The real relationship between your age and your chance of success | Albert-László Barabási

286,915 views ・ 2019-09-03

TED


请双击下面的英文字幕来播放视频。

翻译人员: psjmz mz 校对人员: Yolanda Zhang
00:12
Today, actually, is a very special day for me,
0
12249
2266
今天对我来说很特别,
00:14
because it is my birthday.
1
14539
2121
因为是我的生日。
00:16
(Applause)
2
16684
3973
(鼓掌)
00:20
And so, thanks to all of you for joining the party.
3
20681
3441
谢谢大家参与这个聚会。
00:24
(Laughter)
4
24146
1167
(笑声)
00:25
But every time you throw a party, there's someone there to spoil it. Right?
5
25337
4786
可是,每次你举办聚会的时候, 总是有人捣蛋,对吧?
00:30
(Laughter)
6
30147
1072
(笑声)
00:31
And I'm a physicist,
7
31243
1359
我是个物理学家,
00:32
and this time I brought another physicist along to do so.
8
32626
4157
这次我带来了另一个物理学家。
00:36
His name is Albert Einstein -- also Albert -- and he's the one who said
9
36807
4562
他的名字是阿尔伯特·爱因斯坦—— 也叫阿尔伯特——他是那个说过
00:41
that the person who has not made his great contributions to science
10
41393
4830
如果一个人到30岁时对科学
00:46
by the age of 30
11
46247
1559
都没啥大贡献,
00:47
will never do so.
12
47830
1396
也就永远不会有贡献了。
00:49
(Laughter)
13
49250
1012
(笑声)
00:50
Now, you don't need to check Wikipedia
14
50286
2340
你不需要查维基百科
00:52
that I'm beyond 30.
15
52650
1571
去了解我是不是超过30岁。
00:54
(Laughter)
16
54245
1416
(笑声)
00:55
So, effectively, what he is telling me, and us,
17
55685
3606
实际上他是想告诉我们,
00:59
is that when it comes to my science,
18
59315
2544
当涉及到我在科学领域的作为时,
01:01
I'm deadwood.
19
61883
1203
我是朽木难雕了。
01:04
Well, luckily, I had my share of luck within my career.
20
64078
5586
幸运的是,我的事业运还算不错。
01:10
Around age 28, I became very interested in networks,
21
70132
3822
在28岁时,我对网络产生了兴趣,
01:13
and a few years later, we managed to publish a few key papers
22
73978
4076
几年后,我成功发表了几篇
01:18
that reported the discovery of scale-free networks
23
78078
4097
关于发现无标度网络的核心论文,
01:22
and really gave birth to a new discipline that we call network science today.
24
82199
4578
并催生了一门我们今天称为 网络科学的新学科。
01:26
And if you really care about it, you can get a PhD now in network science
25
86801
3678
如果你对这个学科也很感兴趣, 可以在布达佩斯,在波士顿
01:30
in Budapest, in Boston,
26
90503
2028
读取网络科学的博士学位,
01:32
and you can study it all over the world.
27
92555
2308
也可以在全球各地学习这门课程。
01:35
A few years later,
28
95466
1595
几年后,
01:37
when I moved to Harvard first as a sabbatical,
29
97085
3230
当我第一次在哈佛进行学术休假时,
01:40
I became interested in another type of network:
30
100339
3092
我对另一种形态的网络产生了兴趣:
01:43
that time, the networks within ourselves,
31
103455
3027
在我们自身的网络中,
01:46
how the genes and the proteins and the metabolites link to each other
32
106506
3726
基因、蛋白质和代谢物如何相互联系
01:50
and how they connect to disease.
33
110256
2493
以及它们与疾病的关系。
01:53
And that interest led to a major explosion within medicine,
34
113368
4592
这个兴趣引发了 医学领域的一阵轰动,
01:57
including the Network Medicine Division at Harvard,
35
117984
3979
包括哈佛大学的网络医学部,
02:01
that has more than 300 researchers who are using this perspective
36
121987
3395
有300多名研究人员 基于这个想法来治疗病人,
02:05
to treat patients and develop new cures.
37
125406
2897
开发新的治疗方法。
02:09
And a few years ago,
38
129457
1770
几年以前,
02:11
I thought that I would take this idea of networks
39
131251
2526
我觉得我应该把网络的概念
02:13
and the expertise we had in networks
40
133801
1766
和关于网络的专业知识
02:15
in a different area,
41
135591
1392
应用于一个新的领域,
02:17
that is, to understand success.
42
137007
1982
用来理解成功。
02:19
And why did we do that?
43
139704
1210
我们为什么要这么做?
02:20
Well, we thought that, to some degree,
44
140938
2281
我们认为,在某种程度上,
02:23
our success is determined by the networks we're part of --
45
143243
3377
我们的成功取决于我们所处的网络——
02:26
that our networks can push us forward, they can pull us back.
46
146644
3847
我们的网络可以推动我们前进, 也能拖我们后腿。
02:30
And I was curious if we could use the knowledge and big data and expertise
47
150925
4128
我好奇我们能否使用 在网络中获得的这些知识,
02:35
where we develop the networks
48
155077
1403
结合大数据和专长
02:36
to really quantify how these things happen.
49
156504
3296
来量化事情是如何发生的。
02:40
This is a result from that.
50
160404
1342
这是一个结果。
02:41
What you see here is a network of galleries in museums
51
161770
2947
你在这里看到的是博物馆里
02:44
that connect to each other.
52
164741
1632
相互连接的画廊网络。
02:46
And through this map that we mapped out last year,
53
166806
4055
通过这张我们去年绘制的图,
02:50
we are able to predict very accurately the success of an artist
54
170885
4848
如果给我他或她在他们的 职业生涯举办的前五个展览,
02:55
if you give me the first five exhibits that he or she had in their career.
55
175757
4021
我们就能够非常准确地预测 一个艺术家是否成功。
03:01
Well, as we thought about success,
56
181404
2706
当我们思考成功时,
03:04
we realized that success is not only about networks;
57
184134
3067
我们意识到成功不仅跟网络有关;
03:07
there are so many other dimensions to that.
58
187225
2396
还有很多其他的维度。
03:10
And one of the things we need for success, obviously,
59
190145
3247
其中一个成功的必要因素,
03:13
is performance.
60
193416
1170
很明显就是业绩。
03:14
So let's define what's the difference between performance and success.
61
194610
3504
让我们定义一下业绩和成功的差别。
03:18
Well, performance is what you do:
62
198465
1997
业绩是你做的事情:
03:20
how fast you run, what kind of paintings you paint,
63
200486
3032
你跑得有多快,你画的是什么画,
03:23
what kind of papers you publish.
64
203542
1881
你发表的是什么论文。
03:25
However, in our working definition,
65
205835
2614
然而,在我们的工作定义中,
03:28
success is about what the community notices from what you did,
66
208473
4205
成功是社群从你的业绩中
03:32
from your performance:
67
212702
1612
注意到你做的哪些事情,
03:34
How does it acknowledge it, and how does it reward you for it?
68
214338
4132
如何承认你的成就,如何奖励你?
03:38
In other terms,
69
218494
1182
换句话说,
03:39
your performance is about you, but your success is about all of us.
70
219700
4596
你的业绩跟你有关, 但你的成功跟大家都有关。
03:45
And this was a very important shift for us,
71
225392
3334
这对我们来说是个非常重要的转变,
03:48
because the moment we defined success as being a collective measure
72
228750
4024
因为我们把成功定义为社群
03:52
that the community provides to us,
73
232798
2106
给予我们的集体评价。
03:54
it became measurable,
74
234928
1510
这样一来成功就变得可衡量,
03:56
because if it's in the community, there are multiple data points about that.
75
236462
4510
因为在一个社群中, 关于成功包含着很多数据点。
04:00
So we go to school, we exercise, we practice,
76
240996
5280
我们上学,我们练习,我们实践,
04:06
because we believe that performance leads to success.
77
246300
2991
因为我们相信业绩会让我们成功。
04:09
But the way we actually started to explore,
78
249832
2015
但当我们开始探索,
04:11
we realized that performance and success are very, very different animals
79
251871
3527
我们开始意识到 以数学的方式看待这个问题时,
04:15
when it comes to the mathematics of the problem.
80
255422
2444
业绩和成功是非常, 非常不同的概念,
04:18
And let me illustrate that.
81
258429
1432
让我来解释一下。
04:20
So what you see here is the fastest man on earth, Usain Bolt.
82
260329
4947
你在这里看到的是世界上 最快的人,尤塞恩·博尔特。
04:25
And of course, he wins most of the competitions that he enters.
83
265832
3910
当然,他赢得了大多数参与的比赛。
04:30
And we know he's the fastest on earth because we have a chronometer
84
270393
3175
我们知道是他是世界上最快的人, 因为我们有精密的计时器
04:33
to measure his speed.
85
273592
1160
去测量他的速度。
04:34
Well, what is interesting about him is that when he wins,
86
274776
4119
有趣之处在于当他获胜时,
04:38
he doesn't do so by really significantly outrunning his competition.
87
278919
5502
他并没有明显地超过竞争对手。
04:44
He's running at most a percent faster than the one who loses the race.
88
284445
4519
他跑得比输掉比赛的人 最多快百分之一。
04:49
And not only does he run only one percent faster than the second one,
89
289631
3638
他不仅只比第二名快百分之一,
04:53
but he doesn't run 10 times faster than I do --
90
293293
2849
他的速度也不超过我的10倍——
04:56
and I'm not a good runner, trust me on that.
91
296166
2181
并且我还不是个擅长跑步的人, 这点请相信我。
04:58
(Laughter)
92
298371
1197
(笑声)
04:59
And every time we are able to measure performance,
93
299592
3502
每次我们能够评估业绩时,
05:03
we notice something very interesting;
94
303118
2050
我们都会注意到一些有趣的事情:
05:05
that is, performance is bounded.
95
305192
2511
业绩是有界限的。
05:07
What it means is that there are no huge variations in human performance.
96
307727
3757
这意味着人类的业绩 并没有巨大的差异。
05:11
It varies only in a narrow range,
97
311508
3432
它变化的范围非常小,
05:14
and we do need the chronometer to measure the differences.
98
314964
3279
我们确实需要精密的计时器 来测量这个差异。
05:18
This is not to say that we cannot see the good from the best ones,
99
318267
3168
不是说我们不能从 最好的人身上看到好的一面,
05:21
but the best ones are very hard to distinguish.
100
321459
2733
但最好的人非常难以识别。
05:24
And the problem with that is that most of us work in areas
101
324216
2992
并且问题在于我们很多人的工作领域
05:27
where we do not have a chronometer to gauge our performance.
102
327232
3922
并没有精密的计时器 来衡量我们的业绩。
05:31
Alright, performance is bounded,
103
331178
1564
好了,业绩是有界限的,
05:32
there are no huge differences between us when it comes to our performance.
104
332766
3532
当涉及我们的业绩时, 我们之间并没有显著的差异。
05:36
How about success?
105
336322
1157
那么成功呢?
05:37
Well, let's switch to a different topic, like books.
106
337995
2930
让我们转到另一个话题,比如书籍。
05:40
One measure of success for writers is how many people read your work.
107
340949
5015
评估作家成功的一个方法是 有多少人阅读了你的作品。
05:46
And so when my previous book came out in 2009,
108
346662
4410
当我早先那本书 在2009年出版时,
05:51
I was in Europe talking with my editor,
109
351096
1902
我在欧洲和编辑谈话,
05:53
and I was interested: Who is the competition?
110
353022
2462
我感兴趣的是:谁是我的竞争对手?
05:56
And I had some fabulous ones.
111
356253
2735
我有一些炙手可热的对手。
05:59
That week --
112
359012
1169
那周——
06:00
(Laughter)
113
360205
1024
(笑声)
06:01
Dan Brown came out with "The Lost Symbol,"
114
361253
3557
丹·布朗出版了《失落的秘符》,
06:04
and "The Last Song" also came out,
115
364834
2982
并且尼古拉斯·斯帕克斯
06:07
Nicholas Sparks.
116
367840
1429
的《最后一首歌》也问世了。
06:09
And when you just look at the list,
117
369293
2988
当你看这个书单时,
06:12
you realize, you know, performance-wise, there's hardly any difference
118
372305
3453
你意识到,就业绩而言,这些书
06:15
between these books or mine.
119
375782
1598
和我的之间并无多大差别。
06:17
Right?
120
377404
1175
是吧?
06:18
So maybe if Nicholas Sparks's team works a little harder,
121
378603
4668
如果尼古拉斯·斯帕克斯 的团队再努力一点,
06:23
he could easily be number one,
122
383295
1722
他就可以轻松进入榜首,
06:25
because it's almost by accident who ended up at the top.
123
385041
2898
因为最终谁在畅销榜顶端 几乎是随机的。
06:28
So I said, let's look at the numbers -- I'm a data person, right?
124
388486
3153
所以我说,让我们看看数字吧—— 我就是干这行的,对吧?
06:31
So let's see what were the sales for Nicholas Sparks.
125
391663
4318
让我们看看尼古拉斯·斯帕克斯 的作品销量。
06:36
And it turns out that that opening weekend,
126
396005
2054
结果在新书发售的那个周末,
06:38
Nicholas Sparks sold more than a hundred thousand copies,
127
398083
2975
尼古拉斯·斯帕克斯 卖出了10万多本书,
06:41
which is an amazing number.
128
401082
1705
这是个惊人的数字。
06:42
You can actually get to the top of the "New York Times" best-seller list
129
402811
3396
你可以看看纽约时报 每周销量在1万册以上的
06:46
by selling 10,000 copies a week,
130
406231
2110
畅销书榜单,
06:48
so he tenfold overcame what he needed to be number one.
131
408365
3752
所以他只凭借新书销量的 十分之一就能轻松登上榜首。
06:52
Yet he wasn't number one.
132
412141
1430
然而他不是第一名。
06:53
Why?
133
413595
1308
为什么?
06:54
Because there was Dan Brown, who sold 1.2 million copies that weekend.
134
414927
4078
因为有丹·布朗,他在 那个周末卖出了120万册。
06:59
(Laughter)
135
419029
2136
(笑声)
07:01
And the reason I like this number is because it shows that, really,
136
421189
3971
我喜欢这个数字的原因 是因为它真正显示了,
07:05
when it comes to success, it's unbounded,
137
425184
3730
当涉及到成功时,它是没有界限的,
07:08
that the best doesn't only get slightly more than the second best
138
428938
5861
最好的不止比第二名好一点点,
07:14
but gets orders of magnitude more,
139
434823
2697
而超越了好几个数量级,
07:17
because success is a collective measure.
140
437544
2794
因为成功是集体的衡量标准。
07:20
We give it to them, rather than we earn it through our performance.
141
440362
4376
我们给予他们成功,而不是 通过我们的业绩获得它。
07:24
So one of things we realized is that performance, what we do, is bounded,
142
444762
5376
我们意识到业绩是有界限的,
07:30
but success, which is collective, is unbounded,
143
450162
2682
但成功,属于集体衡量的,是无界的,
07:32
which makes you wonder:
144
452868
1312
这一定让你心生疑惑:
07:34
How do you get these huge differences in success
145
454204
2911
当人们的业绩表现差异很小的时候,
07:37
when you have such tiny differences in performance?
146
457139
2906
为何成功的差异如此之大?
07:40
And recently, I published a book that I devoted to that very question.
147
460537
3787
最近,我出版了一本 关于这个问题的书。
07:44
And they didn't give me enough time to go over all of that,
148
464348
2839
我没有太多时间详细介绍这本书,
07:47
so I'm going to go back to the question of,
149
467211
2071
所以我打算回到这个问题,
07:49
alright, you have success; when should that appear?
150
469306
3135
成功通常会在什么时候出现呢?
07:52
So let's go back to the party spoiler and ask ourselves:
151
472465
3758
那么让我们回到派对捣乱者 的话题,问问我们自己:
07:57
Why did Einstein make this ridiculous statement,
152
477215
3339
为什么爱因斯坦要发表 这样荒谬的言论,
08:00
that only before 30 you could actually be creative?
153
480578
3156
人的创造力止步于30岁?
08:03
Well, because he looked around himself and he saw all these fabulous physicists
154
483758
4680
因为他发现周围 所有这些创造量子力学
08:08
that created quantum mechanics and modern physics,
155
488462
2587
和现代物理学的伟大物理学家,
08:11
and they were all in their 20s and early 30s when they did so.
156
491073
3736
他们的伟大成就都是诞生在 20多岁和30岁出头。
08:15
And it's not only him.
157
495730
1220
并不是只有他这样想。
08:16
It's not only observational bias,
158
496974
1623
这不仅是观察偏差,
08:18
because there's actually a whole field of genius research
159
498621
3997
因为事实上有一整个 领域的天才研究
08:22
that has documented the fact that,
160
502642
2256
都证明了这一点,
08:24
if we look at the people we admire from the past
161
504922
3160
如果回顾一下我们崇拜的先人,
08:28
and then look at what age they made their biggest contribution,
162
508106
3358
然后再看他们做出 最大贡献的年纪,
08:31
whether that's music, whether that's science,
163
511488
2096
不管在音乐,在科学,
08:33
whether that's engineering,
164
513608
1619
还是在工程领域,
08:35
most of them tend to do so in their 20s, 30s, early 40s at most.
165
515251
6123
大部分人都是在他们20岁,30岁, 最多40岁出头时做出了这些成绩。
08:41
But there's a problem with this genius research.
166
521914
2791
但这个天才研究有个问题。
08:45
Well, first of all, it created the impression to us
167
525197
3280
首先,它为大众制造了一种印象,
08:48
that creativity equals youth,
168
528501
3479
即创造力等于年轻,
08:52
which is painful, right?
169
532004
1610
真让人伤心,不是吗?
08:53
(Laughter)
170
533638
1951
(笑声)
08:55
And it also has an observational bias,
171
535613
4088
并且它也存在观察偏差,
08:59
because it only looks at geniuses and doesn't look at ordinary scientists
172
539725
4962
因为它只观察了天才, 并没研究普通科学家,
09:04
and doesn't look at all of us and ask,
173
544711
1965
并没有看着我们这些人问,
09:06
is it really true that creativity vanishes as we age?
174
546700
3185
随着年龄的增长, 创造力真的会消失吗?
09:10
So that's exactly what we tried to do,
175
550382
1877
所以这正是我们尝试做的,
09:12
and this is important for that to actually have references.
176
552283
3803
并且有参照对象很重要。
09:16
So let's look at an ordinary scientist like myself,
177
556110
2643
那么让我们看看像我 这样平凡科学家
09:18
and let's look at my career.
178
558777
1522
的职业生涯。
09:20
So what you see here is all the papers that I've published
179
560323
3202
这里是我发表的全部论文,
09:23
from my very first paper, in 1989; I was still in Romania when I did so,
180
563549
5115
从1989年发表的最早一篇论文; 当时我还在罗马尼亚,
09:28
till kind of this year.
181
568688
1593
直到今年这个时候。
09:30
And vertically, you see the impact of the paper,
182
570940
2518
纵坐标,你可以看到论文的影响,
09:33
that is, how many citations,
183
573482
1403
也就是被引用的次数,
09:34
how many other papers have been written that cited that work.
184
574909
3988
有多少其他人发表的论文 引用了我的工作。
09:39
And when you look at that,
185
579397
1300
当你看这个数据时,
09:40
you see that my career has roughly three different stages.
186
580721
2813
可以看到我的职业生涯有三个阶段。
09:43
I had the first 10 years where I had to work a lot
187
583558
2435
我第一个10年,工作很多,
但却并没有多少成就。
09:46
and I don't achieve much.
188
586017
1276
09:47
No one seems to care about what I do, right?
189
587317
2118
似乎没人关注我做的事情,对吧?
09:49
There's hardly any impact.
190
589459
1681
没有一点影响力。
09:51
(Laughter)
191
591164
1404
(笑声)
09:52
That time, I was doing material science,
192
592592
2887
当时,我在做材料科学,
09:55
and then I kind of discovered for myself networks
193
595503
3691
然后我自己发现了网络,
09:59
and then started publishing in networks.
194
599218
1947
然后开始发表网络的文章,
10:01
And that led from one high-impact paper to the other one.
195
601189
3073
从那以后,高影响力的文章 我发表了一篇又一篇。
10:04
And it really felt good. That was that stage of my career.
196
604286
3104
那时感觉真是很好,那是 我职业生涯的高光时刻。
10:07
(Laughter)
197
607414
1282
(笑声)
10:08
So the question is, what happens right now?
198
608720
3208
那么问题是,现在发生了什么?
10:12
And we don't know, because there hasn't been enough time passed yet
199
612587
3239
我们不知道,现在就去 计算出这些论文
10:15
to actually figure out how much impact those papers will get;
200
615850
2987
会产生怎样的影响还为时尚早,
需要时间来获取这些信息。
10:18
it takes time to acquire.
201
618861
1227
当你看这个数据时,
10:20
Well, when you look at the data,
202
620112
1569
10:21
it seems to be that Einstein, the genius research, is right,
203
621705
2854
会觉得爱因斯坦和 天才研究的结论是对的,
10:24
and I'm at that stage of my career.
204
624583
1811
我在我职业生涯的高光阶段。
10:26
(Laughter)
205
626418
2308
(笑声)
10:28
So we said, OK, let's figure out how does this really happen,
206
628750
5974
那么让我们看看 这究竟是如何发生的,
10:34
first in science.
207
634748
1778
首先看看科学领域。
10:36
And in order not to have the selection bias,
208
636550
3632
为了不产生选择偏差,
10:40
to look only at geniuses,
209
640206
1337
只看天才,
10:41
we ended up reconstructing the career of every single scientist
210
641567
3716
我们最终重建了1900年至今每一位
10:45
from 1900 till today
211
645307
2502
科学家的职业生涯,
10:47
and finding for all scientists what was their personal best,
212
647833
3712
并找到了所有科学家 的个人最高成就,
10:51
whether they got the Nobel Prize or they never did,
213
651569
2812
不管他获得了诺贝尔奖还是没有,
10:54
or no one knows what they did, even their personal best.
214
654405
3407
或是没人问津,即便是他最好的成就。
10:57
And that's what you see in this slide.
215
657836
1915
这就是你们在这张幻灯片上看到的。
10:59
Each line is a career,
216
659775
1573
每条线是个职业生涯,
11:01
and when you have a light blue dot on the top of that career,
217
661372
3003
在职业生涯的顶端 有一个浅蓝色的点,
11:04
it says that was their personal best.
218
664399
2040
代表着他们个人的最好成就。
11:06
And the question is,
219
666463
1155
问题是,
11:07
when did they actually make their biggest discovery?
220
667642
3568
他们最重大的发现 发生在什么时候?
11:11
To quantify that,
221
671234
1165
要量化这点,
11:12
we look at what's the probability that you make your biggest discovery,
222
672423
3376
我们看的是你获得 最大发现的概率是多少,
11:15
let's say, one, two, three or 10 years into your career?
223
675823
2672
比如你职业生涯的 的第1,2,3或者10年。
11:18
We're not looking at real age.
224
678519
1480
我们真正要看的并不是年纪。
我们看的是所谓的“学术年龄。”
11:20
We're looking at what we call "academic age."
225
680023
2134
你的学术年龄始于 你发表第一篇论文的时候。
11:22
Your academic age starts when you publish your first papers.
226
682181
3250
11:25
I know some of you are still babies.
227
685455
1779
我知道你们有些人还是婴儿。
11:27
(Laughter)
228
687258
1397
(笑声)
11:28
So let's look at the probability
229
688679
2706
那么让我们来看看
11:31
that you publish your highest-impact paper.
230
691409
2066
你发表最高影响力论文的概率。
11:33
And what you see is, indeed, the genius research is right.
231
693499
3071
你看到的是,的确, 天才研究的结论是正确的。
11:36
Most scientists tend to publish their highest-impact paper
232
696594
3024
很多科学家发表的 影响力最高的论文倾向于
11:39
in the first 10, 15 years in their career,
233
699642
2899
发表在他们职业生涯的 前10到15年,
11:42
and it tanks after that.
234
702565
3133
在那之后就会直线下降。
11:45
It tanks so fast that I'm about -- I'm exactly 30 years into my career,
235
705722
5107
它下降得如此之快——我如今 正处在我职业的第30个年头,
11:50
and the chance that I will publish a paper that would have a higher impact
236
710853
3540
我发表一篇比过往有 更高影响力的论文
11:54
than anything that I did before
237
714417
1940
的概率
11:56
is less than one percent.
238
716381
1353
不到1%。
11:57
I am in that stage of my career, according to this data.
239
717758
3049
根据这个数据,我正处在 职业生涯的这个阶段。
12:01
But there's a problem with that.
240
721648
1843
但这里有个问题。
12:03
We're not doing controls properly.
241
723515
3675
我们的对照数据有问题。
12:07
So the control would be,
242
727214
1417
对照数据就是,
12:08
what would a scientist look like who makes random contribution to science?
243
728655
4607
对科学做出随机贡献的 科学家会是什么样子?
12:13
Or what is the productivity of the scientist?
244
733286
2995
或者科学家的生产力怎样?
12:16
When do they write papers?
245
736305
2006
他们什么时候写的论文?
12:18
So we measured the productivity,
246
738335
2444
所以我们评估了生产力,
12:20
and amazingly, the productivity,
247
740803
2052
令人惊讶的是,生产力,
12:22
your likelihood of writing a paper in year one, 10 or 20 in your career,
248
742879
4131
你在职业生涯的第1年、第10年 或第20年写论文的概率,
12:27
is indistinguishable from the likelihood of having the impact
249
747034
3606
与论文产生影响的概率
12:30
in that part of your career.
250
750664
1775
几乎无法区分。
12:33
And to make a long story short,
251
753026
1783
长话短说,
12:34
after lots of statistical tests, there's only one explanation for that,
252
754833
4228
在很多的数据检验后, 只有一个解释,
12:39
that really, the way we scientists work
253
759085
2894
真相是,我们科学家的工作,
12:42
is that every single paper we write, every project we do,
254
762003
3633
我们写的每篇论文,做的每个项目
12:45
has exactly the same chance of being our personal best.
255
765660
4160
都有同样的概率成为 我们个人的最佳成果。
12:49
That is, discovery is like a lottery ticket.
256
769844
4953
那就是,发现就像中彩票。
12:54
And the more lottery tickets we buy,
257
774821
2351
我们买了越多的彩票,
12:57
the higher our chances.
258
777196
1507
我们中奖的几率就越高。
12:58
And it happens to be so
259
778727
1559
碰巧的是,
13:00
that most scientists buy most of their lottery tickets
260
780310
2719
很多科学家在他们 职业生涯的头10年,
13:03
in the first 10, 15 years of their career,
261
783053
2460
15年买了大部分的彩票,
13:05
and after that, their productivity decreases.
262
785537
3413
在那之后,他们的生产力就下降了。
13:09
They're not buying any more lottery tickets.
263
789411
2084
他们不再买更多的彩票。
13:11
So it looks as if they would not be creative.
264
791519
3444
所以看起来他们没有创造力了。
13:14
In reality, they stopped trying.
265
794987
1999
现实中,他们停止了尝试。
13:17
So when we actually put the data together, the conclusion is very simple:
266
797509
3915
所以当我们把数据放在一起时, 结论非常简单:
13:21
success can come at any time.
267
801448
2331
成功可能随时会来。
13:23
It could be your very first or very last paper of your career.
268
803803
3735
它可能是你职业生涯中 最早或最后的论文。
13:27
It's totally random in the space of the projects.
269
807562
4288
它在项目的空间中完全是随机的。
13:31
It is the productivity that changes.
270
811874
1931
改变的是你的生产力。
13:33
Let me illustrate that.
271
813829
1252
让我解释一下。
13:35
Here is Frank Wilczek, who got the Nobel Prize in Physics
272
815105
3269
这是获得诺贝尔物理学奖 的弗兰克·威尔切克,
13:38
for the very first paper he ever wrote in his career as a graduate student.
273
818398
4101
他得奖要归功于研究生时 写的第一篇论文。
13:42
(Laughter)
274
822523
1007
(笑声)
13:43
More interesting is John Fenn,
275
823554
3218
更有趣的是约翰·芬,
13:46
who, at age 70, was forcefully retired by Yale University.
276
826796
4598
他在70岁时,被耶鲁大学强制退休,
13:51
They shut his lab down,
277
831418
2056
他们关闭了他的实验室,
13:53
and at that moment, he moved to Virginia Commonwealth University,
278
833498
3666
那时,他搬到了弗吉尼亚联邦大学,
13:57
opened another lab,
279
837188
1786
开了另一个实验室,
13:58
and it is there, at age 72, that he published a paper
280
838998
3033
就在那里,在年纪72岁时, 他发表了一篇论文,
14:02
for which, 15 years later, he got the Nobel Prize for Chemistry.
281
842055
3845
这篇论文在15年后 获得了诺贝尔化学奖。
14:06
And you think, OK, well, science is special,
282
846940
3042
你会想,科学领域比较特殊,
14:10
but what about other areas where we need to be creative?
283
850006
3463
但其他需要我们有创造力的领域呢?
14:13
So let me take another typical example: entrepreneurship.
284
853493
4936
那么让我们再看看 另一个典型的例子:创业。
14:18
Silicon Valley,
285
858834
1579
硅谷。
14:20
the land of the youth, right?
286
860437
2066
年轻人的领地,对吧?
14:22
And indeed, when you look at it,
287
862527
1595
确实,当你看这个领域时,
你发现最大的奖励, TechCrunch Awards或其他奖励,
14:24
you realize that the biggest awards, the TechCrunch Awards and other awards,
288
864146
4642
14:28
are all going to people
289
868812
2173
全都给了平均年纪
14:31
whose average age is late 20s, very early 30s.
290
871009
5015
在30岁左右的人。
14:36
You look at who the VCs give the money to, some of the biggest VC firms --
291
876465
5602
再看看VC的钱都给了谁, 一些最大的VC企业——
14:42
all people in their early 30s.
292
882091
2241
几乎所有的人都在30岁出头。
14:44
Which, of course, we know;
293
884951
1265
当然,我们知道;
14:46
there is this ethos in Silicon Valley that youth equals success.
294
886240
4453
硅谷有这样一种风气: 年轻等于成功。
14:51
Not when you look at the data,
295
891653
2183
不过,当你看数据的时候 就不会这样认为了。
14:53
because it's not only about forming a company --
296
893860
2304
看看这些人当中有谁真正
14:56
forming a company is like productivity, trying, trying, trying --
297
896188
3140
成立了一家成功的公司——
14:59
when you look at which of these individuals actually put out
298
899352
3484
成立一个公司就像生产力, 尝试,尝试,再尝试。
15:02
a successful company, a successful exit.
299
902860
2782
因为这不仅关于成立一个公司。
15:05
And recently, some of our colleagues looked at exactly that question.
300
905666
3720
最近,我们的几位同事 正好研究了这个问题。
15:09
And it turns out that yes, those in the 20s and 30s
301
909410
3156
果不期然,这些年纪 在20多岁和30多岁的人
15:12
put out a huge number of companies, form lots of companies,
302
912590
3348
创立了大量的公司,很多公司,
15:15
but most of them go bust.
303
915962
1531
但大部分都破产了。
15:18
And when you look at the successful exits, what you see in this particular plot,
304
918089
4195
再看看那些成功的退出, 你在这个图中可以看到,
15:22
the older you are, the more likely that you will actually hit the stock market
305
922308
3695
你年纪越大,就越有可能 轰动股票市场
15:26
or the sell the company successfully.
306
926027
2312
或者成功出售公司。
15:28
This is so strong, actually, that if you are in the 50s,
307
928847
3113
数据很显著,事实上, 如果你50多岁,
15:31
you are twice as likely to actually have a successful exit
308
931984
3588
你成功退出的机会是
15:35
than if you are in your 30s.
309
935596
1890
你30岁时的两倍。
15:38
(Applause)
310
938613
4325
(鼓掌)
15:43
So in the end, what is it that we see, actually?
311
943645
3009
所以最后,我们看到了什么?
15:46
What we see is that creativity has no age.
312
946678
4083
我们看到的是创意并无年龄限制。
15:50
Productivity does, right?
313
950785
2202
生产力才是关键,对吧?
15:53
Which is telling me that at the end of the day,
314
953424
4135
这就告诉我们,
15:57
if you keep trying --
315
957583
2000
如果你不断尝试——
15:59
(Laughter)
316
959607
2403
(笑声)
16:02
you could still succeed and succeed over and over.
317
962034
3572
你仍然可以不断取得成功。
16:05
So my conclusion is very simple:
318
965630
2391
所以我的结论很简单:
16:08
I am off the stage, back in my lab.
319
968045
2093
演讲结束后,我得回到实验干活儿了。
16:10
Thank you.
320
970162
1171
谢谢。
16:11
(Applause)
321
971357
3309
(鼓掌)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog