Can you solve the Alice in Wonderland riddle? - Alex Gendler

2,176,362 views ・ 2020-11-17

TED-Ed


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Sanja Srbljnović Čuček Recezent: Sanda Liker
00:07
After many adventures in Wonderland,
0
7765
2250
Nakon mnogih pustolovina u Zemlji čudesa,
00:10
Alice has once again found herself in the court
1
10015
2700
Alisa se ponovno našla na dvoru
00:12
of the temperamental Queen of Hearts.
2
12715
2476
temperamentne Kraljice Srca.
00:15
She’s about to pass through the garden undetected,
3
15191
3050
Dok pokušava neopaženo proći kroz vrt,
00:18
when she overhears the king and queen arguing.
4
18241
3470
začuje kralja i kraljicu kako se prepiru.
00:21
“It’s quite simple,” says the queen. “64 is the same as 65, and that’s that.”
5
21711
5840
"Vrlo jednostavno", kaže kraljica. "64 je isto što i 65, i to je to."
00:27
Without thinking, Alice interjects. “Nonsense,” she says.
6
27551
4301
Bez razmišljanja, Alisa upadne u riječ. "Glupost.
00:31
“If 64 were the same as 65, then it would be 65 and not 64 at all.”
7
31852
6787
Da je 64 isto što i 65, tada bi bilo 65, a nikako ne 64."
00:38
“What? How dare you!” the queen huffs.
8
38639
2820
"Što? Kako se usuđuješ!" plane kraljica.
00:41
“I’ll prove it right now, and then it’s off with your head!”
9
41459
2990
"To ću odmah dokazati, a onda ti ode glava!"
00:44
Before she can protest,
10
44449
1570
Alisa se nije stigla ni pobuniti,
00:46
Alice is dragged toward a field with two chessboard patterns—
11
46019
4877
i već je odvučena na travnjak s dvije šahovske ploče --
00:50
an 8 by 8 square and a 5 by 13 rectangle.
12
50896
4329
s kvadratom 8 x 8 i pravokutnikom 5 x 13.
00:55
As the queen claps her hands, four odd-looking soldiers approach
13
55225
4779
Dok kraljica plješće rukama, četiri stražara čudnog izgleda prilaze
01:00
and lie down next to each other, covering the first chessboard.
14
60004
3930
i legnu jedan do drugoga, prekrivajući prvu šahovnicu.
01:03
Alice sees that two of them are trapezoids with non-diagonal sides measuring 5x5x3,
15
63934
7854
Alisa vidi da dvojica od njih, trapezoidi nedijagonalnih stranica, mjere 5x5x3,
01:11
while the other two are long triangles with non-diagonal sides measuring 8x3.
16
71788
6836
dok su druga dva dugački trokuti s nedijagonalnim stranicama mjera 8x3.
01:18
“See, this is 64.”
17
78624
2000
"Vidiš, ovo je 64."
01:20
The queen claps her hands again.
18
80624
2320
Kraljica ponovno pljesne rukama.
01:22
The card soldiers get up, rearrange themselves,
19
82944
2960
Stražari karte ustaju, preslože se
01:25
and lie down atop the second chessboard.
20
85904
3200
i legnu na drugu šahovsku ploču.
01:29
“And that is 65."
21
89104
2620
"A to je 65."
01:31
Alice gasps. She’s certain the soldiers didn’t change size or shape
22
91724
4470
Alisa je zgranuta. Stražari sigurno nisu promijenili veličinu ni oblik
01:36
moving from one board to the other.
23
96194
2220
prelazeći s jedne ploče na drugu.
01:38
But it’s a mathematical certainty that the queen must be cheating somehow.
24
98414
4530
Ali matematički je sigurno da kraljica mora nekako varati.
01:42
Can Alice wrap her head around what’s wrong— before she loses it?
25
102944
4050
Može li Alisa odgonetnuti što nije u redu - prije no što izgubi glavu?
01:46
Pause the video to figure it out yourself. Answer in 3.
26
106994
2570
Pauzirajte video da biste sami shvatili. Odgovor u 3,
01:49
Answer in 2
27
109564
2270
2,
01:51
Answer in 1
28
111834
2456
1.
01:54
Just as things aren’t looking too good for Alice, she remembers her geometry,
29
114290
5139
I baš kad stvari ne idu Alisi u prilog, ona se sjeti svoje geometrije,
01:59
and looks again at the trapezoid and triangle soldier
30
119429
3581
i ponovno pogleda trapezoidnog i trokutastog stražara
02:03
lying next to each other.
31
123010
1740
polegnute jedan uz drugog.
02:04
They look like they cover exactly half of the rectangle,
32
124750
3600
Čini se kao da pokrivaju točno pola pravokutnika,
02:08
their edges forming one long line running from corner to corner.
33
128350
4378
a njihove stranice tvore jednu dugu crtu koja prolazi od kuta do kuta.
02:12
If that’s true, then the slopes of their diagonal sides
34
132728
3444
Ako je to istina, tada bi nagibi njihovih dijagonalnih stranica
02:16
should be the same.
35
136172
1300
trebali biti jednaki.
02:17
But when she calculates these slopes
36
137472
2240
Ali kad izračuna te nagibe
02:19
using the tried and true formula "rise over run,"
37
139712
3460
koristeći provjerenu formulu "rast kroz put",
02:23
a most curious thing happens.
38
143172
2860
dogodi se najčudnovatija stvar.
02:26
The trapezoid soldier’s diagonal side goes up 2 and over 5,
39
146032
4611
Dijagonalna stranica trapezoidnog stražara raste za 2 i pomiče se za 5,
02:30
giving it a slope of two fifths, or 0.4.
40
150643
4216
dajući nagib od dvije petine ili 0,4.
02:34
The triangle soldier’s diagonal, however, goes up 3 and over 8,
41
154859
5248
Dijagonala trokutnog stražara, međutim, raste za 3 i pomiče se za 8,
02:40
making its slope three eights, or 0.375.
42
160107
5140
dajući nagib od tri osmine ili 0,375.
02:45
They’re not the same at all!
43
165247
2140
Oni uopće nisu isti!
02:47
Before the queen’s guards can stop her,
44
167387
2220
Prije nego što je stražari mogu zaustaviti,
02:49
Alice drinks a bit of her shrinking potion to go in for a closer look.
45
169607
4558
Alisa otpije malo napitka za smanjivanje da to pobliže pogleda.
02:54
Sure enough, there’s a miniscule gap between the triangles and trapezoids,
46
174165
4673
Svakako, postoji mali razmak između trokuta i trapeza,
02:58
forming a parallelogram that stretches the entire length of the board
47
178838
4650
i tvori paralelogram koji se proteže cijelom duljinom ploče
03:03
and accounts for the missing square.
48
183488
2850
i vrijedi za kvadrat koji nedostaje.
03:06
There’s something even more curious about these numbers:
49
186338
3720
Još je nešto čudnovatije u vezi s tim brojevima:
03:10
they’re all part of the Fibonacci series,
50
190058
2940
svi su oni dio Fibonaccijevog niza,
03:12
where each number is the sum of the two preceding ones.
51
192998
4420
gdje je svaki sljedeći broj zbroj dvaju prethodnih.
03:17
Fibonacci numbers have two properties that factor in here:
52
197418
3750
Fibonaccijevi brojevi imaju dva svojstva koja ovdje igraju ulogu:
03:21
first, squaring a Fibonacci number gives you a value
53
201168
3890
prvo, kvadrat Fibonaccijevog broja daje vam vrijednost
03:25
that’s one more or one less
54
205058
2360
koja je za jedan više ili jedan manje različiita
03:27
than the product of the Fibonacci numbers on either side of it.
55
207418
3970
od umnoška Fibonaccijevih brojeva s obje njegove strane.
03:31
In other words, 8 squared is one less than 5 times 13,
56
211388
4475
Drugim riječima, 8 na kvadrat je jedan manje od 5 puta 13,
03:35
while 5 squared is one more than 3 times 8.
57
215863
4348
dok je 5 na kvadrat za jedan više od 3 puta 8.
03:40
And second, the ratio between successive Fibonacci numbers is quite similar.
58
220211
6167
I drugo, omjer između uzastopnih Fibonaccijevih brojeva prilično je sličan.
03:46
So similar, in fact, that it eventually converges on the golden ratio.
59
226378
5366
Toliko sličan da se na kraju pretapa u zlatni rez.
03:51
That’s what allows devious royals to construct slopes
60
231744
3900
To je ono što omogućuje nepoštenim vladarima
da grade varljivo slične nagibe.
03:55
that look deceptively similar.
61
235644
2070
03:57
In fact, the Queen of Hearts could cobble together an analogous conundrum
62
237714
5133
Zapravo, Kraljica Srca mogla bi skovati sličnu zagonetku
04:02
out of any four consecutive Fibonacci numbers.
63
242847
3500
od bilo koja četiri uzastopna Fibonaccijeva broja.
04:06
The higher they go, the more it seems like the impossible is true.
64
246347
4423
Što su ti brojevi veći, to ono nemoguće više liči na istinu.
04:10
But in the words of Lewis Carroll— author of Alice in Wonderland
65
250770
4185
Ali riječima Lewisa Carrolla -- autora knjige Alisa u Zemlji čudesa
04:14
and an accomplished mathematician who studied this very puzzle—
66
254955
4363
i vrsnog matematičara koji je proučavao upravo ovu zagonetku --
04:19
one can’t believe impossible things.
67
259318
2770
ne može se vjerovati u nemoguće stvari.
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7