Beware online "filter bubbles" | Eli Pariser

1,624,128 views ・ 2011-05-02

TED


請雙擊下方英文字幕播放視頻。

譯者: Ana Choi 審譯者: Felix Leung
00:15
Mark Zuckerberg,
0
15260
2000
有位新聞工作者問馬克·祖克柏
00:17
a journalist was asking him a question about the news feed.
1
17260
3000
一個關於動態消息的問题。
00:20
And the journalist was asking him,
2
20260
2000
那新聞工作者問他:
00:22
"Why is this so important?"
3
22260
2000
「動態消息究竟為什麼重要?」
00:24
And Zuckerberg said,
4
24260
2000
馬克·祖克柏說:
00:26
"A squirrel dying in your front yard
5
26260
2000
「一隻松鼠正死在你的前院,
00:28
may be more relevant to your interests right now
6
28260
3000
對你來說可能會比
00:31
than people dying in Africa."
7
31260
3000
非洲人正在死去更有關切性。」
00:34
And I want to talk about
8
34260
2000
現在我想談論
00:36
what a Web based on that idea of relevance might look like.
9
36260
3000
當網路基於「相關性」會是什麼樣子。
00:40
So when I was growing up
10
40260
2000
我在缅因州
00:42
in a really rural area in Maine,
11
42260
2000
極之郊區的環境長大,
00:44
the Internet meant something very different to me.
12
44260
3000
網路的意義對我極之不同。
00:47
It meant a connection to the world.
13
47260
2000
它意味著與世界的連接。
00:49
It meant something that would connect us all together.
14
49260
3000
它意味著與所有人的連接。
00:52
And I was sure that it was going to be great for democracy
15
52260
3000
當時我非常肯定它會有助民主
00:55
and for our society.
16
55260
3000
及會有助我們的社會。
00:58
But there's this shift
17
58260
2000
但現在網路上
01:00
in how information is flowing online,
18
60260
2000
资料流動的形色漸漸地、
01:02
and it's invisible.
19
62260
3000
無形地在轉移。
01:05
And if we don't pay attention to it,
20
65260
2000
假若我們不留心注意,
01:07
it could be a real problem.
21
67260
3000
它可能會變成一個問题。
01:10
So I first noticed this in a place I spend a lot of time --
22
70260
3000
我在我經常流覽的地方 首先注意到這個問題,
01:13
my Facebook page.
23
73260
2000
這個地方當然是我的臉書頁面。
01:15
I'm progressive, politically -- big surprise --
24
75260
3000
可想而知,我對政治的態度是進步主義,
01:18
but I've always gone out of my way to meet conservatives.
25
78260
2000
但我亦會叛經離道地結識保守主義者。
01:20
I like hearing what they're thinking about;
26
80260
2000
我喜歡知道他們在想什麼;
01:22
I like seeing what they link to;
27
82260
2000
我喜歡知道他們與什麼有聯繫;
01:24
I like learning a thing or two.
28
84260
2000
我喜歡能從中學到一些東西。
01:26
And so I was surprised when I noticed one day
29
86260
3000
因此有一天我很駕訝當我察覺到
01:29
that the conservatives had disappeared from my Facebook feed.
30
89260
3000
有關保守派主義的消息 從我臉書的動態消息消失。
01:33
And what it turned out was going on
31
93260
2000
理由是因為
01:35
was that Facebook was looking at which links I clicked on,
32
95260
4000
臉書能看見我按過哪些連結,
01:39
and it was noticing that, actually,
33
99260
2000
它注意到
我其實按自由黨朋友的連結
01:41
I was clicking more on my liberal friends' links
34
101260
2000
01:43
than on my conservative friends' links.
35
103260
3000
多過保守派朋友的連結。
01:46
And without consulting me about it,
36
106260
2000
在未與我商量過的情況下,
01:48
it had edited them out.
37
108260
2000
它便編走那些連結。
01:50
They disappeared.
38
110260
3000
那些消息全消失了。
01:54
So Facebook isn't the only place
39
114260
2000
但不是淨只是臉書
01:56
that's doing this kind of invisible, algorithmic
40
116260
2000
會做這種無形的、算法式的
01:58
editing of the Web.
41
118260
3000
來編輯網路。
02:01
Google's doing it too.
42
121260
2000
Google(谷歌)也會這樣。
02:03
If I search for something, and you search for something,
43
123260
3000
若我在搜尋一樣東西, 你也在搜索一樣東西,
02:06
even right now at the very same time,
44
126260
2000
即使是在現在、同一個時間,
02:08
we may get very different search results.
45
128260
3000
我們搜索的結果都會不同。
02:11
Even if you're logged out, one engineer told me,
46
131260
3000
一個工程師曾告訴過我, 即使你登出帳戶,
02:14
there are 57 signals
47
134260
2000
仍然有 57 個訊號
02:16
that Google looks at --
48
136260
3000
在被谷歌觀察著:
02:19
everything from what kind of computer you're on
49
139260
3000
從你所用的電腦類型
02:22
to what kind of browser you're using
50
142260
2000
到你所用的瀏覽器
02:24
to where you're located --
51
144260
2000
甚至是你的所在位置,
02:26
that it uses to personally tailor your query results.
52
146260
3000
它會以這些來量身訂造你的搜尋結果。
02:29
Think about it for a second:
53
149260
2000
試想一下:
02:31
there is no standard Google anymore.
54
151260
4000
現在已經沒有標準的谷歌。
02:35
And you know, the funny thing about this is that it's hard to see.
55
155260
3000
而且,好笑的是,這很難察覺的。
02:38
You can't see how different your search results are
56
158260
2000
你根本無法看到你的搜尋結果
02:40
from anyone else's.
57
160260
2000
會跟其他人的有所不同。
02:42
But a couple of weeks ago,
58
162260
2000
所以在兩個星期前,
02:44
I asked a bunch of friends to Google "Egypt"
59
164260
3000
我請一些朋友用谷歌搜尋「埃及」,
02:47
and to send me screen shots of what they got.
60
167260
3000
並且寄給我他們搜尋結果的螢幕截圖。
02:50
So here's my friend Scott's screen shot.
61
170260
3000
這張是我朋友史考特的截圖,
02:54
And here's my friend Daniel's screen shot.
62
174260
3000
而這張是我朋友丹尼爾的截圖。
02:57
When you put them side-by-side,
63
177260
2000
當你將它們並排比較,
02:59
you don't even have to read the links
64
179260
2000
你根本不用細看那些連結
03:01
to see how different these two pages are.
65
181260
2000
就可以看得出這兩頁是不一樣。
03:03
But when you do read the links,
66
183260
2000
但當你細看這些連結,
03:05
it's really quite remarkable.
67
185260
3000
這確實是蠻驚人的。
03:09
Daniel didn't get anything about the protests in Egypt at all
68
189260
3000
在丹尼爾的谷歌搜尋結果第一頁裡,
03:12
in his first page of Google results.
69
192260
2000
完全沒有關於埃及抗議的連結。
03:14
Scott's results were full of them.
70
194260
2000
在史考特的搜尋結果就有很多。
03:16
And this was the big story of the day at that time.
71
196260
2000
但在那陣子卻是當日的大新聞。
03:18
That's how different these results are becoming.
72
198260
3000
這就是搜尋結果越來越不同的例子。
03:21
So it's not just Google and Facebook either.
73
201260
3000
不只是谷歌及臉書。
03:24
This is something that's sweeping the Web.
74
204260
2000
這趨勢在網路正漸散播。
03:26
There are a whole host of companies that are doing this kind of personalization.
75
206260
3000
現有很多機構都實施個人化。
03:29
Yahoo News, the biggest news site on the Internet,
76
209260
3000
雅虎新聞,網路上最大型的新聞網站,
03:32
is now personalized -- different people get different things.
77
212260
3000
現在已經個人化, 即是不同人會看到不同的東西。
03:36
Huffington Post, the Washington Post, the New York Times --
78
216260
3000
哈芬登郵報、華盛頓郵報、紐約時報等等
03:39
all flirting with personalization in various ways.
79
219260
3000
都正在用不同方式盤弄個人化。
03:42
And this moves us very quickly
80
222260
3000
這種趨勢正在快速地推我們
03:45
toward a world in which
81
225260
2000
前往一個新世界,
03:47
the Internet is showing us what it thinks we want to see,
82
227260
4000
一個網路應為我們想看的世界,
03:51
but not necessarily what we need to see.
83
231260
3000
但未必是一個我們需要看到的世界。
03:54
As Eric Schmidt said,
84
234260
3000
正如艾立克·史密特所說:
03:57
"It will be very hard for people to watch or consume something
85
237260
3000
「現在很難要人們觀看或消化一些
04:00
that has not in some sense
86
240260
2000
一點兒也沒有替他們
04:02
been tailored for them."
87
242260
3000
量身訂造的東西。」
04:05
So I do think this is a problem.
88
245260
2000
我認為這是一個問題,
04:07
And I think, if you take all of these filters together,
89
247260
3000
而且我想,如果將 全部的過濾器放在一起,
04:10
you take all these algorithms,
90
250260
2000
用盡所有算法,
04:12
you get what I call a filter bubble.
91
252260
3000
得到的是一個我稱為 「過濾氣泡」的東西。
04:16
And your filter bubble is your own personal,
92
256260
3000
而你的過濾氣泡便是你個人
04:19
unique universe of information
93
259260
2000
在網上存在的
04:21
that you live in online.
94
261260
2000
獨特資料宇宙。
04:23
And what's in your filter bubble
95
263260
3000
你個人過濾氣泡的內容
04:26
depends on who you are, and it depends on what you do.
96
266260
3000
基於你是誰和你的行為。
04:29
But the thing is that you don't decide what gets in.
97
269260
4000
但問題是,氣泡的內容不是你可選擇。
04:33
And more importantly,
98
273260
2000
更重要的是,
04:35
you don't actually see what gets edited out.
99
275260
3000
你完全看不到什麼被刪除。
04:38
So one of the problems with the filter bubble
100
278260
2000
過濾氣泡的其中一個問題
04:40
was discovered by some researchers at Netflix.
101
280260
3000
被 Netflix 的研究員發現。
04:43
And they were looking at the Netflix queues, and they noticed something kind of funny
102
283260
3000
當在察看 Netflix 的電影列表時, 他們發覺一樣有趣的現象,
04:46
that a lot of us probably have noticed,
103
286260
2000
可能我們很多人亦有察覺到,
04:48
which is there are some movies
104
288260
2000
也就是,有些電影
04:50
that just sort of zip right up and out to our houses.
105
290260
3000
馬上就會被訂去看。
04:53
They enter the queue, they just zip right out.
106
293260
3000
才剛入上架,就馬上被訂去看了。
04:56
So "Iron Man" zips right out,
107
296260
2000
例如《鋼鐵人》很快就被看完,
04:58
and "Waiting for Superman"
108
298260
2000
但《等待超人》
05:00
can wait for a really long time.
109
300260
2000
便真要等很久。
05:02
What they discovered
110
302260
2000
他們發現
05:04
was that in our Netflix queues
111
304260
2000
在我們 Netflix 的列表裡,
05:06
there's this epic struggle going on
112
306260
3000
正在發生一個很巨型的鬥爭:
05:09
between our future aspirational selves
113
309260
3000
我們未來的自我志向
05:12
and our more impulsive present selves.
114
312260
3000
和現在較衝動的自我之間在拔河。
05:15
You know we all want to be someone
115
315260
2000
我們全都想成為那個
05:17
who has watched "Rashomon,"
116
317260
2000
曾經看過《羅生門》的人,
05:19
but right now
117
319260
2000
但現在
05:21
we want to watch "Ace Ventura" for the fourth time.
118
321260
3000
我們想看第四遍的《王牌威龍》。
05:24
(Laughter)
119
324260
3000
(笑聲)
05:27
So the best editing gives us a bit of both.
120
327260
2000
所以其實最好的編輯 是每樣都給我們一些。
05:29
It gives us a little bit of Justin Bieber
121
329260
2000
它會給我們一點小賈斯汀,
05:31
and a little bit of Afghanistan.
122
331260
2000
亦會給我們一些阿富汗。
05:33
It gives us some information vegetables;
123
333260
2000
它會給我們一些像蔬菜一樣的重要資訊,
05:35
it gives us some information dessert.
124
335260
3000
亦會給我們一些像甜點一樣的資訊。
05:38
And the challenge with these kinds of algorithmic filters,
125
338260
2000
所以對這類算法式過濾和
05:40
these personalized filters,
126
340260
2000
這些個人過濾的挑戰,
05:42
is that, because they're mainly looking
127
342260
2000
是因為,它們主要是看
05:44
at what you click on first,
128
344260
4000
你首先按的是什麼連結,
05:48
it can throw off that balance.
129
348260
4000
這個方法會有阻平衡。
05:52
And instead of a balanced information diet,
130
352260
3000
你不但沒得到均衡的資訊菜單,
05:55
you can end up surrounded
131
355260
2000
你可能會得到
05:57
by information junk food.
132
357260
2000
很多垃圾資訊。
05:59
What this suggests
133
359260
2000
這個想法是在說
06:01
is actually that we may have the story about the Internet wrong.
134
361260
3000
可能我們對網路的印象是不正確。
06:04
In a broadcast society --
135
364260
2000
在這個廣播社會,
06:06
this is how the founding mythology goes --
136
366260
2000
根據流傳的說法,
06:08
in a broadcast society,
137
368260
2000
在這個廣播社會,
06:10
there were these gatekeepers, the editors,
138
370260
2000
有一些看門人,叫編輯者,
06:12
and they controlled the flows of information.
139
372260
3000
他們控制資料的流通。
06:15
And along came the Internet and it swept them out of the way,
140
375260
3000
隨後登場便是網際網路, 它掃走這些看門人,
06:18
and it allowed all of us to connect together,
141
378260
2000
讓我們全部人可無阻地聯繫在一起,
06:20
and it was awesome.
142
380260
2000
這真是棒啊。
06:22
But that's not actually what's happening right now.
143
382260
3000
但實在不是這樣。
06:26
What we're seeing is more of a passing of the torch
144
386260
3000
我們看到的是像傳火炬,
06:29
from human gatekeepers
145
389260
2000
由人類看門人
06:31
to algorithmic ones.
146
391260
3000
到算法看門人。
06:34
And the thing is that the algorithms
147
394260
3000
但現在這種算法程式
06:37
don't yet have the kind of embedded ethics
148
397260
3000
還未有編輯人
06:40
that the editors did.
149
400260
3000
所擁有的嵌入概念。
06:43
So if algorithms are going to curate the world for us,
150
403260
3000
所以若我們讓算法 用它的方式來看世界,
06:46
if they're going to decide what we get to see and what we don't get to see,
151
406260
3000
若讓它來決定我們 可看什麼、不可看什麼,
06:49
then we need to make sure
152
409260
2000
那我們便要確定
06:51
that they're not just keyed to relevance.
153
411260
3000
它的決定不只是基於關切性。
06:54
We need to make sure that they also show us things
154
414260
2000
我們要確定它亦會給我們看一些
06:56
that are uncomfortable or challenging or important --
155
416260
3000
我們看了未必舒服, 但有重要性及有挑戰性的東西,
06:59
this is what TED does --
156
419260
2000
正如 TED 大會那樣
07:01
other points of view.
157
421260
2000
會展示其他觀點。
07:03
And the thing is, we've actually been here before
158
423260
2000
其實像現在這種過濾
07:05
as a society.
159
425260
2000
在以前的社會也發生過。
07:08
In 1915, it's not like newspapers were sweating a lot
160
428260
3000
在 1915 年, 那時的報章對它們的民事責任
07:11
about their civic responsibilities.
161
431260
3000
不太在意。
07:14
Then people noticed
162
434260
2000
之後人們發覺到
07:16
that they were doing something really important.
163
436260
3000
報章實在很重要。
07:19
That, in fact, you couldn't have
164
439260
2000
因為事實上,
一個正常運作的民主社會是不存在的,
07:21
a functioning democracy
165
441260
2000
07:23
if citizens didn't get a good flow of information,
166
443260
4000
除非人民能獲得有效的資訊流通。
07:28
that the newspapers were critical because they were acting as the filter,
167
448260
3000
所以報章對事有評論, 因為它們扮演過濾網,
07:31
and then journalistic ethics developed.
168
451260
2000
也因此才有新聞道德的構成。
07:33
It wasn't perfect,
169
453260
2000
雖然不是完美,
07:35
but it got us through the last century.
170
455260
3000
但這種方式帶我們走過上一個世紀。
07:38
And so now,
171
458260
2000
現在,
07:40
we're kind of back in 1915 on the Web.
172
460260
3000
在網上我們又像回到 1915 年。
07:44
And we need the new gatekeepers
173
464260
3000
我們需要新的看門人
07:47
to encode that kind of responsibility
174
467260
2000
將道德責任
07:49
into the code that they're writing.
175
469260
2000
輸入它們算法的程式裡。
07:51
I know that there are a lot of people here from Facebook and from Google --
176
471260
3000
我知道在座很多人替臉書及谷歌工作,
07:54
Larry and Sergey --
177
474260
2000
像賴利和塞吉,
07:56
people who have helped build the Web as it is,
178
476260
2000
很多人參與建立現今的網際網路,
07:58
and I'm grateful for that.
179
478260
2000
我對此很感謝。
08:00
But we really need you to make sure
180
480260
3000
但我們真的需要你們確保
08:03
that these algorithms have encoded in them
181
483260
3000
這些算法的程式裡
08:06
a sense of the public life, a sense of civic responsibility.
182
486260
3000
要有公眾生活和民事責任感。
08:09
We need you to make sure that they're transparent enough
183
489260
3000
我們需要你們確保 它有一定的透明度,
08:12
that we can see what the rules are
184
492260
2000
讓我們能知道是用什麼準則
08:14
that determine what gets through our filters.
185
494260
3000
來決定什麼可通過過濾網。
08:17
And we need you to give us some control
186
497260
2000
而且我們需要你們 給予一些控制力,
08:19
so that we can decide
187
499260
2000
讓我們可以選擇
08:21
what gets through and what doesn't.
188
501260
3000
什麼能通過和不通過。
08:24
Because I think
189
504260
2000
因為我認為
08:26
we really need the Internet to be that thing
190
506260
2000
我們真的需要網路
08:28
that we all dreamed of it being.
191
508260
2000
成為一個我們夢寐以求的平臺。
08:30
We need it to connect us all together.
192
510260
3000
我們需要它連結所有人。
08:33
We need it to introduce us to new ideas
193
513260
3000
我們需要它給我們介紹新的想法、
08:36
and new people and different perspectives.
194
516260
3000
新的人和不同觀點。
08:40
And it's not going to do that
195
520260
2000
而它是不可能辦到這些,
08:42
if it leaves us all isolated in a Web of one.
196
522260
3000
如果它將我們孤立在 唯一自我旳網路裡就絕不可能。
08:45
Thank you.
197
525260
2000
謝謝。
08:47
(Applause)
198
527260
11000
(鼓掌)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog