Why I draw with robots | Sougwen Chung

32,000 views ・ 2020-02-14

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Ivana Korom Reviewer: Camille Martínez
0
0
7000
翻译人员: Yanyan Hong 校对人员: Cissy Yun
00:12
Many of us here use technology in our day-to-day.
1
12937
3165
在座的各位在日常生活中 都会使用科技,
00:16
And some of us rely on technology to do our jobs.
2
16126
3247
许多人依赖科技来 进行他们的工作。
00:19
For a while, I thought of machines and the technologies that drive them
3
19397
3950
有一段时间,我认为机器和科技
00:23
as perfect tools that could make my work more efficient and more productive.
4
23371
4505
只是让我的工作更高效、高产的 完美工具。
00:28
But with the rise of automation across so many different industries,
5
28403
3254
但随着自动化技术 在各行各业的崛起,
00:31
it led me to wonder:
6
31681
1372
让我不禁试想:
00:33
If machines are starting to be able to do the work
7
33077
2341
如果机器能够完成
00:35
traditionally done by humans,
8
35442
1667
原本由人类做的工作,
00:37
what will become of the human hand?
9
37133
2333
那我们人类之手又能做些什么呢?
00:40
How does our desire for perfection, precision and automation
10
40133
4093
对完美,精确和自动化的追求
00:44
affect our ability to be creative?
11
44250
1922
是如何影响我的创造力?
00:46
In my work as an artist and researcher, I explore AI and robotics
12
46553
4087
作为艺术家和研究者, 我研究人工智能和机器人,
00:50
to develop new processes for human creativity.
13
50664
3005
以此来开发人类创造的新途径。
00:54
For the past few years,
14
54077
1286
过去几年里,
00:55
I've made work alongside machines, data and emerging technologies.
15
55387
4376
我运用机器,数据 和新兴科技进行创作。
01:00
It's part of a lifelong fascination
16
60143
1861
其中一部分永恒的魅力
01:02
about the dynamics of individuals and systems
17
62028
2735
在于人与技术间奇妙的动态,
01:04
and all the messiness that that entails.
18
64787
2381
还有其中不可避免的混乱。
01:07
It's how I'm exploring questions about where AI ends and we begin
19
67192
4808
我借此来探索人工智能与我们的界限,
01:12
and where I'm developing processes
20
72024
1642
以及探索发展
01:13
that investigate potential sensory mixes of the future.
21
73690
3326
未来感官融合的可能。
01:17
I think it's where philosophy and technology intersect.
22
77675
2857
我想这是哲学与技术的交汇点。
01:20
Doing this work has taught me a few things.
23
80992
2239
这项工作教会了我一些事。
01:23
It's taught me how embracing imperfection
24
83642
2824
它教会我拥抱不完美
01:26
can actually teach us something about ourselves.
25
86490
2489
可以帮助我们认识自我。
01:29
It's taught me that exploring art
26
89428
2336
它教会我探索艺术
01:31
can actually help shape the technology that shapes us.
27
91788
2931
能够更好的构建科技, 从而塑造自我。
01:35
And it's taught me that combining AI and robotics
28
95148
3261
它教会我将人工智能和机器人
01:38
with traditional forms of creativity -- visual arts in my case --
29
98433
3532
结合到传统的创作中—— 以我创作的视觉艺术为例——
01:41
can help us think a little bit more deeply
30
101989
2302
能够帮助我们更深入理解
01:44
about what is human and what is the machine.
31
104315
2897
何为人类,何为机器。
01:47
And it's led me to the realization
32
107942
1707
它让我意识到
01:49
that collaboration is the key to creating the space for both
33
109673
3055
在我们进步的路上,
合作是创造人与机器共存空间的关键。
01:52
as we move forward.
34
112752
1267
01:54
It all started with a simple experiment with machines,
35
114387
2746
这一切都始于 一个简单的机器实验,
01:57
called "Drawing Operations Unit: Generation 1."
36
117157
2826
实验机器叫“绘图机器:初代” (Drawing Operations Unit: Generation 1)。
02:00
I call the machine "D.O.U.G." for short.
37
120434
2516
我把它简称为道格(D.O.U.G.),
02:02
Before I built D.O.U.G,
38
122974
1326
在我建造道格之前,
02:04
I didn't know anything about building robots.
39
124324
2365
我对造机器人一无所知,
02:07
I took some open-source robotic arm designs,
40
127220
2897
我参考了一些开源的机器臂设计,
02:10
I hacked together a system where the robot would match my gestures
41
130141
3341
编成了一个系统来实现匹配手势,
02:13
and follow [them] in real time.
42
133506
1639
并实时模仿它们。
02:15
The premise was simple:
43
135169
1448
前提很简单:
02:16
I would lead, and it would follow.
44
136641
2200
我画,而它会学我。
02:19
I would draw a line, and it would mimic my line.
45
139403
2936
我画一条线, 它也会跟着我画一条线。
02:22
So back in 2015, there we were, drawing for the first time,
46
142363
3698
回到 2015 年,那是我们第一次
02:26
in front of a small audience in New York City.
47
146085
2619
在纽约的一小群观众前作画。
02:28
The process was pretty sparse --
48
148728
2555
整个过程非常冷清——
02:31
no lights, no sounds, nothing to hide behind.
49
151307
3487
没有灯光,没有音效, 也没有什么悬念。
02:35
Just my palms sweating and the robot's new servos heating up.
50
155241
3395
只有手掌冒出的冷汗 和机器臂不断升高的温度。
02:38
(Laughs) Clearly, we were not built for this.
51
158950
2441
(笑声)显然, 这不是我们想要的效果。
02:41
But something interesting happened, something I didn't anticipate.
52
161820
3233
但有趣的事发生了, 完全出乎意料。
02:45
See, D.O.U.G., in its primitive form, wasn't tracking my line perfectly.
53
165077
4802
初代的道格并没有 完美地模仿我画的线条,
02:49
While in the simulation that happened onscreen
54
169903
2333
在计算器模拟中显示
02:52
it was pixel-perfect,
55
172260
1357
它的模仿事精确完美的,
02:53
in physical reality, it was a different story.
56
173641
2531
但到了现实中,却并非如此。
02:56
It would slip and slide and punctuate and falter,
57
176196
2817
它会滑动,会卡顿,会晃动,
02:59
and I would be forced to respond.
58
179037
2068
于是我不得不附和它的线条。
03:01
There was nothing pristine about it.
59
181525
1778
它的状态不完美,
03:03
And yet, somehow, the mistakes made the work more interesting.
60
183327
3238
而这些失误让作品更加有趣,
03:06
The machine was interpreting my line but not perfectly.
61
186589
2754
机器在模仿我的线条, 但是并不完美,
03:09
And I was forced to respond.
62
189367
1372
于是变成我在附和机器。
03:10
We were adapting to each other in real time.
63
190763
2709
我们不断地实时熟悉彼此。
03:13
And seeing this taught me a few things.
64
193496
1937
看到这些,教会了我一些事,
03:15
It showed me that our mistakes actually made the work more interesting.
65
195457
4880
我们的失误,实际上 让我们的作品更加有趣,
03:20
And I realized that, you know, through the imperfection of the machine,
66
200663
4249
我从机器的不完美中意识到,
03:24
our imperfections became what was beautiful about the interaction.
67
204936
3705
我们的不完美成就了这互动之美。
03:29
And I was excited, because it led me to the realization
68
209650
3087
而我很兴奋,因为它让我意识到
03:32
that maybe part of the beauty of human and machine systems
69
212761
3650
或许人类和机器系统的美妙之一
03:36
is their shared inherent fallibility.
70
216435
2738
正是他们共同的、固有的不完美。
03:39
For the second generation of D.O.U.G.,
71
219197
1820
对于第二代的道格,
03:41
I knew I wanted to explore this idea.
72
221041
2307
我知道我要探索这个想法,
03:43
But instead of an accident produced by pushing a robotic arm to its limits,
73
223372
4418
我并非打算通过放大机器臂的失误,
03:47
I wanted to design a system that would respond to my drawings
74
227814
2897
而是想要设计一个系统 能够以出其不意的方式
03:50
in ways that I didn't expect.
75
230735
1833
回应我的画作。
03:52
So, I used a visual algorithm to extract visual information
76
232592
3849
所以,我运用一个视觉算法 来提取我几十年来的
03:56
from decades of my digital and analog drawings.
77
236465
2978
数字和实体绘图中的视觉样本信息,
03:59
I trained a neural net on these drawings
78
239467
2055
以此我训练了一个神经网络
04:01
in order to generate recurring patterns in the work
79
241546
2865
优化机器的循环模式,
04:04
that were then fed through custom software back into the machine.
80
244435
3476
视觉样本由经专门的 软件处理导入机器。
04:07
I painstakingly collected as many of my drawings as I could find --
81
247935
4386
于是我煞费苦心地 收集我的所有的画作——
04:12
finished works, unfinished experiments and random sketches --
82
252345
4215
成品,半成品,随手简笔画——
04:16
and tagged them for the AI system.
83
256584
1999
把它们标记给人工智能系统。
04:18
And since I'm an artist, I've been making work for over 20 years.
84
258607
3684
作为一位艺术家, 我作画超过了 20 年,
04:22
Collecting that many drawings took months,
85
262315
2024
所以收集这些画作花了好多个月,
04:24
it was a whole thing.
86
264363
1389
这是个大工程。
04:25
And here's the thing about training AI systems:
87
265776
2595
说到训练人工智能:
04:28
it's actually a lot of hard work.
88
268395
2200
这其实大费功夫。
04:31
A lot of work goes on behind the scenes.
89
271022
2191
幕后的工作很多很多,
04:33
But in doing the work, I realized a little bit more
90
273237
2681
但在其中,我对人工智能的构造
04:35
about how the architecture of an AI is constructed.
91
275942
3421
更深入了解了一些。
04:39
And I realized it's not just made of models and classifiers
92
279387
2947
我意识到它不仅是 神经网络的
04:42
for the neural network.
93
282358
1322
模型和分屏器。
04:43
But it's a fundamentally malleable and shapable system,
94
283704
3532
它是一个可延展的、可塑的系统,
04:47
one in which the human hand is always present.
95
287260
3111
人类的手始终参与其中。
04:50
It's far from the omnipotent AI we've been told to believe in.
96
290395
4000
它不再是我们认为的 无所不能的人工智能。
04:54
So I collected these drawings for the neural net.
97
294419
2515
所以,我收集画作以训练神经网络,
04:56
And we realized something that wasn't previously possible.
98
296958
3929
而且我们意识到 前所未有的事情发生了,
05:00
My robot D.O.U.G. became a real-time interactive reflection
99
300911
4091
我对机器人道格 在实时交互创作中,
05:05
of the work I'd done through the course of my life.
100
305026
2627
对我过去人生几十年的作品做出回应。
05:07
The data was personal, but the results were powerful.
101
307677
3865
数据源于我个人, 但结果却很有力。
05:11
And I got really excited,
102
311566
1484
我感到非常兴奋,
05:13
because I started thinking maybe machines don't need to be just tools,
103
313074
4582
因为我开始想或许机器不该只是工具,
05:17
but they can function as nonhuman collaborators.
104
317680
3420
它还可以是非人的合作者。
05:21
And even more than that,
105
321537
1547
再进一步想,
05:23
I thought maybe the future of human creativity
106
323108
2429
也许未来的人类创作
05:25
isn't in what it makes
107
325561
1524
不在于作品本身,
05:27
but how it comes together to explore new ways of making.
108
327109
3436
而在于对艺术诞生新方式的探索。
05:31
So if D.O.U.G._1 was the muscle,
109
331101
2190
所以,如果道格初代是肌肉,
05:33
and D.O.U.G._2 was the brain,
110
333315
1762
那么道格二代就是大脑,
05:35
then I like to think of D.O.U.G._3 as the family.
111
335101
2928
然后我想道格三代就是家人。
05:38
I knew I wanted to explore this idea of human-nonhuman collaboration at scale.
112
338482
4793
我知道我想要将对 人类和非人类合作的想法放大。
05:43
So over the past few months,
113
343299
1373
于是再过去的几个月里,
05:44
I worked with my team to develop 20 custom robots
114
344696
3135
我和团队造出了 20 个定制的机器人
05:47
that could work with me as a collective.
115
347855
1960
与我集体创作。
05:49
They would work as a group,
116
349839
1293
它们像团队一样工作,
05:51
and together, we would collaborate with all of New York City.
117
351156
2889
我们共同与整个纽约市携手合作,
05:54
I was really inspired by Stanford researcher Fei-Fei Li,
118
354069
2944
斯坦福大学的研究员李飞飞 激发了我对灵感,
05:57
who said, "if we want to teach machines how to think,
119
357037
2515
她说,"若像教机器如何思考,
05:59
we need to first teach them how to see."
120
359576
1984
先要教它们如何看见。"
06:01
It made me think of the past decade of my life in New York,
121
361584
2785
这让我想起了过去 十年的纽约生活,
06:04
and how I'd been all watched over by these surveillance cameras around the city.
122
364393
3993
城市上空的监控摄像头监视着我,
06:08
And I thought it would be really interesting
123
368410
2056
如果我用它们来训练
06:10
if I could use them to teach my robots to see.
124
370490
2405
我的机器人的视觉, 那会非常有趣。
06:12
So with this project,
125
372919
1888
所以在这个项目中,
06:14
I thought about the gaze of the machine,
126
374831
1967
我思考机器对我们的凝视,
06:16
and I began to think about vision as multidimensional,
127
376822
3226
于是我开始将视觉看成多元化的,
06:20
as views from somewhere.
128
380072
1600
视作来自某处的视点。
06:22
We collected video
129
382151
1834
我们收集视频,
06:24
from publicly available camera feeds on the internet
130
384009
3063
从网络上公共摄像头的影片
06:27
of people walking on the sidewalks,
131
387096
1690
到行人在路上走的片段,
06:28
cars and taxis on the road,
132
388810
1712
道路上的汽车和出租,
06:30
all kinds of urban movement.
133
390546
1817
城市中各种车水马龙的片段。
06:33
We trained a vision algorithm on those feeds
134
393188
2603
基于一种“光流技术”,
06:35
based on a technique called "optical flow,"
135
395815
2286
我们训练了一种视觉算法,
06:38
to analyze the collective density,
136
398125
1977
来分析收集到的人流密度,
06:40
direction, dwell and velocity states of urban movement.
137
400126
3637
城市流动的方向, 速度状态以及居住方式。
06:44
Our system extracted those states from the feeds as positional data
138
404178
4269
我们的系统从海量的 位置数据中提取这些信息,
06:48
and became pads for my robotic units to draw on.
139
408471
3373
我们的机器人依靠这些信息来作画,
06:51
Instead of a collaboration of one-to-one,
140
411868
2534
与之前的一对一合作不同,
06:54
we made a collaboration of many-to-many.
141
414426
3024
我们实现了多对多的合作。
06:57
By combining the vision of human and machine in the city,
142
417474
3587
通过结合城市中人类与机器的视角,
07:01
we reimagined what a landscape painting could be.
143
421085
2794
我们重构了一个景观绘图可能的样子。
07:03
Throughout all of my experiments with D.O.U.G.,
144
423903
2218
在我和道格所有的实验中,
07:06
no two performances have ever been the same.
145
426145
2717
没有哪两次的呈现是相同的,
07:08
And through collaboration,
146
428886
1382
而且通过合作,
07:10
we create something that neither of us could have done alone:
147
430292
2864
我们创作了我们 无法独自实现的事情,
07:13
we explore the boundaries of our creativity,
148
433180
2611
我们共同探索了创造力的边界,
07:15
human and nonhuman working in parallel.
149
435815
2892
人类和非人类并肩工作。
07:19
I think this is just the beginning.
150
439823
2334
我想这才是开始,
07:22
This year, I've launched Scilicet,
151
442569
2183
今年,我创办了 Scilicet,
07:24
my new lab exploring human and interhuman collaboration.
152
444776
4245
这个新实验室旨在探索 人类和非人类间的合作,
07:29
We're really interested in the feedback loop
153
449339
2120
我们对个体,人工和生态系统
07:31
between individual, artificial and ecological systems.
154
451483
4230
之间的反馈关系非常感兴趣。
07:36
We're connecting human and machine output
155
456276
2269
我们将人类和机器与
07:38
to biometrics and other kinds of environmental data.
156
458569
2984
生物特征识别和其他环境数据相结合。
07:41
We're inviting anyone who's interested in the future of work, systems
157
461577
4079
我们邀请任何对未来的作品、系统
07:45
and interhuman collaboration
158
465680
1595
和人际间合作感兴趣的人
07:47
to explore with us.
159
467299
1550
和我们共同探索。
07:48
We know it's not just technologists that have to do this work
160
468873
3405
我们知道不仅是科技工作者肩负使命,
07:52
and that we all have a role to play.
161
472302
2103
所有人都可以参与其中。
07:54
We believe that by teaching machines
162
474429
2243
我们坚信通过教授机器
07:56
how to do the work traditionally done by humans,
163
476696
2730
如何去完成人类的传统工作,
07:59
we can explore and evolve our criteria
164
479450
2953
我们就能不断探索和创新
08:02
of what's made possible by the human hand.
165
482427
2443
超越人类之手所能达到的可能。
08:04
And part of that journey is embracing the imperfections
166
484894
3493
这段旅程之一便是拥抱不完美,
08:08
and recognizing the fallibility of both human and machine,
167
488411
3690
发现人类和机器共有的缺憾,
08:12
in order to expand the potential of both.
168
492125
2405
才能更好的拓展我们共同的潜能。
08:14
Today, I'm still in pursuit of finding the beauty
169
494919
2301
今天,我仍在追寻人类和
08:17
in human and nonhuman creativity.
170
497244
2276
非人类协作的美妙之处。
08:19
In the future, I have no idea what that will look like,
171
499865
2829
在未来,我不知道会怎样,
08:23
but I'm pretty curious to find out.
172
503627
2024
但是我满怀好奇去寻找答案。
08:25
Thank you.
173
505675
1151
谢谢。
08:26
(Applause)
174
506850
1884
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog