The real relationship between your age and your chance of success | Albert-László Barabási

285,039 views ・ 2019-09-03

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Sharon Hsiao
00:12
Today, actually, is a very special day for me,
0
12249
2266
今天對我來說是個很特別的一天,
00:14
because it is my birthday.
1
14539
2121
因為今天是我的生日。
00:16
(Applause)
2
16684
3973
(掌聲)
00:20
And so, thanks to all of you for joining the party.
3
20681
3441
謝謝大家來參加這場派對。
00:24
(Laughter)
4
24146
1167
(笑聲)
00:25
But every time you throw a party, there's someone there to spoil it. Right?
5
25337
4786
但,每次你辦派對時, 總會掃興的人,對吧?
00:30
(Laughter)
6
30147
1072
(笑聲)
00:31
And I'm a physicist,
7
31243
1359
我是物理學家,
00:32
and this time I brought another physicist along to do so.
8
32626
4157
這次,我帶來了 另一位來掃興的物理學家。
00:36
His name is Albert Einstein -- also Albert -- and he's the one who said
9
36807
4562
他叫做阿爾伯特愛因斯坦—— 也叫阿爾伯特——他說過
00:41
that the person who has not made his great contributions to science
10
41393
4830
如果一個人到了三十歲 都還沒有對科學
做出偉大的貢獻, 就永遠不會有貢獻了。
00:46
by the age of 30
11
46247
1559
00:47
will never do so.
12
47830
1396
00:49
(Laughter)
13
49250
1012
(笑聲)
00:50
Now, you don't need to check Wikipedia
14
50286
2340
各位不需要去維基百科查證,
00:52
that I'm beyond 30.
15
52650
1571
我已經超過三十歲了。
00:54
(Laughter)
16
54245
1416
(笑聲)
00:55
So, effectively, what he is telling me, and us,
17
55685
3606
所以,實際上,他要 告訴我以及我們的是,
00:59
is that when it comes to my science,
18
59315
2544
在我的科學領域中,
01:01
I'm deadwood.
19
61883
1203
我已經是枯枝。
01:04
Well, luckily, I had my share of luck within my career.
20
64078
5586
嗯,幸運的是,我在 我的職涯中有好運氣。
01:10
Around age 28, I became very interested in networks,
21
70132
3822
大約二十八歲時, 我對於網路非常感興趣,
01:13
and a few years later, we managed to publish a few key papers
22
73978
4076
幾年後,我們出版了 幾篇重要論文,
01:18
that reported the discovery of scale-free networks
23
78078
4097
闡述我們發現了無尺度網路,
01:22
and really gave birth to a new discipline that we call network science today.
24
82199
4578
創造出了一門新的學科, 就是現今所稱的網路科學。
01:26
And if you really care about it, you can get a PhD now in network science
25
86801
3678
如果各位想知道,現在可以 取得網路科學博士學位的地方
01:30
in Budapest, in Boston,
26
90503
2028
包括布達佩斯、波士頓,
01:32
and you can study it all over the world.
27
92555
2308
且在全世界各地都可以研讀它。
01:35
A few years later,
28
95466
1595
幾年後,
01:37
when I moved to Harvard first as a sabbatical,
29
97085
3230
我搬到哈佛,一開始是學術休假,
01:40
I became interested in another type of network:
30
100339
3092
我開始對另一種網路產生了興趣:
01:43
that time, the networks within ourselves,
31
103455
3027
我們體內的網路,
01:46
how the genes and the proteins and the metabolites link to each other
32
106506
3726
基因、蛋白質、代謝物 彼此之間如何連結,
01:50
and how they connect to disease.
33
110256
2493
以及它們和疾病的關係。
01:53
And that interest led to a major explosion within medicine,
34
113368
4592
那項興趣導致了醫學上的大爆炸,
01:57
including the Network Medicine Division at Harvard,
35
117984
3979
包括哈佛的網路醫學部門,
02:01
that has more than 300 researchers who are using this perspective
36
121987
3395
有超過三百名研究者使用這種觀點
02:05
to treat patients and develop new cures.
37
125406
2897
來治療病人和開發新解藥。
02:09
And a few years ago,
38
129457
1770
幾年前,
02:11
I thought that I would take this idea of networks
39
131251
2526
我認為我可以把網路的這個點子
02:13
and the expertise we had in networks
40
133801
1766
以及我們對網路的專長 帶到不同的領域去,
02:15
in a different area,
41
135591
1392
02:17
that is, to understand success.
42
137007
1982
也就是,用來了解成功。
02:19
And why did we do that?
43
139704
1210
為什麼要那樣做?
02:20
Well, we thought that, to some degree,
44
140938
2281
嗯,我們認為,在某種程度上,
02:23
our success is determined by the networks we're part of --
45
143243
3377
我們的成功是由我們所屬的網路決定,
02:26
that our networks can push us forward, they can pull us back.
46
146644
3847
我們的網路將我們向前推進, 也可以讓我們遲滯不前。
02:30
And I was curious if we could use the knowledge and big data and expertise
47
150925
4128
我很好奇,我們是否 能用這知識和大數據
及我們開發網路的專門技術 來將成功的發生給量化。
02:35
where we develop the networks
48
155077
1403
02:36
to really quantify how these things happen.
49
156504
3296
02:40
This is a result from that.
50
160404
1342
這就是研究的結果。
02:41
What you see here is a network of galleries in museums
51
161770
2947
各位現在看到的是 博物館的畫廊的網路,
02:44
that connect to each other.
52
164741
1632
它們彼此連結。
02:46
And through this map that we mapped out last year,
53
166806
4055
透過我們去年畫的這張地圖,
02:50
we are able to predict very accurately the success of an artist
54
170885
4848
我們就可以很精確地預測 一位藝術家是否會成功,
02:55
if you give me the first five exhibits that he or she had in their career.
55
175757
4021
只要給我這位藝術家 在職涯中的最早五件展示品。
03:01
Well, as we thought about success,
56
181404
2706
當我們在思考成功時,
03:04
we realized that success is not only about networks;
57
184134
3067
我們發現,成功不只和網路有關;
03:07
there are so many other dimensions to that.
58
187225
2396
還有好多其他的維度。
03:10
And one of the things we need for success, obviously,
59
190145
3247
很顯然,我們想要成功 就一定需要的一樣東西
03:13
is performance.
60
193416
1170
就是表現。
03:14
So let's define what's the difference between performance and success.
61
194610
3504
所以,咱們來定義一下 表現和成功之間的差別。
03:18
Well, performance is what you do:
62
198465
1997
表現是你所做的事:
03:20
how fast you run, what kind of paintings you paint,
63
200486
3032
你能跑多快、你畫出什麼樣的畫、
03:23
what kind of papers you publish.
64
203542
1881
你出版什麼樣的論文。
03:25
However, in our working definition,
65
205835
2614
然而,根據我們的工作定義,
03:28
success is about what the community notices from what you did,
66
208473
4205
成功的重點在於大家 能注意到你做了什麼、
03:32
from your performance:
67
212702
1612
你的表現如何:
03:34
How does it acknowledge it, and how does it reward you for it?
68
214338
4132
怎麼認可你的表現, 你的表現帶給你什麼報償?
03:38
In other terms,
69
218494
1182
換言之,
03:39
your performance is about you, but your success is about all of us.
70
219700
4596
你的表現是你的事, 但你的成功是我們所有人的事。
03:45
And this was a very important shift for us,
71
225392
3334
這對我們來說是很重要的轉變,
03:48
because the moment we defined success as being a collective measure
72
228750
4024
因為當我們把成功定義為
團體提供我們的一個集體測量值, 它就變成可測量的,
03:52
that the community provides to us,
73
232798
2106
03:54
it became measurable,
74
234928
1510
03:56
because if it's in the community, there are multiple data points about that.
75
236462
4510
因為如果它是在團體中, 就有相關的許多資料點。
04:00
So we go to school, we exercise, we practice,
76
240996
5280
所以我們去學校, 我們做作業,我們練習,
04:06
because we believe that performance leads to success.
77
246300
2991
因為我們相信表現會導致成功。
04:09
But the way we actually started to explore,
78
249832
2015
但我們這樣開始探究之後,
04:11
we realized that performance and success are very, very different animals
79
251871
3527
便了解到在數學問題上,
表現和成功非常不同。
04:15
when it comes to the mathematics of the problem.
80
255422
2444
04:18
And let me illustrate that.
81
258429
1432
讓我說明一下。
04:20
So what you see here is the fastest man on earth, Usain Bolt.
82
260329
4947
各位在這裡看到的是世界上 最快的人,尤塞恩博爾特。
04:25
And of course, he wins most of the competitions that he enters.
83
265832
3910
當然,他參加的比賽, 他大部分都有贏。
04:30
And we know he's the fastest on earth because we have a chronometer
84
270393
3175
我們知道他跑得最快,因為我們 有精密計時器來測量速度。
04:33
to measure his speed.
85
273592
1160
04:34
Well, what is interesting about him is that when he wins,
86
274776
4119
關於他,有一點很有趣, 那就是當他贏的時候,
04:38
he doesn't do so by really significantly outrunning his competition.
87
278919
5502
他並不是明顯超越他的對手許多。
04:44
He's running at most a percent faster than the one who loses the race.
88
284445
4519
他最多是比輸家快 1% 而已。
04:49
And not only does he run only one percent faster than the second one,
89
289631
3638
他不僅只比第二名快 1%,
04:53
but he doesn't run 10 times faster than I do --
90
293293
2849
他也沒有跑得比我快十倍——
04:56
and I'm not a good runner, trust me on that.
91
296166
2181
我不是個好跑者,相信我。
04:58
(Laughter)
92
298371
1197
(笑聲)
04:59
And every time we are able to measure performance,
93
299592
3502
每當我們能夠測量表現時,
05:03
we notice something very interesting;
94
303118
2050
我們就會注意到一件很有趣的事;
05:05
that is, performance is bounded.
95
305192
2511
那就是,表現是受限的。
05:07
What it means is that there are no huge variations in human performance.
96
307727
3757
意思就是說,人類的表現 並沒有太大的變動。
05:11
It varies only in a narrow range,
97
311508
3432
人類表現只在一個小範圍中變動,
05:14
and we do need the chronometer to measure the differences.
98
314964
3279
我們的確需要很精密的 計時器才能測出差別。
05:18
This is not to say that we cannot see the good from the best ones,
99
318267
3168
這並不是說我們分不出 好和最好的差別,
05:21
but the best ones are very hard to distinguish.
100
321459
2733
而是很難分辨出最好的人。
05:24
And the problem with that is that most of us work in areas
101
324216
2992
那所造成的問題就是, 我們大部分人工作的領域中
05:27
where we do not have a chronometer to gauge our performance.
102
327232
3922
並沒有精密的計時器 來測量我們的表現。
05:31
Alright, performance is bounded,
103
331178
1564
好,表現是受限的,
05:32
there are no huge differences between us when it comes to our performance.
104
332766
3532
我們之間在表現上 沒有很大的差異。
05:36
How about success?
105
336322
1157
那成功呢?
05:37
Well, let's switch to a different topic, like books.
106
337995
2930
咱們切換到一個不同的 主題,以書籍為例。
05:40
One measure of success for writers is how many people read your work.
107
340949
5015
對作家來說,成功的測量值之一 就是有多少人讀你的作品。
05:46
And so when my previous book came out in 2009,
108
346662
4410
我的上一本書在 2009 年推出時,
05:51
I was in Europe talking with my editor,
109
351096
1902
我在歐洲跟我的編輯談,
05:53
and I was interested: Who is the competition?
110
353022
2462
我很感興趣:競爭對手是誰?
05:56
And I had some fabulous ones.
111
356253
2735
我有一些很棒的對手。
05:59
That week --
112
359012
1169
那週——
06:00
(Laughter)
113
360205
1024
(笑聲)
06:01
Dan Brown came out with "The Lost Symbol,"
114
361253
3557
丹布朗推出《失落的符號》,
06:04
and "The Last Song" also came out,
115
364834
2982
《最後一首歌》也推出了,
06:07
Nicholas Sparks.
116
367840
1429
尼可拉斯史派克的作品。
06:09
And when you just look at the list,
117
369293
2988
當你只是看列表,
06:12
you realize, you know, performance-wise, there's hardly any difference
118
372305
3453
你會知道,就表現來說,
這些書和我的書之間 幾乎沒有什麼差別。
06:15
between these books or mine.
119
375782
1598
06:17
Right?
120
377404
1175
對吧?
06:18
So maybe if Nicholas Sparks's team works a little harder,
121
378603
4668
所以,也許尼可拉斯史派克的 團隊更努力一點,
06:23
he could easily be number one,
122
383295
1722
他很容易成為第一名,
06:25
because it's almost by accident who ended up at the top.
123
385041
2898
因為誰會在頂端幾乎都是意外。
06:28
So I said, let's look at the numbers -- I'm a data person, right?
124
388486
3153
所以,我說,咱們來看看數字, 我是研究資料的人,對吧?
06:31
So let's see what were the sales for Nicholas Sparks.
125
391663
4318
咱們來看看尼可拉斯 史派克的銷售額如何。
06:36
And it turns out that that opening weekend,
126
396005
2054
結果發現,在第一個週末,
06:38
Nicholas Sparks sold more than a hundred thousand copies,
127
398083
2975
尼可拉斯史派克 賣出了超過十萬本書,
06:41
which is an amazing number.
128
401082
1705
這個數字很驚人。
06:42
You can actually get to the top of the "New York Times" best-seller list
129
402811
3396
只要一週銷售一萬本,
就可以登上《紐約時報》 暢銷書排行榜了,
06:46
by selling 10,000 copies a week,
130
406231
2110
06:48
so he tenfold overcame what he needed to be number one.
131
408365
3752
所以他超越了成為第一名 需要的數字足足十倍。
06:52
Yet he wasn't number one.
132
412141
1430
但,他並非第一名。為什麼?
06:53
Why?
133
413595
1308
06:54
Because there was Dan Brown, who sold 1.2 million copies that weekend.
134
414927
4078
因為還有丹布朗,那個週末, 他的書賣了一百二十萬本。
06:59
(Laughter)
135
419029
2136
(笑聲)
07:01
And the reason I like this number is because it shows that, really,
136
421189
3971
我喜歡這些數字是因為,
它呈現出成功是沒有限制的,
07:05
when it comes to success, it's unbounded,
137
425184
3730
07:08
that the best doesn't only get slightly more than the second best
138
428938
5861
第一名並不會只比第二名多一點,
07:14
but gets orders of magnitude more,
139
434823
2697
而是用指數倍數來算,
07:17
because success is a collective measure.
140
437544
2794
因為成功是集體的測量值。
07:20
We give it to them, rather than we earn it through our performance.
141
440362
4376
我們把成功給他們,而不是 透過自己的表現贏來成功的。
07:24
So one of things we realized is that performance, what we do, is bounded,
142
444762
5376
我們了解到,表現, 也就是我們所做的,會受限,
07:30
but success, which is collective, is unbounded,
143
450162
2682
但成功,是集體的,沒有限制,
07:32
which makes you wonder:
144
452868
1312
這就會讓人納悶:
07:34
How do you get these huge differences in success
145
454204
2911
如果在表現上只能有小小的差別,
07:37
when you have such tiny differences in performance?
146
457139
2906
在成功上如何造成 這麼巨大的差別?
07:40
And recently, I published a book that I devoted to that very question.
147
460537
3787
最近,我出版了一本書, 就是針對這個問題而寫的。
07:44
And they didn't give me enough time to go over all of that,
148
464348
2839
他們沒有給我足夠的時間 去談所有這些,
07:47
so I'm going to go back to the question of,
149
467211
2071
所以我要回到這個問題,
07:49
alright, you have success; when should that appear?
150
469306
3135
好,你有成功;它會何時出現?
07:52
So let's go back to the party spoiler and ask ourselves:
151
472465
3758
咱們回到讓派對掃興的 那個人,問問我們自己:
07:57
Why did Einstein make this ridiculous statement,
152
477215
3339
為什麼愛因斯坦 會說出那句荒謬的話,
08:00
that only before 30 you could actually be creative?
153
480578
3156
說只有在三十歲之前 你才可能真的有創意?
08:03
Well, because he looked around himself and he saw all these fabulous physicists
154
483758
4680
因為他看看自己身邊, 這些很出色的物理學家,
08:08
that created quantum mechanics and modern physics,
155
488462
2587
發明了量子力學和近代物理的人,
08:11
and they were all in their 20s and early 30s when they did so.
156
491073
3736
他們提出發明時都是 二十多歲或三十初頭。
08:15
And it's not only him.
157
495730
1220
不只是他而已。
08:16
It's not only observational bias,
158
496974
1623
這並不是觀察偏見,
08:18
because there's actually a whole field of genius research
159
498621
3997
因為有一整個領域的天才研究
08:22
that has documented the fact that,
160
502642
2256
記錄這個事實,
08:24
if we look at the people we admire from the past
161
504922
3160
如果我們去看我們 所欣賞的過去人物,
08:28
and then look at what age they made their biggest contribution,
162
508106
3358
看看他們做出最大貢獻的年齡,
08:31
whether that's music, whether that's science,
163
511488
2096
不論是音樂、不論是科學、
08:33
whether that's engineering,
164
513608
1619
不論是工程,
08:35
most of them tend to do so in their 20s, 30s, early 40s at most.
165
515251
6123
大部分都是在二、三十歲時達成,
最多四十初頭。
08:41
But there's a problem with this genius research.
166
521914
2791
但這種天才研究有一個問題。
08:45
Well, first of all, it created the impression to us
167
525197
3280
首先,它讓我們有一種印象,
08:48
that creativity equals youth,
168
528501
3479
認為創意等同年輕,
08:52
which is painful, right?
169
532004
1610
這很痛,對吧?
08:53
(Laughter)
170
533638
1951
(笑聲)
08:55
And it also has an observational bias,
171
535613
4088
它也有存在觀察偏見,
08:59
because it only looks at geniuses and doesn't look at ordinary scientists
172
539725
4962
因為它只研究天才, 沒有研究一般科學家,
09:04
and doesn't look at all of us and ask,
173
544711
1965
且沒有研究我們所有人並問:
09:06
is it really true that creativity vanishes as we age?
174
546700
3185
真的在我們年長之後 創意就消失嗎?
09:10
So that's exactly what we tried to do,
175
550382
1877
那就是我們試圖要做的,
09:12
and this is important for that to actually have references.
176
552283
3803
能真正有參考是很重要的。
09:16
So let's look at an ordinary scientist like myself,
177
556110
2643
咱們來看看一般的 科學家,像我自己,
09:18
and let's look at my career.
178
558777
1522
來看看我的職涯。
09:20
So what you see here is all the papers that I've published
179
560323
3202
這裡是我出版過的所有論文,
09:23
from my very first paper, in 1989; I was still in Romania when I did so,
180
563549
5115
我的第一篇論文在 1989 年出版,
當時我還在羅馬尼亞,
09:28
till kind of this year.
181
568688
1593
直到今年。
09:30
And vertically, you see the impact of the paper,
182
570940
2518
垂直來看,可以看到論文的影響,
09:33
that is, how many citations,
183
573482
1403
也就是引用數,
09:34
how many other papers have been written that cited that work.
184
574909
3988
有多少篇其他論文 曾經引用過那篇文章。
09:39
And when you look at that,
185
579397
1300
如果去看那些,就會發現 我的職涯大致可以分為三個階段。
09:40
you see that my career has roughly three different stages.
186
580721
2813
09:43
I had the first 10 years where I had to work a lot
187
583558
2435
前十年,我很努力工作, 沒有很高的成就。
09:46
and I don't achieve much.
188
586017
1276
09:47
No one seems to care about what I do, right?
189
587317
2118
似乎沒有人在乎我做什麼,對吧?
09:49
There's hardly any impact.
190
589459
1681
幾乎沒有任何影響力。
09:51
(Laughter)
191
591164
1404
(笑聲)
09:52
That time, I was doing material science,
192
592592
2887
那段時間,我在做材料科學,
09:55
and then I kind of discovered for myself networks
193
595503
3691
接著,我發現了網路,
09:59
and then started publishing in networks.
194
599218
1947
接著開始出版網路的文章。
10:01
And that led from one high-impact paper to the other one.
195
601189
3073
導致了一篇又一篇的 高影響力論文出現。
10:04
And it really felt good. That was that stage of my career.
196
604286
3104
感覺真的很好,我職涯的那個階段。
10:07
(Laughter)
197
607414
1282
(笑聲)
10:08
So the question is, what happens right now?
198
608720
3208
問題是,現在會發生什麼事?
10:12
And we don't know, because there hasn't been enough time passed yet
199
612587
3239
我們不知道,因為 還沒有經過那麼多時間,
10:15
to actually figure out how much impact those papers will get;
200
615850
2987
無法得知那些論文的影響會有 多大;那需要時間才能知道。
10:18
it takes time to acquire.
201
618861
1227
如果去看資料,似乎,愛因斯坦, 那些天才研究,是對的,
10:20
Well, when you look at the data,
202
620112
1569
10:21
it seems to be that Einstein, the genius research, is right,
203
621705
2854
10:24
and I'm at that stage of my career.
204
624583
1811
我正在職涯的那個階段。
10:26
(Laughter)
205
626418
2308
(笑聲)
10:28
So we said, OK, let's figure out how does this really happen,
206
628750
5974
所以,我們說,好,
咱們來研究看看這是如何發生的,
10:34
first in science.
207
634748
1778
先看科學。
10:36
And in order not to have the selection bias,
208
636550
3632
為了避免選樣偏誤,
10:40
to look only at geniuses,
209
640206
1337
只去研究天才,
10:41
we ended up reconstructing the career of every single scientist
210
641567
3716
我們最後為每一位 科學家都重建了職涯,
10:45
from 1900 till today
211
645307
2502
從 1900 年至今的所有科學家,
10:47
and finding for all scientists what was their personal best,
212
647833
3712
並針對所有科學家, 找出他們個人的顛峰時期,
10:51
whether they got the Nobel Prize or they never did,
213
651569
2812
不論他們是否有得到諾貝爾獎,
10:54
or no one knows what they did, even their personal best.
214
654405
3407
或者即使他們在顛峰時 也沒有人知道他們做了什麼。
10:57
And that's what you see in this slide.
215
657836
1915
那就是這張投影片呈現的。
10:59
Each line is a career,
216
659775
1573
每一條線就是一段職涯,
11:01
and when you have a light blue dot on the top of that career,
217
661372
3003
淡藍色的點就是那職涯的顛峰,
11:04
it says that was their personal best.
218
664399
2040
那是他們個人的最佳狀態。
11:06
And the question is,
219
666463
1155
問題是,他們何時 有最重大的發現?
11:07
when did they actually make their biggest discovery?
220
667642
3568
11:11
To quantify that,
221
671234
1165
為了量化它,我們去研究 做出最重大發現的機率,
11:12
we look at what's the probability that you make your biggest discovery,
222
672423
3376
11:15
let's say, one, two, three or 10 years into your career?
223
675823
2672
比如,你的職涯開始之後的 一、二、三,或十年?
11:18
We're not looking at real age.
224
678519
1480
我們研究的不是真實年齡, 而是所謂的「學術年齡」。
11:20
We're looking at what we call "academic age."
225
680023
2134
11:22
Your academic age starts when you publish your first papers.
226
682181
3250
你的學術年齡開始於 你的第一篇論文被刊出時。
11:25
I know some of you are still babies.
227
685455
1779
我知道在座還有一些嬰兒。
11:27
(Laughter)
228
687258
1397
(笑聲)
11:28
So let's look at the probability
229
688679
2706
咱們來看看你出版
11:31
that you publish your highest-impact paper.
230
691409
2066
最有影響力的論文的機率。
11:33
And what you see is, indeed, the genius research is right.
231
693499
3071
各位可以看見,的確, 天才研究是對的。
11:36
Most scientists tend to publish their highest-impact paper
232
696594
3024
大部分的科學家傾向會在 職涯的前十、十五年
11:39
in the first 10, 15 years in their career,
233
699642
2899
出版他們最有影響力的論文,
11:42
and it tanks after that.
234
702565
3133
之後就開始下滑。
11:45
It tanks so fast that I'm about -- I'm exactly 30 years into my career,
235
705722
5107
下滑的速度很快,我大約——
我現在正在我職涯的三十年,
11:50
and the chance that I will publish a paper that would have a higher impact
236
710853
3540
我有可能出版一篇 比我以前所有論文
都更有影響力的論文的機率,
11:54
than anything that I did before
237
714417
1940
11:56
is less than one percent.
238
716381
1353
低於 1%。
11:57
I am in that stage of my career, according to this data.
239
717758
3049
根據這些資料,我現在 就處在職涯的那個階段。
12:01
But there's a problem with that.
240
721648
1843
但有個問題。
12:03
We're not doing controls properly.
241
723515
3675
我們沒有把控制做好。
12:07
So the control would be,
242
727214
1417
控制指的是,
12:08
what would a scientist look like who makes random contribution to science?
243
728655
4607
對科學做出隨機貢獻的科學家 看起來會是什麼樣子的?
12:13
Or what is the productivity of the scientist?
244
733286
2995
或,那位科學家的產能會是什麼?
12:16
When do they write papers?
245
736305
2006
他們何時撰寫論文?
12:18
So we measured the productivity,
246
738335
2444
所以我們測量了產能,
12:20
and amazingly, the productivity,
247
740803
2052
很驚人的是,產能,
12:22
your likelihood of writing a paper in year one, 10 or 20 in your career,
248
742879
4131
你在職涯第一、十、二十年 寫一篇論文的可能性,
12:27
is indistinguishable from the likelihood of having the impact
249
747034
3606
很接近在你職涯的那個部分
12:30
in that part of your career.
250
750664
1775
有所影響的可能性。
12:33
And to make a long story short,
251
753026
1783
長話短說,
12:34
after lots of statistical tests, there's only one explanation for that,
252
754833
4228
經過許多統計檢定, 只找出了一個解釋,
12:39
that really, the way we scientists work
253
759085
2894
那就是,我們科學家工作的方式,
12:42
is that every single paper we write, every project we do,
254
762003
3633
我們所寫的每一篇論文, 我們所做的每一個研究計畫,
12:45
has exactly the same chance of being our personal best.
255
765660
4160
都有同等的機會成為 我們個人的最佳作。
12:49
That is, discovery is like a lottery ticket.
256
769844
4953
也就是說,探究 就像是買彩券一樣。
12:54
And the more lottery tickets we buy,
257
774821
2351
我們買越多彩券,
12:57
the higher our chances.
258
777196
1507
機會就越高。
12:58
And it happens to be so
259
778727
1559
只是剛好
13:00
that most scientists buy most of their lottery tickets
260
780310
2719
大部分的科學家是在 職涯的前十、十五年
13:03
in the first 10, 15 years of their career,
261
783053
2460
買了他們大部分的彩券而已,
13:05
and after that, their productivity decreases.
262
785537
3413
那之後,他們的產能就下降了。
13:09
They're not buying any more lottery tickets.
263
789411
2084
他們不再買更多的彩券。
13:11
So it looks as if they would not be creative.
264
791519
3444
所以看起來就好像是 他們沒有創意了。
13:14
In reality, they stopped trying.
265
794987
1999
現實上,他們只是沒再嘗試。
13:17
So when we actually put the data together, the conclusion is very simple:
266
797509
3915
所以當我們把資料拼在一起, 結論就非常簡單:
13:21
success can come at any time.
267
801448
2331
成功隨時都可能到來。
13:23
It could be your very first or very last paper of your career.
268
803803
3735
可能是你職涯中的第一篇 或最後一篇論文。
13:27
It's totally random in the space of the projects.
269
807562
4288
在研究計畫的空間中, 這完全是隨機的。
13:31
It is the productivity that changes.
270
811874
1931
改變的是產能。
13:33
Let me illustrate that.
271
813829
1252
讓我說明一下。
13:35
Here is Frank Wilczek, who got the Nobel Prize in Physics
272
815105
3269
這是弗朗克韋爾切克, 得過諾貝爾物理獎,
13:38
for the very first paper he ever wrote in his career as a graduate student.
273
818398
4101
得獎的是他研究生 職涯中的第一篇論文。
13:42
(Laughter)
274
822523
1007
(笑聲)
13:43
More interesting is John Fenn,
275
823554
3218
更有趣的是約翰芬恩,
13:46
who, at age 70, was forcefully retired by Yale University.
276
826796
4598
他在七十歲時被迫 從耶魯大學退休。
13:51
They shut his lab down,
277
831418
2056
他們關掉了他的實驗室,
13:53
and at that moment, he moved to Virginia Commonwealth University,
278
833498
3666
那時,他搬到維吉尼亞聯邦大學,
13:57
opened another lab,
279
837188
1786
開了另一間實驗室,
13:58
and it is there, at age 72, that he published a paper
280
838998
3033
在那裡,七十二歲時, 他刊出了一篇論文,
14:02
for which, 15 years later, he got the Nobel Prize for Chemistry.
281
842055
3845
十五年後,那篇論文 讓他得了諾貝爾化學獎。
14:06
And you think, OK, well, science is special,
282
846940
3042
你們會想,好,科學是比較特別,
14:10
but what about other areas where we need to be creative?
283
850006
3463
但其他需要有創意的領域呢?
14:13
So let me take another typical example: entrepreneurship.
284
853493
4936
讓我舉另一個很典型的例子:
企業家精神。
14:18
Silicon Valley,
285
858834
1579
矽谷,
14:20
the land of the youth, right?
286
860437
2066
年輕人之地,對吧?
14:22
And indeed, when you look at it,
287
862527
1595
的確,當你去看它時,
14:24
you realize that the biggest awards, the TechCrunch Awards and other awards,
288
864146
4642
你會發現,最大的獎項 TechCrunch 獎及其他獎項
14:28
are all going to people
289
868812
2173
得獎人平均都是
14:31
whose average age is late 20s, very early 30s.
290
871009
5015
快要三十歲或三十歲初頭的人。
14:36
You look at who the VCs give the money to, some of the biggest VC firms --
291
876465
5602
可以去看創投公司把錢給誰, 有些最大的創投公司——
14:42
all people in their early 30s.
292
882091
2241
都是三十初頭的人。
14:44
Which, of course, we know;
293
884951
1265
當然,我們知道;
14:46
there is this ethos in Silicon Valley that youth equals success.
294
886240
4453
在矽谷有一種風氣, 就是年輕等同成功。
14:51
Not when you look at the data,
295
891653
2183
資料可不是這麼說的。
14:53
because it's not only about forming a company --
296
893860
2304
因為重點並不只是成立公司——
14:56
forming a company is like productivity, trying, trying, trying --
297
896188
3140
成立公司就像是產能, 嘗試、嘗試、嘗試——
14:59
when you look at which of these individuals actually put out
298
899352
3484
如果你只是去看 這些人當中有誰設立了
15:02
a successful company, a successful exit.
299
902860
2782
成功的公司、成功的退場。
15:05
And recently, some of our colleagues looked at exactly that question.
300
905666
3720
最近,我們的一些同事 就在探究這個問題。
15:09
And it turns out that yes, those in the 20s and 30s
301
909410
3156
結果發現,是的,二、三十歲的人
15:12
put out a huge number of companies, form lots of companies,
302
912590
3348
成立了很多公司, 創辦了很多公司,
15:15
but most of them go bust.
303
915962
1531
但大部分都破產收場。
15:18
And when you look at the successful exits, what you see in this particular plot,
304
918089
4195
如果去看成功退場的公司, 各位在這張圖上可以看到,
15:22
the older you are, the more likely that you will actually hit the stock market
305
922308
3695
你的年紀越大, 你就越有可能上市,
15:26
or the sell the company successfully.
306
926027
2312
或者成功把公司賣掉。
15:28
This is so strong, actually, that if you are in the 50s,
307
928847
3113
這個機率強到, 如果你是五十幾歲,
15:31
you are twice as likely to actually have a successful exit
308
931984
3588
你有可能成功退場的機會,
是你三十幾歲時的兩倍。
15:35
than if you are in your 30s.
309
935596
1890
15:38
(Applause)
310
938613
4325
(掌聲)
15:43
So in the end, what is it that we see, actually?
311
943645
3009
所以,最後,這些到底是什麼意思?
15:46
What we see is that creativity has no age.
312
946678
4083
我們看到的是,創意不分年齡。
15:50
Productivity does, right?
313
950785
2202
產能倒是會有差,對吧?
15:53
Which is telling me that at the end of the day,
314
953424
4135
這就是告訴我,到頭來,
15:57
if you keep trying --
315
957583
2000
如果你繼續嘗試——
15:59
(Laughter)
316
959607
2403
(笑聲)
16:02
you could still succeed and succeed over and over.
317
962034
3572
你仍然有可能成功,且一再成功。
16:05
So my conclusion is very simple:
318
965630
2391
所以我的結論非常簡單:
16:08
I am off the stage, back in my lab.
319
968045
2093
我要下台,回到我的實驗室了。
16:10
Thank you.
320
970162
1171
謝謝。
16:11
(Applause)
321
971357
3309
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7