Why I draw with robots | Sougwen Chung

30,428 views ・ 2020-02-14

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Ivana Korom Reviewer: Camille Martínez
0
0
7000
翻译人员: Yanyan Hong 校对人员: Cissy Yun
00:12
Many of us here use technology in our day-to-day.
1
12937
3165
在座的各位在日常生活中 都会使用科技,
00:16
And some of us rely on technology to do our jobs.
2
16126
3247
许多人依赖科技来 进行他们的工作。
00:19
For a while, I thought of machines and the technologies that drive them
3
19397
3950
有一段时间,我认为机器和科技
00:23
as perfect tools that could make my work more efficient and more productive.
4
23371
4505
只是让我的工作更高效、高产的 完美工具。
00:28
But with the rise of automation across so many different industries,
5
28403
3254
但随着自动化技术 在各行各业的崛起,
00:31
it led me to wonder:
6
31681
1372
让我不禁试想:
00:33
If machines are starting to be able to do the work
7
33077
2341
如果机器能够完成
00:35
traditionally done by humans,
8
35442
1667
原本由人类做的工作,
00:37
what will become of the human hand?
9
37133
2333
那我们人类之手又能做些什么呢?
00:40
How does our desire for perfection, precision and automation
10
40133
4093
对完美,精确和自动化的追求
00:44
affect our ability to be creative?
11
44250
1922
是如何影响我的创造力?
00:46
In my work as an artist and researcher, I explore AI and robotics
12
46553
4087
作为艺术家和研究者, 我研究人工智能和机器人,
00:50
to develop new processes for human creativity.
13
50664
3005
以此来开发人类创造的新途径。
00:54
For the past few years,
14
54077
1286
过去几年里,
00:55
I've made work alongside machines, data and emerging technologies.
15
55387
4376
我运用机器,数据 和新兴科技进行创作。
01:00
It's part of a lifelong fascination
16
60143
1861
其中一部分永恒的魅力
01:02
about the dynamics of individuals and systems
17
62028
2735
在于人与技术间奇妙的动态,
01:04
and all the messiness that that entails.
18
64787
2381
还有其中不可避免的混乱。
01:07
It's how I'm exploring questions about where AI ends and we begin
19
67192
4808
我借此来探索人工智能与我们的界限,
01:12
and where I'm developing processes
20
72024
1642
以及探索发展
01:13
that investigate potential sensory mixes of the future.
21
73690
3326
未来感官融合的可能。
01:17
I think it's where philosophy and technology intersect.
22
77675
2857
我想这是哲学与技术的交汇点。
01:20
Doing this work has taught me a few things.
23
80992
2239
这项工作教会了我一些事。
01:23
It's taught me how embracing imperfection
24
83642
2824
它教会我拥抱不完美
01:26
can actually teach us something about ourselves.
25
86490
2489
可以帮助我们认识自我。
01:29
It's taught me that exploring art
26
89428
2336
它教会我探索艺术
01:31
can actually help shape the technology that shapes us.
27
91788
2931
能够更好的构建科技, 从而塑造自我。
01:35
And it's taught me that combining AI and robotics
28
95148
3261
它教会我将人工智能和机器人
01:38
with traditional forms of creativity -- visual arts in my case --
29
98433
3532
结合到传统的创作中—— 以我创作的视觉艺术为例——
01:41
can help us think a little bit more deeply
30
101989
2302
能够帮助我们更深入理解
01:44
about what is human and what is the machine.
31
104315
2897
何为人类,何为机器。
01:47
And it's led me to the realization
32
107942
1707
它让我意识到
01:49
that collaboration is the key to creating the space for both
33
109673
3055
在我们进步的路上,
合作是创造人与机器共存空间的关键。
01:52
as we move forward.
34
112752
1267
01:54
It all started with a simple experiment with machines,
35
114387
2746
这一切都始于 一个简单的机器实验,
01:57
called "Drawing Operations Unit: Generation 1."
36
117157
2826
实验机器叫“绘图机器:初代” (Drawing Operations Unit: Generation 1)。
02:00
I call the machine "D.O.U.G." for short.
37
120434
2516
我把它简称为道格(D.O.U.G.),
02:02
Before I built D.O.U.G,
38
122974
1326
在我建造道格之前,
02:04
I didn't know anything about building robots.
39
124324
2365
我对造机器人一无所知,
02:07
I took some open-source robotic arm designs,
40
127220
2897
我参考了一些开源的机器臂设计,
02:10
I hacked together a system where the robot would match my gestures
41
130141
3341
编成了一个系统来实现匹配手势,
02:13
and follow [them] in real time.
42
133506
1639
并实时模仿它们。
02:15
The premise was simple:
43
135169
1448
前提很简单:
02:16
I would lead, and it would follow.
44
136641
2200
我画,而它会学我。
02:19
I would draw a line, and it would mimic my line.
45
139403
2936
我画一条线, 它也会跟着我画一条线。
02:22
So back in 2015, there we were, drawing for the first time,
46
142363
3698
回到 2015 年,那是我们第一次
02:26
in front of a small audience in New York City.
47
146085
2619
在纽约的一小群观众前作画。
02:28
The process was pretty sparse --
48
148728
2555
整个过程非常冷清——
02:31
no lights, no sounds, nothing to hide behind.
49
151307
3487
没有灯光,没有音效, 也没有什么悬念。
02:35
Just my palms sweating and the robot's new servos heating up.
50
155241
3395
只有手掌冒出的冷汗 和机器臂不断升高的温度。
02:38
(Laughs) Clearly, we were not built for this.
51
158950
2441
(笑声)显然, 这不是我们想要的效果。
02:41
But something interesting happened, something I didn't anticipate.
52
161820
3233
但有趣的事发生了, 完全出乎意料。
02:45
See, D.O.U.G., in its primitive form, wasn't tracking my line perfectly.
53
165077
4802
初代的道格并没有 完美地模仿我画的线条,
02:49
While in the simulation that happened onscreen
54
169903
2333
在计算器模拟中显示
02:52
it was pixel-perfect,
55
172260
1357
它的模仿事精确完美的,
02:53
in physical reality, it was a different story.
56
173641
2531
但到了现实中,却并非如此。
02:56
It would slip and slide and punctuate and falter,
57
176196
2817
它会滑动,会卡顿,会晃动,
02:59
and I would be forced to respond.
58
179037
2068
于是我不得不附和它的线条。
03:01
There was nothing pristine about it.
59
181525
1778
它的状态不完美,
03:03
And yet, somehow, the mistakes made the work more interesting.
60
183327
3238
而这些失误让作品更加有趣,
03:06
The machine was interpreting my line but not perfectly.
61
186589
2754
机器在模仿我的线条, 但是并不完美,
03:09
And I was forced to respond.
62
189367
1372
于是变成我在附和机器。
03:10
We were adapting to each other in real time.
63
190763
2709
我们不断地实时熟悉彼此。
03:13
And seeing this taught me a few things.
64
193496
1937
看到这些,教会了我一些事,
03:15
It showed me that our mistakes actually made the work more interesting.
65
195457
4880
我们的失误,实际上 让我们的作品更加有趣,
03:20
And I realized that, you know, through the imperfection of the machine,
66
200663
4249
我从机器的不完美中意识到,
03:24
our imperfections became what was beautiful about the interaction.
67
204936
3705
我们的不完美成就了这互动之美。
03:29
And I was excited, because it led me to the realization
68
209650
3087
而我很兴奋,因为它让我意识到
03:32
that maybe part of the beauty of human and machine systems
69
212761
3650
或许人类和机器系统的美妙之一
03:36
is their shared inherent fallibility.
70
216435
2738
正是他们共同的、固有的不完美。
03:39
For the second generation of D.O.U.G.,
71
219197
1820
对于第二代的道格,
03:41
I knew I wanted to explore this idea.
72
221041
2307
我知道我要探索这个想法,
03:43
But instead of an accident produced by pushing a robotic arm to its limits,
73
223372
4418
我并非打算通过放大机器臂的失误,
03:47
I wanted to design a system that would respond to my drawings
74
227814
2897
而是想要设计一个系统 能够以出其不意的方式
03:50
in ways that I didn't expect.
75
230735
1833
回应我的画作。
03:52
So, I used a visual algorithm to extract visual information
76
232592
3849
所以,我运用一个视觉算法 来提取我几十年来的
03:56
from decades of my digital and analog drawings.
77
236465
2978
数字和实体绘图中的视觉样本信息,
03:59
I trained a neural net on these drawings
78
239467
2055
以此我训练了一个神经网络
04:01
in order to generate recurring patterns in the work
79
241546
2865
优化机器的循环模式,
04:04
that were then fed through custom software back into the machine.
80
244435
3476
视觉样本由经专门的 软件处理导入机器。
04:07
I painstakingly collected as many of my drawings as I could find --
81
247935
4386
于是我煞费苦心地 收集我的所有的画作——
04:12
finished works, unfinished experiments and random sketches --
82
252345
4215
成品,半成品,随手简笔画——
04:16
and tagged them for the AI system.
83
256584
1999
把它们标记给人工智能系统。
04:18
And since I'm an artist, I've been making work for over 20 years.
84
258607
3684
作为一位艺术家, 我作画超过了 20 年,
04:22
Collecting that many drawings took months,
85
262315
2024
所以收集这些画作花了好多个月,
04:24
it was a whole thing.
86
264363
1389
这是个大工程。
04:25
And here's the thing about training AI systems:
87
265776
2595
说到训练人工智能:
04:28
it's actually a lot of hard work.
88
268395
2200
这其实大费功夫。
04:31
A lot of work goes on behind the scenes.
89
271022
2191
幕后的工作很多很多,
04:33
But in doing the work, I realized a little bit more
90
273237
2681
但在其中,我对人工智能的构造
04:35
about how the architecture of an AI is constructed.
91
275942
3421
更深入了解了一些。
04:39
And I realized it's not just made of models and classifiers
92
279387
2947
我意识到它不仅是 神经网络的
04:42
for the neural network.
93
282358
1322
模型和分屏器。
04:43
But it's a fundamentally malleable and shapable system,
94
283704
3532
它是一个可延展的、可塑的系统,
04:47
one in which the human hand is always present.
95
287260
3111
人类的手始终参与其中。
04:50
It's far from the omnipotent AI we've been told to believe in.
96
290395
4000
它不再是我们认为的 无所不能的人工智能。
04:54
So I collected these drawings for the neural net.
97
294419
2515
所以,我收集画作以训练神经网络,
04:56
And we realized something that wasn't previously possible.
98
296958
3929
而且我们意识到 前所未有的事情发生了,
05:00
My robot D.O.U.G. became a real-time interactive reflection
99
300911
4091
我对机器人道格 在实时交互创作中,
05:05
of the work I'd done through the course of my life.
100
305026
2627
对我过去人生几十年的作品做出回应。
05:07
The data was personal, but the results were powerful.
101
307677
3865
数据源于我个人, 但结果却很有力。
05:11
And I got really excited,
102
311566
1484
我感到非常兴奋,
05:13
because I started thinking maybe machines don't need to be just tools,
103
313074
4582
因为我开始想或许机器不该只是工具,
05:17
but they can function as nonhuman collaborators.
104
317680
3420
它还可以是非人的合作者。
05:21
And even more than that,
105
321537
1547
再进一步想,
05:23
I thought maybe the future of human creativity
106
323108
2429
也许未来的人类创作
05:25
isn't in what it makes
107
325561
1524
不在于作品本身,
05:27
but how it comes together to explore new ways of making.
108
327109
3436
而在于对艺术诞生新方式的探索。
05:31
So if D.O.U.G._1 was the muscle,
109
331101
2190
所以,如果道格初代是肌肉,
05:33
and D.O.U.G._2 was the brain,
110
333315
1762
那么道格二代就是大脑,
05:35
then I like to think of D.O.U.G._3 as the family.
111
335101
2928
然后我想道格三代就是家人。
05:38
I knew I wanted to explore this idea of human-nonhuman collaboration at scale.
112
338482
4793
我知道我想要将对 人类和非人类合作的想法放大。
05:43
So over the past few months,
113
343299
1373
于是再过去的几个月里,
05:44
I worked with my team to develop 20 custom robots
114
344696
3135
我和团队造出了 20 个定制的机器人
05:47
that could work with me as a collective.
115
347855
1960
与我集体创作。
05:49
They would work as a group,
116
349839
1293
它们像团队一样工作,
05:51
and together, we would collaborate with all of New York City.
117
351156
2889
我们共同与整个纽约市携手合作,
05:54
I was really inspired by Stanford researcher Fei-Fei Li,
118
354069
2944
斯坦福大学的研究员李飞飞 激发了我对灵感,
05:57
who said, "if we want to teach machines how to think,
119
357037
2515
她说,"若像教机器如何思考,
05:59
we need to first teach them how to see."
120
359576
1984
先要教它们如何看见。"
06:01
It made me think of the past decade of my life in New York,
121
361584
2785
这让我想起了过去 十年的纽约生活,
06:04
and how I'd been all watched over by these surveillance cameras around the city.
122
364393
3993
城市上空的监控摄像头监视着我,
06:08
And I thought it would be really interesting
123
368410
2056
如果我用它们来训练
06:10
if I could use them to teach my robots to see.
124
370490
2405
我的机器人的视觉, 那会非常有趣。
06:12
So with this project,
125
372919
1888
所以在这个项目中,
06:14
I thought about the gaze of the machine,
126
374831
1967
我思考机器对我们的凝视,
06:16
and I began to think about vision as multidimensional,
127
376822
3226
于是我开始将视觉看成多元化的,
06:20
as views from somewhere.
128
380072
1600
视作来自某处的视点。
06:22
We collected video
129
382151
1834
我们收集视频,
06:24
from publicly available camera feeds on the internet
130
384009
3063
从网络上公共摄像头的影片
06:27
of people walking on the sidewalks,
131
387096
1690
到行人在路上走的片段,
06:28
cars and taxis on the road,
132
388810
1712
道路上的汽车和出租,
06:30
all kinds of urban movement.
133
390546
1817
城市中各种车水马龙的片段。
06:33
We trained a vision algorithm on those feeds
134
393188
2603
基于一种“光流技术”,
06:35
based on a technique called "optical flow,"
135
395815
2286
我们训练了一种视觉算法,
06:38
to analyze the collective density,
136
398125
1977
来分析收集到的人流密度,
06:40
direction, dwell and velocity states of urban movement.
137
400126
3637
城市流动的方向, 速度状态以及居住方式。
06:44
Our system extracted those states from the feeds as positional data
138
404178
4269
我们的系统从海量的 位置数据中提取这些信息,
06:48
and became pads for my robotic units to draw on.
139
408471
3373
我们的机器人依靠这些信息来作画,
06:51
Instead of a collaboration of one-to-one,
140
411868
2534
与之前的一对一合作不同,
06:54
we made a collaboration of many-to-many.
141
414426
3024
我们实现了多对多的合作。
06:57
By combining the vision of human and machine in the city,
142
417474
3587
通过结合城市中人类与机器的视角,
07:01
we reimagined what a landscape painting could be.
143
421085
2794
我们重构了一个景观绘图可能的样子。
07:03
Throughout all of my experiments with D.O.U.G.,
144
423903
2218
在我和道格所有的实验中,
07:06
no two performances have ever been the same.
145
426145
2717
没有哪两次的呈现是相同的,
07:08
And through collaboration,
146
428886
1382
而且通过合作,
07:10
we create something that neither of us could have done alone:
147
430292
2864
我们创作了我们 无法独自实现的事情,
07:13
we explore the boundaries of our creativity,
148
433180
2611
我们共同探索了创造力的边界,
07:15
human and nonhuman working in parallel.
149
435815
2892
人类和非人类并肩工作。
07:19
I think this is just the beginning.
150
439823
2334
我想这才是开始,
07:22
This year, I've launched Scilicet,
151
442569
2183
今年,我创办了 Scilicet,
07:24
my new lab exploring human and interhuman collaboration.
152
444776
4245
这个新实验室旨在探索 人类和非人类间的合作,
07:29
We're really interested in the feedback loop
153
449339
2120
我们对个体,人工和生态系统
07:31
between individual, artificial and ecological systems.
154
451483
4230
之间的反馈关系非常感兴趣。
07:36
We're connecting human and machine output
155
456276
2269
我们将人类和机器与
07:38
to biometrics and other kinds of environmental data.
156
458569
2984
生物特征识别和其他环境数据相结合。
07:41
We're inviting anyone who's interested in the future of work, systems
157
461577
4079
我们邀请任何对未来的作品、系统
07:45
and interhuman collaboration
158
465680
1595
和人际间合作感兴趣的人
07:47
to explore with us.
159
467299
1550
和我们共同探索。
07:48
We know it's not just technologists that have to do this work
160
468873
3405
我们知道不仅是科技工作者肩负使命,
07:52
and that we all have a role to play.
161
472302
2103
所有人都可以参与其中。
07:54
We believe that by teaching machines
162
474429
2243
我们坚信通过教授机器
07:56
how to do the work traditionally done by humans,
163
476696
2730
如何去完成人类的传统工作,
07:59
we can explore and evolve our criteria
164
479450
2953
我们就能不断探索和创新
08:02
of what's made possible by the human hand.
165
482427
2443
超越人类之手所能达到的可能。
08:04
And part of that journey is embracing the imperfections
166
484894
3493
这段旅程之一便是拥抱不完美,
08:08
and recognizing the fallibility of both human and machine,
167
488411
3690
发现人类和机器共有的缺憾,
08:12
in order to expand the potential of both.
168
492125
2405
才能更好的拓展我们共同的潜能。
08:14
Today, I'm still in pursuit of finding the beauty
169
494919
2301
今天,我仍在追寻人类和
08:17
in human and nonhuman creativity.
170
497244
2276
非人类协作的美妙之处。
08:19
In the future, I have no idea what that will look like,
171
499865
2829
在未来,我不知道会怎样,
08:23
but I'm pretty curious to find out.
172
503627
2024
但是我满怀好奇去寻找答案。
08:25
Thank you.
173
505675
1151
谢谢。
08:26
(Applause)
174
506850
1884
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7