The real relationship between your age and your chance of success | Albert-László Barabási

286,915 views ・ 2019-09-03

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Sharon Hsiao
00:12
Today, actually, is a very special day for me,
0
12249
2266
今天對我來說是個很特別的一天,
00:14
because it is my birthday.
1
14539
2121
因為今天是我的生日。
00:16
(Applause)
2
16684
3973
(掌聲)
00:20
And so, thanks to all of you for joining the party.
3
20681
3441
謝謝大家來參加這場派對。
00:24
(Laughter)
4
24146
1167
(笑聲)
00:25
But every time you throw a party, there's someone there to spoil it. Right?
5
25337
4786
但,每次你辦派對時, 總會掃興的人,對吧?
00:30
(Laughter)
6
30147
1072
(笑聲)
00:31
And I'm a physicist,
7
31243
1359
我是物理學家,
00:32
and this time I brought another physicist along to do so.
8
32626
4157
這次,我帶來了 另一位來掃興的物理學家。
00:36
His name is Albert Einstein -- also Albert -- and he's the one who said
9
36807
4562
他叫做阿爾伯特愛因斯坦—— 也叫阿爾伯特——他說過
00:41
that the person who has not made his great contributions to science
10
41393
4830
如果一個人到了三十歲 都還沒有對科學
做出偉大的貢獻, 就永遠不會有貢獻了。
00:46
by the age of 30
11
46247
1559
00:47
will never do so.
12
47830
1396
00:49
(Laughter)
13
49250
1012
(笑聲)
00:50
Now, you don't need to check Wikipedia
14
50286
2340
各位不需要去維基百科查證,
00:52
that I'm beyond 30.
15
52650
1571
我已經超過三十歲了。
00:54
(Laughter)
16
54245
1416
(笑聲)
00:55
So, effectively, what he is telling me, and us,
17
55685
3606
所以,實際上,他要 告訴我以及我們的是,
00:59
is that when it comes to my science,
18
59315
2544
在我的科學領域中,
01:01
I'm deadwood.
19
61883
1203
我已經是枯枝。
01:04
Well, luckily, I had my share of luck within my career.
20
64078
5586
嗯,幸運的是,我在 我的職涯中有好運氣。
01:10
Around age 28, I became very interested in networks,
21
70132
3822
大約二十八歲時, 我對於網路非常感興趣,
01:13
and a few years later, we managed to publish a few key papers
22
73978
4076
幾年後,我們出版了 幾篇重要論文,
01:18
that reported the discovery of scale-free networks
23
78078
4097
闡述我們發現了無尺度網路,
01:22
and really gave birth to a new discipline that we call network science today.
24
82199
4578
創造出了一門新的學科, 就是現今所稱的網路科學。
01:26
And if you really care about it, you can get a PhD now in network science
25
86801
3678
如果各位想知道,現在可以 取得網路科學博士學位的地方
01:30
in Budapest, in Boston,
26
90503
2028
包括布達佩斯、波士頓,
01:32
and you can study it all over the world.
27
92555
2308
且在全世界各地都可以研讀它。
01:35
A few years later,
28
95466
1595
幾年後,
01:37
when I moved to Harvard first as a sabbatical,
29
97085
3230
我搬到哈佛,一開始是學術休假,
01:40
I became interested in another type of network:
30
100339
3092
我開始對另一種網路產生了興趣:
01:43
that time, the networks within ourselves,
31
103455
3027
我們體內的網路,
01:46
how the genes and the proteins and the metabolites link to each other
32
106506
3726
基因、蛋白質、代謝物 彼此之間如何連結,
01:50
and how they connect to disease.
33
110256
2493
以及它們和疾病的關係。
01:53
And that interest led to a major explosion within medicine,
34
113368
4592
那項興趣導致了醫學上的大爆炸,
01:57
including the Network Medicine Division at Harvard,
35
117984
3979
包括哈佛的網路醫學部門,
02:01
that has more than 300 researchers who are using this perspective
36
121987
3395
有超過三百名研究者使用這種觀點
02:05
to treat patients and develop new cures.
37
125406
2897
來治療病人和開發新解藥。
02:09
And a few years ago,
38
129457
1770
幾年前,
02:11
I thought that I would take this idea of networks
39
131251
2526
我認為我可以把網路的這個點子
02:13
and the expertise we had in networks
40
133801
1766
以及我們對網路的專長 帶到不同的領域去,
02:15
in a different area,
41
135591
1392
02:17
that is, to understand success.
42
137007
1982
也就是,用來了解成功。
02:19
And why did we do that?
43
139704
1210
為什麼要那樣做?
02:20
Well, we thought that, to some degree,
44
140938
2281
嗯,我們認為,在某種程度上,
02:23
our success is determined by the networks we're part of --
45
143243
3377
我們的成功是由我們所屬的網路決定,
02:26
that our networks can push us forward, they can pull us back.
46
146644
3847
我們的網路將我們向前推進, 也可以讓我們遲滯不前。
02:30
And I was curious if we could use the knowledge and big data and expertise
47
150925
4128
我很好奇,我們是否 能用這知識和大數據
及我們開發網路的專門技術 來將成功的發生給量化。
02:35
where we develop the networks
48
155077
1403
02:36
to really quantify how these things happen.
49
156504
3296
02:40
This is a result from that.
50
160404
1342
這就是研究的結果。
02:41
What you see here is a network of galleries in museums
51
161770
2947
各位現在看到的是 博物館的畫廊的網路,
02:44
that connect to each other.
52
164741
1632
它們彼此連結。
02:46
And through this map that we mapped out last year,
53
166806
4055
透過我們去年畫的這張地圖,
02:50
we are able to predict very accurately the success of an artist
54
170885
4848
我們就可以很精確地預測 一位藝術家是否會成功,
02:55
if you give me the first five exhibits that he or she had in their career.
55
175757
4021
只要給我這位藝術家 在職涯中的最早五件展示品。
03:01
Well, as we thought about success,
56
181404
2706
當我們在思考成功時,
03:04
we realized that success is not only about networks;
57
184134
3067
我們發現,成功不只和網路有關;
03:07
there are so many other dimensions to that.
58
187225
2396
還有好多其他的維度。
03:10
And one of the things we need for success, obviously,
59
190145
3247
很顯然,我們想要成功 就一定需要的一樣東西
03:13
is performance.
60
193416
1170
就是表現。
03:14
So let's define what's the difference between performance and success.
61
194610
3504
所以,咱們來定義一下 表現和成功之間的差別。
03:18
Well, performance is what you do:
62
198465
1997
表現是你所做的事:
03:20
how fast you run, what kind of paintings you paint,
63
200486
3032
你能跑多快、你畫出什麼樣的畫、
03:23
what kind of papers you publish.
64
203542
1881
你出版什麼樣的論文。
03:25
However, in our working definition,
65
205835
2614
然而,根據我們的工作定義,
03:28
success is about what the community notices from what you did,
66
208473
4205
成功的重點在於大家 能注意到你做了什麼、
03:32
from your performance:
67
212702
1612
你的表現如何:
03:34
How does it acknowledge it, and how does it reward you for it?
68
214338
4132
怎麼認可你的表現, 你的表現帶給你什麼報償?
03:38
In other terms,
69
218494
1182
換言之,
03:39
your performance is about you, but your success is about all of us.
70
219700
4596
你的表現是你的事, 但你的成功是我們所有人的事。
03:45
And this was a very important shift for us,
71
225392
3334
這對我們來說是很重要的轉變,
03:48
because the moment we defined success as being a collective measure
72
228750
4024
因為當我們把成功定義為
團體提供我們的一個集體測量值, 它就變成可測量的,
03:52
that the community provides to us,
73
232798
2106
03:54
it became measurable,
74
234928
1510
03:56
because if it's in the community, there are multiple data points about that.
75
236462
4510
因為如果它是在團體中, 就有相關的許多資料點。
04:00
So we go to school, we exercise, we practice,
76
240996
5280
所以我們去學校, 我們做作業,我們練習,
04:06
because we believe that performance leads to success.
77
246300
2991
因為我們相信表現會導致成功。
04:09
But the way we actually started to explore,
78
249832
2015
但我們這樣開始探究之後,
04:11
we realized that performance and success are very, very different animals
79
251871
3527
便了解到在數學問題上,
表現和成功非常不同。
04:15
when it comes to the mathematics of the problem.
80
255422
2444
04:18
And let me illustrate that.
81
258429
1432
讓我說明一下。
04:20
So what you see here is the fastest man on earth, Usain Bolt.
82
260329
4947
各位在這裡看到的是世界上 最快的人,尤塞恩博爾特。
04:25
And of course, he wins most of the competitions that he enters.
83
265832
3910
當然,他參加的比賽, 他大部分都有贏。
04:30
And we know he's the fastest on earth because we have a chronometer
84
270393
3175
我們知道他跑得最快,因為我們 有精密計時器來測量速度。
04:33
to measure his speed.
85
273592
1160
04:34
Well, what is interesting about him is that when he wins,
86
274776
4119
關於他,有一點很有趣, 那就是當他贏的時候,
04:38
he doesn't do so by really significantly outrunning his competition.
87
278919
5502
他並不是明顯超越他的對手許多。
04:44
He's running at most a percent faster than the one who loses the race.
88
284445
4519
他最多是比輸家快 1% 而已。
04:49
And not only does he run only one percent faster than the second one,
89
289631
3638
他不僅只比第二名快 1%,
04:53
but he doesn't run 10 times faster than I do --
90
293293
2849
他也沒有跑得比我快十倍——
04:56
and I'm not a good runner, trust me on that.
91
296166
2181
我不是個好跑者,相信我。
04:58
(Laughter)
92
298371
1197
(笑聲)
04:59
And every time we are able to measure performance,
93
299592
3502
每當我們能夠測量表現時,
05:03
we notice something very interesting;
94
303118
2050
我們就會注意到一件很有趣的事;
05:05
that is, performance is bounded.
95
305192
2511
那就是,表現是受限的。
05:07
What it means is that there are no huge variations in human performance.
96
307727
3757
意思就是說,人類的表現 並沒有太大的變動。
05:11
It varies only in a narrow range,
97
311508
3432
人類表現只在一個小範圍中變動,
05:14
and we do need the chronometer to measure the differences.
98
314964
3279
我們的確需要很精密的 計時器才能測出差別。
05:18
This is not to say that we cannot see the good from the best ones,
99
318267
3168
這並不是說我們分不出 好和最好的差別,
05:21
but the best ones are very hard to distinguish.
100
321459
2733
而是很難分辨出最好的人。
05:24
And the problem with that is that most of us work in areas
101
324216
2992
那所造成的問題就是, 我們大部分人工作的領域中
05:27
where we do not have a chronometer to gauge our performance.
102
327232
3922
並沒有精密的計時器 來測量我們的表現。
05:31
Alright, performance is bounded,
103
331178
1564
好,表現是受限的,
05:32
there are no huge differences between us when it comes to our performance.
104
332766
3532
我們之間在表現上 沒有很大的差異。
05:36
How about success?
105
336322
1157
那成功呢?
05:37
Well, let's switch to a different topic, like books.
106
337995
2930
咱們切換到一個不同的 主題,以書籍為例。
05:40
One measure of success for writers is how many people read your work.
107
340949
5015
對作家來說,成功的測量值之一 就是有多少人讀你的作品。
05:46
And so when my previous book came out in 2009,
108
346662
4410
我的上一本書在 2009 年推出時,
05:51
I was in Europe talking with my editor,
109
351096
1902
我在歐洲跟我的編輯談,
05:53
and I was interested: Who is the competition?
110
353022
2462
我很感興趣:競爭對手是誰?
05:56
And I had some fabulous ones.
111
356253
2735
我有一些很棒的對手。
05:59
That week --
112
359012
1169
那週——
06:00
(Laughter)
113
360205
1024
(笑聲)
06:01
Dan Brown came out with "The Lost Symbol,"
114
361253
3557
丹布朗推出《失落的符號》,
06:04
and "The Last Song" also came out,
115
364834
2982
《最後一首歌》也推出了,
06:07
Nicholas Sparks.
116
367840
1429
尼可拉斯史派克的作品。
06:09
And when you just look at the list,
117
369293
2988
當你只是看列表,
06:12
you realize, you know, performance-wise, there's hardly any difference
118
372305
3453
你會知道,就表現來說,
這些書和我的書之間 幾乎沒有什麼差別。
06:15
between these books or mine.
119
375782
1598
06:17
Right?
120
377404
1175
對吧?
06:18
So maybe if Nicholas Sparks's team works a little harder,
121
378603
4668
所以,也許尼可拉斯史派克的 團隊更努力一點,
06:23
he could easily be number one,
122
383295
1722
他很容易成為第一名,
06:25
because it's almost by accident who ended up at the top.
123
385041
2898
因為誰會在頂端幾乎都是意外。
06:28
So I said, let's look at the numbers -- I'm a data person, right?
124
388486
3153
所以,我說,咱們來看看數字, 我是研究資料的人,對吧?
06:31
So let's see what were the sales for Nicholas Sparks.
125
391663
4318
咱們來看看尼可拉斯 史派克的銷售額如何。
06:36
And it turns out that that opening weekend,
126
396005
2054
結果發現,在第一個週末,
06:38
Nicholas Sparks sold more than a hundred thousand copies,
127
398083
2975
尼可拉斯史派克 賣出了超過十萬本書,
06:41
which is an amazing number.
128
401082
1705
這個數字很驚人。
06:42
You can actually get to the top of the "New York Times" best-seller list
129
402811
3396
只要一週銷售一萬本,
就可以登上《紐約時報》 暢銷書排行榜了,
06:46
by selling 10,000 copies a week,
130
406231
2110
06:48
so he tenfold overcame what he needed to be number one.
131
408365
3752
所以他超越了成為第一名 需要的數字足足十倍。
06:52
Yet he wasn't number one.
132
412141
1430
但,他並非第一名。為什麼?
06:53
Why?
133
413595
1308
06:54
Because there was Dan Brown, who sold 1.2 million copies that weekend.
134
414927
4078
因為還有丹布朗,那個週末, 他的書賣了一百二十萬本。
06:59
(Laughter)
135
419029
2136
(笑聲)
07:01
And the reason I like this number is because it shows that, really,
136
421189
3971
我喜歡這些數字是因為,
它呈現出成功是沒有限制的,
07:05
when it comes to success, it's unbounded,
137
425184
3730
07:08
that the best doesn't only get slightly more than the second best
138
428938
5861
第一名並不會只比第二名多一點,
07:14
but gets orders of magnitude more,
139
434823
2697
而是用指數倍數來算,
07:17
because success is a collective measure.
140
437544
2794
因為成功是集體的測量值。
07:20
We give it to them, rather than we earn it through our performance.
141
440362
4376
我們把成功給他們,而不是 透過自己的表現贏來成功的。
07:24
So one of things we realized is that performance, what we do, is bounded,
142
444762
5376
我們了解到,表現, 也就是我們所做的,會受限,
07:30
but success, which is collective, is unbounded,
143
450162
2682
但成功,是集體的,沒有限制,
07:32
which makes you wonder:
144
452868
1312
這就會讓人納悶:
07:34
How do you get these huge differences in success
145
454204
2911
如果在表現上只能有小小的差別,
07:37
when you have such tiny differences in performance?
146
457139
2906
在成功上如何造成 這麼巨大的差別?
07:40
And recently, I published a book that I devoted to that very question.
147
460537
3787
最近,我出版了一本書, 就是針對這個問題而寫的。
07:44
And they didn't give me enough time to go over all of that,
148
464348
2839
他們沒有給我足夠的時間 去談所有這些,
07:47
so I'm going to go back to the question of,
149
467211
2071
所以我要回到這個問題,
07:49
alright, you have success; when should that appear?
150
469306
3135
好,你有成功;它會何時出現?
07:52
So let's go back to the party spoiler and ask ourselves:
151
472465
3758
咱們回到讓派對掃興的 那個人,問問我們自己:
07:57
Why did Einstein make this ridiculous statement,
152
477215
3339
為什麼愛因斯坦 會說出那句荒謬的話,
08:00
that only before 30 you could actually be creative?
153
480578
3156
說只有在三十歲之前 你才可能真的有創意?
08:03
Well, because he looked around himself and he saw all these fabulous physicists
154
483758
4680
因為他看看自己身邊, 這些很出色的物理學家,
08:08
that created quantum mechanics and modern physics,
155
488462
2587
發明了量子力學和近代物理的人,
08:11
and they were all in their 20s and early 30s when they did so.
156
491073
3736
他們提出發明時都是 二十多歲或三十初頭。
08:15
And it's not only him.
157
495730
1220
不只是他而已。
08:16
It's not only observational bias,
158
496974
1623
這並不是觀察偏見,
08:18
because there's actually a whole field of genius research
159
498621
3997
因為有一整個領域的天才研究
08:22
that has documented the fact that,
160
502642
2256
記錄這個事實,
08:24
if we look at the people we admire from the past
161
504922
3160
如果我們去看我們 所欣賞的過去人物,
08:28
and then look at what age they made their biggest contribution,
162
508106
3358
看看他們做出最大貢獻的年齡,
08:31
whether that's music, whether that's science,
163
511488
2096
不論是音樂、不論是科學、
08:33
whether that's engineering,
164
513608
1619
不論是工程,
08:35
most of them tend to do so in their 20s, 30s, early 40s at most.
165
515251
6123
大部分都是在二、三十歲時達成,
最多四十初頭。
08:41
But there's a problem with this genius research.
166
521914
2791
但這種天才研究有一個問題。
08:45
Well, first of all, it created the impression to us
167
525197
3280
首先,它讓我們有一種印象,
08:48
that creativity equals youth,
168
528501
3479
認為創意等同年輕,
08:52
which is painful, right?
169
532004
1610
這很痛,對吧?
08:53
(Laughter)
170
533638
1951
(笑聲)
08:55
And it also has an observational bias,
171
535613
4088
它也有存在觀察偏見,
08:59
because it only looks at geniuses and doesn't look at ordinary scientists
172
539725
4962
因為它只研究天才, 沒有研究一般科學家,
09:04
and doesn't look at all of us and ask,
173
544711
1965
且沒有研究我們所有人並問:
09:06
is it really true that creativity vanishes as we age?
174
546700
3185
真的在我們年長之後 創意就消失嗎?
09:10
So that's exactly what we tried to do,
175
550382
1877
那就是我們試圖要做的,
09:12
and this is important for that to actually have references.
176
552283
3803
能真正有參考是很重要的。
09:16
So let's look at an ordinary scientist like myself,
177
556110
2643
咱們來看看一般的 科學家,像我自己,
09:18
and let's look at my career.
178
558777
1522
來看看我的職涯。
09:20
So what you see here is all the papers that I've published
179
560323
3202
這裡是我出版過的所有論文,
09:23
from my very first paper, in 1989; I was still in Romania when I did so,
180
563549
5115
我的第一篇論文在 1989 年出版,
當時我還在羅馬尼亞,
09:28
till kind of this year.
181
568688
1593
直到今年。
09:30
And vertically, you see the impact of the paper,
182
570940
2518
垂直來看,可以看到論文的影響,
09:33
that is, how many citations,
183
573482
1403
也就是引用數,
09:34
how many other papers have been written that cited that work.
184
574909
3988
有多少篇其他論文 曾經引用過那篇文章。
09:39
And when you look at that,
185
579397
1300
如果去看那些,就會發現 我的職涯大致可以分為三個階段。
09:40
you see that my career has roughly three different stages.
186
580721
2813
09:43
I had the first 10 years where I had to work a lot
187
583558
2435
前十年,我很努力工作, 沒有很高的成就。
09:46
and I don't achieve much.
188
586017
1276
09:47
No one seems to care about what I do, right?
189
587317
2118
似乎沒有人在乎我做什麼,對吧?
09:49
There's hardly any impact.
190
589459
1681
幾乎沒有任何影響力。
09:51
(Laughter)
191
591164
1404
(笑聲)
09:52
That time, I was doing material science,
192
592592
2887
那段時間,我在做材料科學,
09:55
and then I kind of discovered for myself networks
193
595503
3691
接著,我發現了網路,
09:59
and then started publishing in networks.
194
599218
1947
接著開始出版網路的文章。
10:01
And that led from one high-impact paper to the other one.
195
601189
3073
導致了一篇又一篇的 高影響力論文出現。
10:04
And it really felt good. That was that stage of my career.
196
604286
3104
感覺真的很好,我職涯的那個階段。
10:07
(Laughter)
197
607414
1282
(笑聲)
10:08
So the question is, what happens right now?
198
608720
3208
問題是,現在會發生什麼事?
10:12
And we don't know, because there hasn't been enough time passed yet
199
612587
3239
我們不知道,因為 還沒有經過那麼多時間,
10:15
to actually figure out how much impact those papers will get;
200
615850
2987
無法得知那些論文的影響會有 多大;那需要時間才能知道。
10:18
it takes time to acquire.
201
618861
1227
如果去看資料,似乎,愛因斯坦, 那些天才研究,是對的,
10:20
Well, when you look at the data,
202
620112
1569
10:21
it seems to be that Einstein, the genius research, is right,
203
621705
2854
10:24
and I'm at that stage of my career.
204
624583
1811
我正在職涯的那個階段。
10:26
(Laughter)
205
626418
2308
(笑聲)
10:28
So we said, OK, let's figure out how does this really happen,
206
628750
5974
所以,我們說,好,
咱們來研究看看這是如何發生的,
10:34
first in science.
207
634748
1778
先看科學。
10:36
And in order not to have the selection bias,
208
636550
3632
為了避免選樣偏誤,
10:40
to look only at geniuses,
209
640206
1337
只去研究天才,
10:41
we ended up reconstructing the career of every single scientist
210
641567
3716
我們最後為每一位 科學家都重建了職涯,
10:45
from 1900 till today
211
645307
2502
從 1900 年至今的所有科學家,
10:47
and finding for all scientists what was their personal best,
212
647833
3712
並針對所有科學家, 找出他們個人的顛峰時期,
10:51
whether they got the Nobel Prize or they never did,
213
651569
2812
不論他們是否有得到諾貝爾獎,
10:54
or no one knows what they did, even their personal best.
214
654405
3407
或者即使他們在顛峰時 也沒有人知道他們做了什麼。
10:57
And that's what you see in this slide.
215
657836
1915
那就是這張投影片呈現的。
10:59
Each line is a career,
216
659775
1573
每一條線就是一段職涯,
11:01
and when you have a light blue dot on the top of that career,
217
661372
3003
淡藍色的點就是那職涯的顛峰,
11:04
it says that was their personal best.
218
664399
2040
那是他們個人的最佳狀態。
11:06
And the question is,
219
666463
1155
問題是,他們何時 有最重大的發現?
11:07
when did they actually make their biggest discovery?
220
667642
3568
11:11
To quantify that,
221
671234
1165
為了量化它,我們去研究 做出最重大發現的機率,
11:12
we look at what's the probability that you make your biggest discovery,
222
672423
3376
11:15
let's say, one, two, three or 10 years into your career?
223
675823
2672
比如,你的職涯開始之後的 一、二、三,或十年?
11:18
We're not looking at real age.
224
678519
1480
我們研究的不是真實年齡, 而是所謂的「學術年齡」。
11:20
We're looking at what we call "academic age."
225
680023
2134
11:22
Your academic age starts when you publish your first papers.
226
682181
3250
你的學術年齡開始於 你的第一篇論文被刊出時。
11:25
I know some of you are still babies.
227
685455
1779
我知道在座還有一些嬰兒。
11:27
(Laughter)
228
687258
1397
(笑聲)
11:28
So let's look at the probability
229
688679
2706
咱們來看看你出版
11:31
that you publish your highest-impact paper.
230
691409
2066
最有影響力的論文的機率。
11:33
And what you see is, indeed, the genius research is right.
231
693499
3071
各位可以看見,的確, 天才研究是對的。
11:36
Most scientists tend to publish their highest-impact paper
232
696594
3024
大部分的科學家傾向會在 職涯的前十、十五年
11:39
in the first 10, 15 years in their career,
233
699642
2899
出版他們最有影響力的論文,
11:42
and it tanks after that.
234
702565
3133
之後就開始下滑。
11:45
It tanks so fast that I'm about -- I'm exactly 30 years into my career,
235
705722
5107
下滑的速度很快,我大約——
我現在正在我職涯的三十年,
11:50
and the chance that I will publish a paper that would have a higher impact
236
710853
3540
我有可能出版一篇 比我以前所有論文
都更有影響力的論文的機率,
11:54
than anything that I did before
237
714417
1940
11:56
is less than one percent.
238
716381
1353
低於 1%。
11:57
I am in that stage of my career, according to this data.
239
717758
3049
根據這些資料,我現在 就處在職涯的那個階段。
12:01
But there's a problem with that.
240
721648
1843
但有個問題。
12:03
We're not doing controls properly.
241
723515
3675
我們沒有把控制做好。
12:07
So the control would be,
242
727214
1417
控制指的是,
12:08
what would a scientist look like who makes random contribution to science?
243
728655
4607
對科學做出隨機貢獻的科學家 看起來會是什麼樣子的?
12:13
Or what is the productivity of the scientist?
244
733286
2995
或,那位科學家的產能會是什麼?
12:16
When do they write papers?
245
736305
2006
他們何時撰寫論文?
12:18
So we measured the productivity,
246
738335
2444
所以我們測量了產能,
12:20
and amazingly, the productivity,
247
740803
2052
很驚人的是,產能,
12:22
your likelihood of writing a paper in year one, 10 or 20 in your career,
248
742879
4131
你在職涯第一、十、二十年 寫一篇論文的可能性,
12:27
is indistinguishable from the likelihood of having the impact
249
747034
3606
很接近在你職涯的那個部分
12:30
in that part of your career.
250
750664
1775
有所影響的可能性。
12:33
And to make a long story short,
251
753026
1783
長話短說,
12:34
after lots of statistical tests, there's only one explanation for that,
252
754833
4228
經過許多統計檢定, 只找出了一個解釋,
12:39
that really, the way we scientists work
253
759085
2894
那就是,我們科學家工作的方式,
12:42
is that every single paper we write, every project we do,
254
762003
3633
我們所寫的每一篇論文, 我們所做的每一個研究計畫,
12:45
has exactly the same chance of being our personal best.
255
765660
4160
都有同等的機會成為 我們個人的最佳作。
12:49
That is, discovery is like a lottery ticket.
256
769844
4953
也就是說,探究 就像是買彩券一樣。
12:54
And the more lottery tickets we buy,
257
774821
2351
我們買越多彩券,
12:57
the higher our chances.
258
777196
1507
機會就越高。
12:58
And it happens to be so
259
778727
1559
只是剛好
13:00
that most scientists buy most of their lottery tickets
260
780310
2719
大部分的科學家是在 職涯的前十、十五年
13:03
in the first 10, 15 years of their career,
261
783053
2460
買了他們大部分的彩券而已,
13:05
and after that, their productivity decreases.
262
785537
3413
那之後,他們的產能就下降了。
13:09
They're not buying any more lottery tickets.
263
789411
2084
他們不再買更多的彩券。
13:11
So it looks as if they would not be creative.
264
791519
3444
所以看起來就好像是 他們沒有創意了。
13:14
In reality, they stopped trying.
265
794987
1999
現實上,他們只是沒再嘗試。
13:17
So when we actually put the data together, the conclusion is very simple:
266
797509
3915
所以當我們把資料拼在一起, 結論就非常簡單:
13:21
success can come at any time.
267
801448
2331
成功隨時都可能到來。
13:23
It could be your very first or very last paper of your career.
268
803803
3735
可能是你職涯中的第一篇 或最後一篇論文。
13:27
It's totally random in the space of the projects.
269
807562
4288
在研究計畫的空間中, 這完全是隨機的。
13:31
It is the productivity that changes.
270
811874
1931
改變的是產能。
13:33
Let me illustrate that.
271
813829
1252
讓我說明一下。
13:35
Here is Frank Wilczek, who got the Nobel Prize in Physics
272
815105
3269
這是弗朗克韋爾切克, 得過諾貝爾物理獎,
13:38
for the very first paper he ever wrote in his career as a graduate student.
273
818398
4101
得獎的是他研究生 職涯中的第一篇論文。
13:42
(Laughter)
274
822523
1007
(笑聲)
13:43
More interesting is John Fenn,
275
823554
3218
更有趣的是約翰芬恩,
13:46
who, at age 70, was forcefully retired by Yale University.
276
826796
4598
他在七十歲時被迫 從耶魯大學退休。
13:51
They shut his lab down,
277
831418
2056
他們關掉了他的實驗室,
13:53
and at that moment, he moved to Virginia Commonwealth University,
278
833498
3666
那時,他搬到維吉尼亞聯邦大學,
13:57
opened another lab,
279
837188
1786
開了另一間實驗室,
13:58
and it is there, at age 72, that he published a paper
280
838998
3033
在那裡,七十二歲時, 他刊出了一篇論文,
14:02
for which, 15 years later, he got the Nobel Prize for Chemistry.
281
842055
3845
十五年後,那篇論文 讓他得了諾貝爾化學獎。
14:06
And you think, OK, well, science is special,
282
846940
3042
你們會想,好,科學是比較特別,
14:10
but what about other areas where we need to be creative?
283
850006
3463
但其他需要有創意的領域呢?
14:13
So let me take another typical example: entrepreneurship.
284
853493
4936
讓我舉另一個很典型的例子:
企業家精神。
14:18
Silicon Valley,
285
858834
1579
矽谷,
14:20
the land of the youth, right?
286
860437
2066
年輕人之地,對吧?
14:22
And indeed, when you look at it,
287
862527
1595
的確,當你去看它時,
14:24
you realize that the biggest awards, the TechCrunch Awards and other awards,
288
864146
4642
你會發現,最大的獎項 TechCrunch 獎及其他獎項
14:28
are all going to people
289
868812
2173
得獎人平均都是
14:31
whose average age is late 20s, very early 30s.
290
871009
5015
快要三十歲或三十歲初頭的人。
14:36
You look at who the VCs give the money to, some of the biggest VC firms --
291
876465
5602
可以去看創投公司把錢給誰, 有些最大的創投公司——
14:42
all people in their early 30s.
292
882091
2241
都是三十初頭的人。
14:44
Which, of course, we know;
293
884951
1265
當然,我們知道;
14:46
there is this ethos in Silicon Valley that youth equals success.
294
886240
4453
在矽谷有一種風氣, 就是年輕等同成功。
14:51
Not when you look at the data,
295
891653
2183
資料可不是這麼說的。
14:53
because it's not only about forming a company --
296
893860
2304
因為重點並不只是成立公司——
14:56
forming a company is like productivity, trying, trying, trying --
297
896188
3140
成立公司就像是產能, 嘗試、嘗試、嘗試——
14:59
when you look at which of these individuals actually put out
298
899352
3484
如果你只是去看 這些人當中有誰設立了
15:02
a successful company, a successful exit.
299
902860
2782
成功的公司、成功的退場。
15:05
And recently, some of our colleagues looked at exactly that question.
300
905666
3720
最近,我們的一些同事 就在探究這個問題。
15:09
And it turns out that yes, those in the 20s and 30s
301
909410
3156
結果發現,是的,二、三十歲的人
15:12
put out a huge number of companies, form lots of companies,
302
912590
3348
成立了很多公司, 創辦了很多公司,
15:15
but most of them go bust.
303
915962
1531
但大部分都破產收場。
15:18
And when you look at the successful exits, what you see in this particular plot,
304
918089
4195
如果去看成功退場的公司, 各位在這張圖上可以看到,
15:22
the older you are, the more likely that you will actually hit the stock market
305
922308
3695
你的年紀越大, 你就越有可能上市,
15:26
or the sell the company successfully.
306
926027
2312
或者成功把公司賣掉。
15:28
This is so strong, actually, that if you are in the 50s,
307
928847
3113
這個機率強到, 如果你是五十幾歲,
15:31
you are twice as likely to actually have a successful exit
308
931984
3588
你有可能成功退場的機會,
是你三十幾歲時的兩倍。
15:35
than if you are in your 30s.
309
935596
1890
15:38
(Applause)
310
938613
4325
(掌聲)
15:43
So in the end, what is it that we see, actually?
311
943645
3009
所以,最後,這些到底是什麼意思?
15:46
What we see is that creativity has no age.
312
946678
4083
我們看到的是,創意不分年齡。
15:50
Productivity does, right?
313
950785
2202
產能倒是會有差,對吧?
15:53
Which is telling me that at the end of the day,
314
953424
4135
這就是告訴我,到頭來,
15:57
if you keep trying --
315
957583
2000
如果你繼續嘗試——
15:59
(Laughter)
316
959607
2403
(笑聲)
16:02
you could still succeed and succeed over and over.
317
962034
3572
你仍然有可能成功,且一再成功。
16:05
So my conclusion is very simple:
318
965630
2391
所以我的結論非常簡單:
16:08
I am off the stage, back in my lab.
319
968045
2093
我要下台,回到我的實驗室了。
16:10
Thank you.
320
970162
1171
謝謝。
16:11
(Applause)
321
971357
3309
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog