently untreatable diseases.
7
34246
6166
ืืชื ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืœื’ืœื•ืช ืชืจื•ืคื•ืช ื—ื“ืฉื•ืช ื•ื–ื•ืœื•ืช ื™ื•ืชืจ ืœืžื—ืœื•ืช ืฉืœื ื ื™ืชืŸ ืœืจืคื ื›ืจื’ืข.
00:40
It's all about medical crowdsourcing.
8
40412
2875
ื›ืœ ื”ืขื ื™ื™ืŸ ื”ื•ื ืžื™ืงื•ืจ ื”ืžื•ื ื™ื ืจืคื•ืื™.
00:44
However, researchers arenโ€™t asking you to donate your money,
9
44079
3375
ืขื ื–ืืช, ื—ื•ืงืจื™ื ืœื ืžื‘ืงืฉื™ื ืฉืชืชืจืžื• ืœื”ื ื›ืกืฃ,
00:47
theyโ€™re asking you to donate something more personal...
10
47454
3333
ื”ื ืžื‘ืงืฉื™ื ืฉืชืชืจืžื• ืžืฉื”ื• ืื™ืฉื™ ื™ื•ืชืจ...
00:50
First, though, some drug development history.
11
50787
2834
ืื‘ืœ ืงื•ื“ื, ืงืฆืช ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืคื™ืชื•ื— ืชืจื•ืคื•ืช.
00:53
Many of the first medicines were discovered by chance.
12
53621
3708
ื”ืจื‘ื” ืžื”ืชืจื•ืคื•ืช ื”ืจืืฉื•ื ื•ืช ื”ืชื’ืœื• ื‘ืžืงืจื”.
00:57
Natural philosophers then took these
13
57912
1792
ืคื™ืœื•ืกื•ืคื™ื ืฉืœ ื”ื˜ื‘ืข ืœืงื—ื• ืื•ืชืŸ
00:59
and identified the active chemicals inside.
14
59704
3167
ื•ื–ื™ื”ื• ืืช ื”ื›ื™ืžื™ืงืœื™ื ื”ืคืขื™ืœื™ื ื‘ืชื•ื›ืŸ.
01:03
And pharmaceutical companies then turned those into drugs.
15
63496
3500
ื•ืื– ื—ื‘ืจื•ืช ืชืจื•ืคื•ืช ื”ืคื›ื• ืื•ืชื ืœืชืจื•ืคื•ืช.
01:07
The thing is, for a long time, we didnโ€™t know why those drugs worked.
16
67954
4792
ื”ืขื ื™ื™ืŸ ื”ื•ื, ืฉื‘ืžืฉืš ื”ืจื‘ื” ื–ืžืŸ, ืœื ื™ื“ืขื ื• ืœืžื” ื”ืชืจื•ืคื•ืช ื”ืืœื• ืขื•ื‘ื“ื•ืช.
01:12
Until scientists figured out that disease happens when the molecular machines
17
72746
4625
ืขื“ ืฉื”ืžื“ืขื ื™ื ื”ื‘ื™ื ื• ืฉืžื—ืœื•ืช ืงื•ืจื•ืช ื›ืฉืžื›ื•ื ื•ืช ืžื•ืœืงื•ืœืจื™ื•ืช
01:17
that keep your body goingโ€” your proteinsโ€” start misbehaving.
18
77371
5167
ืฉืžืคืขื™ืœื•ืช ืืช ื”ื’ื•ืฃ ืฉืœื ื• -- ื”ื—ืœื‘ื•ื ื™ื -- ืžืชื—ื™ืœื•ืช ืœื”ืชื ื”ื’ ืœื ื™ืคื”.
01:22
Drugs treat disease by targeting those disruptive proteins.
19
82913
4500
ืชืจื•ืคื•ืช ืžื˜ืคืœื•ืช ื‘ืžื—ืœื•ืช ืขืœ ื™ื“ื™ ื˜ื™ื•ื•ื— ื”ื—ืœื‘ื•ื ื™ื ื”ืžืคืจื™ืขื™ื.
01:28
Researchers realized that if they can identify
20
88538
2708
ื—ื•ืงืจื™ื ื”ื‘ื™ื ื• ืฉืื ื”ื ื™ื•ื›ืœื• ืœื–ื”ื•ืช
01:31
which malfunctioning proteins cause a specific disease,
21
91246
3792
ืื™ื–ื” ื—ืœื‘ื•ืŸ ื‘ืขื™ื™ืชื™ ื’ื•ืจื ืœืžื—ืœื” ืžืกื•ื™ืžืช,
01:35
they can then try to find or develop a drug
22
95038
3041
ื”ื ื™ื•ื›ืœื• ืื– ืœื ืกื•ืช ืœืžืฆื•ื ืื• ืœืคืชื— ืชืจื•ืคื”
01:38
that stops those proteins acting up, and that will prevent the disease.
23
98079
4459
ืฉืชืขืฆื•ืจ ืืช ื”ื—ืœื‘ื•ื ื™ื ื”ืืœื” ืžืœื”ืฉืชื•ืœืœ, ื•ื–ื” ื™ืžื ืข ืืช ื”ืžื—ืœื”.
01:42
Itโ€™s a great plan, but itโ€™s a slow process.
24
102538
3875
ื–ื• ืชื•ื›ื ื™ืช ืžืขื•ืœื”, ืื‘ืœ ื”ื™ื ืชื”ืœื™ืš ืื™ื˜ื™.
01:46
So far, theyโ€™ve only identified these therapeutic targets
25
106413
3583
ืขื“ ืขื›ืฉื™ื•, ื”ื ื–ื™ื”ื• ืจืง ืืช ื”ืžื˜ืจื•ืช ื”ืชืจืคื•ื™ื˜ื™ื•ืช
01:49
for a small proportion of diseases.
26
109996
2542
ืœืžืกืคืจ ืงื˜ืŸ ืฉืœ ืžื—ืœื•ืช.
01:52
However, this is where you can help.
27
112538
2416
ืขื ื–ืืช, ืคื” ืืชื ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ.
01:56
Researchers are now turning their attention to DNA,
28
116121
3375
ื—ื•ืงืจื™ื ืžืคื ื™ื ืขื›ืฉื™ื• ืืช ืชืฉื•ืžืช ื”ืœื‘ ืฉืœื”ื ืœ-DNA,
01:59
to the genetic instruction manual that tells our bodies how to make our proteins.
29
119496
5625
ืœืกืคืจ ื”ื”ื•ืจืื•ืช ื”ื’ื ื˜ื™ ืฉืื•ืžืจ ืœื’ื•ืฃ ืฉืœื ื• ืื™ืš ืœื™ื™ืฆืจ ืืช ื”ื—ืœื‘ื•ื ื™ื.
02:05
They want to know which small changes in someoneโ€™s genome
30
125121
3250
ื”ื ืจื•ืฆื™ื ืœื“ืขืช ืื™ื–ื” ืฉื™ื ื•ื™ ืงื˜ืŸ ื‘ื’ื ื•ื ืฉืœ ืžื™ืฉื”ื•
02:08
can lead to the production of those dodgy proteins that cause a disease.
31
128371
4583
ื™ื›ื•ืœ ืœื”ื•ื‘ื™ืœ ืœื™ื™ืฆื•ืจ ืฉืœ ื”ื—ืœื‘ื•ื ื™ื ื”ื‘ืขื™ื™ืชื™ื™ื ื”ืืœื” ืฉื’ื•ืจืžื™ื ืœืžื—ืœื•ืช.
02:12
The thing is, thatโ€™s a big job.
32
132954
2709
ื”ืขื ื™ื™ืŸ ื”ื•ื, ืฉื–ื• ืขื‘ื•ื“ื” ื’ื“ื•ืœื”.
02:15
DNA is huge, and each disease is likely to have hundreds, possibly thousands,
33
135663
5791
ื”-DNA ืขืฆื•ื, ื•ื‘ื›ืœ ืžื—ืœื” ื›ื ืจืื” ืžืื•ืช ื•ืื•ืœื™ ืืœืคื™
02:21
of proteins involved.
34
141454
1792
ื—ืœื‘ื•ื ื™ื ืžืขื•ืจื‘ื™ื.
02:23
But if they have lots of peopleโ€™s genomes, they can compare them and spot patterns.
35
143496
5750
ืื‘ืœ ืื ื™ืฉ ืœื”ื ื’ื ื•ืžื™ื ืฉืœ ื”ืจื‘ื” ืื ืฉื™ื, ื”ื ื™ื›ื•ืœื™ื ืœื”ืฉื•ื•ืช ืื•ืชื ื•ืœื–ื”ื•ืช ื“ืคื•ืกื™ื.
02:29
They can look at multiple people suffering from
36
149496
2458
ื”ื ื™ื›ื•ืœื™ื ืœื”ื‘ื™ื˜ ื‘ืื ืฉื™ื ืจื‘ื™ื ืฉืกื•ื‘ืœื™ื
02:31
the same currently untreatable disease,
37
151954
3375
ืžืื•ืชื” ืžื—ืœื” ืฉื›ืจื’ืข ืœื ื ื™ืชืŸ ืœื˜ืคืœ ื‘ื”,
02:35
find any small genetic changes they share,
38
155329
3209
ื•ืœืžืฆื•ื ืฉื™ื ื•ื™ื™ื ื’ื ื˜ื™ื™ื ืงื˜ื ื™ื ืžืฉื•ืชืคื™ื,
02:38
identify the faulty proteins they code for,
39
158538
3208
ืœื–ื”ื•ืช ืืช ื”ื—ืœื‘ื•ื ื™ื ื”ืคื’ื•ืžื™ื ืฉืžืงื•ื“ื“ื™ื ืื•ืชื,
02:41
and there you go: those are brand new therapeutic targets
40
161746
3750
ื•ื”ื ื” ืœื›ื: ืืœื” ืžื˜ืจื•ืช ื˜ื™ืคื•ืœื™ื•ืช ื—ื“ืฉื•ืช
02:45
for a currently untreatable disease.
41
165496
2833
ืœืžื—ืœื” ืฉื›ืจื’ืข ืœื ื ื™ืชืŸ ืœื˜ืคืœ ื‘ื”.
02:50
Now the researchers have three options:
42
170163
2583
ืขื›ืฉื™ื• ืœื—ื•ืงืจื™ื ื™ืฉ ืฉืœื•ืฉ ืืคืฉืจื•ื™ื•ืช:
02:53
1. Has one of those new target proteins been previously linked
43
173371
4167
1. ื”ืื ืื—ื“ ืžืžื˜ืจื•ืช ื”ื—ืœื‘ื•ื ื™ื ื”ืืœื” ื›ื‘ืจ ืงื•ืฉืจื•
02:57
to a different disease that is treatable?
44
177538
3041
ืœืžื—ืœื” ืื—ืจืช ืฉืืคืฉืจ ืœื˜ืคืœ ื‘ื”?
03:00
If so, the drug for that disease may target this protein
45
180579
4625
ืื ื›ืŸ, ื”ืชืจื•ืคื” ืœืžื—ืœื” ื”ื”ื™ื ืื•ืœื™ ืคื•ืขืœืช ืขืœ ื”ื—ืœื‘ื•ืŸ ื”ื–ื”
03:05
and work for this disease, too.
46
185204
2250
ื•ืชืขื‘ื•ื“ ื’ื ื‘ืžื—ืœื” ื”ื–ื•.
03:07
To find out, start a clinical trial.
47
187454
2625
ื›ื“ื™ ืœื’ืœื•ืช, ืžืชื—ื™ืœื™ื ื‘ื ื™ืกื•ื™ ืงืœื™ื ื™.
03:10
2. If not, has one of those new target proteins being previously linked
48
190871
4917
2. ืื ืœื, ื”ืื ืื—ื“ ืžื—ืœื‘ื•ื ื™ ื”ืžื˜ืจื” ื”ื—ื“ืฉื™ื ื”ืืœื” ืงื•ืฉืจื• ื‘ืขื‘ืจ
03:15
to a different disease that had a promising drug
49
195788
3166
ืœืžื—ืœื” ืื—ืจืช ืฉื™ืฉ ืœื” ืชืจื•ืคื” ืžื‘ื˜ื™ื—ื”
03:18
that didnโ€™t ultimately work?
50
198954
2125
ืฉื‘ืกื•ืฃ ืœื ืขื‘ื“ื”?
03:21
If so, its promise may have come from successfully targeting this protein
51
201413
4916
ืื ื›ืŸ, ื”ื”ื‘ื˜ื—ื” ืฉืœื” ืื•ืœื™ ืžื’ื™ืขื” ืžื”ืชืžืงื“ื•ืช ืžื•ืฆืœื—ืช ื‘ื—ืœื‘ื•ืŸ
03:26
and it may work for this disease.
52
206329
2292
ื•ื”ื™ื ืื•ืœื™ ืชืขื‘ื•ื“ ืœืžื—ืœื” ื”ื–ื•.
03:28
Start a clinical trial to find out.
53
208954
2459
ื”ืชื—ื™ืœื• ื ื™ืกื•ื™ื™ื ืงืœื™ื ื™ื™ื ื›ื“ื™ ืœื’ืœื•ืช.
03:32
3. If this is a brand new protein target never identified before for any disease
54
212496
6625
3. ืื ื–ื” ื—ืœื‘ื•ืŸ ืžื˜ืจื” ื—ื“ืฉ ืœื’ืžืจื™ ืฉืžืขื•ืœื ืœื ืงื•ืฉืจ ืœืคื ื™ ื›ืŸ ืœื›ืœ ืžื—ืœื”
03:39
could they design a new drug to affect it?
55
219121
3375
ื”ืื ื™ื•ื›ืœื• ืœืชื›ื ืŸ ืชืจื•ืคื” ื—ื“ืฉื” ืฉืชืฉืคื™ืข ืขืœื™ื•?
03:42
This involves AI machine learning and some very cool chemistry.
56
222496
4667
ื–ื” ื›ื•ืœืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื•ื›ื™ืžื™ื” ืžืื•ื“ ืžื’ื ื™ื‘ื”.
03:47
And a lot of time, effort, and cost too.
57
227163
3000
ื•ื”ืจื‘ื” ื–ืžืŸ, ืžืืžืฅ ื•ื’ื ืขืœื•ืช.
03:50
Researchers are excited about all this because they think
58
230621
2750
ื—ื•ืงืจื™ื ืžืชืจื’ืฉื™ื ืžื›ืœ ื–ื” ื‘ื’ืœืœ ืฉื”ื ื—ื•ืฉื‘ื™ื
03:53
1 in 5 of the proteins in your body either have, or are likely to have,
59
233371
5250
ืฉ-1 ืžื›ืœ 5 ื—ืœื‘ื•ื ื™ื ื‘ื’ื•ืฃ ืฉืœื›ื ืื• ืฉื™ืฉ ืœื• ืื• ืฉืกื‘ื™ืจ ืฉื™ืฉ ืœื•,
03:58
a drug that will bind to them.
60
238621
2250
ืชืจื•ืคื” ืฉื ืงืฉืจืช ืืœื™ื”ื.
04:00
And, as any common disease is likely to have hundreds, possibly thousands,
61
240871
3875
ื•ื›ืฉืœื›ืœ ืžื—ืœื” ืžืžื•ืฆืขืช ื™ืฉ ืžืื•ืช ื•ืื•ืœื™ ืืœืคื™,
04:04
of proteins involved,
62
244746
1333
ื—ืœื‘ื•ื ื™ื ืžืงื•ืฉืจื™ื,
04:06
theyโ€™re hopeful theyโ€™ll be able to identify a few of those proteins
63
246079
3792
ื”ื ืžืœืื™ ืชืงื•ื•ื” ืฉื”ื ื™ื”ื™ื• ืžืกื•ื’ืœื™ื ืœื–ื”ื•ืช ื›ืžื” ืžื”ื—ืœื‘ื•ื ื™ื ื”ืืœื”
04:09
theyโ€™ve already got a drug for.
64
249871
2000
ืฉื›ื‘ืจ ื™ืฉ ืœื”ื ืชืจื•ืคื•ืช ืขื‘ื•ืจืŸ.
04:11
But this all relies on finding those new therapeutic targets,
65
251871
4917
ืื‘ืœ ื›ืœ ื–ื” ืžืกืชืžืš ืขืœ ืžืฆื™ืืช ื”ืžื˜ืจื•ืช ื”ืชืจืคื•ื™ื˜ื™ื•ืช ื”ื—ื“ืฉื•ืช ื”ืืœื”,
04:16
and that's why they need you.
66
256788
2083
ื•ืœื›ืŸ ื”ื ืฆืจื™ื›ื™ื ืืชื›ื.
04:19
Well, your dataโ€” both your genetic data and your health history data,
67
259121
5958
ื•ื‘ื›ืŸ, ืืช ื”ืžื™ื“ืข ืฉืœื›ื -- ื’ื ื”ืžื™ื“ืข ื”ื’ื ื˜ื™ ื•ื’ื ื”ื”ื™ืกื˜ื•ืจื™ื” ื”ืจืคื•ืื™ืช ืฉืœื›ื,
04:25
so they can compare the genomes of people with similar conditions.
68
265079
3875
ื›ื“ื™ ืœื”ืฉื•ื•ืช ืืช ื”ื’ื ื•ืžื™ื ืฉืœ ืื ืฉื™ื ืขื ืžืฆื‘ื™ื ื“ื•ืžื™ื.
04:29
So would you give your data for research?
69
269538
2916
ืื– ื”ืื ืชืชื ื• ืืช ื”ืžื™ื“ืข ืฉืœื›ื ืœืžื—ืงืจ?
04:32
There are two questions you may have:
70
272788
2375
ื™ืฉ ืฉืชื™ ืฉืืœื•ืช ืฉืื•ืœื™ ื™ืฉ ืœื›ื:
04:35
who will have access to my data, and what could they do with it?
71
275163
4666
ืœืžื™ ืชื”ื™ื” ื’ื™ืฉื” ืœืžื™ื“ืข, ื•ืžื” ื”ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืื™ืชื•?
04:40
One group is health care providers who are starting to consider
72
280288
3666
ืงื‘ื•ืฆื” ืื—ืช ื”ื™ื ืกืคืงื™ ืฉืจื•ืชื™ ื‘ืจื™ืื•ืช ืฉืžืชื—ื™ืœื™ื ืœืฉืงื•ืœ
04:43
using genetic analysis to give patients more personal care.
73
283954
4042
ืฉื™ืžื•ืฉ ื‘ืื ืœื™ื–ื” ื’ื ื˜ื™ืช ื›ื“ื™ ืœืชืช ืœื—ื•ืœื™ื ื˜ื™ืคื•ืœ ืื™ืฉื™ ื™ื•ืชืจ.
04:48
Another group is private consumer genetic testing companies.
74
288454
3875
ืงื‘ื•ืฆื” ืื—ืจืช ื”ื™ื ื—ื‘ืจื•ืช ื‘ื“ื™ืงื•ืช ื’ื ื˜ื™ื•ืช ืœืฆืจื›ื ื™ื ืคืจื˜ื™ื™ื.
04:52
Some have already sold genetic data on to pharmaceutical companies for profit,
75
292329
5334
ื›ืžื” ื›ื‘ืจ ืžื›ืจื• ืžื™ื“ืข ื’ื ื˜ื™ ืœื—ื‘ืจื•ืช ืชืจื•ืคื•ืช ืขื‘ื•ืจ ืจื•ื•ื—,
04:57
but that was with their customers consent.
76
297663
2333
ืื‘ืœ ื–ื” ื”ื™ื” ื‘ื”ืกื›ืžืช ื”ืœืงื•ื—ื•ืช ืฉืœื”ื.
04:59
However, it raises another question:
77
299996
2333
ืขื ื–ืืช, ื–ื” ืžืขืœื” ืฉืืœื” ื ื•ืกืคืช:
05:02
if your data goes towards making new drugs,
78
302329
3167
ืื ื”ืžื™ื“ืข ืฉืœื›ื ืžืฉืžืฉ ืœื™ืฆื™ืจืช ืชืจื•ืคื•ืช ื—ื“ืฉื•ืช,
05:05
should pharmaceutical companies recognize that contribution
79
305496
3583
ื”ืื ื—ื‘ืจื•ืช ื”ืชืจื•ืคื•ืช ืฆืจื™ื›ื•ืช ืœื”ื›ื™ืจ ื‘ืชืจื•ืžื” ืฉืœื›ื
05:09
and offer drugs more cheaply?
80
309079
1959
ื•ืœื”ืฆื™ืข ืชืจื•ืคื•ืช ื‘ืžื—ื™ืจ ืžื•ืคื—ืช?
05:11
Your best bet is to research the organizations who are asking for your data
81
311038
4375
ื”ื”ื™ืžื•ืจ ื”ื›ื™ ื˜ื•ื‘ ืฉืœื›ื ื”ื•ื ืœื—ืงื•ืจ ืืช ื”ืืจื’ื•ืŸ ืฉืžื‘ืงืฉ ืžื›ื ืืช ื”ืžื™ื“ืข
05:15
to find out what they will do with it and how they will protect it.
82
315413
3708
ื›ื“ื™ ืœื’ืœื•ืช ืžื” ื™ืขืฉื• ืื™ืชื• ื•ืื™ืš ื™ื’ื ื• ืขืœื™ื•.
05:19
Weโ€™ll each have our own take on this,
83
319413
2000
ืœื›ืœ ืื—ื“ ืžืื™ืชื ื• ืชื”ื™ื” ื’ื™ืฉื” ืื—ืจืช ืœื–ื”,
05:21
but what is clear is genomics could be a powerful tool
84
321413
2958
ืื‘ืœ ืžื” ืฉื‘ืจื•ืจ ื”ื•ื ืฉื’ื ื•ืžื™ืงื” ื™ื›ื•ืœื” ืœื”ื™ื•ืช ื›ืœื™ ืจื‘ ืขืฆืžื”
05:24
to cut the current time and cost it takes to develop new drugs
85
324371
4125
ืœืงืฆืจ ื–ืžื ื™ื ื•ืขืœื•ื™ื•ืช ืฉื ื“ืจืฉื™ื ื›ื“ื™ ืœืคืชื— ืชืจื•ืคื•ืช ื—ื“ืฉื•ืช
05:28
for currently untreatable diseases.
86
328496
2583
ืœืžื—ืœื•ืช ืฉื‘ื”ืŸ ื›ืจื’ืข ืœื ื ื™ืชืŸ ืœื˜ืคืœ.
05:32
So, what do you think?
87
332038
1541
ืื–, ืžื” ืืชื ื—ื•ืฉื‘ื™ื?
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7