How to sequence the human genome - Mark J. Kiel

1,516,713 views ใƒป 2013-12-09

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Sigal Tifferet
00:06
You've probably heard of the human genome,
0
6704
2076
ื›ื ืจืื” ืฉืžืขืชื ืขืœ ื”ื’ื ื•ื ื”ืื ื•ืฉื™,
00:08
the huge collection of genes
1
8780
1613
ืื•ืกืฃ ื”ื’ื ื™ื ื”ืขืฆื•ื ื”ืžืฆื•ื™
00:10
inside each and every one of your cells.
2
10393
3397
ื‘ืชื•ืš ื›ืœ ืื—ื“ ืžื”ืชืื™ื ืฉืœื›ื.
00:13
You probably also know
3
13790
454
ืืชื ื‘ื•ื•ื“ืื™ ื™ื•ื“ืขื™ื
00:14
that we've sequenced the human genome,
4
14244
2583
ืฉืจื™ืฆืคื ื• ืืช ื”ื’ื ื•ื ื”ืื ื•ืฉื™,
00:16
but what does that actually mean?
5
16827
2166
ืื‘ืœ ืžื” ื–ื” ื‘ืขืฆื ืื•ืžืจ?
00:18
How do you sequence someone's genome?
6
18993
3166
ืื™ืš ืžืจืฆืคื™ื ื’ื ื•ื ืฉืœ ืžื™ืฉื”ื•?
00:22
Let's back up a bit.
7
22159
1636
ื‘ื•ืื• ื ื—ื–ื•ืจ ืžืขื˜ ืื—ื•ืจื”.
00:23
What is a genome?
8
23795
1667
ืžื” ื”ื•ื ื’ื ื•ื?
00:25
Well, a genome is all the genes plus some extra
9
25462
5058
ื•ื‘ื›ืŸ, ื’ื ื•ื ื”ื•ื ื›ืœ ื”ื’ื ื™ื ืคืœื•ืก ื›ืžื” ืชื•ืกืคื•ืช
00:30
that make up an organism.
10
30520
2064
ืฉื™ื•ืฆืจื™ื ืื•ืจื’ื ื™ื–ื.
00:32
Genes are made up of DNA,
11
32584
1998
ื’ื ื™ื ืขืฉื•ื™ื™ื ืž DNA,
00:34
and DNA is made up of long, paired strands
12
34582
3096
ื• DNA ืขืฉื•ื™ ืžื–ื•ื’ื•ืช ื’ื“ื™ืœื™ื ืืจื•ื›ื™ื
00:37
of A's,
13
37678
1236
ืฉืœ A,
00:38
T's,
14
38914
1170
T,
00:40
C's,
15
40084
1886
C,
00:41
and G's.
16
41970
862
ื• G.
00:42
Your genome is the code
17
42832
1518
ื”ื’ื ื•ื ืฉืœื›ื ื”ื•ื ื”ืงื•ื“
00:44
that your cells use to know how to behave.
18
44350
3512
ื‘ื• ื”ืชืื™ื ืฉืœื›ื ืžืฉืชืžืฉื™ื ื›ื“ื™ ืœื“ืขืช ืื™ืš ืœื”ืชื ื”ื’.
00:47
Cells interacting together make tissues.
19
47862
3453
ืชืื™ื ืฉืขื•ื‘ื“ื™ื ื™ื—ื“ ื™ื•ืฆืจื™ื ืจืงืžื”.
00:51
Tissues cooperating with each other make organs.
20
51315
3132
ืจืงืžื•ืช ื”ืžืฉืชืคื•ืช ืคืขื•ืœื” ื™ื•ืฆืจื•ืช ืื™ื‘ืจื™ื.
00:54
Organs cooperating with each other
21
54447
1964
ืื™ื‘ืจื™ื ื”ืžืฉืชืคื™ื ืคืขื•ืœื”
00:56
make an organism,
22
56411
1499
ื™ื•ืฆืจื™ื ืื•ืจื’ื ื™ื–ื,
00:57
you!
23
57910
1328
ืืชื›ื!
00:59
So, you are who you are
24
59238
2760
ืื–, ืืชื ืžื™ ืฉืืชื
01:01
in large part because of your genome.
25
61998
2623
ื‘ืžื™ื“ื” ืจื‘ื” ื‘ืฉืœ ื”ื’ื ื•ื ืฉืœื›ื.
01:04
The first human genome
26
64621
1427
ื”ื’ื ื•ื ื”ืื ื•ืฉื™ ื”ืจืืฉื•ืŸ
01:06
was sequenced ten years ago
27
66048
2112
ืจื•ืฆืฃ ืœืคื ื™ ืขืฉืจ ืฉื ื™ื ื‘ืขืจืš
01:08
and was no easy task.
28
68160
1836
ื•ืœื ื”ื™ื” ืžื˜ืœื” ืคืฉื•ื˜ื”.
01:09
It took two decades to complete,
29
69996
2913
ื–ื” ืœืงื— ืฉื ื™ ืขืฉื•ืจื™ื ืœื”ืฉืœื™ื,
01:12
required the effort of hundreds of scientists
30
72909
2767
ื“ืจืฉ ืืช ื”ืžืืžืฅ ืฉืœ ืžืื•ืช ืžื“ืขื ื™ื
01:15
across dozens of countries,
31
75676
1565
ื‘ืจื—ื‘ื™ ืขืฉืจื•ืช ืžื“ื™ื ื•ืช,
01:17
and cost over three billion dollars.
32
77241
3233
ื•ืขืœื” ื™ื•ืชืจ ืžืฉืœื•ืฉื” ืžื™ืœื™ืืจื“ ื“ื•ืœืจ.
01:20
But some day very soon,
33
80474
1658
ืื‘ืœ ื™ื•ื ืื—ื“ ื‘ืงืจื•ื‘,
01:22
it will be possible to know the sequence of letters
34
82132
2186
ืืคืฉืจ ื™ื”ื™ื” ืœื“ืขืช ืืช ืจืฆืฃ ื”ืื•ืชื™ื•ืช
01:24
that make up your own personal genome
35
84318
2422
ืฉื™ื•ืฆืจื•ืช ืืช ื”ื’ื ื•ื ื”ืื™ืฉื™ ืฉืœื›ื
01:26
all in a matter of minutes
36
86740
1753
ืชื•ืš ื“ืงื•ืช
01:28
and for less than the cost
37
88493
1328
ื•ื‘ืขืœื•ืช ื ืžื•ื›ื” ืžื–ื• ืฉืœ
01:29
of a pretty nice birthday present.
38
89821
2610
ืžืชื ืช ื™ื•ื ื”ื•ืœื“ืช ื ื—ืžื“ื”.
01:32
How is that possible?
39
92431
1892
ืื™ืš ื–ื” ืืคืฉืจื™?
01:34
Let's take a closer look.
40
94323
2000
ื‘ื•ืื• ื ื‘ื™ื˜ ืžืงืจื•ื‘ ื™ื•ืชืจ.
01:36
Knowing the sequence of the billions of letters
41
96323
2583
ื”ืžื˜ืจื” ื‘ืจื™ืฆื•ืฃ ื”ื’ื ื•ื
01:38
that make up your genome
42
98906
1476
ื”ื™ื ืœื“ืขืช ืืช ืจืฆืฃ ืžื™ืœื™ืืจื“ื™ ื”ืื•ืชื™ื•ืช
01:40
is the goal of genome sequencing.
43
100382
2526
ื”ื‘ื•ื ื•ืช ืืช ื”ื’ื ื•ื ืฉืœื›ื.
01:42
A genome is both really, really big
44
102908
3541
ื”ื’ื ื•ื ื”ื•ื ืžืžืฉ ืžืžืฉ ื’ื“ื•ืœ
01:46
and very, very small.
45
106449
2953
ื•ื’ื ืžืžืฉ ืžืžืฉ ืงื˜ืŸ.
01:49
The individual letters of DNA,
46
109402
2190
ื”ืื•ืชื™ื•ืช ื”ื‘ื•ื“ื“ื•ืช ืฉืœ ื” DNA,
01:51
the A's, T's, G's, and C's,
47
111592
3185
ื” A,T,G ื• C,
01:54
are only eight or ten atoms wide,
48
114777
2990
ื”ืŸ ื‘ืจื•ื—ื‘ ืฉืœ ืขืฉืจื” ืื˜ื•ืžื™ื ื‘ืœื‘ื“,
01:57
and they're all packed together into a clump,
49
117767
3540
ื•ื›ื•ืœืŸ ื“ื—ื•ืกื•ืช ื™ื—ื“ ื‘ื’ื•ืฉ,
02:01
like a ball of yarn.
50
121307
1741
ื›ืžื• ื›ื“ื•ืจ ืฆืžืจ.
02:03
So, to get all that information
51
123048
2107
ืื–, ื›ื“ื™ ืœืงื‘ืœ ืืช ื”ืžื™ื“ืข ื”ื–ื”
02:05
out of that tiny space,
52
125155
2252
ืžื”ืžืจื—ื‘ ื”ื–ืขื™ืจ,
02:07
scientists first have to break
53
127407
1586
ืžื“ืขื ื™ื ืฆืจื™ื›ื™ื ืจืืฉื™ืช ืœืฉื‘ื•ืจ
02:08
the long string of DNA down into smaller pieces.
54
128993
5061
ืืช ื’ื“ื™ืœื™ ื” DNA ื”ืืจื•ื›ื™ื ืœืคื™ืกื•ืช ืงื˜ื ื•ืช ื™ื•ืชืจ.
02:14
Each of these pieces is then separated in space
55
134054
2996
ื›ืœ ืื—ืช ืžื”ืคื™ืกื•ืช ื”ืืœื• ืžื•ืคืจื“ืช
02:17
and sequenced individually,
56
137050
1858
ื•ืžืจื•ืฆืคืช ื‘ื ืคืจื“,
02:18
but how?
57
138908
1428
ืื‘ืœ ืื™ืš?
02:20
It's helpful to remember
58
140336
1159
ื–ื” ืขื•ื–ืจ ืœื–ื›ื•ืจ
02:21
that DNA binds to other DNA
59
141495
2753
ืฉ DNA ื ืงืฉืจ ืœ DNA ืื—ืจ
02:24
if the sequences are the exact opposite of each other.
60
144248
3749
ืื ื”ืจืฆืฃ ื”ื•ื ื‘ื“ื™ื•ืง ืžื ื•ื’ื“ ืื—ื“ ืœืฉื ื™.
02:27
A's bind to T's,
61
147997
1810
A ืžืชื—ื‘ืจ ืœ T,
02:29
and T's bind to A's.
62
149807
2581
ื• T ืžืชื—ื‘ืจ ืœ A.
02:32
G's bind to C's,
63
152388
1829
G ืžืชื—ื‘ืจ ืœ C,
02:34
and C's to G's.
64
154217
2376
ื• C ืžืชื—ื‘ืจ ืœ G.
02:36
If the A-T-G-C sequence of two pieces of DNA
65
156593
4007
ืื ืจืฆืฃ ื” A-T-G-C ืฉืœ ืฉืชื™ ืคื™ืกื•ืช DNA
02:40
are exact opposites,
66
160600
2080
ื”ื•ื ื‘ื“ื™ื•ืง ื”ื”ืคืš,
02:42
they stick together.
67
162680
1003
ื”ื ื™ืชื—ื‘ืจื• ื™ื—ื“.
02:43
Because the genome pieces
68
163683
1725
ืžืคื ื™ ืฉืคื™ืกื•ืช ื”ื’ื ื•ื
02:45
are so very small,
69
165408
1780
ื”ืŸ ื›ืœ ื›ืš ืงื˜ื ื•ืช,
02:47
we need some way to increase
70
167188
1625
ืื ื—ื ื• ืฆืจื™ื›ื™ื ื“ืจืš ืœื”ื’ื‘ื™ืจ
02:48
the signal we can detect
71
168813
1613
ืืช ื”ืื•ืช ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื’ืœื•ืช
02:50
from each of the individual letters.
72
170426
2277
ืžื›ืœ ืื—ืช ืžื”ืื•ืชื™ื•ืช.
02:52
In the most common method,
73
172703
1490
ื‘ื“ืจืš ื”ื›ื™ ื ืคื•ืฆื”,
02:54
scientists use enzymes to make thousands of copies
74
174193
2996
ืžื“ืขื ื™ื ืžืฉืชืžืฉื™ื ื‘ืื ื–ื™ืžื™ื ื›ื“ื™ ืœื™ืฆื•ืจ ืืœืคื™ ืขื•ืชืงื™ื
02:57
of each genome piece.
75
177189
2187
ืฉืœ ื›ืœ ืคื™ืกืช ื’ื ื•ื.
02:59
So, we now have thousands of replicas
76
179376
2458
ืื– ืขื›ืฉื™ื• ื™ืฉ ืœื ื• ืืœืคื™ ืขื•ืชืงื™ื
03:01
of each of the genome pieces,
77
181834
2092
ืฉืœ ื›ืœ ืคื™ืกืช ื’ื ื•ื,
03:03
all with the same sequence
78
183926
1627
ื›ื•ืœืŸ ืขื ืื•ืชื• ืจืฆืฃ
03:05
of A's, T's, G's, and C's.
79
185553
4187
ืฉืœ A, T, G ื• C.
03:09
But we have to read them all somehow.
80
189740
2618
ืื‘ืœ ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืงืจื•ื ืืช ื›ื•ืœืŸ ืื™ืš ืฉื”ื•ื.
03:12
To do this, we need to make
81
192358
1756
ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื™ืฆื•ืจ
03:14
a batch of special letters,
82
194114
1846
ืžืงื‘ืฅ ืฉืœ ืื•ืชื™ื•ืช ืžื™ื•ื—ื“ื•ืช,
03:15
each with a distinct color.
83
195960
2002
ื›ืœ ืื—ืช ืขื ืฆื‘ืข ื™ื—ื•ื“ื™.
03:17
A mixture of these special colored letters and enzymes
84
197962
2885
ืชืขืจื•ื‘ืช ืฉืœ ื”ืื•ืชื™ื•ืช ื”ืฆื‘ื•ืขื•ืช ื•ื”ืื ื–ื™ืžื™ื ื”ืืœื”
03:20
are then added to the genome
85
200847
1442
ืžืชื•ื•ืกืคืช ืœื’ื ื•ื
03:22
we're trying to read.
86
202289
1636
ืฉืื ื• ืžื ืกื™ื ืœืงืจื•ื.
03:23
At each spot on the genome,
87
203925
1630
ื‘ื›ืœ ื ืงื•ื“ื” ื‘ื’ื ื•ื,
03:25
one of the special letters
88
205555
1318
ืื—ืช ืžื”ืื•ืชื™ื•ืช ื”ืžื™ื•ื—ื“ื•ืช
03:26
binds to its opposite letter,
89
206873
1934
ื ืงืฉืจืช ืœืื•ืช ื”ืžื ื•ื’ื“ืช ืฉืœื”,
03:28
so we now have a double-stranded piece of DNA
90
208807
3202
ืื– ืขื›ืฉื™ื• ื™ืฉ ืœื ื• ืคื™ืกื” ื›ืคื•ืœื” ืฉืœ DNA
03:32
with a colorful spot at each letter.
91
212009
2585
ืขื ื ืงื•ื“ื” ืฆื‘ืขื•ื ื™ืช ื‘ื›ืœ ืื•ืช.
03:34
Scientists then take pictures
92
214594
1796
ืžื“ืขื ื™ื ืžืฆืœืžื™ื
03:36
of each snippet of genome.
93
216390
2375
ื›ืœ ืคื™ืกืช ื’ื ื•ื.
03:38
Seeing the order of the colors
94
218765
1584
ืจืื™ื™ืช ืกื“ืจ ื”ืฆื‘ืขื™ื
03:40
allows us to read the sequence.
95
220349
3250
ืžืืคืฉืจืช ืœื ื• ืœืงืจื•ื ืืช ื”ืจืฆืฃ.
03:43
The sequences of each
96
223599
1415
ื”ืจืฆืฃ ืฉืœ ื›ืœ ืื—ื“
03:45
of these millions of pieces of DNA
97
225014
2230
ืžืžื™ืœื™ื•ื ื™ ืคื™ืกื•ืช ื” DNA
03:47
are stitched together using computer programs
98
227244
2117
ื ืชืคืจ ื™ื—ื“ ื‘ืขื–ืจืช ืชื•ื›ื ื•ืช ืžื—ืฉื‘
03:49
to create a complete sequence of the entire genome.
99
229361
3507
ื›ื“ื™ ืœื™ืฆื•ืจ ืจืฆืฃ ืฉืœื ืฉืœ ื›ืœ ื”ื’ื ื•ื.
03:52
This isn't the only way
100
232868
1058
ื–ื• ืื™ื ื” ื”ื“ืจืš ื”ื™ื—ื™ื“ื”
03:53
to read the letter sequences of pieces of DNA,
101
233926
2601
ืœืงืจื™ืืช ืจืฆืฃ ื”ืื•ืชื™ื•ืช ืฉืœ ืคื™ืกืช DNA,
03:56
but it's one of the most common.
102
236527
1762
ืื‘ืœ ื”ื™ื ืื—ืช ื”ืฉื›ื™ื—ื•ืช.
03:58
Of course, just reading the letters in the genome
103
238289
2708
ื›ืžื•ื‘ืŸ, ืจืง ืœืงืจื•ื ืืช ื”ืื•ืชื™ื•ืช ื‘ื’ื ื•ื
04:00
doesn't tell us much.
104
240997
1633
ืœื ืื•ืžืจืช ืœื ื• ื”ืจื‘ื”.
04:02
It's kind of like looking through a book
105
242630
1998
ื–ื” ื›ืžื• ืœื”ื‘ื™ื˜ ื‘ืกืคืจ
04:04
written in a language you don't speak.
106
244628
2548
ืฉื ื›ืชื‘ ื‘ืฉืคื” ืฉืืชื ืœื ื“ื•ื‘ืจื™ื.
04:07
You can recognize all the letters
107
247176
1708
ืืชื ืžื–ื”ื™ื ืืช ื”ืื•ืชื™ื•ืช
04:08
but still have no idea what's going on.
108
248884
2663
ืื‘ืœ ืขื“ื™ื™ืŸ ืื™ืŸ ืœื›ื ืžื•ืฉื’ ืžื” ืงื•ืจื”.
04:11
So, the next step is to decipher
109
251547
2055
ืื– ื”ืฉืœื‘ ื”ื‘ื ื”ื•ื ืœืคืขื ื—
04:13
what the sequence means,
110
253602
1859
ืžื” ืžืฉืžืขื•ืช ื”ืจืฆืฃ,
04:15
how your genome and my genome are different.
111
255461
3261
ืื™ืš ื”ื’ื ื•ื ืฉืœื›ื ื•ื”ื’ื ื•ื ืฉืœื™ ืฉื•ื ื™ื.
04:18
Interpreting the genes of the genome
112
258722
1917
ืคื™ืจื•ืฉ ื”ื’ื ื™ื ื‘ื’ื ื•ื
04:20
is the part scientists are still working on.
113
260639
2816
ื”ื•ื ื”ื—ืœืง ืฉื”ืžื“ืขื ื™ื ืขื“ื™ื™ืŸ ืขื•ื‘ื“ื™ื ืขืœื™ื•.
04:23
While not every difference is consequential,
114
263455
2666
ืœื ื›ืœ ืฉื™ื ื•ื™ ื”ื•ื ืžืฉืžืขื•ืชื™,
04:26
the sum of these differences
115
266121
1558
ืื‘ืœ ืกื›ื•ื ื”ื”ื‘ื“ืœื™ื ื”ืืœื”
04:27
is responsible for differences
116
267679
1538
ืื—ืจืื™ ืœื”ื‘ื“ืœื™ื
04:29
in how we look,
117
269217
1213
ื‘ืื™ืš ืฉืื ื—ื ื• ื ืจืื™ื,
04:30
what we like,
118
270430
1001
ืžื” ืื ื—ื ื• ืื•ื”ื‘ื™ื,
04:31
how we act,
119
271431
1192
ืื™ืš ืื ื—ื ื• ืžืชื ื”ื’ื™ื,
04:32
and even how likely we are to get sick
120
272623
2221
ื•ืืคื™ืœื• ืžื” ื”ืกื™ื›ื•ื™ ืฉืœื ื• ืœื”ื™ื•ืช ื—ื•ืœื™ื
04:34
or respond to specific medicines.
121
274844
2465
ืื• ืœื”ื’ื™ื‘ ืœืชืจื•ืคื•ืช ืžืกื•ื™ื™ืžื•ืช.
04:37
Better understanding of how disparities
122
277309
1668
ื”ื‘ื ื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืฉืœ ืื™ืš ืคืขืจื™ื
04:38
between our genomes
123
278977
1233
ื‘ื™ืŸ ื”ื’ื ื•ืžื™ื ืฉืœื ื•
04:40
account for these differences
124
280210
1599
ืžืฉืคื™ืขื™ื ืขืœ ื”ื”ื‘ื“ืœื™ื ื”ืืœื”
04:41
is sure to change the way we think
125
281809
1965
ื•ื“ืื™ ืชืฉื ื” ืืช ื”ื“ืจืš ื‘ื” ืื ื—ื ื• ื—ื•ืฉื‘ื™ื
04:43
not only about how doctors treat their patients,
126
283774
2766
ืœื ืจืง ืขืœ ืื™ืš ืจื•ืคืื™ื ืžื˜ืคืœื™ื ื‘ื—ื•ืœื™ื,
04:46
but also how we treat each other.
127
286540
2583
ืืœื ื’ื ืขืœ ืื™ืš ืื ื—ื ื• ืžืชื™ื™ื—ืกื™ื ื”ืื—ื“ ืœืฉื ื™.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7