Barbara Block: Tagging tuna in the deep ocean

24,725 views ・ 2010-10-06

TED


请双击下面的英文字幕来播放视频。

翻译人员: wei lu 校对人员: Siyi Shao
00:15
I've been fascinated for a lifetime
0
15260
3000
我一生都为
00:18
by the beauty, form and function
1
18260
2000
巨型蓝鳍金枪鱼的美丽、
00:20
of giant bluefin tuna.
2
20260
3000
外形和机能所着迷。
00:23
Bluefin are warmblooded like us.
3
23260
3000
蓝鳍金枪鱼像我们一样是恒温动物。
00:26
They're the largest of the tunas,
4
26260
3000
他们是体型最大的金枪鱼,
00:29
the second-largest fish in the sea -- bony fish.
5
29260
3000
海洋中的第二大的硬骨鱼。
00:32
They actually are a fish
6
32260
2000
他们实际上是一种
00:34
that is endothermic --
7
34260
2000
温血动物--
00:36
powers through the ocean with warm muscles like a mammal.
8
36260
3000
以充满温血的肌肉(如同哺乳动物一样)横扫海洋
00:40
That's one of our bluefin at the Monterey Bay Aquarium.
9
40260
3000
那是在蒙特雷湾水族馆中的一种蓝鳍金枪鱼。
00:43
You can see in its shape and its streamlined design
10
43260
3000
你看它的形状和它流线型的设计
00:46
it's powered for ocean swimming.
11
46260
3000
使得它在海洋中游刃有余。
00:49
It flies through the ocean on its pectoral fins, gets lift,
12
49260
3000
靠着它的胸鳍,它在海洋中飞翔,上下沉浮,
00:52
powers its movements
13
52260
2000
新月状的鱼尾更增进了它
00:54
with a lunate tail.
14
54260
2000
的行动能力。
00:56
It's actually got a naked skin for most of its body,
15
56260
3000
实际上它的大部分身体都是裸露着的皮肤,
00:59
so it reduces friction with the water.
16
59260
3000
这样减小了与水的摩擦阻力。
01:02
This is what one of nature's finest machines.
17
62260
3000
这是自然界最棒的机器之一。
01:05
Now, bluefin
18
65260
2000
蓝鳍金枪鱼
01:07
were revered by Man
19
67260
2000
在整个人类历史中
01:09
for all of human history.
20
69260
3000
都受到人们的尊敬。
01:12
For 4,000 years, we fished sustainably for this animal,
21
72260
3000
4000年来,我们以可持续性的方式对它们进行捕捞,
01:15
and it's evidenced
22
75260
2000
几千年前的艺术品
01:17
in the art that we see
23
77260
2000
可以充分的
01:19
from thousands of years ago.
24
79260
2000
证明这一点。
01:21
Bluefin are in cave paintings in France.
25
81260
3000
在法国,蓝鳍金枪鱼出现在洞穴壁画中。
01:24
They're on coins
26
84260
2000
它们早在
01:26
that date back 3,000 years.
27
86260
3000
3000年前就出现在硬币上。
01:29
This fish was revered by humankind.
28
89260
3000
这类鱼类是受人类尊重的。
01:32
It was fished sustainably
29
92260
2000
一直以来
01:34
till all of time,
30
94260
2000
人类都可持续地捕捞它们,
01:36
except for our generation.
31
96260
2000
除了我们这一代。
01:38
Bluefin are pursued wherever they go --
32
98260
3000
蓝鳍金枪鱼无论到那里都被捕捞。
01:41
there is a gold rush on Earth,
33
101260
2000
地球曾经出现过淘金热,
01:43
and this is a gold rush for bluefin.
34
103260
2000
而这次是追求蓝鳍金枪鱼的热潮。
01:45
There are traps that fish sustainably
35
105260
2000
捕捞原本一直是可持续的
01:47
up until recently.
36
107260
3000
而今非昔比。
01:50
And yet, the type of fishing going on today,
37
110260
3000
而且, 现在的捕捞方式
01:53
with pens, with enormous stakes,
38
113260
3000
有大量资金和舆论支持,
01:56
is really wiping bluefin
39
116260
2000
这等于是正在将蓝鳍金枪鱼
01:58
ecologically off the planet.
40
118260
2000
从地球的生态版图上抹去。
02:00
Now bluefin, in general,
41
120260
2000
总的来说现在的蓝鳍金枪鱼
02:02
goes to one place: Japan.
42
122260
2000
都到了 日本。
02:04
Some of you may be guilty
43
124260
2000
在座的各位中可能
02:06
of having contributed to the demise of bluefin.
44
126260
2000
就有间接导致它们走向灭绝的刽子手。
02:08
They're delectable muscle,
45
128260
2000
它们美味的肉
02:10
rich in fat --
46
130260
2000
富含脂肪的肉
02:12
absolutely taste delicious.
47
132260
2000
一定让人回味无穷吧
02:14
And that's their problem; we're eating them to death.
48
134260
3000
但这就是问题了, 我们正将它们吃到灭亡!
02:17
Now in the Atlantic, the story is pretty simple.
49
137260
3000
现在在大西洋, 故事很简单。
02:20
Bluefin have two populations: one large, one small.
50
140260
3000
蓝鳍金枪鱼群有两大分布, 一大一小
02:23
The North American population
51
143260
2000
西边 也就是北美那边
02:25
is fished at about 2,000 ton.
52
145260
3000
大概每年捕捞2,000吨
02:28
The European population and North African -- the Eastern bluefin tuna --
53
148260
3000
南边也就是欧洲,北非那边的蓝鳍金枪鱼
02:31
is fished at tremendous levels:
54
151260
3000
正以惊人的速度被捕捞
02:34
50,000 tons over the last decade almost every year.
55
154260
3000
在过去10年里几乎每年50,000吨。
02:37
The result is whether you're looking
56
157260
2000
结果就是无论你对
02:39
at the West or the Eastern bluefin population,
57
159260
3000
西边 或东边 蓝鳍金枪鱼的数量
02:42
there's been tremendous decline on both sides,
58
162260
2000
都有如果以1950年
02:44
as much as 90 percent
59
164260
2000
的数量为基准来衡量的话,
02:46
if you go back with your baseline
60
166260
2000
金枪鱼的数量都已经出现了90%左右的
02:48
to 1950.
61
168260
2000
急剧的下滑。
02:50
For that, bluefin have been given a status
62
170260
3000
因此,蓝鳍金枪鱼被给予了
02:53
equivalent to tigers, to lions,
63
173260
3000
与老虎,狮子
02:56
to certain African elephants
64
176260
2000
某些非洲象
02:58
and to pandas.
65
178260
2000
和 熊猫相同的地位
03:00
These fish have been proposed
66
180260
2000
两个月前这些鱼被提议
03:02
for an endangered species listing in the past two months.
67
182260
3000
列入濒危物种的清单。
03:05
They were voted on and rejected
68
185260
2000
但在两个星期前的投票中
03:07
just two weeks ago,
69
187260
2000
这一提议被否决。
03:09
despite outstanding science
70
189260
2000
即使两个委员会的
03:11
that shows from two committees
71
191260
3000
杰出研究显示
03:14
this fish meets the criteria of CITES I.
72
194260
3000
这个鱼种符合濒危野生动植物种国际贸易公约附录1(CITES I) 的标准。
03:17
And if it's tunas you don't care about,
73
197260
2000
就算如果你对金枪鱼感到无所谓,
03:19
perhaps you might be interested
74
199260
2000
那你可能会对
03:21
that international long lines and pursing
75
201260
2000
国际性捕捞企业
03:23
chase down tunas and bycatch animals
76
203260
3000
追捕金枪鱼和附带捕捞的动物
03:26
such as leatherbacks, sharks,
77
206260
2000
如棱皮龟,鲨鱼,
03:28
marlin, albatross.
78
208260
2000
枪鱼, 信天翁感兴趣。
03:30
These animals and their demise
79
210260
2000
这些动物它们的终结
03:32
occurs in the tuna fisheries.
80
212260
3000
同样发生在金枪鱼的捕捞地区。
03:35
The challenge we face
81
215260
2000
我们面对的挑战是
03:37
is that we know very little about tuna,
82
217260
3000
我们对金枪鱼几乎一无所知,
03:40
and everyone in the room knows what it looks like
83
220260
3000
所有这间房里的人们都能认出非洲狮
03:43
when an African lion
84
223260
2000
扑到猎物
03:45
takes down its prey.
85
225260
2000
的场景。
03:47
I doubt anyone has seen a giant bluefin feed.
86
227260
3000
但我怀疑不是所有人都见过蓝鳍金枪鱼捕食。
03:50
This tuna symbolizes
87
230260
3000
这种金枪鱼代表着
03:53
what's the problem for all of us in the room.
88
233260
3000
一个普遍问题
03:56
It's the 21st century, but we really have only just begun
89
236260
3000
现在是21世纪, 但我们对海洋的深入了解
03:59
to really study our oceans in a deep way.
90
239260
3000
才刚刚开始。
04:02
Technology has come of age
91
242260
2000
科技使我们来到这样一个时代:
04:04
that's allowing us to see the Earth from space
92
244260
3000
我们能在太空中远观地球,
04:07
and go deep into the seas remotely.
93
247260
3000
也能在深入观察远海。
04:10
And we've got to use these technologies immediately
94
250260
2000
我们必须将这些技术运用起来
04:12
to get a better understanding
95
252260
2000
使我们对海洋王国
04:14
of how our ocean realm works.
96
254260
3000
有一个更加深刻的了解
04:17
Most of us from the ship -- even I --
97
257260
2000
我们中的大多数,包括我,
04:19
look out at the ocean and see this homogeneous sea.
98
259260
3000
面对海洋,看到的是广阔的单一的海水。
04:22
We don't know where the structure is.
99
262260
2000
我们不知道大海的结构,
04:24
We can't tell where are the watering holes
100
264260
3000
不能像在非洲平原上
04:27
like we can on an African plain.
101
267260
3000
找到哪里有水潭。
04:30
We can't see the corridors,
102
270260
2000
我们不知道海洋的经纬,
04:32
and we can't see what it is
103
272260
2000
我们不知道是什么
04:34
that brings together a tuna,
104
274260
2000
将金枪鱼
04:36
a leatherback and an albatross.
105
276260
2000
和信天翁联系在了一起
04:38
We're only just beginning to understand
106
278260
2000
我们才刚刚开始了解
04:40
how the physical oceanography
107
280260
2000
物理上的海洋学
04:42
and the biological oceanography
108
282260
2000
是如何与生物上的海洋学
04:44
come together
109
284260
2000
相结合
04:46
to create a seasonal force
110
286260
2000
从而创造出一个可能形成
04:48
that actually causes the upwelling
111
288260
2000
一个聚集点
04:50
that might make a hot spot a hope spot.
112
290260
3000
的上涌的季节性力量。
04:53
The reasons these challenges are great
113
293260
2000
挑战之所以巨大,是因为
04:55
is that technically it's difficult to go to sea.
114
295260
3000
技术上说,海上作业是困难的。
04:58
It's hard to study a bluefin on its turf,
115
298260
2000
我们很难在蓝鳍金枪鱼的地盘--整个太平洋
05:00
the entire Pacific realm.
116
300260
2000
研究它。
05:02
It's really tough to get up close and personal with a mako shark
117
302260
4000
人真的很难接近灰鲭鲨
05:06
and try to put a tag on it.
118
306260
2000
给它上面贴标签更是困难。
05:08
And then imagine being Bruce Mate's team from OSU,
119
308260
3000
想象下 俄亥俄州立大学的布鲁斯麦特的团队吧,
05:11
getting up close to a blue whale
120
311260
2000
接近一个蓝鲸
05:13
and fixing a tag on the blue whale that stays,
121
313260
3000
并在它上面固定标签 可以说
05:16
an engineering challenge
122
316260
2000
是一个工程难题
05:18
we've yet to really overcome.
123
318260
2000
我们至今还没真正克服这项难题。
05:20
So the story of our team, a dedicated team,
124
320260
3000
而我们这个敬业的队伍的主要方向是
05:23
is fish and chips.
125
323260
2000
鱼与芯片。(双关语:又指西方流行食品炸鱼薯条)
05:25
We basically are taking
126
325260
2000
我们基本上是用
05:27
the same satellite phone parts,
127
327260
2000
卫星电话的组件,
05:29
or the same parts that are in your computer, chips.
128
329260
3000
或者是你电脑中的组件。
05:32
We're putting them together in unusual ways,
129
332260
3000
我们将其以特殊的方式合并,
05:35
and this is taking us into the ocean realm
130
335260
2000
这将以前所未有的方式
05:37
like never before.
131
337260
2000
将我们带如海洋世界。
05:39
And for the first time,
132
339260
2000
我们第一次
05:41
we're able to watch the journey of a tuna beneath the ocean
133
341260
3000
能够观察金枪鱼在水下的行动
05:44
using light and photons
134
344260
2000
并利用光
05:46
to measure sunrise and sunset.
135
346260
3000
来测量日落和日出。
05:49
Now, I've been working with tunas for over 15 years.
136
349260
3000
我已经与金枪鱼一起工作15年了。
05:52
I have the privilege of being a partner
137
352260
2000
我有幸成为蒙特雷湾水族馆
05:54
with the Monterey Bay Aquarium.
138
354260
2000
的合作成员。
05:56
We've actually taken a sliver of the ocean,
139
356260
2000
我们将海中非常小的一部分
05:58
put it behind glass,
140
358260
2000
放在了玻璃后,
06:00
and we together
141
360260
2000
我们也
06:02
have put bluefin tuna and yellowfin tuna on display.
142
362260
3000
把蓝鳍金枪鱼与黄鳍金枪鱼进行展出。
06:05
When the veil of bubbles lifts every morning,
143
365260
3000
当每天早晨保护罩升起时
06:08
we can actually see a community from the Pelagic ocean,
144
368260
3000
我们可以看到水与远洋的交换,
06:11
one of the only places on Earth
145
371260
2000
世上没有几个地方能让
06:13
you can see giant bluefin swim by.
146
373260
3000
你看到巨大的蓝鳍从你眼前游过。
06:16
We can see in their beauty of form and function,
147
376260
2000
我们可以从它们形态和作用的美中看到,
06:19
their ceaseless activity.
148
379260
2000
它们无尽的活力。
06:21
They're flying through their space, ocean space.
149
381260
3000
它们在海中自由穿梭
06:24
And we can bring two million people a year
150
384260
2000
我们每年可以使两百万人
06:26
into contact with this fish
151
386260
2000
亲眼看到这些鱼
06:28
and show them its beauty.
152
388260
3000
并向他们展示它们的美
06:31
Behind the scenes is a working lab at Stanford University
153
391260
3000
在这美景的后面是与蒙特雷湾水族馆合作的
06:34
partnered with the Monterey Bay Aquarium.
154
394260
2000
斯坦福大学的实验室。
06:36
Here, for over 14 or 15 years,
155
396260
2000
就在这里,十四五年以来
06:38
we've actually brought in
156
398260
2000
我们将
06:40
both bluefin and yellowfin in captivity.
157
400260
2000
蓝鳍和黄鳍金枪鱼放在这里。
06:42
We'd been studying these fish,
158
402260
2000
我们研究这些鱼
06:44
but first we had to learn how to husbandry them.
159
404260
2000
但是首先我们要学会饲养它们。
06:46
What do they like to eat?
160
406260
2000
它们想吃什么?
06:48
What is it that they're happy with?
161
408260
2000
它们喜欢什么?
06:50
We go in the tanks with the tuna -- we touch their naked skin --
162
410260
3000
我们进入有金枪鱼的水箱。我们抚摸它们裸露的皮肤。
06:53
it's pretty amazing. It feels wonderful.
163
413260
3000
这感觉非常好!
06:56
And then, better yet,
164
416260
2000
然后,更好的是,
06:58
we've got our own version of tuna whisperers,
165
418260
2000
我们找到了自己的鱼语者,
07:00
our own Chuck Farwell, Alex Norton,
166
420260
2000
我们的ChuckFarwell与 Alex Norton
07:02
who can take a big tuna
167
422260
2000
他们能够将一个大金枪鱼
07:04
and in one motion,
168
424260
2000
以一个方向
07:06
put it into an envelope of water,
169
426260
2000
放入几乎正好大小的水中,
07:08
so that we can actually work with the tuna
170
428260
2000
因此我们能真正的研究金枪鱼们
07:10
and learn the techniques it takes
171
430260
2000
并且学会
07:12
to not injure this fish
172
432260
2000
不伤害那些不知海洋边界的
07:14
who never sees a boundary in the open sea.
173
434260
3000
鱼儿们的技术。
07:17
Jeff and Jason there, are scientists
174
437260
2000
Jeff 和 Jason两位科学家
07:19
who are going to take a tuna
175
439260
2000
正将一个金枪鱼
07:21
and put it in the equivalent of a treadmill, a flume.
176
441260
3000
放入一个相当于跑步机的人工管道里
07:24
And that tuna thinks it's going to Japan, but it's staying in place.
177
444260
3000
那个金枪鱼可能认为它将游往日本, 但实际上它留在了原地。
07:27
We're actually measuring its oxygen consumption,
178
447260
2000
我们测量它对氧气的消耗
07:29
its energy consumption.
179
449260
2000
和对能量的消耗
07:32
We're taking this data and building better models.
180
452260
3000
我们将记录这些数据,做出更好的模型。
07:35
And when I see that tuna -- this is my favorite view --
181
455260
3000
当我看到金枪鱼时(这也是我最喜欢的景象)
07:38
I begin to wonder:
182
458260
2000
我突然想知道
07:40
how did this fish solve the longitude problem before we did?
183
460260
3000
这些鱼是怎么在我们之前解决经度问题的?
07:44
So take a look at that animal.
184
464260
2000
所以仔细看了下它
07:46
That's the closest you'll probably ever get.
185
466260
2000
这大概是能办到的最近的观察了。
07:48
Now, the activities from the lab
186
468260
3000
现在,实验室里的工作
07:51
have taught us now how to go out in the open ocean.
187
471260
3000
已经教会了我们如何走出去, 到大海中去继续研究。
07:54
So in a program called Tag-A-Giant
188
474260
3000
所以在一个名为 “标个大家伙”
07:57
we've actually gone from Ireland to Canada,
189
477260
3000
我们真的从爱尔兰跑驶了加拿大,
08:00
from Corsica to Spain.
190
480260
2000
从科西嘉岛到了西班牙。
08:02
We've fished with many nations around the world
191
482260
3000
我们与世界上许多国家合作
08:05
in an effort to basically
192
485260
2000
致力于将
08:07
put electronic computers
193
487260
3000
电子计算机
08:10
inside giant tunas.
194
490260
2000
放到大金枪鱼内。
08:12
We've actually tagged 1,100 tunas.
195
492260
3000
我们已经标记了1,100头金枪鱼。
08:15
And I'm going to show you three clips,
196
495260
2000
而我现向你们展示三个短片,
08:17
because I tagged 1,100 tunas.
197
497260
3000
因为我标记了1,100只金枪鱼。
08:20
It's a very hard process, but it's a ballet.
198
500260
3000
这个过程像芭蕾舞一样, 难 但是很美。
08:23
We bring the tuna out, we measure it.
199
503260
3000
我们取出金枪鱼, 测量它
08:26
A team of fishers, captains, scientists and technicians
200
506260
3000
一个由渔夫,船长,科学家和技术人员组成的团队
08:29
work together to keep this animal out of the ocean
201
509260
3000
为了能让它出海4到5分钟
08:32
for about four to five minutes.
202
512260
3000
工作在了一起。
08:35
We put water over its gills, give it oxygen.
203
515260
3000
我们让水流过它的腮,给它氧气。
08:38
And then with a lot of effort, after tagging,
204
518260
3000
然后给它做标记
08:41
putting in the computer,
205
521260
2000
再努力吧电脑放进去。
08:43
making sure the stalk is sticking out so it senses the environment,
206
523260
3000
并保证有一部分能留在外边, 使得电脑能感受外面的坏境。
08:46
we send this fish back into the sea.
207
526260
3000
我们将鱼放回大海
08:49
And when it goes, we're always happy.
208
529260
2000
当它离开时, 我们总是很开心。
08:51
We see a flick of the tail.
209
531260
2000
我们能看到它的尾巴摇摆
08:53
And from our data that gets collected,
210
533260
3000
从我们收集到的数据来看
08:56
when that tag comes back,
211
536260
2000
当标签回来时
08:58
because a fisher returns it
212
538260
2000
因为 渔夫将其交还给我们
09:00
for a thousand-dollar reward,
213
540260
2000
能拿到1000美金的奖励,
09:02
we can get tracks beneath the sea
214
542260
2000
我们就能了解一个脊椎动物
09:04
for up to five years now,
215
544260
2000
在水下
09:06
on a backboned animal.
216
546260
2000
最多5年的路线了。
09:08
Now sometimes the tunas are really large,
217
548260
3000
有时候,金枪鱼真的很大
09:11
such as this fish off Nantucket.
218
551260
2000
就像楠塔基特 附近的的这条
09:13
But that's about half the size
219
553260
2000
但是这只是
09:15
of the biggest tuna we've ever tagged.
220
555260
2000
被我们标记过的最大的一半大小。
09:17
It takes a human effort,
221
557260
2000
需要一个人的力气
09:19
a team effort, to bring the fish in.
222
559260
2000
一个团队的努力才能把它拉起来
09:21
In this case, what we're going to do
223
561260
2000
画面中,我们需要做的就是
09:23
is put a pop-up satellite archival tag on the tuna.
224
563260
3000
将一个能自动弹起的卫星标签放在一个金枪鱼上
09:27
This tag rides on the tuna,
225
567260
2000
标签会固定在它上面
09:29
senses the environment around the tuna
226
569260
3000
感知周围的环境
09:32
and actually will come off the fish,
227
572260
3000
然后会离开这条鱼
09:35
detach, float to the surface
228
575260
2000
单独漂浮在水面
09:37
and send back to Earth-orbiting satellites
229
577260
3000
并将计算出的位置
09:40
position data estimated by math on the tag,
230
580260
3000
的信息传回绕地卫星
09:43
pressure data and temperature data.
231
583260
3000
压力数据,温度数据
09:46
And so what we get then from the pop-up satellite tag
232
586260
2000
所以从标签那得到信息
09:48
is we get away from having to have a human interaction
233
588260
3000
都能在没有人参与的
09:51
to recapture the tag.
234
591260
2000
情况下完成。
09:53
Both the electronic tags I'm talking about are expensive.
235
593260
3000
刚刚提到的提到的两个电子标签都比较昂贵。
09:56
These tags have been engineered
236
596260
2000
这些标签都是由许多
09:58
by a variety of teams in North America.
237
598260
3000
北美团队制造的。
10:01
They are some of our finest instruments,
238
601260
2000
里面有我们最精密的仪器
10:03
our new technology in the ocean today.
239
603260
3000
和我们在海洋中的新科技。
10:07
One community in general
240
607260
2000
总的来说一个组织
10:09
has given more to help us than any other community.
241
609260
2000
给以了我们比其他组织都多的帮助。
10:11
And that's the fisheries off the state of North Carolina.
242
611260
3000
那就是 北卡罗兰纳渔业组织。
10:14
There are two villages, Harris and Morehead City,
243
614260
3000
有两个村庄,Harris 和 Morehead。
10:17
every winter for over a decade,
244
617260
2000
10年里的每年冬天
10:19
held a party called Tag-A-Giant,
245
619260
3000
都会举行一个名为 “标记个大家伙”的活动
10:22
and together, fishers worked with us
246
622260
2000
渔夫们那天会与我们合作
10:24
to tag 800 to 900 fish.
247
624260
3000
标记800到900 头鱼
10:27
In this case, we're actually going to measure the fish.
248
627260
3000
这里 我们正要去测量这个鱼
10:30
We're going to do something that in recent years we've started:
249
630260
3000
我们要做一些我们已经开始的事情
10:33
take a mucus sample.
250
633260
2000
取一个粘液样本
10:35
Watch how shiny the skin is; you can see my reflection there.
251
635260
3000
看多么闪亮的皮肤, 你可你看到我的倒影。
10:38
And from that mucus, we can get gene profiles,
252
638260
3000
从那个粘液,我们能得到它的基因。
10:41
we can get information on gender,
253
641260
2000
我们能通过基因得到一些信息。
10:43
checking the pop-up tag one more time,
254
643260
2000
再检查一次自动跳起标签
10:45
and then it's out in the ocean.
255
645260
2000
然后就让它回到大海了。
10:47
And this is my favorite.
256
647260
2000
这是我的最爱
10:49
With the help of my former postdoc, Gareth Lawson,
257
649260
3000
在我前任博士后导师Gareth Lawson的帮助下
10:52
this is a gorgeous picture of a single tuna.
258
652260
2000
这是一条金枪鱼的美丽照片
10:54
This tuna is actually moving on a numerical ocean.
259
654260
3000
这条在数字海洋中游动的金枪鱼
10:57
The warm is the Gulf Stream,
260
657260
2000
较温暖的时 墨西哥湾流,
10:59
the cold up there in the Gulf of Maine.
261
659260
3000
较冷的是在美国缅因州海湾。
11:02
That's where the tuna wants to go -- it wants to forage on schools of herring --
262
662260
3000
这是金枪鱼的活动线路,它以成群的鲱鱼为食。
11:05
but it can't get there. It's too cold.
263
665260
2000
但它不能到这里, 太冷了。
11:07
But then it warms up, and the tuna pops in, gets some fish,
264
667260
3000
但是当那温暖起来, 金枪鱼就窜进去,吃些鱼。
11:10
maybe comes back to home base,
265
670260
2000
也许会回到老家。
11:12
goes in again
266
672260
2000
又进去了
11:14
and then comes back to winter down there in North Carolina
267
674260
3000
那边又冷了,又回到北卡罗来纳州
11:17
and then on to the Bahamas.
268
677260
2000
再后到了巴哈马
11:19
And my favorite scene, three tunas going into the Gulf of Mexico.
269
679260
3000
然后就是我最喜欢的场景, 三条金枪鱼回到了墨西哥湾。
11:22
Three tunas tagged.
270
682260
2000
三条标记过的金枪鱼。
11:24
Astronomically, we're calculating positions.
271
684260
2000
太空中, 我们计算它们位置。
11:26
They're coming together. That could be tuna sex --
272
686260
3000
它们一起过来, 可能是为了繁殖下一代。
11:29
and there it is.
273
689260
2000
而这个
11:31
That is where the tuna spawn.
274
691260
2000
就是金枪鱼产卵的地方。
11:33
So from data like this,
275
693260
2000
因此, 通过这些数据
11:35
we're able now to put the map up,
276
695260
2000
我们能建立起地图
11:37
and in this map
277
697260
2000
在地图中
11:39
you see thousands of positions
278
699260
2000
你可以看到成千上万的位置
11:41
generated by this decade and a half of tagging.
279
701260
3000
由这十五年的标签标记得来的数据产生。
11:44
And now we're showing that tunas on the western side
280
704260
3000
现在, 让我们来看西边的它们
11:47
go to the eastern side.
281
707260
2000
前往东边
11:49
So two populations of tunas --
282
709260
2000
所以 两个群落。
11:51
that is, we have a Gulf population, one that we can tag --
283
711260
2000
一个是我们标记的海湾群落,
11:53
they go to the Gulf of Mexico, I showed you that --
284
713260
3000
它们前往墨西哥湾, 我们可以看到
11:56
and a second population.
285
716260
2000
而第二个群落。
11:58
Living amongst our tunas -- our North American tunas --
286
718260
2000
欧洲的金枪鱼
12:00
are European tunas that go back to the Med.
287
720260
3000
则游回地中海
12:03
On the hot spots -- the hope spots --
288
723260
2000
在热点
12:05
they're mixed populations.
289
725260
2000
两个群落重合。
12:07
And so what we've done with the science
290
727260
2000
而我们要做的就是
12:09
is we're showing the International Commission,
291
729260
2000
向国际委员会展示
12:11
building new models,
292
731260
2000
新模型,
12:13
showing them that a two-stock no-mixing model --
293
733260
2000
告诉他们 原来的 两群不相关模型
12:15
to this day, used to reject
294
735260
3000
是错误的
12:18
the CITES treaty --
295
738260
2000
, 不应该被用为
12:20
that model isn't the right model.
296
740260
2000
反对CITES中条例通过的依据。
12:22
This model, a model of overlap,
297
742260
2000
这是一个交叉的模型
12:24
is the way to move forward.
298
744260
2000
这个才是符合事实的模型。
12:26
So we can then predict
299
746260
2000
因此我们可以预测
12:28
where management places should be.
300
748260
2000
哪里应该安排管理。
12:30
Places like the Gulf of Mexico and the Mediterranean
301
750260
3000
像墨西哥湾和地中海那样的地方
12:33
are places where the single species,
302
753260
2000
是单一物种的地方
12:35
the single population, can be captured.
303
755260
2000
只有一种金枪鱼会被捕到
12:37
These become forthright in places we need to protect.
304
757260
3000
这是明显应该被保护的地方
12:40
The center of the Atlantic where the mixing is,
305
760260
3000
在大西洋的中心,种群混合的地方
12:43
I could imagine a policy that lets Canada and America fish,
306
763260
2000
可以出台允许加拿大和美国捕鱼的政策,
12:45
because they manage their fisheries well,
307
765260
3000
因为他们能合理开展渔业。
12:48
they're doing a good job.
308
768260
2000
它们干的很好
12:50
But in the international realm,
309
770260
2000
但是在过渡捕鱼盛行的
12:52
where fishing and overfishing has really gone wild,
310
772260
2000
国际海领域
12:54
these are the places that we have to make hope spots in.
311
774260
3000
我们还需努力
12:57
That's the size they have to be to protect the bluefin tuna.
312
777260
3000
这样 才有可能能保护蓝鳍金枪鱼
13:00
Now in a second project
313
780260
2000
现在让我们来看第二个计划
13:02
called Tagging of Pacific Pelagics,
314
782260
2000
名为“标记太平洋”
13:04
we took on the planet as a team,
315
784260
2000
作为“海洋普查项目”的成员
13:06
those of us in the Census of Marine Life.
316
786260
2000
我们组成了一个团队
13:08
And, funded primarily through Sloan Foundation and others,
317
788260
4000
并在如斯隆基金会等等的帮助下
13:12
we were able to actually go in, in our project --
318
792260
3000
我们才得以进行我们的项目
13:15
we're one of 17 field programs
319
795260
2000
我们是17个这个领域中一个项目
13:17
and begin to take on tagging large numbers of predators,
320
797260
3000
现准备开始标记大量的食肉鱼。
13:20
not just tunas.
321
800260
2000
不再单单是金枪鱼。
13:22
So what we've done
322
802260
2000
我们已经
13:24
is actually gone up to tag salmon shark in Alaska,
323
804260
3000
在阿拉斯加州标记了一头鲑鲨
13:27
met salmon shark on their home territory,
324
807260
3000
在它的出生地标记了它,
13:30
followed them catching salmon
325
810260
2000
并跟随它们捕食鲑鱼
13:32
and then went in and figured out
326
812260
2000
当我们
13:34
that, if we take a salmon and put it on a line,
327
814260
3000
将一条鲑鱼放在鲨鱼的前面
13:37
we can actually take up a salmon shark --
328
817260
2000
我们能够将鲨鱼网住
13:39
This is the cousin of the white shark --
329
819260
2000
这个鲨鱼是白鲨的表亲。
13:41
and very carefully --
330
821260
2000
我们很小心的
13:43
note, I say "very carefully," --
331
823260
2000
注意我说的是 “很小心”
13:45
we can actually keep it calm,
332
825260
2000
我们能使它保持镇定。
13:47
put a hose in its mouth, keep it off the deck
333
827260
3000
在它嘴里放个管子,并保持它不接触甲板
13:50
and then tag it with a satellite tag.
334
830260
3000
并用卫星标签标记它
13:53
That satellite tag will now have your shark phone home
335
833260
3000
现在,卫星就能对它定位了
13:56
and send in a message.
336
836260
2000
并能把信息传到卫星。
13:58
And that shark leaping there, if you look carefully, has an antenna.
337
838260
3000
这条鲨鱼在水中跳跃, 如果你看的仔细些,能看到它的触角。
14:01
It's a free swimming shark with a satellite tag
338
841260
2000
这是一个有着标签的自由游动的鲨鱼
14:03
jumping after salmon,
339
843260
2000
正追着鲑鱼。
14:05
sending home its data.
340
845260
3000
而天线正将数据传来。
14:09
Salmon sharks aren't the only sharks we tag.
341
849260
2000
我们不是只标记这一种鲨鱼。
14:11
But there goes salmon sharks with this meter-level resolution
342
851260
3000
但这只显示它精确到米的路线图
14:14
on an ocean of temperature -- warm colors are warmer.
343
854260
3000
较暖的颜色表示海洋的温度较高。
14:17
Salmon sharks go down
344
857260
2000
它们向下
14:19
to the tropics to pup
345
859260
2000
到热带地区产仔
14:21
and come into Monterey.
346
861260
2000
再到蒙特雷。
14:23
Now right next door in Monterey and up at the Farallones
347
863260
3000
现在 在蒙特雷附近, Farallones的上面
14:26
are a white shark team led by Scott Anderson -- there --
348
866260
2000
有一只由Scott Anderson和Sal Jorgensen领导的
14:28
and Sal Jorgensen.
349
868260
2000
研究白鲨的队伍。
14:30
They can throw out a target --
350
870260
2000
他们扔出一个诱饵
14:32
it's a carpet shaped like a seal --
351
872260
2000
一个形似海豹的毛毯
14:34
and in will come a white shark, a curious critter
352
874260
3000
不一会,一个好奇的白鲨就会游来
14:37
that will come right up to our 16-ft. boat.
353
877260
3000
不久他就会被抓到我们16英尺长的船上。
14:40
It's a several thousand-pound animal.
354
880260
2000
这是个几千磅重的动物。
14:42
And we'll wind in the target.
355
882260
3000
我们会在诱饵里吹起
14:45
And we'll place an acoustic tag
356
885260
2000
我们会放置一个听觉标签
14:47
that says, "OMSHARK 10165,"
357
887260
2000
会表示"OMSHARK 10165,"
14:49
or something like that, acoustically with a ping.
358
889260
3000
或者其它差不多的 以砰砰声的。
14:52
And then we'll put on a satellite tag
359
892260
2000
然后我们会放置卫星标签
14:54
that will give us the long-distance journeys
360
894260
3000
标签会发给我们一个
14:57
with the light-based geolocation algorithms
361
897260
2000
鲨鱼的长期路线。
14:59
solved on the computer that's on the fish.
362
899260
3000
这路线是由标签中的电脑记录光的信息并以地理算法得出的
15:02
So in this case, Sal's looking at two tags there,
363
902260
3000
所以,Sal的结果中能看到两种标签的记录。
15:05
and there they are: the white sharks of California
364
905260
3000
这是加利福尼亚的白鲨
15:08
going off to the white shark cafe and coming back.
365
908260
3000
前往白鲨聚集地然后回来
15:12
We also tag makos with our NOAA colleagues,
366
912260
2000
我们NOAA的同事标记灰鲭鲨
15:14
blue sharks.
367
914260
2000
和蓝鲸。
15:16
And now, together, what we can see
368
916260
2000
现在我们能看到的
15:18
on this ocean of color that's temperature,
369
918260
2000
颜色为海洋中的温度变化,
15:20
we can see ten-day worms of makos and salmon sharks.
370
920260
3000
我们能看到灰鲭鲨和鲑鲨以十天为以单位的移动图
15:24
We have white sharks and blue sharks.
371
924260
2000
我们第一次观察到了白鲨和蓝鲨
15:26
For the first time,
372
926260
2000
的信息,
15:28
an ecoscape as large as ocean-scale,
373
928260
2000
一个全海洋尺度的观察
15:30
showing where the sharks go.
374
930260
3000
告诉了我们鲨鱼去哪
15:33
The tuna team from TOPP has done the unthinkable:
375
933260
3000
金枪鱼方面的TOPP组织已经完成了
15:36
three teams tagged 1,700 tunas,
376
936260
3000
由三个队伍标记了1,700头金枪鱼的难以想象的任务。
15:39
bluefin, yellowfin and albacore
377
939260
2000
蓝鳍,黄鳍,长鳍金枪鱼
15:41
all at the same time --
378
941260
2000
都在同时
15:43
carefully rehearsed tagging programs
379
943260
2000
仔细地操练着标记项目
15:45
in which we go out, pick up juvenile tunas,
380
945260
3000
我们选一些年轻的金枪鱼,
15:48
put in the tags that actually have the sensors,
381
948260
3000
将有感应器的标签放进
15:51
stick out the tuna
382
951260
2000
再拿出
15:53
and then let them go.
383
953260
2000
并放金枪鱼走
15:55
They get returned, and when they get returned,
384
955260
2000
当它们往回走,
15:57
here on a NASA numerical ocean
385
957260
3000
你可以在NASA数字海洋中看到它们的路线
16:00
you can see bluefin in blue
386
960260
2000
你可以看到蓝鳍金枪鱼以蓝色表示
16:02
go across their corridor,
387
962260
2000
穿过狭长地带
16:04
returning to the Western Pacific.
388
964260
3000
回到大西洋。
16:07
Our team from UCSC has tagged elephant seals
389
967260
3000
UCSC组织负责标记海象
16:10
with tags that are glued on their heads, that come off when they slough.
390
970260
3000
标签会粘在它们头上, 当它们蜕皮时随皮脱落。
16:13
These elephant seals cover half an ocean,
391
973260
3000
海象在海洋的一半以上地方都能看到,
16:16
take data down to 1,800 feet --
392
976260
2000
在水下1,800英尺的地方搜集数据
16:18
amazing data.
393
978260
2000
惊人的数据
16:20
And then there's Scott Shaffer and our shearwaters
394
980260
3000
这是Scott Shaffer和一个海鸥
16:23
wearing tuna tags, light-based tags,
395
983260
3000
海鸥上带着光能标签
16:26
that now are going to take you from New Zealand to Monterey and back,
396
986260
3000
它们将从新西兰飞往蒙特雷并飞回
16:29
journeys of 35,000 nautical miles
397
989260
3000
总共有35,000海里
16:32
we had never seen before.
398
992260
2000
利用光能地理标签
16:34
But now with light-based geolocation tags that are very small,
399
994260
3000
我们第一成功
16:37
we can actually see these journeys.
400
997260
2000
了解了它们飞行的全过程。
16:39
Same thing with Laysan albatross
401
999260
2000
与Laysan岛的信天翁一样
16:41
who travel an entire ocean
402
1001260
2000
将穿越整个大洋。
16:43
on a trip sometimes,
403
1003260
2000
有时
16:45
up to the same zone the tunas use.
404
1005260
2000
它们的飞行路线会与金枪鱼重合
16:47
You can see why they might be caught.
405
1007260
3000
你就知道为什么它们也可能被捕。
16:50
Then there's George Schillinger and our leatherback team out of Playa Grande
406
1010260
3000
现在看到的是 George Schillinger和来自Playa Grande的棱皮龟小组的队员。
16:53
tagging leatherbacks
407
1013260
2000
正在给正穿过它们所在区域
16:55
that go right past where we are.
408
1015260
3000
的棱皮龟作标记。
16:58
And Scott Benson's team
409
1018260
2000
这是Scott Benson带队的小组的数据
17:00
that showed that leatherbacks go from Indonesia
410
1020260
2000
显示棱皮龟正从印度尼西亚
17:02
all the way to Monterey.
411
1022260
2000
前往蒙特雷
17:04
So what we can see on this moving ocean
412
1024260
3000
我们能从这个移动的海洋中看到
17:07
is we can finally see where the predators are.
413
1027260
3000
捕食者在哪里。
17:10
We can actually see how they're using ecospaces
414
1030260
3000
我们能了解
17:13
as large as an ocean.
415
1033260
2000
整个海洋中的整个生态圈。
17:15
And from this information,
416
1035260
2000
从这些信息,
17:17
we can begin to map the hope spots.
417
1037260
3000
我们能开始制作希望点的地图
17:20
So this is just three years of data right here --
418
1040260
2000
这里看到的只是3年里的数据
17:22
and there's a decade of this data.
419
1042260
2000
而这样的数据有10年记录。
17:24
We see the pulse and the seasonal activities
420
1044260
2000
我们能感受到这些动物的
17:26
that these animals are going on.
421
1046260
3000
状态和季节性活动。
17:30
So what we're able to do with this information
422
1050260
2000
我们能做的,就是利用这些数据
17:32
is boil it down to hot spots,
423
1052260
3000
提炼出 热点,
17:35
4,000 deployments,
424
1055260
2000
4000个部署点
17:37
a huge herculean task,
425
1057260
3000
一个艰巨的任务
17:40
2,000 tags
426
1060260
2000
一个地方2000个标签
17:42
in an area, shown here for the first time,
427
1062260
2000
这一切的综合 第一次告诉了我们
17:44
off the California coast,
428
1064260
2000
在加利福尼亚海岸附近
17:46
that appears to be a gathering place.
429
1066260
3000
有一个聚集地
17:50
And then for sort of an encore from these animals,
430
1070260
3000
然后, 就像它们给我们的加演一样
17:53
they're helping us.
431
1073260
2000
它们带上设备
17:55
They're carrying instruments
432
1075260
2000
帮助我们
17:57
that are actually taking data down to 2,000 meters.
433
1077260
3000
在2000米下的水中搜集数据
18:00
They're taking information from our planet
434
1080260
2000
在整个地球搜集
18:02
at very critical places like Antarctica and the Poles.
435
1082260
3000
在关键的地方如 南极,北极。
18:05
Those are seals from many countries
436
1085260
2000
许多国家的海狮
18:07
being released
437
1087260
2000
被放生
18:09
who are sampling underneath the ice sheets
438
1089260
2000
它们正在冰川的地下
18:11
and giving us temperature data of oceanographic quality
439
1091260
3000
给我们传送两极的温度和海洋质量
18:14
on both poles.
440
1094260
2000
等数据。
18:16
This data, when visualized, is captivating to watch.
441
1096260
3000
这个数据,当被可视化后,非常有吸引力。
18:19
We still haven't figured out best how to visualize the data.
442
1099260
3000
我们仍没能想出到底如何才能对这些数据进行最佳的可视化。
18:22
And then, as these animals swim
443
1102260
2000
而当这些动物游动
18:24
and give us the information
444
1104260
2000
并给我们信息时,
18:26
that's important to climate issues,
445
1106260
2000
这些信息对于气候问题是非常重要的,
18:28
we also think it's critical
446
1108260
2000
我们还认为
18:30
to get this information to the public,
447
1110260
2000
将这些信息公布给大众
18:32
to engage the public with this kind of data.
448
1112260
3000
来使大众也参与进来是很重要的。
18:35
We did this with the Great Turtle Race --
449
1115260
2000
我们对于大海龟就是这么做的
18:37
tagged turtles, brought in four million hits.
450
1117260
3000
标记海龟, 这带来了4百万个点击。
18:40
And now with Google's Oceans,
451
1120260
3000
现在 在 谷歌海洋(Google‘Oeans)
18:43
we can actually put a white shark in that ocean.
452
1123260
2000
我们能将白鲨放在一个大洋中,
18:45
And when we do and it swims,
453
1125260
2000
他就会在里面游动
18:47
we see this magnificent bathymetry
454
1127260
2000
我们可以知道
18:49
that the shark knows is there on its path
455
1129260
2000
鲨鱼在它们从加利福尼亚到夏威夷
18:51
as it goes from California to Hawaii.
456
1131260
2000
这段路中得到的一切信息。
18:53
But maybe Mission Blue
457
1133260
2000
但是可能 Mission Blue组织
18:55
can fill in that ocean that we can't see.
458
1135260
3000
能将我们看不到的地方也补上
18:58
We've got the capacity, NASA has the ocean.
459
1138260
3000
我们有这样的能力, NASA已经有了数字海洋。
19:01
We just need to put it together.
460
1141260
2000
我们只需要将它们整合起来。
19:03
So in conclusion,
461
1143260
2000
所以, 总的来说
19:05
we know where Yellowstone is for North America;
462
1145260
3000
我们知道黄石公园在北美的哪:
19:08
it's off our coast.
463
1148260
2000
在海岸边
19:10
We have the technology that's shown us where it is.
464
1150260
2000
我们有技术了解它在哪
19:12
What we need to think about perhaps for Mission Blue
465
1152260
3000
我们需要思考的是如何增加
19:15
is increasing the biologging capacity.
466
1155260
3000
Misson Blue记录生态信息的能力。
19:18
How is it that we can actually
467
1158260
2000
我们怎样才能
19:20
take this type of activity elsewhere?
468
1160260
3000
在别的地方也做这些工作呢?
19:23
And then finally -- to basically get the message home --
469
1163260
3000
最终能达到在家就能得到信息,
19:26
maybe use live links
470
1166260
2000
可以利用例如
19:28
from animals such as blue whales and white sharks.
471
1168260
2000
来自蓝鲸白鲨的链接
19:30
Make killer apps, if you will.
472
1170260
2000
如果你愿意的话,制作杀戮软件,
19:32
A lot of people are excited
473
1172260
2000
大部分的人当
19:34
when sharks actually went under the Golden Gate Bridge.
474
1174260
3000
看到鲨鱼在金门大桥下时会非常激动。
19:37
Let's connect the public to this activity right on their iPhone.
475
1177260
3000
就用大家的iPhone 将大家连接到这项活动吧。
19:40
That way we do away with a few internet myths.
476
1180260
3000
这是一些网上的这类图片。
19:44
So we can save the bluefin tuna.
477
1184260
2000
所以, 我们能够救蓝鳍金枪鱼
19:46
We can save the white shark.
478
1186260
2000
我们能够救白鲨
19:48
We have the science and technology.
479
1188260
2000
我们有科技。
19:50
Hope is here. Yes we can.
480
1190260
2000
是的, 我们能。
19:52
We need just to apply this capacity
481
1192260
2000
我们只需要将我们的技术
19:54
further in the oceans.
482
1194260
2000
应用到更广阔的海洋。
19:56
Thank you.
483
1196260
2000
谢谢
19:58
(Applause)
484
1198260
2000
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7