Evolution in a Big City

176,328 views ใƒป 2012-03-12

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: eviatar edlerman
(ืžื•ื–ื™ืงื”)
(ืชื ื•ืขื” ืขื™ืจื•ื ื™ืช) ืื– ืื ื™ ื›ืืŸ ื”ื™ื•ื ืœืขื•ื“ื“ ืืชื›ื ืœื—ืฉื•ื‘ ืขืœ ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง,
00:16
So I'm here today to encourage you to think about New York City,
0
16722
3023
ืœื ืจืง ื›ืื—ื“ ืžื”ื”ืฉื’ื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ืฉืœ ื”ืื ื•ืฉื•ืช,
00:19
and not just as one of humanity's greatest achievements,
1
19769
2651
00:22
but as home to native wildlife
2
22444
1469
ืืœื ื”ื‘ื™ืช ืœื—ื™ื™ ื‘ืจ ืžืงื•ืžื™ื™ื ืฉื ืชื•ื ื™ื ืœื ื™ืกื•ื™ ืื‘ื•ืœื•ืฆื™ื•ื ื™ ื›ื‘ื™ืจ.
00:23
that are subject to a grand evolutionary experiment.
3
23937
2838
00:27
So take this forested hillside in Northern Manhattan, for example.
4
27295
3188
ืื– ืงื—ื• ืืช ื”ื’ื‘ืขื” ื”ืžื™ื•ืขืจืช ื”ื–ื• ื‘ืฆืคื•ืŸ ื ื™ื• ื™ื•ืจืง, ืœื“ื•ื’ืžื”.
00:30
This is one of the last areas left in the city
5
30507
2152
ื–ื” ืื—ื“ ืžื”ืื–ื•ืจื™ื ื”ืื—ืจื•ื ื™ื ื‘ื• ื™ืฉ ืžื™ ืžืขื™ื™ืŸ ื ืงื™ื™ื ืฉืขื“ื™ื™ืŸ ื ื•ื‘ืขื™ื ืžื”ืื“ืžื”.
00:32
where there's clean spring water seeping out of the ground.
6
32683
2811
00:35
You could drink this out of your hands and you'd be OK.
7
35518
2596
ืืชื ื™ื›ื•ืœื™ื ืœืฉืชื•ืช ืžื™ื“ื™ื›ื ื•ืชื”ื™ื• ื‘ืกื“ืจ.
ื”ืื–ื•ืจื™ื ื”ื–ืขื™ืจื™ื ื”ืืœื” ืฉืœ ืžื™ ืžืขื™ื™ืŸ ืžื›ื™ืœื™ื ืื•ื›ืœื•ืกื™ื•ืช ืขื ืง ืฉืœ ืกืœืžื ื“ืจื•ืช ื“ืกืงื™ ืฆืคื•ื ื™ื•ืช
00:38
These tiny little areas of seeping water
8
38138
1905
00:40
contain huge populations of northern dusky salamanders.
9
40067
2917
ื”ื—ื‘ืจื” ื”ืืœื” ื”ื™ื• ื ืคื•ืฆื™ื ื‘ืขื™ืจ
00:43
These guys were common in the city maybe 60 years ago,
10
43008
2983
ืื•ืœื™ ืœืคื ื™ ืฉื™ืฉื™ื ืฉื ื”,
00:46
but now they're just stuck on this single hillside
11
46015
2352
ืื‘ืœ ืขื›ืฉื™ื• ื”ื ืชืงื•ืขื™ื ืขืœ ื’ื‘ืขื” ื‘ื•ื“ื“ืช ื–ื• ื•ืžืงื•ืžื•ืช ื‘ื•ื“ื“ื™ื ื‘ืื™ ืกื˜ื˜ืŸ.
00:48
and a few places in Staten Island.
12
48391
2102
00:53
Not only do they suffer the indignity of being stuck on this hillside,
13
53247
3672
ืœื ืจืง ืฉื”ื ืกื•ื‘ืœื™ื ืžื—ื•ืกืจ ื”ื›ื‘ื•ื“ ืฉืœ ืœื”ื™ื•ืช
ืชืงื•ืขื™ื ืขืœ ื’ื‘ืขื”,
00:56
but we divided the hillside in two
14
56943
2104
ืืœื ืื ื—ื ื• ืžื—ืœืงื™ื ืืช ื”ื’ื‘ืขื” ืœืฉืชื™ื™ื
00:59
on two different occasions
15
59071
1377
ื‘ืฉื ื™ ืžืงืจื™ื ืฉื•ื ื™ื
01:00
with bridges crossing from the Bronx into Manhattan.
16
60472
2852
ืขื ื’ืฉืจื™ื ื—ื•ืฆื™ื ืžื”ื‘ืจื•ื ืงืก ืœืžื ื”ื˜ืŸ.
01:03
But they're still there, on either side of the bridges,
17
63348
2610
ืื‘ืœ ื”ื ืขื“ื™ื™ื• ืฉื
ืžื›ืœ ืฆื“ ืฉืœ ื”ื’ืฉืจื™ื ืืชื ืจื•ืื™ื ื—ื™ืฆื™ื ืื“ื•ืžื™ื
01:05
where you see the red arrows -- about 180th Street, 167th Street.
18
65982
3063
ื‘ืขืจืš ื‘ืจื—ื•ื‘ 180, ืจื—ื•ื‘ 167.
ื•ื”ืžืขื‘ื“ื” ืฉืœื™ ืžืฆืื”
01:09
My lab has found that if you just take a few segments of DNA
19
69069
2977
ืฉืื ืจืง ืชืงื—ื• ื›ืžื” ืงื˜ืขื™ื ืฉืœ DNA ืžืกืœืžื ื“ืจื•ืช ื‘ืฉื ื™ ื”ืžื™ืงื•ืžื™ื ื”ืืœื”,
01:12
from salamanders in those two locations,
20
72070
1975
01:14
you can tell which side of the bridge they came from.
21
74069
2487
ืชื•ื›ืœื• ืœื“ืขืช ืžืื™ื–ื” ืฆื“ ืฉืœ ื”ื’ืฉืจ ื”ืŸ ื”ื’ื™ืขื•.
01:16
We built this single piece of infrastructure
22
76580
2088
ืื ื—ื ื• ื‘ื•ื ื™ื ืคื™ืกื•ืช ืื“ืจื™ื›ืœื•ืช ื‘ื•ื“ื“ื•ืช ื›ืืœื”
01:18
that's changed their evolutionary history.
23
78692
2284
ืฉืžืฉื ื•ืช ืืช ื”ื™ืกื˜ื•ืจื™ืช ื”ืื‘ื•ืœื•ืฆื™ื” ืฉืœื”ืŸ.
01:21
We can go study these guys, we just go to the hillside
24
81000
2542
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ืืช ื”ื—ื‘ืจื” ื”ืืœื”, ืืชื ื™ื•ื“ืขื™ื, ืื ื—ื ื• ืคืฉื•ื˜ ื”ื•ืœื›ื™ื ืœื’ื‘ืขื”.
01:23
we know where they are, we flip over rocks so we can catch them.
25
83566
3005
ืื ื—ื ื• ื™ื•ื“ืขื™ื ื”ื™ื›ืŸ ื”ืŸ, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืคื•ืš ืกืœืขื™ื, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืชืคื•ืก ืื•ืชืŸ.
01:26
There are a lot of other things in New York City, though,
26
86595
2744
ื™ืฉ ืขื•ื“ ื”ืจื‘ื” ื“ื‘ืจื™ื ืื—ืจื™ื ื‘ื ื™ื• ื™ื•ืจืง ืฉื”ื ืœื ื›ืœ ื›ืš
01:29
that are not that easy to capture, such as this guy, a coyote.
27
89363
2960
ืงืœื™ื ืœืชืคื™ืกื”, ื›ืžื• ื”ื‘ื—ื•ืจ ื”ื–ื”, ืงื™ื•ื˜.
01:32
We caught him on an automatic camera trap in an undisclosed location;
28
92347
3251
ืชืคืกื ื• ืื•ืชื• ื‘ืžืœื›ื•ื“ืช ืžืฆืœืžื” ืื•ื˜ื•ืžื˜ื™ืช ืื™ืคื”ืฉื”ื•,
01:35
I'm not allowed to talk about it yet.
29
95622
1833
ื‘ืžืงื•ื ื—ืกื•ื™, ืืกื•ืจ ืœื™ ืœื“ื‘ืจ ืขืœ ื–ื” ืขื“ื™ื™ืŸ.
01:37
But they're moving into New York City for the first time.
30
97479
2686
ืื‘ืœ ื”ื ืขื•ื‘ืจื™ื ืœืชื•ืš ื ื™ื• ื™ื•ืจืง ื‘ืคืขื ื”ืจืืฉื•ื ื”.
ื”ืŸ ื—ื™ื•ืช ืžืื•ื“ ื’ืžื™ืฉื•ืช, ื•ื—ื›ืžื•ืช.
01:40
They're very flexible, intelligent animals.
31
100189
2009
01:42
This is one of this year's pups checking out one of our cameras.
32
102222
3011
ื–ื” ืื—ื“ ืžื”ื’ื•ืจื™ื ืฉื ื•ืœื“ื• ื”ืฉื ื” ื‘ื•ื“ืง ืื—ืช ืžื”ืžืฆืœืžื•ืช ืฉืœื ื•.
01:45
And my colleagues and I are very interested in understanding
33
105257
2973
ื•ื”ืงื•ืœื’ื•ืช ืฉืœื™ ื•ืื ื™ ืžืื•ื“ ืžืชืขื ื™ื™ื ื™ื ื‘ืœื”ื‘ื™ืŸ
01:48
how they're going to spread through the area,
34
108254
2169
ืื™ืš ื”ื ื™ืชืคืฉื˜ื• ื‘ืื–ื•ืจ,
01:50
how they're going to survive here and maybe even thrive.
35
110447
2635
ืื™ืš ื”ื ื™ืฉืจื“ื• ื›ืืŸ, ื•ืื•ืœื™ ืืคื™ืœื• ื™ืฉื’ืฉื’ื•.
01:53
And they're probably coming to a neighborhood near you,
36
113106
2578
ื•ื”ื ื›ื ืจืื” ื‘ืื™ื ืœืฉื›ื•ื ื•ืช ืœื™ื“ื›ื ืื ื”ื ืขื“ื™ื™ืŸ ืœื ืฉื.
01:55
if they're not already there.
37
115708
1411
ืื–, ื™ืฉ ื›ืžื” ื“ื‘ืจื™ื ืฉื”ื ืžื”ื™ืจื™ื ืžื“ื™ ืœื”ืชืคืก ื‘ื™ื“.
01:57
Some things are too fast to be caught by hand.
38
117489
2928
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืชืคื•ืฉ ืื•ืชื ื‘ืžืฆืœืžื•ืช,
02:00
We can't pick them up on the cameras,
39
120441
1782
02:02
so we set up traps around New York City and the parks.
40
122247
2587
ืื– ืื ื—ื ื• ืคื•ืจืฉื™ื ืœืžืขืฉื” ืžืœื›ื•ื“ื•ืช ื‘ืจื—ื‘ื™ ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง ื•ื”ืคืืจืงื™ื.
02:04
This is one of our most common activities.
41
124858
2207
ื–ื• ืื—ืช ืžื”ืคืขื™ืœื•ื™ื•ืช ื”ื›ื™ ื ืคื•ืฆื•ืช.
02:07
Here's some of my students and collaborators
42
127089
2086
ื”ื ื” ื›ืžื” ืžื”ืกื˜ื•ื“ื ื˜ื™ื ื•ื”ืฉื•ืชืคื™ื ืฉืœื™ ืžื•ืฆื™ืื™ื ื•ืžื›ื™ื ื™ื ืžืœื›ื•ื“ื•ืช.
02:09
getting the traps out and ready.
43
129199
1537
02:10
This guy, we catch in almost every forested area in New York City.
44
130760
3147
ื•ืืช ื”ื‘ื—ื•ืจ ื”ื–ื”, ืื ื—ื ื• ืชื•ืคืกื™ื ื›ืžืขื˜ ื‘ื›ืœ ืื–ื•ืจ ืžื™ื•ืขืจ ื‘ื ื™ื• ื™ื•ืจืง.
02:13
This is the white-footed mouse --
45
133931
1626
ื–ื” ื”ืขื›ื‘ืจ ืœื‘ืŸ ื”ืจื’ืœ.
02:15
not the mouse you find running around your apartment.
46
135581
2619
ื–ื” ืœื ื”ืขื›ื‘ืจ ืฉืืชื ืžื•ืฆืื™ื ืžืชืจื•ืฆืฅ ื‘ื“ื™ืจื” ืฉืœื›ื.
02:18
This is a native species, been here long before humans.
47
138224
3143
ื–ื” ืžื™ืŸ ืžืงื•ืžื™, ื”ื™ื” ืคื” ื”ืจื‘ื” ืœืคื ื™ ื”ืื“ื,
02:21
You find them in forests and meadows.
48
141391
1898
ื•ืืชื ืžื•ืฆืื™ื ืื•ืชื ื‘ื™ืขืจื•ืช ื•ื‘ืื—ื•.
02:23
Because they're so common in forested areas in the city,
49
143313
3101
ืžืคื ื™ ืฉื”ื ื›ืœ ื›ืš ื ืคื•ืฆื™ื ื‘ืื–ื•ืจื™ื ืžื™ื•ืขืจื™ื ื‘ืขื™ืจ,
02:26
we're using them as a model to understand how species are adapting
50
146438
3675
ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื”ื ื›ืžื•ื“ืœ ืœื”ื‘ื ืช ืื™ืš ืžื™ื ื™ื ืžืชืื™ืžื™ื ืืช ืขืฆืžื ืœืกื‘ื™ื‘ื•ืช ืขื™ืจื•ื ื™ื•ืช.
02:30
to urban environments.
51
150137
1237
02:31
So if you think back 400 years ago,
52
151993
2437
ืื– ืื ืืชื ื—ื•ืฉื‘ื™ื 400 ืฉื ื” ืื—ื•ืจื”,
02:34
the five boroughs would've been covered in forests and other types of vegetation.
53
154454
3851
ื—ืžืฉืช ื”ืจื‘ืขื™ื ื”ื™ื• ืžื›ื•ืกื™ื
ื‘ื™ืขืจื•ืช ื•ืกื•ื’ื™ื ืื—ืจื™ื ืฉืœ ืฆืžื—ื™ื”.
02:38
This mouse would've been everywhere [in] huge populations
54
158329
2678
ื”ืขื›ื‘ืจ ื”ื–ื” ื”ื™ื” ื‘ื›ืœ ืžืงื•ื.
ืื•ื›ืœื•ืกื™ื•ืช ืขื ืง ืฉื”ืจืื• ืžืขื˜ ื”ื‘ื“ืœื™ื ื’ื ื˜ื™ื™ื ื‘ืจื—ื‘ื™ ื”ืื–ื•ืจ.
02:41
that showed few genetic differences across the landscape.
55
161031
2778
02:43
But if you look at the situation today,
56
163833
1958
ืื‘ืœ ืื ืชื‘ื™ื˜ื• ืขืœ ืžืฆื‘ ื”ื™ื•ื,
02:45
they're just stuck in these little islands of forest scattered around the city.
57
165815
3810
ื”ื ืชืงื•ืขื™ื ื‘ืื™ื™ื ื”ืงื˜ื ื™ื ื”ืืœื”
ืฉืœ ื™ืขืจื•ืช ืฉืžืคื•ื–ืจื™ื ืžืกื‘ื™ื‘ ืœืขื™ืจ.
02:49
Just using 18 short segments of DNA, we can pretty much take a mouse
58
169649
3657
ืจืง ื‘ืฉื™ืžื•ืฉ ื‘ 18 ืžืงื˜ืขื™ื ืงืฆืจื™ื ืฉืœ DNA, ืื ื—ื ื• ื™ื›ื•ืœื™ื ื“ื™ ื‘ืงืœื•ืช ืœืงื—ืช ืขื›ื‘ืจ
02:53
somebody could give us a mouse, not tell us where it was from,
59
173330
2948
ืžื™ืฉื”ื• ื™ืชืŸ ืœื ื• ืขื›ื‘ืจ, ืœื ื™ื’ื™ื“ ืœื ื• ืžืื™ืคื” ื”ื•ื,
02:56
and we could determine what park it came from.
60
176302
2151
ื•ืื ื—ื ื• ื ื•ื›ืœ ืœืงื‘ื•ืข ืžืื™ื–ื” ืคืืจืง ื”ื•ื ื”ื’ื™ืข. ื”ื ื ื”ื™ื• ื›ืœ ื›ืš ืฉื•ื ื™ื.
02:58
That's how different they've become.
61
178477
1724
ืืชื ืชื‘ื—ื™ื ื• ื‘ืžืจื›ื– ืฉืœ ื”ื“ืžื•ืช ื”ืฆื‘ื•ืขื” ื›ืืŸ
03:00
You'll notice in the middle of this figure,
62
180225
2015
03:02
there are some mixed-up colors.
63
182264
1586
ืฉื™ืฉ ื‘ื™ืœื‘ื•ืœ ื‘ืฆื‘ืขื™ื.
03:03
There are a few parks in the city that are still connected to each other
64
183874
3401
ื™ืฉ ื›ืžื” ืคืืจืงื™ื ื‘ืขื™ืจ ืฉืขื“ื™ื™ืŸ ืžื—ื•ื‘ืจื™ื ืื—ื“ ืœืฉื ื™
03:07
with strips of forest, so the mice can run back and forth
65
187299
2729
ืขื ืคืกื™ื ืฉืœ ื™ืขืจ ืื– ืขื›ื‘ืจื™ื ื™ื›ื•ืœื™ื ืœืขื‘ื•ืจ ืžืื—ื“ ืœืฉื ื™
03:10
and spread their genes, so they don't become different.
66
190052
2578
ื•ืœืคื–ืจ ืืช ื”ื’ื ื™ื ืฉืœื”ื ื›ืš ืฉืœื ื™ื”ืคื›ื• ืœืฉื•ื ื™ื,
03:12
But throughout the city, they're mostly becoming different in the parks.
67
192654
3396
ืื‘ืœ ืœืจื•ื—ื‘ ื”ืขื™ืจ, ื”ื ื‘ืขื™ืงืจ ื ืขืฉื™ื ืฉื•ื ื™ื ื‘ืคืืจืงื™ื.
03:16
So I'm telling you they're different, but what does that mean?
68
196074
2905
ื‘ืกื“ืจ, ืื– ืื ื™ ืžืกืคืจ ืœื›ื ืฉื”ื ืฉื•ื ื™ื,
ืื‘ืœ ืžื” ื–ื” ื‘ืืžืช ืื•ืžืจ? ืžื” ืžืฉืชื ื” ื‘ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœื”ื?
03:19
What's changing about their biology?
69
199003
1723
03:20
To answer this question,
70
200750
1215
ื›ื“ื™ ืœืขื ื•ืช ืขืœ ื”ืฉืืœื” ื”ื–ื•
03:21
we're sequencing thousands of genes from our city mice
71
201989
3022
ืื ื—ื ื• ืžืจืฆืคื™ื ืืœืคื™ ื’ื ื™ื ืžืขื›ื‘ืจื™ ื”ืขื™ืจ ืฉืœื ื•
03:25
and comparing those to thousands of genes from the country mice,
72
205035
3637
ื•ืžืฉื•ื•ื™ื ืื•ืชื ืœืืœืคื™ ื”ื’ื ื™ื ืžืขื›ื‘ืจื™ ื”ื›ืคืจ.
03:28
so, their ancestors outside of New York City
73
208696
2089
ืื– ื”ืื‘ื•ืช ื”ืงื“ืžื•ื ื™ื ืฉืœื”ื ืžื—ื•ืฅ ืœืขื™ืจ ื ื™ื• ื™ื•ืจืง
03:30
in these big, more wilderness areas.
74
210809
3072
ื‘ืื–ื•ืจื™ื ื”ื’ื“ื•ืœื™ื ื”ื™ื•ืชืจ ืคืจืื™ื™ื.
ืขื›ืฉื™ื• ื’ื ื™ื ื”ื ื—ืœืงื™ื ืงืฆืจื™ื ืฉืœ DNA
03:34
Now, genes are short segments of DNA that code for amino acids.
75
214331
3572
ืฉืžืงื•ื“ื“ื™ื ื—ื•ืžืฆื•ืช ืืžื™ื ื•.
03:38
And amino acids are the building blocks of proteins.
76
218330
2676
ื•ื—ื•ืžืฆื•ืช ืืžื™ื ื• ื”ืŸ ื›ืžื• ืื‘ื ื™ ื”ื‘ื ื™ื” ืฉืœ ื”ื—ืœื‘ื•ื ื™ื.
ืขื›ืฉื™ื• ืื ื–ื•ื’ ื‘ืกื™ืก ื‘ื•ื“ื“ ืžืฉืชื ื” ื‘ื’ืŸ, ืืชื ื™ื›ื•ืœื™ื ืœืงื‘ืœ ื—ื•ืžืฆืช ืืžื™ื ื• ืฉื•ื ื”,
03:41
If a single base pair changes in a gene,
77
221030
2228
03:43
you can get a different amino acid,
78
223282
1866
ืฉืื– ืžืฉื ื” ืืช ื”ืฆื•ืจื” ืฉืœ ื”ื—ืœื‘ื•ืŸ.
03:45
which will then change the shape and structure of the protein.
79
225172
2934
ืื ืืชื ืžืฉื ื™ื ืืช ืžื‘ื ื” ื”ื—ืœื‘ื•ืŸ,
03:48
If you change the structure of a protein,
80
228130
2080
ืืชื ืคืขืžื™ื ืจื‘ื•ืช ืžืฉื ื™ื ืžืฉื”ื• ื‘ืžื” ืฉื”ื•ื ืขื•ืฉื” ืœืื•ืจื’ื ื™ื–ื.
03:50
you often change something about what it does in the organism.
81
230234
3367
03:53
Now if that change leads to a longer life or more babies for a mouse,
82
233625
4214
ืขื›ืฉื™ื• ืื ื”ืฉื™ื ื•ื™ ื”ื–ื” ืžื•ื‘ื™ืœ ืœื—ื™ื™ื ืืจื•ื›ื™ื ื™ื•ืชืจ ืื• ื™ื•ืชืจ ื•ืœื“ื•ืช ืœืขื›ื‘ืจ,
03:57
something evolutionary biologists call fitness,
83
237863
2307
ืžืฉื”ื• ืฉื‘ื™ื•ืœื•ื’ืื™ ืื‘ื•ืœื•ืฆื™ื” ืงื•ืจืื™ื ืœื• ื›ืฉื™ืจื•ืช,
04:00
then that single base-pair change will spread quickly
84
240194
2715
ืื– ืฉื™ื ื•ื™ ื–ื•ื’ ื”ื‘ืกื™ืก ื”ื‘ื•ื“ื“ ื”ื–ื” ื™ื›ื•ืœ ืœื”ืชืคืฉื˜ ื‘ืžื”ื™ืจื•ืช ื‘ืื•ื›ืœื•ืกื™ื” ืขื™ืจื•ื ื™ืช.
04:02
in an urban population.
85
242933
1253
04:04
So this crazy figure is called a Manhattan plot,
86
244586
2254
ืื– ื”ืชืžื•ื ื” ื”ืžื˜ื•ืจืคืช ื”ื–ื• ื ืงืจืืช ืœืžืขืฉื” ืฉืจื˜ื•ื˜ ืžื ื”ื˜ืŸ,
04:06
because it kind of looks like a skyline.
87
246864
2112
ืžืคื ื™ ืฉื”ื™ื ื“ื™ ื ืจืื™ืช ื›ืžื• ืงื• ืจืงื™ืข.
04:09
Each dot represents one gene,
88
249000
1976
ื•ื›ืœ ื ืงื•ื“ื” ืžื™ืฆื’ืช ื’ืŸ ืื—ื“,
04:11
and the higher the dot is in the plot,
89
251000
2285
ื•ื›ืžื” ืฉื”ื ืงื•ื“ื” ื’ื‘ื•ื”ื” ื™ื•ืชืจ ื‘ื’ืจืฃ,
04:13
the more different it is between city and country mice.
90
253309
2621
ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ืขื›ื‘ืจื™ ื”ืขื™ืจ ื•ื”ื›ืคืจ ื’ื“ื•ืœ ื™ื•ืชืจ.
04:15
The ones kind of at the tips of the skyscrapers are the most different,
91
255954
3368
ืืœื” ืฉื“ื•ืžื” ืฉื”ื ื‘ืงืฆื” ื’ื•ืจื“ ื”ืฉื—ืงื™ื ื”ืŸ ื”ื›ื™ ืฉื•ื ื•ืช,
ื‘ืขื™ืงืจ ืืœื• ืžืขืœ ื”ืงื• ื”ืื“ื•ื.
04:19
especially those above the red line.
92
259346
1801
04:21
And these genes encode for things like immune response to disease,
93
261171
3690
ื•ื”ื’ื ื™ื ื”ืืœื” ืžืงื•ื“ื“ื™ื ืœื“ื‘ืจื™ื ื›ืžื• ืชื’ื•ื‘ืช ื—ื™ืกื•ืŸ ืœืžื—ืœื•ืช,
04:24
because there might be more disease in very dense, urban populations;
94
264885
3275
ืžืคื ื™ ืฉื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ื™ื•ืชืจ ืžื—ืœื•ืช
ื‘ืื•ื›ืœื•ืกื™ื•ืช ืขื™ืจื•ื ื™ื•ืช, ื™ื•ืชืจ ื“ื—ื•ืกื•ืช.
04:28
metabolism, how the mice use energy;
95
268184
2381
ื—ื™ืœื•ืฃ ื—ื•ืžืจื™ื, ืื™ืš ื”ืขื›ื‘ืจ ืžืฉืชืžืฉ ื‘ืื ืจื’ื™ื”,
04:30
and heavy-metal tolerance.
96
270589
1278
ื•ืขืžื™ื“ื•ืช ืœืžืชื›ื•ืช ื›ื‘ื“ื•ืช. ืืชื ื™ื›ื•ืœื™ื ื›ื ืจืื” ืœื—ื–ื•ืช ืืช ื–ื”.
04:31
You guys can probably predict
97
271891
1404
04:33
that New York City soils are pretty contaminated
98
273319
2420
ืื“ืžื•ืช ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง ื”ืŸ ื“ื™ ืžื–ื•ื”ืžื•ืช
04:35
with lead and chromium and that sort of thing.
99
275763
2460
ื‘ืขื•ืคืจืช, ื•ื›ืจื•ื ื•ื›ืืœื” ื“ื‘ืจื™ื.
04:38
And now our hard work is really starting.
100
278247
1992
ื•ืขื›ืฉื™ื• ื”ืขื‘ื•ื“ื” ื”ืงืฉื” ืฉืœื ื• ื‘ืืžืช ืžืชื—ื™ืœื”,
04:40
We're going back into the wilds of New York City parks,
101
280263
2856
ืื ื—ื ื• ื—ื•ื–ืจื™ื ืœืื–ื•ืจื™ื ื”ืคืจืื™ื™ื ืฉืœ ืคืืจืงื™ ื”ืขื™ืจ ื ื™ื• ื™ื•ืจืง,
04:43
following the lives of individual mice
102
283143
2120
ืขื•ืงื‘ื™ื ืื—ืจื™ ื—ื™ื™ื”ื ืฉืœ ืขื›ื‘ืจื™ื ื™ื—ื™ื“ื™ื ื•ืจื•ืื™ื ื‘ื“ื™ื•ืง ืžื” ื”ื’ื ื™ื ื”ืืœื” ืขื•ืฉื™ื ืœื”ื.
04:45
and seeing exactly what these genes are doing for them.
103
285287
2958
04:48
And I would encourage you guys to try to look at your parks in a new way.
104
288269
3840
ื•ื”ื™ื™ืชื™ ืžืขื•ื“ื“ ืืชื›ื ืœื ืกื•ืช ืœื”ื‘ื™ื˜ ื‘ืคืืจืงื™ื ืฉืœื›ื ื‘ื“ืจืš ื—ื“ืฉื”,
ืื ื™ ืœื ืื”ื™ื” ืฆ'ืืจืœืก ื“ืืจื•ื•ื™ืŸ ื”ื‘ื,
04:52
I'm not going to be the next Charles Darwin,
105
292133
2094
04:54
but one of you guys might be, so just keep your eyes open.
106
294251
2755
ืื‘ืœ ืื—ื“ ืžื›ื ื™ื›ื•ืœ ืœื”ื™ื•ืช, ืื– ืคืฉื•ื˜ ืชืฉืื™ืจื• ืืช ื”ืขื™ื™ื ื™ื ืฉืœื›ื ืคืงื•ื—ื•ืช. ืชื•ื“ื” ืœื›ื.
04:57
Thank you.
107
297030
1151
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
04:58
(Applause)
108
298205
2467
(ืžื•ื–ื™ืงื”)

Original video on YouTube.com
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7