Barbara Block: Tagging tuna in the deep ocean

24,793 views ใƒป 2010-10-06

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: anat gat ืžื‘ืงืจ: Ido Dekkers
00:15
I've been fascinated for a lifetime
0
15260
3000
ื”ื™ื™ืชื™ ืžืจื•ืชืงืช ื›ืœ ื—ื™ื™
00:18
by the beauty, form and function
1
18260
2000
ืžื”ื™ื•ืคื™, ื”ืฆื•ืจื” ื•ืชืคืงื•ื“ื
00:20
of giant bluefin tuna.
2
20260
3000
ืฉืœ ื“ื’ื™ ื”ื˜ื•ื ื” ื›ื—ื•ืœืช ื”ืกื ืคื™ืจ ื”ืขื ืงื™ื™ื.
00:23
Bluefin are warmblooded like us.
3
23260
3000
ื“ื’ื™ ื”ื˜ื•ื ื” ื›ื—ื•ืœืช ื”ืกืคื™ืจ ื”ื ื‘ืขืœื™ "ื“ื ื—ื" ื›ืžื•ื ื•.
00:26
They're the largest of the tunas,
4
26260
3000
ื”ื ื”ื’ื“ื•ืœื™ื ื‘ื˜ื•ื ื•ืช,.
00:29
the second-largest fish in the sea -- bony fish.
5
29260
3000
ื”ืฉื ื™ื™ื ื‘ื’ื•ื“ืœื ื‘ื™ื ื‘ื™ืŸ ื“ื’ื™ ื”ื’ืจื.
00:32
They actually are a fish
6
32260
2000
ื”ื ืœืžืขืฉื” ื“ื’
00:34
that is endothermic --
7
34260
2000
ืฉืฆื•ืจืš ืื ืจื’ื™ื” (ืื ื“ื•ืชืจืžื™ื).
00:36
powers through the ocean with warm muscles like a mammal.
8
36260
3000
ื›ื•ื— ืฉืขื•ื‘ืจ ื“ืจืš ื”ืื•ืงื™ื ื•ืก, ืขื ืฉืจื™ืจื™ื ื›ืžื• ืฉืœ ื™ื•ื ืงื™ื.
00:40
That's one of our bluefin at the Monterey Bay Aquarium.
9
40260
3000
ื–ื” ืื—ื“ ืžื˜ื•ื ืช ื›ื—ื•ืœืช ื”ืกื ืคื™ืจ ืฉืœื u ื‘ืืงื•ื•ืจื™ื•ื " ืžื•ื ื˜ื” ืจื™ื™".
00:43
You can see in its shape and its streamlined design
10
43260
3000
ืืคืฉืจ ืœืจืื•ืช ื‘ืฆื•ืจืชื• ื•ื‘ืขื™ืฆื•ื‘ื•
00:46
it's powered for ocean swimming.
11
46260
3000
ืฉื›ื•ื—ื• ืžื™ื•ืขื“ ืœืฉื—ื™ื” ื‘ืื•ืงื™ื ื•ืก.
00:49
It flies through the ocean on its pectoral fins, gets lift,
12
49260
3000
ื”ื•ื "ืขืฃ" ื“ืจืš ื”ื™ื ื‘ืขื–ืจืช ืฉืจื™ืจื™ ื—ื–ื”, ืชื•ืคืก ืชื ื•ืคื”,
00:52
powers its movements
13
52260
2000
ื•ืžืคืขื™ืœ ืืช ืชื ื•ืขื•ืชื™ื•
00:54
with a lunate tail.
14
54260
2000
ื‘ืขื–ืจืช ื–ื ื‘ื•.
00:56
It's actually got a naked skin for most of its body,
15
56260
3000
ืœืžืขืฉื” ืœื˜ื•ื ื” ื™ืฉ ืขื•ืจ ื—ืฉื•ืฃ ืœืจื•ื‘ ื’ื•ืคื•,
00:59
so it reduces friction with the water.
16
59260
3000
ืœื›ืŸ ืงื˜ืŸ ื”ื—ื™ื›ื•ืš ืขื ื”ืžื™ื.
01:02
This is what one of nature's finest machines.
17
62260
3000
ื”ื•ื ืื—ื“ ืžืžื›ื•ื ื•ืช ื”ื˜ื‘ืข ื”ืžืฉื•ื‘ื—ื•ืช.
01:05
Now, bluefin
18
65260
2000
ื˜ื•ื ื•ืช ื›ื—ื•ืœื•ืช ืกืคื™ืจ
01:07
were revered by Man
19
67260
2000
ื ืขืจืฆื• ืขืœ ื™ื“ื™ ื”ืื“ื
01:09
for all of human history.
20
69260
3000
ืœื›ืœ ืื•ืจืš ื”ื”ื™ืกื˜ื•ืจื™ื” ื”ืื ื•ืฉื™ืช.
01:12
For 4,000 years, we fished sustainably for this animal,
21
72260
3000
ื› 4,000 ืฉื ื”, ื“ื’ื ื• ืžืชื•ืš ืื—ืจื™ื•ืช ืกื‘ื™ื‘ืชื™ืช ืœื—ื™ื” ื–ื•,
01:15
and it's evidenced
22
75260
2000
ื•ื”ืขื“ื•ืช ืœื›ืš
01:17
in the art that we see
23
77260
2000
ื–ื• ื”ืื•ืžื ื•ืช ืฉืื ื• ืจื•ืื™ื
01:19
from thousands of years ago.
24
79260
2000
ืžืœืคื ื™ ืืœืคื™ ืฉื ื™ื.
01:21
Bluefin are in cave paintings in France.
25
81260
3000
ื˜ื•ื ื•ืช ืžืชื•ืขื“ื™ื ื‘ืฆื™ื•ืจื™ ืžืขืจื•ืช ื‘ืฆืจืคืช.
01:24
They're on coins
26
84260
2000
ื”ื ื‘ืžื˜ื‘ืขื•ืช
01:26
that date back 3,000 years.
27
86260
3000
ืฉืชืืจื™ื›ื ืœืคื ื™ 3,000 ืฉื ื”.
01:29
This fish was revered by humankind.
28
89260
3000
ื”ื“ื’ ื”ื•ืขืจืฅ ืขืœ ื™ื“ื™ ื‘ื ื™ ืื“ื.
01:32
It was fished sustainably
29
92260
2000
ื“ื’ื ื• ืืช ื”ื—ื™ื” ืžืชื•ืš ืื—ืจื™ื•ืช ืกื‘ื™ื‘ืชื™ืช
01:34
till all of time,
30
94260
2000
ื›ืœ ื”ื–ืžืŸ,
01:36
except for our generation.
31
96260
2000
ืœืžืขื˜ ื”ื“ื•ืจ ืฉืœื ื•.
01:38
Bluefin are pursued wherever they go --
32
98260
3000
ื˜ื•ื ื•ืช ื ืจื“ืคื•ืช ืœื›ืœ ืžืงื•ื ืืœื™ื• ื”ืŸ ื”ื•ืœื›ื•ืช.
01:41
there is a gold rush on Earth,
33
101260
2000
ื™ืฉ ื‘ื”ืœื” ืœื–ื”ื‘ ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ,
01:43
and this is a gold rush for bluefin.
34
103260
2000
ื•ื–ื• ื”ื™ื ื‘ื”ืœืช ื”ื–ื”ื‘ ืœื˜ื•ื ื•ืช.
01:45
There are traps that fish sustainably
35
105260
2000
ื”ื™ื• ืžืœื›ื•ื“ื•ืช ื“ื’ื™ื ื‘ืขืœื•ืช ื ื–ืง ืžื–ืขืจื™
01:47
up until recently.
36
107260
3000
ืขื“ ืœืื—ืจื•ื ื”.
01:50
And yet, the type of fishing going on today,
37
110260
3000
ื•ื‘ื›ืœ ื–ืืช, ืกื•ื’ ื”ื“ื™ื™ื’ ืฉืจื•ื•ื— ื”ื™ื•ื,
01:53
with pens, with enormous stakes,
38
113260
3000
ืขื ื”ืžื›ืœืื•ืช, ื•ื”ืกื›ื•ืžื™ื ื”ืขืฆื•ืžื™ื,
01:56
is really wiping bluefin
39
116260
2000
ื‘ืืžืช ืžืขืœื™ื ืืช ื˜ื•ื ื•ืช
01:58
ecologically off the planet.
40
118260
2000
ืžื‘ื—ื™ื ื” ืืงื•ืœื•ื’ื™ืช.
02:00
Now bluefin, in general,
41
120260
2000
ื”ื˜ื•ื ื•ืช, ื‘ื“ืจืš ื›ืœืœ,
02:02
goes to one place: Japan.
42
122260
2000
ื”ื•ืœื›ื•ืช ืœืžืงื•ื ืื—ื“, ื™ืคืŸ.
02:04
Some of you may be guilty
43
124260
2000
ื—ืœืงื›ื ื™ื”ื™ื” ืืฉื
02:06
of having contributed to the demise of bluefin.
44
126260
2000
ื‘ืœืงื™ื—ืช ื—ืœืง ื‘ื”ืฉืžื“ืช ื”ื˜ื•ื ื•ืช.
02:08
They're delectable muscle,
45
128260
2000
ืฉืจื™ืจื™ื”ื ื˜ืขื™ืžื™ื,
02:10
rich in fat --
46
130260
2000
ืขืฉื™ืจื™ื ื‘ืฉื•ืžืŸ --
02:12
absolutely taste delicious.
47
132260
2000
ื‘ื”ื—ืœื˜ ื˜ืขื™ืžื™ื ืžืื•ื“.
02:14
And that's their problem; we're eating them to death.
48
134260
3000
ื•ื–ืืช ื”ื™ื ื”ื‘ืขื™ื” ืฉืœื”ื; ืื ื—ื ื• ืื•ื›ืœื™ื ืื•ืชื ืขื“ ืžื•ื•ืช.
02:17
Now in the Atlantic, the story is pretty simple.
49
137260
3000
ื‘ืื•ืงื™ื™ื ื•ืก ื”ืื˜ืœื ื˜ื™ ื”ืกื™ืคื•ืจ ืคืฉื•ื˜ ืžืื•ื“.
02:20
Bluefin have two populations: one large, one small.
50
140260
3000
ืœื˜ื•ื ื•ืช ื™ืฉ ืฉืชื™ ืื•ื›ืœื•ืกื™ื•ืช, ืื—ืช ื’ื“ื•ืœื”, ืื—ืช ืงื˜ื ื”.
02:23
The North American population
51
143260
2000
ื”ืื•ื›ืœื•ืกื™ื™ื” ื‘ืฆืคื•ืŸ ืืžืจื™ืงื”
02:25
is fished at about 2,000 ton.
52
145260
3000
ืฉืื•ืชื” ืื ื• ื“ื’ื™ื ื‘ืขืจืš 2,000 ื˜ื•ืŸ.
02:28
The European population and North African -- the Eastern bluefin tuna --
53
148260
3000
ื”ืื•ื›ืœื•ืกื™ื™ื” ื”ืื™ืจื•ืคื™ืช ื•ื”ืฆืคื•ืŸ ืืคืจื™ืงื ื™ืช -- ื”ื™ื ื”ื˜ื•ื ื” ื”ืžื–ืจื—ื™ืช --
02:31
is fished at tremendous levels:
54
151260
3000
ืฉื ื”ื“ื™ื™ื’ ื‘ื›ืžื•ื™ื•ืช ืขืฆื•ืžื•ืช:
02:34
50,000 tons over the last decade almost every year.
55
154260
3000
ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ 50,000 ื˜ื•ืŸ ืžื“ื™ ืฉื ื”.
02:37
The result is whether you're looking
56
157260
2000
ื”ืชื•ืฆืื” ื”ื™ื ืฉืœื›ืœ ืžืงื•ื ืืœื™ื• ืื ื• ืžืกืชื›ืœื™ื
02:39
at the West or the Eastern bluefin population,
57
159260
3000
ื‘ืžื–ืจื— ืื• ื‘ืžืขืจื‘ ืขืœ ืื•ื›ืœื•ืกื™ื•ืช ื”ื˜ื•ื ื”,
02:42
there's been tremendous decline on both sides,
58
162260
2000
ื™ืฉ ื™ืจื™ื“ื” ืขืฆื•ืžื” ื‘ืฉื ื™ ื”ืฆื“ื“ื™ื
02:44
as much as 90 percent
59
164260
2000
ืขื“ 90 ืื—ื•ื–
02:46
if you go back with your baseline
60
166260
2000
ืื ื ื—ื–ื•ืจ ืื—ื•ืจื” ืœื‘ืกื™ืก
02:48
to 1950.
61
168260
2000
ืœ-1950.
02:50
For that, bluefin have been given a status
62
170260
3000
ื‘ืฉื‘ื™ืœ ื–ื”, ื˜ื•ื ื•ืช ื”ื•ื›ืจื• ื‘ืžืฆื‘
02:53
equivalent to tigers, to lions,
63
173260
3000
ืฉื•ื•ื” ืœื˜ื™ื’ืจื™ืกื™ื, ืœืืจื™ื•ืช,
02:56
to certain African elephants
64
176260
2000
ืœื›ืžื” ืคื™ืœื™ื ื‘ืืคืจื™ืงื”
02:58
and to pandas.
65
178260
2000
ื•ืœืคื ื“ื•ืช.
03:00
These fish have been proposed
66
180260
2000
ื”ื“ื’ื™ื ื”ืœืœื• ื”ื•ืฆืขื•
03:02
for an endangered species listing in the past two months.
67
182260
3000
ืœืจืฉื™ืžืช ื”ืžื™ื ื™ื ื‘ืกื›ื ืช ื”ื›ื—ื“ื” ื‘ื—ื•ื“ืฉื™ื™ื ื”ืื—ืจื•ื ื™ื.
03:05
They were voted on and rejected
68
185260
2000
ื”ื”ืฆืขื•ืช ืœื”ื›ื ื™ืกื ืœืจืฉื™ืžื•ืช ื ื“ื•ื ื• ื•ื ื“ื—ื•,
03:07
just two weeks ago,
69
187260
2000
ืจืง ืœืคื ื™ ืฉื‘ื•ืขื™ื™ื,
03:09
despite outstanding science
70
189260
2000
ื•ื–ืืช ืœืžืจื•ืช ืžื—ืงืจ ื™ื•ืฆื ื“ื•ืคืŸ
03:11
that shows from two committees
71
191260
3000
ืฉืžื•ื›ื™ื— ืžืฉืชื™ ื•ืขื“ื•ืช
03:14
this fish meets the criteria of CITES I.
72
194260
3000
ืฉื”ื“ื’ื™ื ื”ืœืœื• ืžืชืื™ืžื™ื ืœืงืจื™ื˜ืจื™ื•ืŸ ืฉืœ CITES.
03:17
And if it's tunas you don't care about,
73
197260
2000
ื•ืื ืœื ืื›ืคืช ืœืš ืžื”ื˜ื•ื ื•ืช
03:19
perhaps you might be interested
74
199260
2000
ืื•ืœื™ ื™ื”ื™ื” ืœืš ืื›ืคืช
03:21
that international long lines and pursing
75
201260
2000
ืฉืงื‘ื•ืฆื•ืช ื“ื™ื’ ืขื ืจืฉืชื•ืช ืืจื•ื›ื•ืช ื˜ื•ื•ื—
03:23
chase down tunas and bycatch animals
76
203260
3000
ืฆื“ื•ืช ื˜ื•ื ื•ืช ื•ื—ื™ื•ืช
03:26
such as leatherbacks, sharks,
77
206260
2000
ื›ืžื• ื›ืจื™ืฉื™ื,
03:28
marlin, albatross.
78
208260
2000
ื“ื’ื™ ื—ืจื‘, ื•ืื‘ื˜ืจื•ืก,
03:30
These animals and their demise
79
210260
2000
ื”ื—ื™ื•ืช ื”ืœืœื• ื•ื”ืžื•ื•ืช ืฉืœื”ื
03:32
occurs in the tuna fisheries.
80
212260
3000
ืžืชืจื—ืฉื•ืช ื‘ืื–ื•ืจื™ ื”ื“ื™ื’ ืฉืœ ื”ื˜ื•ื ื”.
03:35
The challenge we face
81
215260
2000
ื”ืืชื’ืจ ืžื•ืœื• ืื ื—ื ื• ืžืชืžื•ื“ื“ื™ื
03:37
is that we know very little about tuna,
82
217260
3000
ื”ื•ื ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืžืขื˜ ืžืื•ื“ ืขืœ ื˜ื•ื ื•ืช,
03:40
and everyone in the room knows what it looks like
83
220260
3000
ืœืžืฉืœ ื›ื•ืœื ื‘ื—ื“ืจ ื™ื•ื“ืขื™ื ืื™ืš ื–ื” ื ืจืื”
03:43
when an African lion
84
223260
2000
ื›ืฉืืจื™ื” ืืคืจื™ืงื ื™
03:45
takes down its prey.
85
225260
2000
ืžื›ื ื™ืข ืืช ื˜ืจืคื•.
03:47
I doubt anyone has seen a giant bluefin feed.
86
227260
3000
ืื ื™ ื‘ืกืคืง ืื ืžืฉื”ื• ืจืื” ื˜ื•ื ื” ื›ื—ื•ืœืช ืกืคื™ืจ ืื•ื›ืœืช.
03:50
This tuna symbolizes
87
230260
3000
ื”ื˜ื•ื ื” ื”ื–ืืช ืžืกืžืœืช
03:53
what's the problem for all of us in the room.
88
233260
3000
ืืช ื”ื‘ืขื™ื” ืฉืœ ื›ื•ืœื ื• ื‘ื—ื“ืจ ื–ื”.
03:56
It's the 21st century, but we really have only just begun
89
236260
3000
ืื ื—ื ื• ื‘ืžืื” ื”-21, ืื‘ืœ ืœืžืขืฉื” ืจืง ื”ืชื—ืœื ื•
03:59
to really study our oceans in a deep way.
90
239260
3000
ืœืœืžื•ื“ ืืช ื”ืื•ืงื™ื™ื ื•ืกื™ื ื‘ื“ืจืš ืžืขืžื™ืงื”.
04:02
Technology has come of age
91
242260
2000
ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื’ื™ืขื” ืœื–ืžืŸ
04:04
that's allowing us to see the Earth from space
92
244260
3000
ืฉื‘ื• ื”ื™ื ืžืืคืฉืจืช ืœื ื• ืœืจืื•ืช ืืช ื›ื“ื•ืจ ื”ืืจืฅ ืžื”ื—ืœืœ
04:07
and go deep into the seas remotely.
93
247260
3000
ื•ืœื”ื’ื™ืข ืœืขื•ืžืง ื”ื™ืžื™ื ื‘ืฉืœื™ื˜ื” ืžืจื—ื•ืง.
04:10
And we've got to use these technologies immediately
94
250260
2000
ื•ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื–ื• ื‘ืžื”ื™ืจื•ืช
04:12
to get a better understanding
95
252260
2000
ื‘ืฉื‘ื™ืœ ืœืงื‘ืœ ื”ื‘ื ื” ื™ื•ืชืจ ื˜ื•ื‘ื”
04:14
of how our ocean realm works.
96
254260
3000
ืขืœ ืžืžืœื›ืช ื”ืื•ืงื™ื™ื ื•ืก ืฉืœื ื• ื•ืื™ืš ื”ื™ื ืคื•ืขืœืช.
04:17
Most of us from the ship -- even I --
97
257260
2000
ื—ืœืงื ื• ื”ืจื‘ ืžืกืคื™ื ื”, ืืคื™ืœื• ืื ื™,
04:19
look out at the ocean and see this homogeneous sea.
98
259260
3000
ืžืกืชื›ืœื™ื ืขืœ ื”ืื•ืงื™ื™ื ื•ืก ื•ืจื•ืื™ื ืืช ื”ื™ื ื”ื”ื•ืžื•ื’ื ื™.
04:22
We don't know where the structure is.
99
262260
2000
ืื ื—ื ื• ืœื ืžื›ื™ืจื™ื ืืช ื”ืžื‘ื ื”.
04:24
We can't tell where are the watering holes
100
264260
3000
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœื”ื’ื™ื“ ืื™ืคื” ืžืงื•ื•ื” ื”ืžื™ื
04:27
like we can on an African plain.
101
267260
3000
ื›ืžื• ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ื“ ืขืœ ืžื™ืฉื•ืจื™ ืืคืจื™ืงื”.
04:30
We can't see the corridors,
102
270260
2000
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžืกื“ืจื•ื ื•ืช
04:32
and we can't see what it is
103
272260
2000
ื•ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžื” ื”ื•ื ื”ื’ื•ืจื
04:34
that brings together a tuna,
104
274260
2000
ืฉืžืงื‘ืฅ ื‘ื™ื—ื“ ื˜ื•ื ื•ืช,
04:36
a leatherback and an albatross.
105
276260
2000
ืฆื‘ื™ ื™ื ื•ืืœื‘ื˜ืจื•ืก.
04:38
We're only just beginning to understand
106
278260
2000
ืื ื—ื ื• ืจืง ืžืชื—ื™ืœื™ื ืœื”ื‘ื™ืŸ
04:40
how the physical oceanography
107
280260
2000
ืื™ืš ื”ืื•ืงื™ืื ื•ื’ืจืคื™ื” ื”ืคื™ื–ื™ืงืœื™ืช
04:42
and the biological oceanography
108
282260
2000
ื•ื”ืื•ืงื™ืื ื•ื’ืจืคื™ื” ื”ื‘ื™ื•ืœื•ื’ื™ืช
04:44
come together
109
284260
2000
ืžืชื—ื‘ืจื•ืช
04:46
to create a seasonal force
110
286260
2000
ืœื™ื™ืฆืจ ื›ื•ื— ืขื•ื ืชื™
04:48
that actually causes the upwelling
111
288260
2000
ืฉืœืžืขืฉื” ื’ื•ืจื ืœืขืœื™ื™ืช ืžื™ ื”ืขื•ืžืง
04:50
that might make a hot spot a hope spot.
112
290260
3000
ืฉื™ื›ื•ืœ ืœื’ืจื•ื ืœื ืงื•ื“ื” ื—ืžื” ืœื”ืคื•ืš ืœื ืงื•ื“ืช ืชืงื•ื•ื”.
04:53
The reasons these challenges are great
113
293260
2000
ื”ืกื™ื‘ื•ืช ืฉื”ืืชื’ืจื™ื ื”ืœืœื• ืขืฆื•ืžื™ื
04:55
is that technically it's difficult to go to sea.
114
295260
3000
ื”ืŸ ืฉืžื‘ื—ื™ื ื” ื˜ื›ื ื™ืช ืงืฉื” ืœื’ืฉืช ืœื™ื.
04:58
It's hard to study a bluefin on its turf,
115
298260
2000
ืงืฉื” ืœืœืžื•ื“ ืขืœ ืื–ื•ืจื™ ื”ืื›ื™ืœื” ืฉืœ ื˜ื•ื ื•ืช,
05:00
the entire Pacific realm.
116
300260
2000
ื•ืžื™ืงื•ืžื ืขืœ ืคื ื™ ื”ืื•ืงื™ื ื•ืก ื”ืฉืงื˜.
05:02
It's really tough to get up close and personal with a mako shark
117
302260
4000
ื–ื” ื‘ืืžืช ืงืฉื” ืœื”ืชืงืจื‘ ืœื›ืจื™ืฉ ืžืงื•
05:06
and try to put a tag on it.
118
306260
2000
ื•ืœื ืกื•ืช ืœืฉื™ื ืขืœื™ื• ืชื’ ื–ื™ื”ื•ื™.
05:08
And then imagine being Bruce Mate's team from OSU,
119
308260
3000
ื“ืžื™ื™ื ื• ืœื›ื ืœื”ื™ื•ืช ื‘ืงื‘ื•ืฆืช ื‘ืจื•ืก ืžื™ื™ื˜ืก ืž-OSU,
05:11
getting up close to a blue whale
120
311260
2000
ืžืชืงืจื‘ ืœืœื•ื•ื™ื™ืชืŸ ื›ื—ื•ืœ
05:13
and fixing a tag on the blue whale that stays,
121
313260
3000
ื•ืžืชืงืŸ ืืช ืชื’ ื”ื–ื™ื”ื•ื™ ืขืœ ื”ืœื•ื•ื™ื™ืชืŸ ื›ืš ืฉื™ื™ืฉืืจ,
05:16
an engineering challenge
122
316260
2000
ื–ื”ื• ืืชื’ืจ ื”ื ื“ืกื™
05:18
we've yet to really overcome.
123
318260
2000
ืฉืขืœื™ื• ืื ื—ื ื• ืขื“ื™ื™ืŸ ืฆืจื™ื›ื™ื ืœื”ืชื’ื‘ืจ.
05:20
So the story of our team, a dedicated team,
124
320260
3000
ืœื›ืŸ ืกื™ืคื•ืจ ืงื‘ื•ืฆืชื ื•, ืงื‘ื•ืฆื” ืžืกื•ืจื”,
05:23
is fish and chips.
125
323260
2000
ื ืงืจื ื“ื’ื™ื ื•ืชื’ื™ื.
05:25
We basically are taking
126
325260
2000
ืื ื—ื ื• ื‘ื“ืจืš ื›ืœืœ ืœื•ืงื—ื™ื
05:27
the same satellite phone parts,
127
327260
2000
ืืช ืื•ืชื ื—ืœืงื™ ื˜ืœืคื•ืŸ ืœื•ื•ื™ื ื™,
05:29
or the same parts that are in your computer, chips.
128
329260
3000
ืื• ืืช ืื•ืชื ื—ืœืงื™ื ืฉื‘ืžื—ืฉื‘ ืฉืœื›ื, ืฉื‘ื‘ื™ื.
05:32
We're putting them together in unusual ways,
129
332260
3000
ืื ื—ื ื• ืžืจื›ื™ื‘ื™ื ืื•ืชื ื‘ื“ืจื›ื™ื ืœื ืจื’ื™ืœื•ืช,
05:35
and this is taking us into the ocean realm
130
335260
2000
ื•ื–ื” ืœื•ืงื— ืื•ืชื ื• ืœืžืžืœื›ืช ื”ืื•ืงื™ื™ื ื•ืก
05:37
like never before.
131
337260
2000
ื‘ื“ืจืš ืฉืœื ื ืจืืชื” ืงื•ื“ื.
05:39
And for the first time,
132
339260
2000
ื•ื‘ืคืขื ื”ืจืืฉื•ื ื”,
05:41
we're able to watch the journey of a tuna beneath the ocean
133
341260
3000
ืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœื”ืกืชื›ืœ ืขืœ ืžืกืข ื”ื˜ื•ื ื” ืžืชื—ืช ื”ืื•ืงื™ื™ื ื•ืก
05:44
using light and photons
134
344260
2000
ื‘ืขื–ืจืช ืื•ืจื•ืช ื•ืคื•ื˜ื•ื ื™ื
05:46
to measure sunrise and sunset.
135
346260
3000
ืœืžื“ื•ื“ ืฉืงื™ืขื” ื•ื–ืจื™ื—ื”.
05:49
Now, I've been working with tunas for over 15 years.
136
349260
3000
ืขื›ืฉื™ื•, ืื ื™ ืขื•ื‘ื“ืช ืขื ื˜ื•ื ื•ืช ืžืขืœ 15 ืฉื ื”.
05:52
I have the privilege of being a partner
137
352260
2000
ื•ื™ืฉ ืœื™ ืืช ื”ื–ื›ื•ืช ืœื”ื™ื•ืช ื‘ืฉื•ืชืคื•ืช
05:54
with the Monterey Bay Aquarium.
138
354260
2000
ืขื ื”ืืงื•ื•ืจื™ื•ื ื‘ืžืคืจืฅ ืžื•ื ื˜ืจื™ื™.
05:56
We've actually taken a sliver of the ocean,
139
356260
2000
ืœืžืขืฉื” ืœืงื—ื ื• ืจืกื™ืก ืžื”ืื•ืงื™ื™ื ื•ืก,
05:58
put it behind glass,
140
358260
2000
ืฉืžื ื• ืžืื—ื•ืจื™ ื–ื›ื•ื›ื™ืช,
06:00
and we together
141
360260
2000
ื•ื‘ื™ื—ื“
06:02
have put bluefin tuna and yellowfin tuna on display.
142
362260
3000
ืฉืžื ื• ื˜ื•ื ื” ื›ื—ื•ืœืช ืกื ืคื™ืจ ื•ื˜ื•ื ื” ื–ื”ื•ื‘ืช ืกื ืคื™ืจ ืœืชืฆื•ื’ื”.
06:05
When the veil of bubbles lifts every morning,
143
365260
3000
ื›ืฉืžืกืš ื”ื‘ื•ืขื•ืช ืขื•ืœื” ื›ืœ ื‘ื•ืงืจ,
06:08
we can actually see a community from the Pelagic ocean,
144
368260
3000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ื—ื™ื™ ืงื”ื™ืœื” ืžื”ืื•ืงื™ื™ื ื•ืก ื”ืคืชื•ื—,
06:11
one of the only places on Earth
145
371260
2000
ืื—ื“ ืžื”ืžืงื•ืžื•ืช ื”ื™ื—ื™ื“ื™ื ื‘ืขื•ืœื
06:13
you can see giant bluefin swim by.
146
373260
3000
ืฉื‘ื• ืชื•ื›ืœื• ืœืจืื•ืช ื˜ื•ื ื•ืช ื›ื—ื•ืœื•ืช ืกืคื™ืจ ืฉื•ื—ื•ืช .
06:16
We can see in their beauty of form and function,
147
376260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ื‘ื™ื•ืคื™ ืฆื•ืจืชื ื•ื”ืคื•ื ืงืฆื™ื•ื ืœื™ื•ืช ืฉืœื”ื,
06:19
their ceaseless activity.
148
379260
2000
ืืช ืคืขื™ืœื•ืชื ื”ื‘ืœืชื™ ืคื•ืกืงืช.
06:21
They're flying through their space, ocean space.
149
381260
3000
ื”ื ืขืคื™ื ื“ืจืš ื”ื—ืœืœ ืฉืœื”ื, ื—ืœืœ ื”ืื•ืงื™ื™ื ื•ืก.
06:24
And we can bring two million people a year
150
384260
2000
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ื 2 ืžื™ืœื™ื•ืŸ ืื ืฉื™ื ื‘ืฉื ื”
06:26
into contact with this fish
151
386260
2000
ืœืžื’ืข ืขื ื”ื“ื’ ื”ื–ื”
06:28
and show them its beauty.
152
388260
3000
ื•ืœื”ืจืื•ืช ืœื”ื ืืช ื™ื•ืคื™ื•.
06:31
Behind the scenes is a working lab at Stanford University
153
391260
3000
ืžืื—ื•ืจื™ ื”ืงืœืขื™ื ืคื•ืขืœืช ืžืขื‘ื“ืช ืื•ื ื™ื‘ืจืกื™ื˜ืช ืกื˜ื ืคื•ืจื“
06:34
partnered with the Monterey Bay Aquarium.
154
394260
2000
ืฉืฉื•ืชืคื” ืœืืงื•ื•ืจื™ื•ื ืžืคืจืฅ ืžื•ื ื˜ืจื™ื™.
06:36
Here, for over 14 or 15 years,
155
396260
2000
ื›ืืŸ, ืื—ืจื™ 14 ืื• 15 ืฉื ื”,
06:38
we've actually brought in
156
398260
2000
ื”ื‘ืื ื• ืœื›ื
06:40
both bluefin and yellowfin in captivity.
157
400260
2000
ื’ื ื˜ื•ื ื” ื›ื—ื•ืœืช ืกื ืคื™ืจ ื•ื’ื ื˜ื•ื ื” ื–ื”ื•ื‘ืช ืกื ืคื™ืจ ื‘ืฉื‘ื™.
06:42
We'd been studying these fish,
158
402260
2000
ืœืžื“ื ื• ื“ื’ ื–ื”.
06:44
but first we had to learn how to husbandry them.
159
404260
2000
ืืš ืงื•ื“ื ื›ืœ ื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœืœืžื•ื“ ื›ื™ืฆื“ ืœื’ื“ืœ ืื•ืชื•.
06:46
What do they like to eat?
160
406260
2000
ืžื” ื”ื ืื•ื”ื‘ื™ื ืœืื›ื•ืœ?
06:48
What is it that they're happy with?
161
408260
2000
ืขื ืžื” ื”ื ืžืจื’ื™ืฉื™ื ื‘ื ื•ื— ?
06:50
We go in the tanks with the tuna -- we touch their naked skin --
162
410260
3000
ืื ื—ื ื• ื ื›ื ืกื™ื ืœืžื›ืœื™ื ืขื ื”ื˜ื•ื ื•ืช. ื ื•ื’ืขื™ื ื‘ืขื•ืจื ื”ื—ืฉื•ืฃ.
06:53
it's pretty amazing. It feels wonderful.
163
413260
3000
ื–ื” ื“ื™ ืžื“ื”ื™ื. ื–ื” ืžืจื’ื™ืฉ ื ืคืœื.
06:56
And then, better yet,
164
416260
2000
ื•ื‘ื ื•ืกืฃ,
06:58
we've got our own version of tuna whisperers,
165
418260
2000
ื™ืฉ ืœื ื• ื’ื™ืจืกื ืฉืœ "ืœื•ื—ืฉื™ื ืœื˜ื•ื ื•ืช"
07:00
our own Chuck Farwell, Alex Norton,
166
420260
2000
ืฆ'ืง ืคืืจื•ื•ืœ ื•ืืœื›ืก ื ื•ืจืช'
07:02
who can take a big tuna
167
422260
2000
ืฉื™ื›ื•ืœื™ื ืœืงื—ืช ื˜ื•ื ื” ื’ื“ื•ืœ
07:04
and in one motion,
168
424260
2000
ื•ื‘ืชื ื•ืขื” ืื—ืช
07:06
put it into an envelope of water,
169
426260
2000
ืœืฉื™ื ืื•ืชื” ื‘ืžืขื˜ืคืช ื‘ืชื•ืš ืžื™ื
07:08
so that we can actually work with the tuna
170
428260
2000
ื‘ื›ื“ื™ ืฉื ื•ื›ืœ ืœืขื‘ื•ื“ ืขื ื”ื˜ื•ื ื”
07:10
and learn the techniques it takes
171
430260
2000
ื•ืœืœืžื•ื“ ืืช ื”ืฉื™ื˜ื•ืช
07:12
to not injure this fish
172
432260
2000
ืฉื‘ื”ืŸ ืœื• ื ืคื’ืข ื‘ื“ื’
07:14
who never sees a boundary in the open sea.
173
434260
3000
ืฉืžืขื•ืœื ืœื ื ืชืงืœ ื‘ืžื—ืกื•ืžื™ื ื‘ื™ื ื”ืคืชื•ื—.
07:17
Jeff and Jason there, are scientists
174
437260
2000
ื’'ืฃ ื•ื’'ื™ื™ืกื•ืŸ ื”ื ืžื“ืขื ื™ื
07:19
who are going to take a tuna
175
439260
2000
ืฉื”ื•ืœื›ื™ื ืœืงื—ืช ื˜ื•ื ื”
07:21
and put it in the equivalent of a treadmill, a flume.
176
441260
3000
ื•ืœืฉื™ื ืื•ืชื” ื‘ืžืงื‘ื™ืœื” ืฉืœ ื”ื”ืœื™ื›ื•ืŸ, ืชืขืœื”,
07:24
And that tuna thinks it's going to Japan, but it's staying in place.
177
444260
3000
ื•ื”ื˜ื•ื ื” ื—ื•ืฉื‘ืช ืฉื”ื™ื ื‘ื“ืจื›ื” ืœื™ืคืŸ, ืื‘ืœ ื”ื™ื ื ืฉืืจืช ื‘ืžืงื•ืžื”.
07:27
We're actually measuring its oxygen consumption,
178
447260
2000
ืื ื—ื ื• ืœืžืขืฉื” ืžื•ื“ื“ื™ื ืืช ืชืฆืจื•ื›ืช ื”ื—ืžืฆืŸ,
07:29
its energy consumption.
179
449260
2000
ืืช ืชืฆืจื•ื›ืช ื”ืื ืจื’ื™ื”.
07:32
We're taking this data and building better models.
180
452260
3000
ืื ื—ื ื• ืœื•ืงื—ื™ื ืžื™ื“ืข ื–ื” ื•ื‘ื•ื ื™ื ืžื•ื“ืœื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
07:35
And when I see that tuna -- this is my favorite view --
181
455260
3000
ื•ื›ืฉืื ื™ ืจื•ืื” ืืช ื”ื˜ื•ื ื” ื”ื–ืืช -- ื–ืืช ื“ืจืš ื”ืจืื™ื™ื” ื”ืื”ื•ื‘ื” ืืœื™ --
07:38
I begin to wonder:
182
458260
2000
ืื ื™ ืžืชื—ื™ืœื” ืœื—ืฉื•ื‘:
07:40
how did this fish solve the longitude problem before we did?
183
460260
3000
ืื™ืš ื“ื’ ื–ื” ืคืชืจ ืืช ื‘ืขื™ื•ืช ืงื•ื™ ื”ืื•ืจืš ืœืคื ื™ื ื•?
07:44
So take a look at that animal.
184
464260
2000
ืชืกืชื›ืœื• ืขืœ ื—ื™ื” ื–ื•.
07:46
That's the closest you'll probably ever get.
185
466260
2000
ื–ื” ื”ื›ื™ ืงืจื•ื‘ ืฉื›ื ืจืื” ืชื•ื›ืœื• ืœื”ืชืงืจื‘ ื‘ื—ื™ื™ื›ื.
07:48
Now, the activities from the lab
186
468260
3000
ืขื›ืฉื™ื•, ื”ืคืขื™ืœื•ื™ื•ืช ืžื”ืžืขื‘ื“ื”
07:51
have taught us now how to go out in the open ocean.
187
471260
3000
ืœื™ืžื“ื• ืื•ืชื ื• ืื™ืš ืœืฆืืช ืœืื•ืงื™ื™ื ื•ืก ื”ืคืชื•ื—.
07:54
So in a program called Tag-A-Giant
188
474260
3000
ืื– ื‘ืชื•ื›ื ื™ืช ืฉื ืงืจืืช ืชื™ื™ื’ ืขื ืง
07:57
we've actually gone from Ireland to Canada,
189
477260
3000
ืื ื—ื ื• ืœืžืขืฉื” ื ืกืขื ื• ืžืื™ืจืœื ื“ ืœืงื ื“ื”,
08:00
from Corsica to Spain.
190
480260
2000
ืžืงื•ืจืกื™ืงื” ืœืกืคืจื“.
08:02
We've fished with many nations around the world
191
482260
3000
ืื ื—ื ื• ื“ื’ื ื• ืขื ื”ืจื‘ื” ืขืžื™ื ืกื‘ื™ื‘ ื”ืขื•ืœื
08:05
in an effort to basically
192
485260
2000
ื‘ืžืืžืฅ
08:07
put electronic computers
193
487260
3000
ืœื”ื—ื“ื™ืจ ืžื—ืฉื‘ื•ื ื™ื ืืœืงื˜ืจื•ื ื™ื
08:10
inside giant tunas.
194
490260
2000
ืœืชื•ืš ื˜ื•ื ื•ืช ืขื ืงื™ื•ืช.
08:12
We've actually tagged 1,100 tunas.
195
492260
3000
ืื ื—ื ื• ืœืžืขืฉื” ืชื™ื™ื’ื ื• 1,100 ื˜ื•ื ื•ืช.
08:15
And I'm going to show you three clips,
196
495260
2000
ื•ืื ื™ ื”ื•ืœื›ืช ืœื”ืจืื•ืช ืœื›ื ืฉืœื•ืฉื” ืงืœื™ืคื™ื,
08:17
because I tagged 1,100 tunas.
197
497260
3000
ื‘ื’ืœืœ ืฉืื ื™ ืชื™ื™ื’ืชื™ 1,100 ื˜ื•ื ื•ืช.
08:20
It's a very hard process, but it's a ballet.
198
500260
3000
ื”ืชื”ืœื™ืš ืงืฉื” ืžืื•ื“, ืื‘ืœ ื–ื” ื›ืžื• ื‘ืœื˜.
08:23
We bring the tuna out, we measure it.
199
503260
3000
ืื ื—ื ื• ืžื•ืฆื™ืื™ื ืืช ื”ื˜ื•ื ื•ืช. ืžื•ื“ื“ื™ื ืื•ืชืŸ.
08:26
A team of fishers, captains, scientists and technicians
200
506260
3000
ืงื‘ื•ืฆื” ืฉืœ ื“ื™ื™ื’ื™ื, ืงืคื˜ื ื™ื, ืžื“ืขื ื™ื ื•ื˜ื›ื ืื™ื
08:29
work together to keep this animal out of the ocean
201
509260
3000
ืขื•ื‘ื“ื™ื ื‘ื™ื—ื“ ืœืฉืžื•ืจ ืขืœ ื”ื—ื™ื•ืช ื”ืœืœื• ืžื—ื•ืฅ ืœืืงื™ื™ื ื•ืก
08:32
for about four to five minutes.
202
512260
3000
ื‘ืžืฉืš ืืจื‘ืข ืœื—ืžืฉ ื“ืงื•ืช.
08:35
We put water over its gills, give it oxygen.
203
515260
3000
ืื ื—ื ื• ืฉืžื™ื ืžื™ื ืขืœ ื”ื–ื™ืžื™ื ืฉืœื”ื, ืžื‘ื™ืื™ื ืœื”ื ื—ืžืฆืŸ.
08:38
And then with a lot of effort, after tagging,
204
518260
3000
ื•ืœืื—ืจ ืžื›ืŸ ืขื ื”ืจื‘ื” ืžืืžืฅ, ืื—ืจื™ ืชื™ื•ื’,
08:41
putting in the computer,
205
521260
2000
ื•ื”ื–ื ื” ืœืžื—ืฉื‘,
08:43
making sure the stalk is sticking out so it senses the environment,
206
523260
3000
ืžื•ื•ื“ืื™ื ืฉื”ืžื›ืฉื™ืจ ืžืขืงื‘ ื‘ื•ืœื˜ ื›ืš ืฉื”ื•ื ื™ื—ื•ืฉ ืืช ื”ืกื‘ื™ื‘ื”.
08:46
we send this fish back into the sea.
207
526260
3000
ืื ื—ื ื• ืฉื•ืœื—ื™ื ืืช ื”ื“ื’ื™ื ื—ื–ืจื” ืœืžื™ื.
08:49
And when it goes, we're always happy.
208
529260
2000
ื•ืชืžื™ื“ ื›ืฉื”ื ื—ื•ื–ืจื™ื, ืื ื—ื ื• ืžืื•ืฉืจื™ื.
08:51
We see a flick of the tail.
209
531260
2000
ืื ื—ื ื• ืจื•ืื™ื ื”ืฆืœืคื” ืฉืœ ื–ื ื‘.
08:53
And from our data that gets collected,
210
533260
3000
ื•ืžื”ืžื™ื“ืข ืฉืื ื—ื ื• ืื•ืกืคื™ื,
08:56
when that tag comes back,
211
536260
2000
ื›ืฉืฉื‘ื‘ ื–ื” ื—ื•ื–ืจ,
08:58
because a fisher returns it
212
538260
2000
ื‘ื’ืœืœ ืฉื“ื™ื™ื’ ืžื—ื–ื™ืจ ืื•ืชื•
09:00
for a thousand-dollar reward,
213
540260
2000
ื‘ืขื“ ืคืจืก ืฉืœ 1,000 ื“ื•ืœืจ,
09:02
we can get tracks beneath the sea
214
542260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื‘ืœ ืจืฆื•ืขื•ืช ืžืชื—ืช ืœื™ื
09:04
for up to five years now,
215
544260
2000
ืฉืœ ื—ืžืฉ ืฉื ื™ื ืขื“ ืขื›ืฉื™ื•,
09:06
on a backboned animal.
216
546260
2000
ืขืœ ื’ื‘ื™ ืขืžื•ื“ ื”ืฉื“ืจื” ืฉืœ ื”ื—ื™ื”.
09:08
Now sometimes the tunas are really large,
217
548260
3000
ืœืคืขืžื™ื ื”ื˜ื•ื ื•ืช ื‘ืืžืช ื’ื“ื•ืœื•ืช,
09:11
such as this fish off Nantucket.
218
551260
2000
ื›ืžื• ื”ื“ื’ ื”ื–ื” ืฉืžืขืœ ื ื ื˜ืงื˜ (ืื™ ื‘ืื•ืงื™ื™ื ื•ืก ื”ืื˜ืœื ื˜ื™).
09:13
But that's about half the size
219
553260
2000
ืื‘ืœ ื–ื” ื‘ืขืจืš ื—ืฆื™ ืžื”ื’ื•ื“ืœ
09:15
of the biggest tuna we've ever tagged.
220
555260
2000
ืฉืœ ื”ื˜ื•ื ื•ืช ื”ื’ื“ื•ืœื•ืช ื‘ื™ื•ืชืจ ืฉืื ื—ื ื• ืชื™ื™ื’ื ื•.
09:17
It takes a human effort,
221
557260
2000
ื–ื” ืœื•ืงื— ืžืืžืฅ ืื ื•ืฉื™,
09:19
a team effort, to bring the fish in.
222
559260
2000
ืžืืžืฅ ืงื‘ื•ืฆืชื™, ืœื”ื‘ื™ื ืืช ื”ื“ื’ ืคื ื™ืžื”.
09:21
In this case, what we're going to do
223
561260
2000
ื‘ืžืงืจื” ื”ื–ื”, ืžื” ืฉื ืขืฉื”
09:23
is put a pop-up satellite archival tag on the tuna.
224
563260
3000
ื–ื” ื ืฆืžื™ื“ ืœื˜ื•ื ื” ืชื’ ื”ืงืœื˜ื” ืœื•ื•ื™ื ื™ ืžืชื ืชืง
09:27
This tag rides on the tuna,
225
567260
2000
ืชื’ ื–ื” ืจื•ื›ื‘ ืขืœ ื”ื˜ื•ื ื”
09:29
senses the environment around the tuna
226
569260
3000
ื—ืฉ ืืช ื”ืกื‘ื™ื‘ื” ืกื‘ื™ื‘ ื”ื˜ื•ื ื”
09:32
and actually will come off the fish,
227
572260
3000
ื•ืœืžืขืฉื” ืžืชื ืชืง ืžืŸ ื”ื˜ื•ื ื”
09:35
detach, float to the surface
228
575260
2000
ืฆืฃ ืืœ ืคื ื™ ื”ืžื™ื
09:37
and send back to Earth-orbiting satellites
229
577260
3000
ื•ืžืฉื“ืจ ื—ื–ืจื” ืืœ ืœื•ื•ื™ื ื™ื ื”ืžืงื™ืคื™ื ืืช ื›ื“ื•ืจ ื”ืืจืฅ
09:40
position data estimated by math on the tag,
230
580260
3000
ืžื™ื“ืข ืžื™ืงื•ืžื™ ืžื•ืขืจืš ืขืœ ื™ื“ื™ ืžืชืžื˜ื™ืงื” ืขืœ ื”ืฉื‘ื‘,
09:43
pressure data and temperature data.
231
583260
3000
ืžื™ื“ืข ืขืœ ืœื—ืฅ ื•ื˜ืžืคืจื˜ื•ืจื”.
09:46
And so what we get then from the pop-up satellite tag
232
586260
2000
ื•ืื– ื–ื” ืžื” ืฉืื ื—ื ื• ืžืงื‘ืœื™ื ืžื”ืฉื‘ื‘ ื”ืœื•ื•ื™ื™ื ื™ ื”ืžืชื ืชืง
09:48
is we get away from having to have a human interaction
233
588260
3000
ื–ื” ืฉืื ื—ื ื• ืžืชืจื—ืงื™ื ืžื”ืฆื•ืจืš ื‘ืื™ื ื˜ืจืืงืฆื™ื” ืื ื•ืฉื™ืช
09:51
to recapture the tag.
234
591260
2000
ื›ื“ื™ ืœื”ื—ื–ื™ืจ ืืช ื”ืฉื‘ื‘.
09:53
Both the electronic tags I'm talking about are expensive.
235
593260
3000
ืฉื ื™ ื”ืฉื‘ื‘ื™ื ื”ืืœืงื˜ืจื•ื ื™ื ืฉืื ื™ ืžื“ื‘ืจืช ืขืœื™ื”ื ื™ืงืจื™ื ืžืื•ื“.
09:56
These tags have been engineered
236
596260
2000
ื”ืฉื‘ื‘ื™ื ื”ืœืœื• ื”ื•ื ื“ืกื•
09:58
by a variety of teams in North America.
237
598260
3000
ืขืœ ื™ื“ื™ ืžื’ื•ื•ืŸ ืฆื•ื•ืชื™ื ืžืฆืคื•ืŸ ืืžืจื™ืงื”.
10:01
They are some of our finest instruments,
238
601260
2000
ื”ื ื—ืœืง ืžื”ื›ืœื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ืฉืœื ื•,
10:03
our new technology in the ocean today.
239
603260
3000
ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื›ื™ ืขื›ืฉื•ื•ื™ืช ื‘ืื•ืงื™ื ื•ืก ื›ื™ื•ื.
10:07
One community in general
240
607260
2000
ืงื”ื™ืœื” ืื—ืช ื‘ื’ื“ื•ืœ
10:09
has given more to help us than any other community.
241
609260
2000
ื”ื‘ื™ืื” ื™ื•ืชืจ ืขื–ืจื” ืžื›ืœ ืงื”ื™ืœื” ืื—ืจืช.
10:11
And that's the fisheries off the state of North Carolina.
242
611260
3000
ื•ืืœื” ื”ื ื“ื™ื™ื’ื™ ืฆืคื•ืŸ ืงืจื•ืœื™ื ื”.
10:14
There are two villages, Harris and Morehead City,
243
614260
3000
ื™ืฉ ืฉื ืฉื ื™ ื›ืคืจื™ื, ื”ืืจื™ืก ื•ืžื•ืจื”ื™ื“ ืกื™ื˜ื™.
10:17
every winter for over a decade,
244
617260
2000
ื›ืœ ื—ื•ืจืฃ ื‘ืžืฉืš ืขืฉื•ืจ,
10:19
held a party called Tag-A-Giant,
245
619260
3000
ืขื•ืจื›ื™ื ืžืกื™ื‘ื” ืฉื ืงืจืืช "ืชื™ื™ื’ ืขื ืง"
10:22
and together, fishers worked with us
246
622260
2000
ื•ื‘ื™ื—ื“ ืื™ืชื ื• ืขื–ืจื• ืœื ื• ื”ื“ื™ื™ื’ื™ื
10:24
to tag 800 to 900 fish.
247
624260
3000
ืœืชื™ื™ื’ 800 ืขื“ 900 ื“ื’ื™ื.
10:27
In this case, we're actually going to measure the fish.
248
627260
3000
ื‘ืžืงืจื” ื”ื–ื”, ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืžื“ื•ื“ ืืช ื”ื“ื’.
10:30
We're going to do something that in recent years we've started:
249
630260
3000
ืื ื—ื ื• ืขื•ืžื“ื™ื ืœืขืฉื•ืช ืžืฉื”ื• ืฉื‘ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื”ืชื—ืœื ื• ื‘ื•:
10:33
take a mucus sample.
250
633260
2000
ืœืงื—ืช ื“ื’ื™ืžืช ืจื™ืจ.
10:35
Watch how shiny the skin is; you can see my reflection there.
251
635260
3000
ืฉื™ืžื• ืœื‘ ื›ืžื” ื”ื“ื’ ืžื‘ืจื™ืง: ืจื•ืื™ื ืืช ื”ื”ืฉืชืงืคื•ืช ืฉืœื™ ืขืœื™ื•.
10:38
And from that mucus, we can get gene profiles,
252
638260
3000
ืžื”ืจื™ืจ ืื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืืช ื”ืคืจื•ืคื™ืœ ื”ื’ื ื˜ื™ ืฉืœื•.
10:41
we can get information on gender,
253
641260
2000
ืื ื• ื™ื›ื•ืœื™ื ืœื“ืขืช ืžื” ืžื™ื ื•,
10:43
checking the pop-up tag one more time,
254
643260
2000
ืœื‘ื“ื•ืง ืืช ื”ืชื’
10:45
and then it's out in the ocean.
255
645260
2000
ื•ืื– ื”ื“ื’ ื—ื•ื–ืจ ืœืื•ืงื™ื ื•ืก.
10:47
And this is my favorite.
256
647260
2000
ื•ื”ื“ื‘ืจ ื”ื‘ื ื”ื•ื ื”ืื”ื•ื‘ ืขืœื™.
10:49
With the help of my former postdoc, Gareth Lawson,
257
649260
3000
ืขื–ืจ ืœื™ ื‘ื–ื” ื”ื“ื•ืงื˜ื•ืจ ื’ืจืช' ืœื•ืกื•ืŸ
10:52
this is a gorgeous picture of a single tuna.
258
652260
2000
ื–ื•ื”ื™ ืชืžื•ื ืช ืžืขืงื‘ ื™ืคื™ืคื™ื” ืฉืœ ื˜ื•ื ื” ื™ื—ื™ื“.
10:54
This tuna is actually moving on a numerical ocean.
259
654260
3000
ื“ื’ ื–ื” ืฉื•ื—ื” ื‘ืื•ืงื™ื ื•ืก ืžืกืคืจื™.
10:57
The warm is the Gulf Stream,
260
657260
2000
ื”ืื“ื•ื ื–ื”ื• "ื–ืจื ื”ืžืคืจืฅ"
10:59
the cold up there in the Gulf of Maine.
261
659260
3000
ื”ื›ื—ื•ืœ ื–ื” ืžืคืจืฅ ืžื™ื™ืŸ
11:02
That's where the tuna wants to go -- it wants to forage on schools of herring --
262
662260
3000
ืœืฉื ื”ื“ื’ ืจื•ืฆื” ืœื”ื’ื™ืข, ื”ื•ื ื ื™ื–ื•ืŸ ืžืœื”ืงื•ืช ืžืœื™ื—.
11:05
but it can't get there. It's too cold.
263
665260
2000
ืืš ื”ื•ื ืœื ื™ื›ื•ืœ ืœื”ื’ื™ืข ืœืฉื. ืงืจ ืฉื ื™ื•ืชืจ ืžื™ื“ื™.
11:07
But then it warms up, and the tuna pops in, gets some fish,
264
667260
3000
ืื‘ืœ ืื– ื”ื“ื’ "ืžืชื—ืžื" ื•ื“ื’ ื”ื˜ื•ื ื” ื ืจืื” ืฉื•ื‘ ื‘ืชืžื•ื ื”, ื ื™ื–ื•ืŸ ืžื›ืžื” ื“ื’ื™ื,
11:10
maybe comes back to home base,
265
670260
2000
ืื•ืœื™ ื—ื•ื–ืจ ืœื‘ืกื™ืก ื”ืจืืฉื•ื ื™.
11:12
goes in again
266
672260
2000
ื•ืฉื•ื‘ ื”ื•ื ื ื›ื ืก ืœืžืคืจืฅ
11:14
and then comes back to winter down there in North Carolina
267
674260
3000
ื•ืื– ื—ื•ื–ืจ ืœื—ื•ืจืฃ ื‘ืฆืคื•ืŸ ืงืจื•ืœื™ื™ื ื”.
11:17
and then on to the Bahamas.
268
677260
2000
ืžืฉื ืœื‘ื”ืืžื”.
11:19
And my favorite scene, three tunas going into the Gulf of Mexico.
269
679260
3000
ื•ื”ืกืฆื ื” ื”ืื”ื•ื‘ื” ืขืœื™, ืฉืœื•ืฉื” ื˜ื•ื ื•ืช ืฉื•ื—ื™ื ืœืžืคืจืฅ ืžืงืกื™ืงื•.
11:22
Three tunas tagged.
270
682260
2000
ืฉืœื•ืฉื” ื˜ื•ื ื•ืช ืฉืชื•ื™ื™ื’ื•.
11:24
Astronomically, we're calculating positions.
271
684260
2000
ื‘ื’ื“ื•ืœ ืื ื—ื ื• ืื•ืกืคื™ื ืžื™ืงื•ืžื™ื.
11:26
They're coming together. That could be tuna sex --
272
686260
3000
ื”ื ืžืชืืกืคื™ื ื™ื—ื“. ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื–ื” ืžืคื’ืฉ ืžื™ื ื™ ืฉืœ ื˜ื•ื ื•ืช.
11:29
and there it is.
273
689260
2000
ื•ื”ื ื” ื–ื”.
11:31
That is where the tuna spawn.
274
691260
2000
ื›ืืŸ ื“ื’ื™ ื”ื˜ื•ื ื” ืžืฉืจื™ืฆื™ื.
11:33
So from data like this,
275
693260
2000
ืื– ืžื ืชื•ื ื™ื ื›ืืœื•,
11:35
we're able now to put the map up,
276
695260
2000
ืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœื™ืฆื•ืจ ืžืคื”,
11:37
and in this map
277
697260
2000
ื•ื‘ืžืคื” ื–ื•
11:39
you see thousands of positions
278
699260
2000
ืืชื ืจื•ืื™ื ืืœืคื™ ืžื™ืงื•ืžื™ื
11:41
generated by this decade and a half of tagging.
279
701260
3000
ืฉื ื•ืฆืจื• ื‘ืขืฉื•ืจ ื•ื—ืฆื™ ื”ืื—ืจื•ื ื™ื ืฉืœ ืชื™ื•ื’.
11:44
And now we're showing that tunas on the western side
280
704260
3000
ื•ืขื›ืฉื™ื• ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืจืื•ืช ืฉื”ื˜ื•ื ื•ืช ืฉื ืžืฆืื•ืช ื‘ืฆื“ ื”ืžืขืจื‘ื™
11:47
go to the eastern side.
281
707260
2000
ืฉื•ื—ื™ื ืœืฆื“ ื”ืžื–ืจื—ื™.
11:49
So two populations of tunas --
282
709260
2000
ืื– ื™ืฉื ืŸ ืฉืชื™ ืื•ื›ืœื•ืกื™ื•ืช ืฉืœ ื˜ื•ื ื”
11:51
that is, we have a Gulf population, one that we can tag --
283
711260
2000
ื™ืฉ ืœื ื• ืืช ืื•ื›ืœื•ืกื™ืช ื”ืžืคืจืฅ, ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืชื™ื™ื’ ืื•ืชื”
11:53
they go to the Gulf of Mexico, I showed you that --
284
713260
3000
ื”ื ืฉื•ื—ื™ื ืœืžืคืจืฅ ืžืงืกื™ืงื•, ื›ืžื• ืฉื”ืจืืชื™ ืœื›ื
11:56
and a second population.
285
716260
2000
ื•ื”ืื•ื›ืœื•ืกื™ื” ื”ืฉื ื™ื™ื”
11:58
Living amongst our tunas -- our North American tunas --
286
718260
2000
ื—ื™ื” ื‘ื™ืŸ ื”ื˜ื•ื ื•ืช ืฉืœื ื•, ื˜ื•ื ืช ืฆืคื•ืŸ ืืžืจื™ืงื”,
12:00
are European tunas that go back to the Med.
287
720260
3000
ื”ื™ื ื˜ื•ื ื” ืืจื•ืคืื™ืช ืฉื—ื•ื–ืจืช ืœืื’ืŸ ื”ื™ื ื”ืชื™ื›ื•ืŸ.
12:03
On the hot spots -- the hope spots --
288
723260
2000
ื‘ื ืงื•ื“ื•ืช ื”ืื“ื•ืžื•ืช, ื ืงื•ื“ื•ืช ื”"ืชืงื•ื•ื”",
12:05
they're mixed populations.
289
725260
2000
ื™ืฉ ืื•ื›ืœื•ืกื™ื•ืช ืžืขื•ืจื‘ื‘ื•ืช.
12:07
And so what we've done with the science
290
727260
2000
ืื– ืžื” ืฉืขืฉื™ื ื• ื‘ืขื–ืจืช ื”ืžื“ืข
12:09
is we're showing the International Commission,
291
729260
2000
ื”ื•ื ืœื”ืจืื•ืช ืœื•ืขื“ื” ื”ืขื•ืœืžื™ืช,
12:11
building new models,
292
731260
2000
ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ื—ื“ืฉื™ื,
12:13
showing them that a two-stock no-mixing model --
293
733260
2000
ืœื”ืจืื•ืช ืœื”ื ืฉื”ืžื•ื“ืœ ืฉืœ ืฉืชื™ ืฉื•ืฉืœื•ืช ืœื ืžืชืขืจื‘ื‘ื•ืช
12:15
to this day, used to reject
294
735260
3000
ืฉืขื“ ื”ื™ื•ื ืฉื™ืžืฉ ื›ื“ื™ ืœื“ื—ื•ืช
12:18
the CITES treaty --
295
738260
2000
ืืช ื•ืขื“ืช cites
12:20
that model isn't the right model.
296
740260
2000
ื”ื•ื ืื™ื ื• ื ื›ื•ืŸ.
12:22
This model, a model of overlap,
297
742260
2000
ื”ืžื•ื“ืœ ืฉืžืจืื” ื—ืคื™ืคื”
12:24
is the way to move forward.
298
744260
2000
ืจืง ื‘ืขื–ืจืชื• ื ื•ื›ืœ ืœื”ืชืงื“ื ืงื“ื™ืžื”.
12:26
So we can then predict
299
746260
2000
ื•ืื– ื ื•ื›ืœ ืœื—ื–ื•ืช
12:28
where management places should be.
300
748260
2000
ื”ื™ื›ืŸ ื”ืžืงื•ืžื•ืช ืฉื‘ื”ื ื”ืžืขืงื‘ ืฆืจื™ืš ืœื”ื™ื•ืช.
12:30
Places like the Gulf of Mexico and the Mediterranean
301
750260
3000
ืžืงื•ืžื•ืช ื›ืžื• ืžืคืจืฅ ืžืงืกื™ืงื• ื•ื”ื™ื ื”ืชื™ื›ื•ืŸ
12:33
are places where the single species,
302
753260
2000
ืฉืฉื ื ืžืฆื ื–ืŸ ืื—ื“
12:35
the single population, can be captured.
303
755260
2000
ืื•ื›ืœื•ืกื™ื” ืื—ืช, ืฉื™ื”ื™ื” ืืคืฉืจ ืœืขืงื•ื‘ ืื—ืจื™ื”.
12:37
These become forthright in places we need to protect.
304
757260
3000
ื•ื–ื” ื—ืฉื•ื‘ ื‘ืžื™ื•ื—ื“ ื‘ืงื•ืžื•ืช ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื’ืŸ ืขืœื™ื”ื.
12:40
The center of the Atlantic where the mixing is,
305
760260
3000
ื›ืžื• ืžืจื›ื– ื”ืื•ืงื™ื ื•ืก ื”ืื˜ืœื ื˜ื™ ืฉืฉื ื ืžืฆืืช ื”ืื•ื›ืœื•ืกื™ื” ื”ืžืขื•ืจื‘ืช,
12:43
I could imagine a policy that lets Canada and America fish,
306
763260
2000
ืื ื™ ื™ื›ื•ืœื” ืœื“ืžื™ื™ืŸ ืžื“ื™ื ื™ื•ืช ืฉื ื•ืชื ืช ืœืงื ื“ื” ื•ืืžืจื™ืงื” ืœื“ื•ื’,
12:45
because they manage their fisheries well,
307
765260
3000
ื‘ื’ืœืœ ืฉื”ื ืžื ื”ืœื™ื ืืช ื”ื“ื™ื™ื’ื™ื ื•ื”ื“ื™ื’ ื ื›ื•ืŸ,
12:48
they're doing a good job.
308
768260
2000
ื”ื ืขื•ืฉื™ื ืขื‘ื•ื“ื” ื˜ื•ื‘ื”.
12:50
But in the international realm,
309
770260
2000
ืื‘ืœ ื‘ืชื—ื•ื ื”ื‘ื™ืŸ ืœืื•ืžื™,
12:52
where fishing and overfishing has really gone wild,
310
772260
2000
ื”ื™ื›ืŸ ืฉื”ื“ื™ื™ื’ื™ื ื•ื“ื™ื™ื’ ื”ื™ืชืจ ื‘ืืžืช ื”ื™ื• ืœืœื ื‘ืงืจื”,
12:54
these are the places that we have to make hope spots in.
311
774260
3000
ื‘ืžืงื•ืžื•ืช ืืœื• ืื ื• ืฆืจื™ื›ื™ื ืœื™ืฆื•ืจ ืื–ื•ืจื™ "ืชืงื•ื•ื”".
12:57
That's the size they have to be to protect the bluefin tuna.
312
777260
3000
ื•ื–ื” ื”ื’ื•ื“ืœ ืฉื”ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ื‘ื›ื“ื™ ืœื”ื’ืŸ ืขืœ ื”ื˜ื•ื ืช ื›ื—ื•ืœืช ื”ืกื ืคื™ืจ.
13:00
Now in a second project
313
780260
2000
ื•ืขื›ืฉื™ื• ืคืจื•ื™ืงื˜ ื ื•ืกืฃ
13:02
called Tagging of Pacific Pelagics,
314
782260
2000
ืฉื ืงืจื ืœืชื™ื™ื’ ืืช ื”ืื•ืงื™ื™ื ื•ืก ื”ืฉืงื˜
13:04
we took on the planet as a team,
315
784260
2000
ืื ื—ื ื• ืœื•ืงื—ื™ื ืืช ื”ืขื•ืœื ื›ืงื‘ื•ืฆื”,
13:06
those of us in the Census of Marine Life.
316
786260
2000
ืืœื• ืžืื™ืชื ื• ืฉืขื•ื‘ื“ื™ื ื‘ืžืคืงื“ื™ ืื•ื›ืœื•ืกื™ืŸ ืฉืœ ื™ืฆื•ืจื™ื ื™ืžื™ื™ื.
13:08
And, funded primarily through Sloan Foundation and others,
317
788260
4000
ื•ืฉืžืžื•ืžื ื™ื ืขืœ ื™ื“ื™ ืงืจื ื•ืช ืฉืงืฉื•ืจื•ืช ืœื ื•ืฉื,
13:12
we were able to actually go in, in our project --
318
792260
3000
ื™ืฉ ื‘ื™ื›ื•ืœืชื ื• ื‘ืžืกื’ืจืช ื”ืคืจื•ื™ืงื˜
13:15
we're one of 17 field programs
319
795260
2000
ืฉื‘ื• ืื ื—ื ื• ืงื‘ื•ืฆื” ืื—ืช ืžืชื•ืš 17 ืงื‘ื•ืฆื•ืช "ืฉื“ื”"
13:17
and begin to take on tagging large numbers of predators,
320
797260
3000
ืœื”ืชื—ื™ืœ ืœืชื™ื™ื’ ืžืกืคืจ ืจื‘ ืฉืœ ื˜ื•ืจืคื™ื,
13:20
not just tunas.
321
800260
2000
ืœื ืจืง ื˜ื•ื ื•ืช.
13:22
So what we've done
322
802260
2000
ืื– ืžื” ืฉืขืฉื™ื ื•
13:24
is actually gone up to tag salmon shark in Alaska,
323
804260
3000
ื”ื™ื” ืœืœื›ืช ืœืชื™ื™ื’ ืืช ื›ืจื™ืฉ ื”ืกืœืžื•ืŸ ื‘ืืœืกืงื”,
13:27
met salmon shark on their home territory,
324
807260
3000
ืคื’ืฉื ื• ืื•ืชื ื‘ื˜ืจื™ื˜ื•ืจื™ื” ื”ื‘ื™ืชื™ืช ืฉืœื”ื,
13:30
followed them catching salmon
325
810260
2000
ืฆืคื™ื ื• ื‘ื”ื ืฆื“ื™ื ืกืœืžื•ืŸ
13:32
and then went in and figured out
326
812260
2000
ื•ื”ืกืงื ื•
13:34
that, if we take a salmon and put it on a line,
327
814260
3000
ืฉืื ื ื™ืงื— ืกืœืžื•ืŸ ื•ื ืฉื™ื ืื•ืชื• ืขืœ ืงื•,
13:37
we can actually take up a salmon shark --
328
817260
2000
ืื ื—ื ื• ืžืžืฉ ื ื•ื›ืœ ืœืงื—ืช ืืช ื›ืจื™ืฉ ื”ืกืœืžื•ืŸ
13:39
This is the cousin of the white shark --
329
819260
2000
ืฉื”ื•ื ืงืจื•ื‘ ืžืฉืคื—ื” ืฉืœ ื”ืขืžืœืฅ ื”ืœื‘ืŸ..
13:41
and very carefully --
330
821260
2000
ื•ืžืื•ื“ ื‘ื–ื”ื™ืจื•ืช
13:43
note, I say "very carefully," --
331
823260
2000
ืฉื™ืžื• ืœื‘ ืฉืืžืจืชื™ ืžืื•ื“! ื‘ื–ื”ื™ืจื•ืช!
13:45
we can actually keep it calm,
332
825260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืื™ืจ ืื•ืชื• ืจื’ื•ืข,
13:47
put a hose in its mouth, keep it off the deck
333
827260
3000
ืœืฉื™ื ื‘ืคื™ื• ืฆื™ื ื•ืจ, ืžื‘ืœื™ ืœืขืœื•ืช ืื•ืชื• ืœืกื™ืคื•ืŸ
13:50
and then tag it with a satellite tag.
334
830260
3000
ื•ืื– ืœืชื™ื™ื’ ืื•ืชื• ื‘ืชื’ ืœื•ื•ื™ื ื™.
13:53
That satellite tag will now have your shark phone home
335
833260
3000
ืžืขื›ืฉื™ื• ื”ืชื’ ื”ืœื•ื•ื™ื ื™ ื™ืงืฉื•ืจ ืื•ืชื• ืœ"ื˜ืœืคื•ืŸ " ื”ื‘ื™ื™ืชื™ ืฉืœื ื•.
13:56
and send in a message.
336
836260
2000
ื•ื™ืฉืœื— ืชืฉื“ื•ืจื•ืช.
13:58
And that shark leaping there, if you look carefully, has an antenna.
337
838260
3000
ื•ื”ื›ืจื™ืฉ ืฉืžื–ื ืง ืฉื, ืื ืชืกืชื›ืœื• ื˜ื•ื‘, ืžื—ื•ื‘ืจืช ืืœื™ื• ืื ื˜ื ื”.
14:01
It's a free swimming shark with a satellite tag
338
841260
2000
ื–ื”ื• ื›ืจื™ืฉ ื—ื•ืคืฉื™ ืขื ืชื’ ืœื•ื•ื™ื ื™
14:03
jumping after salmon,
339
843260
2000
ืฉืงื•ืคืฅ ื‘ืขืงื‘ื•ืช ื’ื“ ืกืœืžื•ืŸ,
14:05
sending home its data.
340
845260
3000
ื•ืฉื•ืœื— ื—ื–ืจื” ื ืชื•ื ื™ื.
14:09
Salmon sharks aren't the only sharks we tag.
341
849260
2000
ื›ืจื™ืฉื™ ืกืœืžื•ืŸ ืื™ื ื ื”ื›ืจื™ืฉื™ื ื”ื™ื—ื™ื“ื™ื ืฉืชื™ื™ื’ื ื•.
14:11
But there goes salmon sharks with this meter-level resolution
342
851260
3000
ืื‘ืœ ื”ื ื” ื›ืจื™ืฉื™ ื”ืกืœืžื•ืŸ ืขืœ ืคื™ ืจื–ื•ืœื•ืฆื™ื” ืœืžื˜ืจ
14:14
on an ocean of temperature -- warm colors are warmer.
343
854260
3000
ืขืœ ืื•ืงื™ื™ื ื•ืก ืฉืœ ื˜ืžืคืจื˜ื•ืจื•ืช, ื”ืฆื‘ืขื™ื ื”ื—ืžื™ื ืžื™ื™ืฆื’ื™ื ื˜ืžืคืจื˜ื•ืจื•ืช ื’ื‘ื•ื”ื•ืช.
14:17
Salmon sharks go down
344
857260
2000
ื›ืจื™ืฉ ื”ืกืœืžื•ืŸ ื™ื•ืจื“ ืœืžื˜ื”
14:19
to the tropics to pup
345
859260
2000
ืฆืฅ ื‘ืื–ื•ืจื™ื ื”ื˜ืจื•ืคื™ื
14:21
and come into Monterey.
346
861260
2000
ื•ืžื’ื™ืข ืœืžื•ื ื˜ืจื™ื™.
14:23
Now right next door in Monterey and up at the Farallones
347
863260
3000
ื•ืžืžืฉ ื‘ื“ืœืช ืœื™ื™ื“ ื‘ืžื•ื ื˜ืจื™ื™ ื•ืžืขืœ ืื™ื™ ืคืืจืืœื•ื ืก
14:26
are a white shark team led by Scott Anderson -- there --
348
866260
2000
ื ืžืฆืืช ืงื‘ื•ืฆืช ื”ืขืžืœืฅ ื”ืœื‘ืŸ ื‘ื”ื•ื‘ืœืช ืกืงื•ื˜ ืื ื“ืจืกื•ืŸ
14:28
and Sal Jorgensen.
349
868260
2000
ื•ืกืืœ ื’'ื•ืจื’ื ืกื•ืŸ.
14:30
They can throw out a target --
350
870260
2000
ื”ื ื™ื›ื•ืœื™ื ืœื–ืจื•ืง ืคืชื™ื•ืŸ-
14:32
it's a carpet shaped like a seal --
351
872260
2000
ืฉื˜ื™ื— ืฉืžืขื•ืฆื‘ ื›ืžื• ื›ืœื‘ ื™ื
14:34
and in will come a white shark, a curious critter
352
874260
3000
ื•ื›ืขื‘ื•ืจ ื–ืžืŸ ืžื” ื™ื’ื™ืข ืขืžืœืฅ ืœื‘ืŸ, ืฉื”ื•ื ื™ืฆื•ืจ ืกืงืจืŸ
14:37
that will come right up to our 16-ft. boat.
353
877260
3000
ืฉื™ื’ื™ืข ืขื“ ืœืกื™ืจืช ื—ืžืฉ ืžื˜ืจ ืฉืœื ื•.
14:40
It's a several thousand-pound animal.
354
880260
2000
ื–ื•ื”ื™ ื—ื™ื” ืฉืฉื•ืงืœืช ืžืื•ืช ืงื™ืœื•ื’ืจืžื™ื.
14:42
And we'll wind in the target.
355
882260
3000
ื•ืื ื—ื ื• ื ื ื™ื— ืืช ื”ืžื˜ืจื”.
14:45
And we'll place an acoustic tag
356
885260
2000
ื•ื ืžืงื ืขืœื™ื™ื” ืชื’ ืืงื•ืกื˜ื™
14:47
that says, "OMSHARK 10165,"
357
887260
2000
ืฉืื•ืžืจ ื›ืจื™ืฉ ืžืกืคืจ 10165
14:49
or something like that, acoustically with a ping.
358
889260
3000
ืื• ืžืฉื”ื• ื›ื–ื”, ืืงื•ืกื˜ื™ ืขื ืคื™ื ื’.
14:52
And then we'll put on a satellite tag
359
892260
2000
ื•ืื– ื ืฉื™ื ืขืœื™ื• ืชื’ ืœื•ื•ื™ื ื™
14:54
that will give us the long-distance journeys
360
894260
3000
ืฉื™ืชืŸ ืœื ื• ื ืชื•ื ื™ื ืœื’ื‘ื™ ืžืจื—ืงื™ ื”ืžืกืขื•ืช ืฉืœ ื”ื›ืจื™ืฉ.
14:57
with the light-based geolocation algorithms
361
897260
2000
ืขืœ ืคื™ ื—ื™ืฉื•ื‘ ื ืชื•ื ื™ ื”ืžื™ืงื•ื ื•ื”ืื•ืจ
14:59
solved on the computer that's on the fish.
362
899260
3000
ืฉื ืคืชืจื• ืขืœ ื™ื“ื™ ื”ืžื—ืฉื‘ ืฉืขืœ ื”ื›ืจื™ืฉ.
15:02
So in this case, Sal's looking at two tags there,
363
902260
3000
ื‘ืžืงืจื” ื–ื”, ืกืืœ ืฆื•ืคื” ื‘ืฉื ื™ ืชื’ื™ื.
15:05
and there they are: the white sharks of California
364
905260
3000
ื•ื”ื ื” ื”ื: ื”ืขืžืœืฆื™ื ื”ืœื‘ื ื™ื ืฉืœ ืงืœื™ืคื•ืจื ื™ื”
15:08
going off to the white shark cafe and coming back.
365
908260
3000
ื‘ื“ืจื›ื ืœ"ืงืคื”" ืฉืœ ืขืžืœืฆื™ื ืœื‘ื ื™ื ื•ืฉื‘ื™ื ื—ื–ืจื”.
15:12
We also tag makos with our NOAA colleagues,
366
912260
2000
ื‘ื ื•ืกืฃ ืชื™ื™ื’ื ื• ื›ืจื™ืฉื™ ืžืืงื• ื‘ื™ื—ื“ ืขื ื”ืฉื•ืชืคื™ื ืฉืœื ื• ื‘"ื ื•ืื",
15:14
blue sharks.
367
914260
2000
ื•ื›ืจื™ืฉื™ื ื›ื—ื•ืœื™ื.
15:16
And now, together, what we can see
368
916260
2000
ืŸืขื›ืฉื™ื• ื ื•ื›ืœ ืœืจืื•ืช,
15:18
on this ocean of color that's temperature,
369
918260
2000
ื‘ืื•ืงื™ื™ื ื•ืก ืฆื‘ืขื™ ื”ื˜ืžืคืจื˜ื•ืจื” ื”ื–ื”,
15:20
we can see ten-day worms of makos and salmon sharks.
370
920260
3000
(ืืช ืžื” ืฉื ืจืื” ื›ืชื•ืœืขืช) ื”ื•ื ืžืขืงื‘ ืฉืœ ืขืฉืจื” ื™ืžื™ื ืฉืœ ื›ืจื™ืฉื™ ืžืืงื• ื•ืกืœืžื•ืŸ.
15:24
We have white sharks and blue sharks.
371
924260
2000
ื•ื™ืฉ ืœื ื• ื’ื ืขืžืœืฆื™ื ืœื‘ื ื™ื ื•ื›ืจื™ืฉื™ื ื›ื—ื•ืœื™ื.
15:26
For the first time,
372
926260
2000
ื‘ืคืขื ื”ืจืืฉื•ื ื”,
15:28
an ecoscape as large as ocean-scale,
373
928260
2000
ื‘ืงื ื” ืžื™ื“ื” ืฉืœ ืฉื˜ื— ื’ื“ื•ืœ ื›ืžื™ืžื“ื™ื ืฉืœ ืื•ืงื™ื ื•ืก,
15:30
showing where the sharks go.
374
930260
3000
ื ื™ืชืŸ ืœืจืื•ืช ืœืืŸ ื”ื›ืจื™ืฉื™ื ื”ื•ืœื›ื™ื.
15:33
The tuna team from TOPP has done the unthinkable:
375
933260
3000
ืงื‘ื•ืฆืช ื”ื˜ื•ื ื” ืž"ื˜ื•ืคืค" ืขืฉืชื” ืืช ื”ืœื ื™ืื•ืžืŸ:
15:36
three teams tagged 1,700 tunas,
376
936260
3000
ืฉืœื•ืฉื” ืฆื•ื•ืชื™ื ืชื™ื™ื’ื• 1,700 ื˜ื•ื ื•ืช,
15:39
bluefin, yellowfin and albacore
377
939260
2000
ื›ื—ื•ืœืช ืกืคื™ืจ, ืฆื”ื•ื‘ืช ืกืคื™ืจ, ื˜ื•ื ืช ืืœื‘ืงื•ืจ
15:41
all at the same time --
378
941260
2000
ื•ื›ื•ืœื ื‘ืื•ืชื• ื–ืžืŸ.
15:43
carefully rehearsed tagging programs
379
943260
2000
ื‘ื–ื”ื™ืจื•ืช ื”ื ืชื™ืจื’ืœื• ืืช ืชื™ื•ื’ ื”ื˜ื•ื ื•ืช
15:45
in which we go out, pick up juvenile tunas,
380
945260
3000
ืฉื‘ื” ื™ื•ืฆืื™ื ืœืฉื˜ื—, ืื•ืกืคื™ื ื“ื’ื™ ื˜ื•ื ื” ืฆืขื™ืจื™ื,
15:48
put in the tags that actually have the sensors,
381
948260
3000
ืžืฆืžื™ื“ื™ื ืœื”ื ืืช ืชื’ ืขื ื—ื™ื™ืฉื ื™ื,
15:51
stick out the tuna
382
951260
2000
ืฉื‘ื•ืœื˜ ืขืœ ื’ื•ืฃ ื”ื“ื’
15:53
and then let them go.
383
953260
2000
ื•ืื– ืžืฉื—ืจืจื™ื ืื•ืชื.
15:55
They get returned, and when they get returned,
384
955260
2000
ื”ื ืฉื•ืœื—ื™ื ืื•ืช ื ืชื•ื ื™ื, ื•ื›ืืฉืจ ื”ื ืฉื•ืœื—ื™ื ืืช ื”ืื•ืช,
15:57
here on a NASA numerical ocean
385
957260
3000
ื”ื ื” ืขืœ ื”ืื•ืงื™ื ื•ืก ืฉืžืžืงื ืืช ื”ืื•ืชื•ืช, ืฉืคื•ืชื— ืขืœ ื™ื“ื™ ื ืืก"ื
16:00
you can see bluefin in blue
386
960260
2000
ืืคืฉืจ ืœืจืื•ืช ื‘ื›ื—ื•ืœ ื“ื’ื™ ื˜ื•ื ื” ื›ื—ื•ืœืช ืกืคื™ืจ
16:02
go across their corridor,
387
962260
2000
ืขื•ื‘ืจื™ื ื“ืจืš ื”ืžืกื“ืจื•ืŸ,
16:04
returning to the Western Pacific.
388
964260
3000
ื—ื•ื–ืจื™ื ืœืžืขืจื‘ ื”ืื•ืงื™ื ื•ืก ื”ืฉืงื˜.
16:07
Our team from UCSC has tagged elephant seals
389
967260
3000
ื”ืงื‘ื•ืฆื” ืฉืœื ื• ืž ucsc ,ืชื™ื™ื’ื” ืคื™ืœ ื™ื
16:10
with tags that are glued on their heads, that come off when they slough.
390
970260
3000
ืขื ืชื’ ืฉื“ื‘ื•ืง ืขืœ ืจืืฉื™ื”ื, ืืฉืจ ื™ื•ืจื“ ื›ืฉื”ื ืžืชืคืœืฉื™ื ื‘ื‘ื•ืฅ.
16:13
These elephant seals cover half an ocean,
391
973260
3000
ืคื™ืœ ื”ื™ื ื”ื–ื” ื’ืžื ืฉื ื™ ื—ืฆืื™ ืื•ืงื™ื ื•ืกื™ื,
16:16
take data down to 1,800 feet --
392
976260
2000
ืœืงื— ืžื™ื“ืข ืขื“ ืขื•ืžืง ืฉืœ 600 ืžื˜ืจ --
16:18
amazing data.
393
978260
2000
ืžื™ื“ืข ืžื“ื”ื™ื.
16:20
And then there's Scott Shaffer and our shearwaters
394
980260
3000
ื•ื”ื ื” ืกืงื•ื˜ ืฉืคืจ ื•ื”ืื–ื•ืจ ื”ืžืฉื•ืชืฃ ืฉืœื ื•
16:23
wearing tuna tags, light-based tags,
395
983260
3000
ืžืชื™ื™ื’ ื˜ื•ื ื•ืช ื‘ืชื’
16:26
that now are going to take you from New Zealand to Monterey and back,
396
986260
3000
ืฉืขื›ืฉื™ื• ื™ืงื— ืื•ืชื ื• ืžื ื™ื• ื–ื™ืœื ื“ ืœืžื•ื ื˜ืจื™ื™ ื•ื—ื–ืจื”,
16:29
journeys of 35,000 nautical miles
397
989260
3000
35,000 ืžื™ื™ืœ ืฉืœ ืžืกืข ื™ืžื™
16:32
we had never seen before.
398
992260
2000
ืฉืžืขื•ืœื ืœื ื ืจืื” ื‘ืขื‘ืจ.
16:34
But now with light-based geolocation tags that are very small,
399
994260
3000
ืื‘ืœ ืขื›ืฉื™ื• ืขื ื”ืชื’ื™ื ื”ืงื˜ื ื™ื ืฉื ื•ืชื ื™ื ืœื ื• ืžื™ืงื•ื ื’ืื•ื’ืจืคื™,
16:37
we can actually see these journeys.
400
997260
2000
ืื ื—ื ื• ืžืžืฉ ื™ื›ื•ืœื™ื ืœืฆืคื•ืช ื‘ืžืกืข ื”ื–ื”.
16:39
Same thing with Laysan albatross
401
999260
2000
ืื•ืชื• ื“ื‘ืจ ืขื ืืœื‘ื˜ืจื•ืก ื ืฆื—ื™
16:41
who travel an entire ocean
402
1001260
2000
ืืฉืจ ืขืฃ ืขืœ ืคื ื™ ืื•ืงื™ื ื•ืก ืฉืœื
16:43
on a trip sometimes,
403
1003260
2000
ื‘ืžื”ืœืš ืžืกืข,
16:45
up to the same zone the tunas use.
404
1005260
2000
ืืœ ืื•ืชื• ืื–ื•ืจ ืฉืžืฉืžืฉ ืืช ื“ื’ื™ ื”ื˜ื•ื ื”.
16:47
You can see why they might be caught.
405
1007260
3000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžื” ื”ืกื™ื‘ื” ืฉื‘ื’ืœืœื” ื”ื ืขืœื•ืœื™ื ืœื”ื™ืชืคืก.
16:50
Then there's George Schillinger and our leatherback team out of Playa Grande
406
1010260
3000
ื•ื”ื ื” ื’'ื•ืจื’' ืฉื™ืœื™ื ื’'ืจ ื•ืงื‘ื•ืฆืช ืชื™ื•ื’ ืฆื‘ื™ ื”ื™ื ื”ื’ื™ืœื“ื™ื™ื ืืฉืจ ื ืžืฆืื™ื ื‘ืคืœื™ื” ื’ืจื ื“ื”
16:53
tagging leatherbacks
407
1013260
2000
ืžืชื™ื™ื’ื™ื ืฆื‘ื™ ื™ื ื’ื™ืœื“ื™ื™ื
16:55
that go right past where we are.
408
1015260
3000
ืฉืขื•ื‘ืจื™ื ื‘ื“ื™ื•ืง ืื™ืคื” ืฉืื ื—ื ื•.
16:58
And Scott Benson's team
409
1018260
2000
ื•ื”ืฆื•ื•ืช ืฉืœ ืกืงื•ื˜ ื‘ื ืกื•ืŸ
17:00
that showed that leatherbacks go from Indonesia
410
1020260
2000
ืฉื”ืจืืชื” ืฉืฆื‘ื™ ื”ื™ื ื”ื’ื™ืœื“ื™ื™ื ื‘ืื™ื ืžืื™ื ื“ื•ื ื–ื™ื”
17:02
all the way to Monterey.
411
1022260
2000
ื›ืœ ื”ื“ืจืš ืœืžื•ื ื˜ืจื™ื™.
17:04
So what we can see on this moving ocean
412
1024260
3000
ืื– ืžื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ื‘ืื•ืงื™ื ื•ืก ื”ื—ื™ ื”ื–ื”
17:07
is we can finally see where the predators are.
413
1027260
3000
ื”ื•ื ืื™ืคื” ื”ื˜ื•ืจืคื™ื ื ืžืฆืื™ื.
17:10
We can actually see how they're using ecospaces
414
1030260
3000
ืื ื—ื ื• ืžืžืฉ ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื™ืš ื”ื ืžื ืฆืœื™ื ืžืจื—ื‘ื™ื
17:13
as large as an ocean.
415
1033260
2000
ื’ื“ื•ืœื™ื ื›ืžื• ืื•ืงื™ื™ื ื•ืก.
17:15
And from this information,
416
1035260
2000
ื•ืžื”ืžื™ื“ืข ื”ื–ื”,
17:17
we can begin to map the hope spots.
417
1037260
3000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืœืžืคื•ืช ืืช ื ืงื•ื“ื•ืช ื”ืชืงื•ื•ื”..
17:20
So this is just three years of data right here --
418
1040260
2000
ื•ื–ื” ืžื™ื“ืข ืฉื ืืกืฃ ื‘ืžืฉืš ืฉืœื•ืฉ ืฉื ื™ื ื‘ืœื‘ื“.
17:22
and there's a decade of this data.
419
1042260
2000
ื•ื”ื ื” ืขืฉื•ืจ ืฉืœ ืžื™ื“ืข ื–ื”.
17:24
We see the pulse and the seasonal activities
420
1044260
2000
ืื ื—ื ื• ืจื•ืื™ื ืืช ื”ืคื•ืœืกื™ื ื•ื”ืคืขื•ืœื•ืช ื”ืขื•ื ืชื™ื•ืช
17:26
that these animals are going on.
421
1046260
3000
ืฉื”ื—ื™ื•ืช ื”ืœืœื• ืขื•ื‘ืจื•ืช.
17:30
So what we're able to do with this information
422
1050260
2000
ืื– ืžื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืขื ื”ืžื™ื“ืข ื”ื–ื”
17:32
is boil it down to hot spots,
423
1052260
3000
ืžืชื›ื•ื•ืฅ ืœื ืงื•ื“ื•ืช ื—ืžื•ืช,
17:35
4,000 deployments,
424
1055260
2000
ืฉืคืจื•ืกื•ืช ืขืœ 4,000 ืื–ื•ืจื™ื,
17:37
a huge herculean task,
425
1057260
3000
ืžืฉื™ืžื” ืขื ืงื™ืช ืจื‘ืช ื›ื•ื—,
17:40
2,000 tags
426
1060260
2000
2,000 ืฉื‘ื‘ื™ื
17:42
in an area, shown here for the first time,
427
1062260
2000
ื‘ืื–ื•ืจ, ืฉื ืจืื” ื›ืืŸ ื‘ืคืขื ื”ืจืืฉื•ื ื”,
17:44
off the California coast,
428
1064260
2000
ืฉืœ ื”ื—ื•ืฃ ื”ืงืœื™ืคื•ืจื ื™,
17:46
that appears to be a gathering place.
429
1066260
3000
ืฉืžืกืชืžืŸ ืฉื”ื•ื ืžืงื•ื ื”ืชื›ื ืกื•ืช.
17:50
And then for sort of an encore from these animals,
430
1070260
3000
ื•ืื– ื‘ืžื” ืฉื ืจืื” ื›ืžื• ืกื•ื’ ืฉืœ ืžื—ื•ื•ื”
17:53
they're helping us.
431
1073260
2000
ื”ื ืขื•ื–ืจื™ื ืœื ื•.
17:55
They're carrying instruments
432
1075260
2000
ื”ื ื ื•ืฉืื™ื ืžื›ืฉื™ืจื™ื
17:57
that are actually taking data down to 2,000 meters.
433
1077260
3000
ืฉืœืžืขืฉื” ืœื•ืงื—ื™ื ืžื™ื“ืข ืœืขื•ืžืง ืฉืœ 2,000 ืžื˜ืจ.
18:00
They're taking information from our planet
434
1080260
2000
ื”ื ืœื•ืงื—ื™ื ืžื™ื“ืข ืžื›ื“ื•ืจ ื”ืืจืฅ ืฉืœื ื•
18:02
at very critical places like Antarctica and the Poles.
435
1082260
3000
ืžืžืงื•ืžื•ืช ืงืจื™ื˜ื™ื™ื ื›ืžื• ืื ื˜ืจืงื˜ื™ืงื” ื•ื”ืงื˜ื‘ื™ื.
18:05
Those are seals from many countries
436
1085260
2000
ืืœื• ื›ืœื‘ื™ ื™ื ืžืžื“ื™ื ื•ืช ืจื‘ื•ืช
18:07
being released
437
1087260
2000
ืฉืฉื•ื—ืจืจื•
18:09
who are sampling underneath the ice sheets
438
1089260
2000
ืฉื“ื•ื’ืžื™ื ืžืชื—ืช ืœืžืฉื˜ื—ื™ ื”ืงืจื—
18:11
and giving us temperature data of oceanographic quality
439
1091260
3000
ื•ื ื•ืชื ื™ื ืœื ื• ื ืชื•ื ื™ ื˜ืžืคืจื˜ื•ืจื” ื‘ืื™ื›ื•ืช ืื•ืงื™ืื ื•ื’ืจืคื™ืช
18:14
on both poles.
440
1094260
2000
ื‘ืฉื ื™ ื”ืงื˜ื‘ื™ื.
18:16
This data, when visualized, is captivating to watch.
441
1096260
3000
ื”ืžื™ื“ืข ื”ื–ื”, ื›ืฉืžื•ืฆื’ ื‘ืื•ืคืŸ ื—ื–ื•ืชื™, ืฉื•ื‘ื” ืœื‘.
18:19
We still haven't figured out best how to visualize the data.
442
1099260
3000
ืื ื—ื ื• ืขื“ื™ื™ืŸ ืœื ื”ื‘ื ื• ืืช ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื”ืฆื™ื’ ืืช ื”ืžื™ื“ืข.
18:22
And then, as these animals swim
443
1102260
2000
ื•ืื–, ื›ืฉื”ื—ื™ื•ืช ื”ืœืœื• ืฉื•ื—ื•ืช
18:24
and give us the information
444
1104260
2000
ื•ื ื•ืชื ื•ืช ืœื ื• ืืช ื”ืžื™ื“ืข
18:26
that's important to climate issues,
445
1106260
2000
ื–ื” ืขื•ื–ืจ ืœื ื• ืขื ื‘ืขื™ื•ืช ื”ืืงืœื™ื,
18:28
we also think it's critical
446
1108260
2000
ื‘ื ื•ืกืฃ ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื” ืงืจื™ื˜ื™
18:30
to get this information to the public,
447
1110260
2000
ืœื”ื‘ื™ื ืžื™ื“ืข ื–ื” ืœืฆื™ื‘ื•ืจ,
18:32
to engage the public with this kind of data.
448
1112260
3000
ื•ืœืžืฉื•ืš ืืช ื”ืฆื™ื‘ื•ืจ ืขื ืžื™ื“ืข ืžืกื•ื’ ื–ื”.
18:35
We did this with the Great Turtle Race --
449
1115260
2000
ืขืฉื™ื ื• ื–ืืช ืขื ืชื—ืจื•ืช ื”ืฆื‘ ื”ื’ื“ื•ืœ --
18:37
tagged turtles, brought in four million hits.
450
1117260
3000
ืชื™ื™ื’ื ื• ืฆื‘ื™ื, ืฉื”ื‘ื™ืื• ืืจื‘ืขื” ืžื™ืœื™ื•ืŸ ืฆืคื™ื•ืช.
18:40
And now with Google's Oceans,
451
1120260
3000
ื•ืขื›ืฉื™ื• ืขื ื’ื•ื’ืœ ืื•ืงื™ื™ื ื•ืกื™ื
18:43
we can actually put a white shark in that ocean.
452
1123260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœืฉื™ื ื›ืจื™ืฉ ืœื‘ืŸ ื‘ืื•ืงื™ื™ื ื•ืก.
18:45
And when we do and it swims,
453
1125260
2000
ื•ื›ืฉื ืขืฉื” ื–ืืช ื•ื”ื•ื ื™ืชื—ื™ืœ ืœืฉื—ื•ืช,
18:47
we see this magnificent bathymetry
454
1127260
2000
ืื ื—ื ื• ื ืจืื” ืืช ืžื“ื™ื“ืช ื”ืขื•ืžืง ื”ืžืจื”ื™ื‘ื” ื”ื–ืืช
18:49
that the shark knows is there on its path
455
1129260
2000
ืฉื”ื›ืจื™ืฉ ื™ื•ื“ืข ืฉื–ื” ื‘ื“ืจื›ื•
18:51
as it goes from California to Hawaii.
456
1131260
2000
ื•ื”ื•ื ืฉื•ื—ื” ืžืงืœื™ืคื•ืจื ื™ื” ืœื”ื•ื•ืื™.
18:53
But maybe Mission Blue
457
1133260
2000
ืื‘ืœ ืื•ืœื™ ืžืฉื™ืžื” ื›ื—ื•ืœื”
18:55
can fill in that ocean that we can't see.
458
1135260
3000
ื™ื›ื•ืœื” ืœื”ืฉืœื™ื ืืช ืื–ื•ืจ ื”ืื•ืงื™ื™ื ื•ืก ืฉืื ื—ื ื• ืขื“ื™ื™ืŸ ืœื ื™ื›ื•ืœื™ื ืœืจืื•ืช.
18:58
We've got the capacity, NASA has the ocean.
459
1138260
3000
ื™ืฉ ืœื ื• ืืช ื”ื™ื›ื•ืœืช, ืœ-NASA ื™ืฉ ืืช ื”ืื•ืงื™ื™ื ื•ืก.
19:01
We just need to put it together.
460
1141260
2000
ืื ื—ื ื• ืจืง ืฆืจื™ื›ื™ื ืœื—ื‘ืจ ืื•ืชื.
19:03
So in conclusion,
461
1143260
2000
ื•ืœื›ืŸ ื”ืžืกืงื ื” ื”ื™ื,
19:05
we know where Yellowstone is for North America;
462
1145260
3000
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืื™ืคื” ื™ื™ืœื•ืกื˜ื•ืŸ, ื‘ืฆืคื•ืŸ ืืžืจื™ืงื”;
19:08
it's off our coast.
463
1148260
2000
ื–ื” ืžืขื‘ืจ ืœื—ื•ืคื™ื ืฉืœื ื•.
19:10
We have the technology that's shown us where it is.
464
1150260
2000
ื™ืฉ ืœื ื• ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืžืจืื” ืœื ื• ืื™ืคื” ื–ื”.
19:12
What we need to think about perhaps for Mission Blue
465
1152260
3000
ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ืขืœื™ื•
19:15
is increasing the biologging capacity.
466
1155260
3000
ื”ื•ื ื”ื’ื“ืœืช ื ืคื— ื”ื™ื“ืข
19:18
How is it that we can actually
467
1158260
2000
ืื™ืš ื ื•ื›ืœ ื‘ืืžืช
19:20
take this type of activity elsewhere?
468
1160260
3000
ืœื”ืฉืชืžืฉ ื‘ื™ื“ืข ื–ื” ื‘ืฉื‘ื™ืœ ื“ื‘ืจื™ื ื ื•ืกืคื™ื?
19:23
And then finally -- to basically get the message home --
469
1163260
3000
ื•ืœื‘ืกื•ืฃ, ืœื”ืขื‘ื™ืจ ืืช ื”ืžืกืจ ืœื‘ื™ืช,
19:26
maybe use live links
470
1166260
2000
ืื•ืœื™ ื‘ืขื–ืจืช ืฉื™ืžื•ืฉ ื‘ืขืจื•ืฆื™ื ื—ื™ื™ื
19:28
from animals such as blue whales and white sharks.
471
1168260
2000
ื›ืžื• ื”ืœื•ื•ื™ืชืŸ ื”ื›ื—ื•ืœ ื•ื”ืขืžืœืฅ ื”ืœื‘ืŸ.
19:30
Make killer apps, if you will.
472
1170260
2000
ืœื™ืฆื•ืจ ืืคืœื™ืงืฆื™ื•ืช ืœื ื™ื™ื“ื™ื, ืื ืชืจืฆื•.
19:32
A lot of people are excited
473
1172260
2000
ื”ืจื‘ื” ืื ืฉื™ื ื”ืชืจื’ืฉื•
19:34
when sharks actually went under the Golden Gate Bridge.
474
1174260
3000
ื›ืฉื›ืจื™ืฉ ืขื‘ืจ ืžืชื—ืช ืœื’ืฉืจ ื”ื–ื”ื‘.
19:37
Let's connect the public to this activity right on their iPhone.
475
1177260
3000
ื‘ื•ื ื ื—ื‘ืจ ืื ืฉื™ื ืœืคืขื™ืœื•ืช ื›ื–ืืช ืขื ื”ืื™ื™ืคื•ืŸ ืฉืœื”ื.
19:40
That way we do away with a few internet myths.
476
1180260
3000
ื›ืš ืื ื—ื ื• ื ืคืชืจื™ื ืžื›ืžื” ืžื™ืชื•ืกื™ื ื‘ืื™ื ื˜ืจื ื˜.
19:44
So we can save the bluefin tuna.
477
1184260
2000
ื‘ื›ื“ื™ ืฉื ื•ื›ืœ ืœื”ืฆื™ืœ ืืช ื”ื˜ื•ื ื” ื›ื—ื•ืœืช ื”ืกืคื™ืจ.
19:46
We can save the white shark.
478
1186260
2000
ืื ื—ื ื• ื ื•ื›ืœ ืœื”ืฆื™ืœ ืืช ื”ืขืžืœืฅ ื”ืœื‘ืŸ.
19:48
We have the science and technology.
479
1188260
2000
ื™ืฉ ืœื ื• ืืช ื”ืžื“ืข ื•ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ืฉื‘ื™ืœ ื–ื”.
19:50
Hope is here. Yes we can.
480
1190260
2000
ื”ืชืงื•ื•ื” ืงื™ื™ืžืช. ื›ืŸ ืื ื—ื ื• ื™ื›ื•ืœื™ื.
19:52
We need just to apply this capacity
481
1192260
2000
ืื ื—ื ื• ืจืง ืฆืจื™ื›ื™ื ืœื™ื™ืฉื ืืช ื”ื™ื›ื•ืœืช ื”ื–ืืช
19:54
further in the oceans.
482
1194260
2000
ืจื—ื•ืง ื™ื•ืชืจ ื‘ืื•ืงื™ื™ื ื•ืก.
19:56
Thank you.
483
1196260
2000
ืชื•ื“ื”.
19:58
(Applause)
484
1198260
2000
(ืชืฉื•ืื•ืช)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7